
Profiling-Driven Multi-Cycling
in FPGA High-Level Synthesis

Stefan Hadjis1, Andrew Canis1, Ryoya Sobue2,
Yuko Hara-Azumi3, Hiroyuki Tomiyama2, Jason Anderson1

1University of Toronto,

2Ritsumeikan University,
3Tokyo Institute of Technology

legup.eecg.utoronto.ca

mailto:legup@eecg.toronto.edu
mailto:legup@eecg.toronto.edu

Motivation

• High-Level Synthesis:
– Synthesize hardware from software
– Raises hardware design abstraction

• However, HLS-generated hardware may be slower
and consume more area/power

• Our work boosts the speed of HLS circuits using
multi-cycling of combinational paths

10-Mar-2015 legup.eecg.utoronto.ca

LegUp High-Level Synthesis

• High-Level Synthesis Tool from University of Toronto
– http://legup.eecg.toronto.edu

• Input: C software program
• Synthesizes a hybrid target architecture:

– Processor (a soft-core MIPS or hardened ARM)
– Custom hardware accelerators
 Focus of this talk

• Open source and freely downloadable
– 1300+ downloads by groups worldwide

10-Mar-2015 legup.eecg.utoronto.ca

http://legup.eecg.toronto.edu/
http://legup.eecg.toronto.edu/

Outline

• Multi-Cycle Paths in FPGA High-Level Synthesis
• Multi-Cycle Path Static Analysis
• Profiling-Driven Multi-Cycle Path Analysis
• Experimental Results

10-Mar-2015 legup.eecg.utoronto.ca

Outline

• Multi-Cycle Paths in FPGA High-Level Synthesis
• Multi-Cycle Path Static Analysis
• Profiling-Driven Multi-Cycle Path Analysis
• Experimental Results

10-Mar-2015 legup.eecg.utoronto.ca

Multi-Cycle Paths

• Register-to-register path delays usually cannot exceed
the clock period constraint

• Multi-cycling permits selected paths to have longer
delays than the clock period

• A multi-cycle path is a register-to-register path which
is permitted > 1 cycle to complete

• Terminology: A multi-cycle path that takes N clock
cycles to complete has a slack of N
– N is an integer > 1

10-Mar-2015 legup.eecg.utoronto.ca

Multi-Cycle Paths

• A multi-cycle path with slack N has these constraints:
1. Registered inputs can be held constant for N cycles
2. Outputs are not used in these subsequent N cycles

10-Mar-2015 legup.eecg.utoronto.ca

8ns

8ns

8ns

+

–

–
Cycle 1

Cycle 2

Cycle 3

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

&

+

8ns

8ns

8ns

+

–

–
Cycle 1

Cycle 2

Cycle 3

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

&

+

Fmax: 125 MHz

8ns

8ns

8ns

+

–

–
Cycle 1

Cycle 2

Cycle 3

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

*
&

Fmax: 125 MHz

 10ns delay

8ns

8ns

8ns

+

–

–
Cycle 1

Cycle 2

Cycle 3

Fmax: 125 MHz

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

*
&

 10ns delay

10ns

10ns

10ns

+

–

&

–
Cycle 1

Cycle 2

Cycle 3

Fmax: 100 MHz

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

*

+

–

–
But this product
isn’t required
until cycle 3

10ns

10ns

10ns

Cycle 1

Cycle 2

Cycle 3

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

Fmax: 100 MHz

*
&

+

–

–
But this product
isn’t required
until cycle 3

10ns

10ns

10ns

Cycle 1

Cycle 2

Cycle 3

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

Fmax: 100 MHz

*
&

+

–

–

8ns

8ns

8ns

Cycle 1

Cycle 2

Cycle 3

Multi-Cycle Path
with slack of 2

Fmax: 125 MHz

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

*
&

+

–

–

8ns

8ns

8ns

Cycle 1

Cycle 2

Cycle 3

Inputs held steady
for 2 cycles

Fmax: 125 MHz

Multi-Cycle Path
with slack of 2

Multi-Cycle Paths

10-Mar-2015 legup.eecg.utoronto.ca

*
&

Multi-Cycle Paths

• Multi-cycled paths cannot be pipelined with
initiation interval 1

• However, in HLS datapaths do not always benefit
from pipeline parallelism
– Portions of C algorithm can be sequential

• Paths with such cycle slack can be multi-cycled
without increasing cycle latency

10-Mar-2015 legup.eecg.utoronto.ca

Benefits of Multi-Cycling vs. Pipelining

• Fewer register-to-register delays (Tsu, Tcq, clock skew)
• Synthesis tools optimize across register boundaries
• Data-path delays are difficult to predict in HLS (pre-

routing), making scheduling pessimistic
– Multi-cycle paths remove this speculation

• Can improve clock period
• Fewer registers

10-Mar-2015 legup.eecg.utoronto.ca

Why do this in HLS?

• HLS is an opportune stage of the flow to discover/
create multi-cycling paths
– HLS schedules computations into states of a

finite-state machine (FSM)
– FSM state and dependencies of all operations are known
– Can determine all paths whose computation is not

needed in subsequent cycles
– Much harder to do for a circuit described in RTL

10-Mar-2015 legup.eecg.utoronto.ca

LegUp Finite State Machine

• LegUp uses an FSM to schedule operations
– Data-flow is directed by FSM next-state logic
– Registers only enabled in certain FSM states

10-Mar-2015 legup.eecg.utoronto.ca

+

–

– Cycle 1

Cycle 2

Cycle 3

LegUp Finite State Machine

10-Mar-2015 legup.eecg.utoronto.ca

*
&

+

–

– State 274

State 275

State 276

LegUp Finite State Machine

10-Mar-2015 legup.eecg.utoronto.ca

*
&

+

–

– State 274

State 275

State 276

Registers only enabled
in state 275

LegUp Finite State Machine

10-Mar-2015 legup.eecg.utoronto.ca

*
&

+

–

– State 274

State 275

State 276

Enabled in state 273

Registers only enabled
in state 275

LegUp Finite State Machine

10-Mar-2015 legup.eecg.utoronto.ca

*
&

Two Important Compiler Concepts

1. Basic Block: a straight-line segment of code with a
single entry point and a single exit point
– For Loop:

10-Mar-2015 legup.eecg.utoronto.ca

Basic Block 2

Basic Block 1

Two Important Compiler Concepts

1. Basic Block: a straight-line segment of code with a
single entry point and a single exit point
– Conditional branch:

10-Mar-2015 legup.eecg.utoronto.ca

Basic Block 2

Basic Block 1

Basic Block 3

Basic Block 4

Two Important Compiler Concepts

2. PHI instruction: control-flow instruction that selects
a value depending on the previously executed
basic block
– Implemented with a mux in hardware

10-Mar-2015 legup.eecg.utoronto.ca

Basic Block 1

%a = %x + 7

Basic Block 2

%b = %y + 8

Basic Block 3

φ = %a or %b

FSM Control Flow

• LegUp schedules operations (instructions) from the C
program into FSM states

• Within basic blocks, the FSM state proceeds in order
• Once basic blocks finish, the FSM state jumps to the

beginning of the next basic block
– Since Basic Block transitions are only known

dynamically, FSM state can jump in any order

10-Mar-2015 legup.eecg.utoronto.ca

FSM Control Flow

10-Mar-2015 legup.eecg.utoronto.ca

Basic Block 3

Basic Block 2

Basic Block 1

Basic Block 5

Basic Block 4

States AE States FG

States HU

States VW States XZ

Outline

• Multi-Cycle Paths in FPGA High-Level Synthesis
• Multi-Cycle Path Static Analysis
• Profiling-Driven Multi-Cycle Path Analysis
• Experimental Results

10-Mar-2015 legup.eecg.utoronto.ca

Static Analysis

• After HLS scheduling we analyze scheduled operations
to find all instances of multi-cycle slack

• Generate timing constraints for synthesis tools
• We can also modify the circuit to create additional

multi-cycle paths
• De-pipeline datapaths and designate them as multi-

cycle paths of equivalent latency

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelining Data Paths

• If there isn’t new input data every cycle:

pipelined data path

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelining Data Paths

• If there isn’t new input data every cycle :

pipelined data path path with multi-cycle constraint

Multi-cycle path of 3
from A to B

A

B

10-Mar-2015 legup.eecg.utoronto.ca

+

–

–

Another Example

10-Mar-2015 legup.eecg.utoronto.ca

*
&

Another Example

10-Mar-2015 legup.eecg.utoronto.ca

+

–

–
*

&
Naturally- occurring
multi-cycle path

Another Example

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelined
Paths

+

–

–
*

&

Another Example

10-Mar-2015 legup.eecg.utoronto.ca

All Paths
Multi-Cycled
with slack 3

+

–

–
*

&

Static Analysis

10-Mar-2015 legup.eecg.utoronto.ca

Synthesis, Place & Route

Schedule Operations into FSM States
(solves an LP)

Analyze Schedule to find all slack between operations

De-Pipeline data paths and generate MC constraints

HLS Binding, RTL Generation

LegUp
HLS

De-Pipelining Algorithm

Step 1: identify “path separators”
• Not all registers can be removed

– Both for correctness and speed
• Certain operations keep their registers

– Call these Path Separators
– These define start/end points of multi-cycle paths

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelining Algorithm

Step 1: identify “path separators”
1. Block RAMs

– Loads from memory are MC path sources
– Stores to memory are MC path destinations

2. FSM State Registers
3. Function Calls

– Currently, functions in LegUp have registered inputs

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelining Algorithm

Step 1: identify “path separators”
4. Basic Block Boundaries

– PHI operations have register inputs in LegUp
– Computations used in a different basic block from

their definition
5. Pipelined Hardware

– E.g. dividers are still pipelined

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelining Algorithm

Step 1: identify “path separators”
• Example:

10-Mar-2015 legup.eecg.utoronto.ca

RAM (Load operation)

Used in another Basic Block

Multi-Cycle
Path within a
Basic Block

Path Separators

De-Pipelining Algorithm

Step 2: find all paths with multi-cycle slack
• Once all separators are found, traverse CDFG to find

all separator-to-separator paths
– Control Data Flow Graph (CDFG) represents circuit
– Each node of the CDFG is an operation
– Some nodes are separators, rest are not
– Use DFS to find all paths between separators
 Algorithm 1 in paper

– Remove registers during traversal

10-Mar-2015 legup.eecg.utoronto.ca

De-Pipelining Algorithm

Step 2: find all paths with multi-cycle slack

10-Mar-2015 legup.eecg.utoronto.ca

Example CDFG

De-Pipelining Algorithm

Step 2: find all paths with multi-cycle slack

10-Mar-2015 legup.eecg.utoronto.ca

Example CDFG

All separators &
their FSM states
are known

De-Pipelining Algorithm

Step 2: find all paths with multi-cycle slack

10-Mar-2015 legup.eecg.utoronto.ca

Example CDFG

Path has slack 3

De-Pipelining Algorithm

Step 2: find all paths with multi-cycle slack

10-Mar-2015 legup.eecg.utoronto.ca

Example CDFG

Path has
slack 2

De-Pipelining Algorithm

Step 3: print timing constraints for all paths

For a path with multi-cycle slack of N,
• Setup slack = N cycles

– Take Nth edge as capturing edge[1]
• Hold slack = N-1 cycles

– Move hold check back to the launch edge[1]

[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs,
 Springer, 2009, pp. 260–272

10-Mar-2015 legup.eecg.utoronto.ca

Unbalanced Path Latencies

10-Mar-2015 legup.eecg.utoronto.ca

• Greatest speedups come from multi-cycle paths
spanning basic block boundaries

• However, this can cause multiple paths between two
separators
– Why some registers are needed at basic block

boundaries (for PHIs)
• These paths can have different slacks
• Must use minimum slack between 2 separators

– Possible solutions discussed at length in the paper, e.g.
timing constraints that specify –through signals

Unbalanced Path Latencies

10-Mar-2015 legup.eecg.utoronto.ca

Basic Block 1
%a = %b + %c

Basic Block 4

φ = { %d or %f }

Basic Block 2
 . . .
%d = %a + %e
 . . .

Basic Block 3
 . . .
%f = %a + %g

6 Cycles 3 Cycles

Clocked in FSM
State A

Clocked in FSM
State B

Outline

• Multi-Cycle Paths in FPGA High-Level Synthesis
• Multi-Cycle Path Static Analysis
• Profiling-Driven Multi-Cycle Path Analysis
• Experimental Results

10-Mar-2015 legup.eecg.utoronto.ca

Changing the Schedule

10-Mar-2015 legup.eecg.utoronto.ca

• All analysis so far took place after scheduling
– HLS schedules operations to FSM states, and then

algorithm finds paths and their slacks
• We can also modify the schedule to create more

multi-cycle paths

Changing the Schedule

10-Mar-2015 legup.eecg.utoronto.ca

• Extend the latency of near-critical paths
– Common technique in manual circuit design

• Improves clock frequency
• But if paths execute too often, increased latency in one

path can significantly increase latency in overall circuit
• Only extend path latency when

Fmax increase > Latency increase in the overall circuit

Changing the Schedule

10-Mar-2015 legup.eecg.utoronto.ca

3% of
time

97% of
time

A

B C

D

A

B

C

D

Increased path latency in part B of the
circuit is minor

 (a) Software (b) Hardware

Static Analysis

10-Mar-2015 legup.eecg.utoronto.ca

Synthesis, Place & Route

Schedule Operations into FSM States
(solves an LP)

Analyze Schedule to find all slack between operations

De-Pipeline data paths and generate MC constraints

HLS Binding, RTL Generation

LegUp
HLS

Dynamic Analysis

10-Mar-2015 legup.eecg.utoronto.ca

Synthesis, Place & Route

Profiling-Driven Scheduling

Analyze Schedule to find all slack between operations

De-Pipeline data paths and generate MC constraints

HLS Binding, RTL Generation

LegUp
HLS

Profile C Source to get Basic Block Execution Frequency

Profiling-Driven Scheduling

• Basic Block execution frequency for an execution:

 # executions of Basic Block
 # executions of all Basic Blocks

10-Mar-2015 legup.eecg.utoronto.ca

freq =

Basic Block Frequency Distribution

10-Mar-2015 legup.eecg.utoronto.ca

0
2
4
6
8

10
12
14
16

0% 0-1% 1-2% 2-3% 3-6% 6-9% 9-12% 12-15% >15%

Basic Block Execution %

dfmul benchmark

Basic
Blocks

Profiling-Driven Scheduling

• Perform initial scheduling by solving a Linear
Program (LP)
– Schedule operations into FSM states
– Goal = minimize total # FSM states
– Constrained by operation dependencies and

combinational delay
– “System of Difference Constraints” [1]

[1] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based on SDC
formulation,” in IEEE/ACM DAC, 2006, pp. 433–438

10-Mar-2015 legup.eecg.utoronto.ca

Profiling-Driven Scheduling

• Once initial schedule is obtained:

10-Mar-2015 legup.eecg.utoronto.ca

Profiling-Driven Scheduling

• Key idea:
Extend latencies of paths in infrequently executed BB

• How much to extend latency?
– Adding 1 cycle of latency for all paths below frequency

threshold worked best
– Additional latency gave clock frequency speedups but

overall execution time got worse
• What frequency threshold to use?

10-Mar-2015 legup.eecg.utoronto.ca

 % % % % % %

Profiling-Driven Scheduling

10-Mar-2015 legup.eecg.utoronto.ca

0

4

8

12

16

0% 0-1% 1-2% 2-3% 3-6% 6-9% 9-12% 12-15% >15%

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

0 3 6 9 12 15

Fmax

Cycles

Basic Blocks

Ratio vs.
Static
Multi-
Cycling

Basic Block
Execution %

Cutoff Frequency (paths in BB below this frequency had latency increased by 1 cycle)

Profiling-Driven Scheduling

• Notice the largest “gap” occurs at lowest cutoff
• Profiling works by achieving significant frequency

speedups with insignificant increase to cycle latency

10-Mar-2015 legup.eecg.utoronto.ca

 % % % % % %
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35

0 3 6 9 12 15

Fmax

Cycles

Ratio vs.
Static
Multi-
Cycling

Cutoff Frequency (paths in BB below this frequency had latency increased by 1 cycle)

Profiling-Driven Scheduling

• Frequency cutoff of 1%, 2% or 3% works best
– Depends on circuit
– >3% increases latency too much
– Future work: automate cutoff frequency parameter

10-Mar-2015 legup.eecg.utoronto.ca

Outline

• Multi-Cycle Paths in FPGA High-Level Synthesis
• Multi-Cycle Path Static Analysis
• Profiling-Driven Multi-Cycle Path Analysis
• Experimental Results

10-Mar-2015 legup.eecg.utoronto.ca

Experimental Results

• Altera Stratix IV, Quartus II v. 11.1
• HLS scheduler had target clock period of 6ns

– Experimentally gave lowest area-delay product
• Comparison:

– Baseline: No multi-cycling
– StaticMC: Static Multi-Cycle Analysis (no profiling)
– Profiling-DrivenMC: Static and Profiling-Driven

multi-cycling

10-Mar-2015 legup.eecg.utoronto.ca

Normalized Execution Time

10-Mar-2015 legup.eecg.utoronto.ca

0.6

0.8

1

1.2

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

ize
d)

Benchmark

Base StaticMC Profiling-DrivenMC
Geomean: 1.0 0.945 0.898

Execution Time

• As expected, not all circuits benefit from multicycling
– If critical path is not in the datapath, adding latency

slows circuits down
– In these circuits a cutoff frequency of 0% was chosen

(falling back to static multi-cycling)
• Datapath-critical circuits speed up as much as 30%

from multi-cycling and an additional 17% from
profiling-driven multi-cycling

• Some circuits (e.g. aes, sha) slow down due to
unbalanced path latencies, this is partially fixed by
profiling-driven multi-cycling

10-Mar-2015 legup.eecg.utoronto.ca

Normalized Circuit Area

10-Mar-2015 legup.eecg.utoronto.ca

0.6

0.8

1

St
ra

tix
 IV

 A
LM

s
(N

or
m

al
ize

d)

Benchmark

Base StaticMC Profiling-DrivenMC
Geomean: 1.0 0.890 0.894

Circuit Area

• Total area reduction of 11% (Stratix IV ALMs)
– Register usage decreased by 26% due to de-pipelining
– Combinational logic remains flat (decreases by 1%)

• Profiling-driven multi-cycling uses 0.4% more ALMs
than static mult-cycling, due to additional FSM logic

• Total area-delay product reduced by 20% over
baseline with profiling-driven multi-cycling

10-Mar-2015 legup.eecg.utoronto.ca

Conclusion

• Profiling-driven multi-cycling provides significant
speedups in datapath-critical circuits

• Total area-delay product reduced by 20% over
baseline with profiling-driven multi-cycling

• See full implementation at:
– http://legup.eecg.utoronto.ca/git

• Questions?

10-Mar-2015 legup.eecg.utoronto.ca

http://legup.eecg.utoronto.ca/git

	Slide Number 1
	Motivation
	LegUp High-Level Synthesis
	Outline
	Outline
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Multi-Cycle Paths
	Benefits of Multi-Cycling vs. Pipelining
	Why do this in HLS?
	LegUp Finite State Machine
	LegUp Finite State Machine
	LegUp Finite State Machine
	LegUp Finite State Machine
	LegUp Finite State Machine
	Two Important Compiler Concepts
	Two Important Compiler Concepts
	Two Important Compiler Concepts
	FSM Control Flow
	FSM Control Flow
	Outline
	Static Analysis
	De-Pipelining Data Paths
	De-Pipelining Data Paths
	Another Example
	Another Example
	Another Example
	Another Example
	Static Analysis
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	De-Pipelining Algorithm
	Unbalanced Path Latencies
	Unbalanced Path Latencies
	Outline
	Changing the Schedule
	Changing the Schedule
	Changing the Schedule
	Static Analysis
	Dynamic Analysis
	Profiling-Driven Scheduling
	Basic Block Frequency Distribution
	Profiling-Driven Scheduling
	Profiling-Driven Scheduling
	Profiling-Driven Scheduling
	Profiling-Driven Scheduling
	Profiling-Driven Scheduling
	Profiling-Driven Scheduling
	Outline
	Experimental Results
	Normalized Execution Time
	Execution Time
	Normalized Circuit Area
	Circuit Area
	Conclusion

