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Motivation 

• High-Level Synthesis:  
– Synthesize hardware from software 
– Raises hardware design abstraction 

• However, HLS-generated hardware may be slower 
and consume more area/power 

• Our work boosts the speed of HLS circuits using 
multi-cycling of combinational paths 
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LegUp High-Level Synthesis 

• High-Level Synthesis Tool from University of Toronto 
– http://legup.eecg.toronto.edu 

• Input: C software program 
• Synthesizes a hybrid target architecture: 

– Processor (a soft-core MIPS or hardened ARM) 
– Custom hardware accelerators 
 Focus of this talk 

• Open source and freely downloadable 
– 1300+ downloads by groups worldwide 
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Outline 

• Multi-Cycle Paths in FPGA High-Level Synthesis 
• Multi-Cycle Path Static Analysis 
• Profiling-Driven Multi-Cycle Path Analysis 
• Experimental Results 
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Multi-Cycle Paths 

• Register-to-register path delays usually cannot exceed 
the clock period constraint 

• Multi-cycling permits selected paths to have longer 
delays than the clock period 

• A multi-cycle path is a register-to-register path which 
is permitted > 1 cycle to complete 

• Terminology: A multi-cycle path that takes N clock 
cycles to complete has a slack of N  
– N is an integer > 1 
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Multi-Cycle Paths 

• A multi-cycle path with slack N has these constraints: 
1. Registered inputs can be held constant for N cycles 
2. Outputs are not used in these subsequent N cycles 
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Multi-Cycle Paths 

• Multi-cycled paths cannot be pipelined with 
initiation interval 1 

• However, in HLS datapaths do not always benefit 
from pipeline parallelism 
– Portions of C algorithm can be sequential 

• Paths with such cycle slack can be multi-cycled 
without increasing cycle latency 
 

10-Mar-2015 legup.eecg.utoronto.ca 



Benefits of Multi-Cycling vs. Pipelining 

• Fewer register-to-register delays (Tsu, Tcq, clock skew) 
• Synthesis tools optimize across register boundaries 
• Data-path delays are difficult to predict in HLS (pre-

routing), making scheduling pessimistic 
– Multi-cycle paths remove this speculation 

• Can improve clock period 
• Fewer registers 
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Why do this in HLS? 

• HLS is an opportune stage of the flow to discover/ 
create multi-cycling paths 
– HLS schedules computations into states of a  

finite-state machine (FSM) 
– FSM state and dependencies of all operations are known 
– Can determine all paths whose computation is not 

needed in subsequent cycles 
– Much harder to do for a circuit described in RTL 
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LegUp Finite State Machine 

• LegUp uses an FSM to schedule operations 
– Data-flow is directed by FSM next-state logic 
– Registers only enabled in certain FSM states 
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Two Important Compiler Concepts 

1. Basic Block: a straight-line segment of code with a 
single entry point and a single exit point 
– For Loop: 
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Two Important Compiler Concepts 

1. Basic Block: a straight-line segment of code with a 
single entry point and a single exit point 
– Conditional branch: 
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Two Important Compiler Concepts 

2. PHI instruction: control-flow instruction that selects 
a value depending on the previously executed  
basic block 
– Implemented with a mux in hardware 
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FSM Control Flow 

• LegUp schedules operations (instructions) from the C 
program into FSM states 

• Within basic blocks, the FSM state proceeds in order 
• Once basic blocks finish, the FSM state jumps to the 

beginning of the next basic block 
– Since Basic Block transitions are only known 

dynamically, FSM state can jump in any order 
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FSM Control Flow 
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Static Analysis 

• After HLS scheduling we analyze scheduled operations 
to find all instances of multi-cycle slack 

• Generate timing constraints for synthesis tools 
• We can also modify the circuit to create additional 

multi-cycle paths 
• De-pipeline datapaths and designate them as multi-

cycle paths of equivalent latency 
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De-Pipelining Data Paths 

• If there isn’t new input data every cycle: 

pipelined data path 

10-Mar-2015 legup.eecg.utoronto.ca 



De-Pipelining Data Paths 

• If there isn’t new input data every cycle : 

pipelined data path path with multi-cycle constraint 

Multi-cycle path of 3 
from A to B  

A 

B 
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Another Example 
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Another Example 
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Static Analysis 
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Synthesis, Place & Route 

Schedule Operations into FSM States 
(solves an LP) 

Analyze Schedule to find all slack between operations 

De-Pipeline data paths and generate MC constraints 

HLS Binding, RTL Generation 
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De-Pipelining Algorithm 

Step 1: identify “path separators” 
• Not all registers can be removed 

– Both for correctness and speed 
• Certain operations keep their registers 

– Call these Path Separators 
– These define start/end points of multi-cycle paths 
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De-Pipelining Algorithm 

Step 1: identify “path separators” 
1. Block RAMs 

– Loads from memory are MC path sources 
– Stores to memory are MC path destinations 

2. FSM State Registers 
3. Function Calls 

– Currently, functions in LegUp have registered inputs 
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De-Pipelining Algorithm 

Step 1: identify “path separators” 
4. Basic Block Boundaries 

– PHI operations have register inputs in LegUp 
– Computations used in a different basic block from 

their definition 
5. Pipelined Hardware 

– E.g. dividers are still pipelined 
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De-Pipelining Algorithm 

Step 1: identify “path separators” 
• Example: 
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De-Pipelining Algorithm 

Step 2: find all paths with multi-cycle slack 
• Once all separators are found, traverse CDFG to find 

all separator-to-separator paths 
– Control Data Flow Graph (CDFG) represents circuit 
– Each node of the CDFG is an operation 
– Some nodes are separators, rest are not 
– Use DFS to find all paths between separators 
 Algorithm 1 in paper 

– Remove registers during traversal 
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De-Pipelining Algorithm 

Step 2: find all paths with multi-cycle slack 
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De-Pipelining Algorithm 

Step 2: find all paths with multi-cycle slack 
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De-Pipelining Algorithm 

Step 2: find all paths with multi-cycle slack 
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De-Pipelining Algorithm 

Step 2: find all paths with multi-cycle slack 
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De-Pipelining Algorithm 

Step 3: print timing constraints for all paths 
 
For a path with multi-cycle slack of N, 
• Setup slack = N cycles 

– Take Nth edge as capturing edge[1] 
• Hold slack = N-1 cycles 

– Move hold check back to the launch edge[1] 
 

 
[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs,  
     Springer, 2009, pp. 260–272 
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Unbalanced Path Latencies 

10-Mar-2015 legup.eecg.utoronto.ca 

• Greatest speedups come from multi-cycle paths 
spanning basic block boundaries 

• However, this can cause multiple paths between two 
separators 
– Why some registers are needed at basic block 

boundaries (for PHIs) 
• These paths can have different slacks 
• Must use minimum slack between 2 separators 

– Possible solutions discussed at length in the paper, e.g. 
timing constraints that specify –through signals 



Unbalanced Path Latencies 
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Changing the Schedule 
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• All analysis so far took place after scheduling 
– HLS schedules operations to FSM states, and then 

algorithm finds paths and their slacks 
• We can also modify the schedule to create more  

multi-cycle paths 
 



Changing the Schedule 
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• Extend the latency of near-critical paths 
– Common technique in manual circuit design 

• Improves clock frequency 
• But if paths execute too often, increased latency in one 

path can significantly increase latency in overall circuit 
• Only extend path latency when  

Fmax increase > Latency increase in the overall circuit 



Changing the Schedule 
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Static Analysis 

10-Mar-2015 legup.eecg.utoronto.ca 

Synthesis, Place & Route 

Schedule Operations into FSM States 
(solves an LP) 

Analyze Schedule to find all slack between operations 

De-Pipeline data paths and generate MC constraints 

HLS Binding, RTL Generation 

LegUp 
HLS 



Dynamic Analysis 
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Profiling-Driven Scheduling 
 

Analyze Schedule to find all slack between operations 

De-Pipeline data paths and generate MC constraints 

HLS Binding, RTL Generation 

LegUp 
HLS 

Profile C Source to get Basic Block Execution Frequency 



Profiling-Driven Scheduling 

• Basic Block execution frequency for an execution: 
 

     # executions of Basic Block 
  # executions of all Basic Blocks 
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Basic Block Frequency Distribution 

10-Mar-2015 legup.eecg.utoronto.ca 

0
2
4
6
8

10
12
14
16

0% 0-1% 1-2% 2-3% 3-6% 6-9% 9-12% 12-15% >15%

Basic Block Execution % 

dfmul benchmark 

# Basic 
Blocks 



Profiling-Driven Scheduling 

• Perform initial scheduling by solving a Linear 
Program (LP) 
– Schedule operations into FSM states 
– Goal = minimize total # FSM states 
– Constrained by operation dependencies and 

combinational delay 
– “System of Difference Constraints” [1] 

 
 
 
 
 

[1] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based on SDC 
formulation,” in IEEE/ACM DAC, 2006, pp. 433–438 
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Profiling-Driven Scheduling 

• Once initial schedule is obtained: 
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Profiling-Driven Scheduling 

• Key idea: 
Extend latencies of paths in infrequently executed BB 

• How much to extend latency? 
– Adding 1 cycle of latency for all paths below frequency 

threshold worked best 
– Additional latency gave clock frequency speedups but 

overall execution time got worse 
• What frequency threshold to use? 
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Profiling-Driven Scheduling 

• Notice the largest “gap” occurs at lowest cutoff 
• Profiling works by achieving significant frequency 

speedups with insignificant increase to cycle latency 
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Profiling-Driven Scheduling 

• Frequency cutoff of 1%, 2% or 3% works best 
– Depends on circuit 
– >3% increases latency too much 
– Future work: automate cutoff frequency parameter 
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Experimental Results 

• Altera Stratix IV, Quartus II v. 11.1 
• HLS scheduler had target clock period of 6ns 

– Experimentally gave lowest area-delay product 
• Comparison: 

– Baseline: No multi-cycling 
– StaticMC: Static Multi-Cycle Analysis (no profiling) 
– Profiling-DrivenMC: Static and Profiling-Driven  

multi-cycling 
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Normalized Execution Time 
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Execution Time 

• As expected, not all circuits benefit from multicycling 
– If critical path is not in the datapath, adding latency 

slows circuits down 
– In these circuits a cutoff frequency of 0% was chosen 

(falling back to static multi-cycling) 
• Datapath-critical circuits speed up as much as 30% 

from multi-cycling and an additional 17% from 
profiling-driven multi-cycling 

• Some circuits (e.g. aes, sha) slow down due to 
unbalanced path latencies, this is partially fixed by 
profiling-driven multi-cycling 
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Normalized Circuit Area 
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Circuit Area 

• Total area reduction of 11% (Stratix IV ALMs) 
– Register usage decreased by 26% due to de-pipelining 
– Combinational logic remains flat (decreases by 1%) 

• Profiling-driven multi-cycling uses 0.4% more ALMs 
than static mult-cycling, due to additional FSM logic 

• Total area-delay product reduced by 20% over 
baseline with profiling-driven multi-cycling 
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Conclusion 

• Profiling-driven multi-cycling provides significant 
speedups in datapath-critical circuits 

• Total area-delay product reduced by 20% over 
baseline with profiling-driven multi-cycling 

• See full implementation at: 
– http://legup.eecg.utoronto.ca/git 

• Questions? 
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