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Summary

It is an established notion among financial analysts that price moves in patterns
and these patterns can be used to forecast future price. As the definitions of
these patterns are often subjective, every analyst has a need to define and search
meaningful patterns from historical time series quickly and efficiently. However,
such discovery process can be extremely laborious and technically challenging in
the absence of a high level pattern definition language. In this thesis, we propose a
chart-pattern language (CPL for short) to facilitate pattern discovery process. Our
language enables financial analysts to (1) define patterns with subjective criteria,
through introduction of fuzzy constraints, and (2) incrementally compose complex
patterns from simpler patterns. We demonstrate through an array of examples
how real life patterns can be expressed in CPL. In short, CPL provides a high-level
platform upon which analysts can define and search patterns easily and without
any programming expertise.

CPL is embedded in Haskell, a state-of-the-art functional language. We show
how various features of Haskell, such as pattern matching, higher-order functions,
lazy evaluation, facilitate pattern definitions and implementation. Furthermore,

Haskell’s type system frees the programmers from annotating the programs with
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types.

Functional language has widely been used as a paradigm for constructing em-
bedded domain-specific applications. Its popularity arises from its ability to (1)
support concise syntax for specifying solutions in the domain-specific application,
and (2) execute specifications in interpretive environment. However, domain-
specific languages embedded within functional language such as Haskell usually
suffer from inefficient interpretation. In the second part of the thesis, we demon-
strate how various features in Haskell, such as laziness and advanced type system,
can be exploited to provide an efficient interpretation of our chart-pattern language.
CPL enables financial analysts to specify chart patterns through composition of
line patterns and constraints. Pattern instances that “match” a chart pattern are
then searched and retrieved from the price histories. The search for concrete pat-
terns usually involves constraint solving. We use type class systems with local
quantification type annotation to achieve on-the-fly optimization of pattern defi-
nition for efficient constraint solving. We also make full use of lazy evaluation to
obtain a new and efficient backtracking algorithm for constraint solving.

In the third part of the thesis, we present a novel constraint solving algorithm
that the CPL implementation uses for pattern matching. The algorithm is based
on divide and conquer framework; it divides the constraint satisfaction problem
into smaller subproblems, hence alleviating the curse of dimension and solves each
problem independently; the sub-solutions are later combined to form the solution
of the original problem. One of the major hurdle in this approach is the inability to
divide the problem into smaller parts which are independent, a condition that must
be satisfied in order to avoid doing redundant computation for the subproblems.
We show how lazy evaluation can be used to overcome this problem. We use this

algorithm to solve N-queen problem and compare our result with other algorithms.
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Chapter

Introduction

“A picture is worth a thousand numbers” when we talk about stock market. Fi-
nancial analyst is inundated with innumerable sources of information when faced
with the challenge to forecast future movement of price. There have been many
attempts among both researchers and practitioners to crunch these numbers to
forecast more accurately. But for centuries, traders have relied on something other
than numbers that tell much more: pictures of price movement(price chart). On
price charts, patterns occur and reoccur and every time they bode of similar future
events, because these patterns are manifestation of the eternal struggle between
bulls and bears. A strong school of market analysts known as technical analysts
[6, 1] assert that patterns can be used to forecast future price movement. For ex-
ample, the famous head-and-shoulder is a precursor of substantial decline of price.
Therefore, the goal of an investor is to discover meaningful patterns that fore-
cast ensuing price movement from historical market data. But doing so can be a

daunting task because of following three reasons:

1. The size of the historical data which the analysts want to search is huge. It

is typically of the order of 3000 years of data(300 companies for 10 years).



2. Definitions and interpretations of patterns are very much subjective and re-
flect individual investor’s investment personality. Study of patterns has al-
ways been considered an art, rather than a science. Thus, a software with

hard-coded definitions for patterns does not cater to the need of all investors.

3. This process of discovering patterns is an iterative process. For example, let
us say a user wants to search for head-and-shoulder patterns in the history.
To begin the process, he starts with a rough definition of the pattern, and
the system fetches him all instances of head-and-shoulder from history that
satisfy his definition. But that result set may contain some instances of head-
and-shoulder which are not followed by a decline in price. The user can then
refine his definition to filter out those undesirable instances. This process of

refining definition and pattern mining may continue iteratively.

In this thesis, we propose a high-level language to facilitate pattern discovery

process. The language enables financial analysts to do the following tasks:

1. Define patterns with fuzzy constraints. Through incremental addition of

fuzzy constraints to a pattern, the user is able to refine patterns iteratively.

2. Reuse patterns. Complex patterns are built by composing simpler patterns

and adding further constraints on them.

We call our language Chart Pattern Language(CPL). By embedding this language
within Haskell, the user can reap benefits from various nice features of Haskell.

Specifically,

e Haskell’s strong type system infers the type of pattern definition automati-
cally. This frees programmers, who are financial analysts by profession, from
the mundane task of declaring variables and specifying types — a task which

they are not at all comfortable with or enjoy doing.



1.1 What is in a Chart Pattern?

e Higher-order functions are used extensively throughout the system to create
a natural and concise syntax for the language. CPL has been designed with
the aim of making it similar to spread-sheet formula language, which all

financial analysts feel familiar with.

e Searching for patterns in price history involves multiple constraints satis-
faction, which has a worst case exponential running time. Lazy Evaluation
plays a crucial role by automatically avoiding unnecessary computation dur-

ing searching for patterns.
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Figure 1.1: Triangle

1.1 What is in a Chart Pattern?

Imagine you are the manager of a mutual fund. Over the years you have purchased
a few hundred thousand shares of a company. After seeing the stock rise for almost
a year (Figure 1.1), you are getting nervous about continuing to hold the stock. So
you tell your trading department to dump all your shares as long as it gets 13.75.
Since your fund has a large block of share to get rid of, price cannot rise above

13.75. Word gets around and other big players jump in and start selling. This



1.2 Implementing CPL

aggressive selling satiates the demand and price goes down. Eager buyers, viewing
the price of the stock as a steal, demand more shares and price starts rising. But
when the price touches 13.75 level, your fund sells more shares, effectively halting
its advance. The share keeps wriggling up and down a few times and forms a
triangle shape-like pattern on the chart, as shown in Figure 1.1. When you are done
with selling and supply depletes, buying pressure catapults price above 13.75 level
and strong bullish trend is established. So if a chart analyst detects this triangle
pattern, he knows what is cooking in the pit, and may wish to get into buying
spree once price breaks out from the pattern. This story tells how patterns are
formed on charts under particular circumstances and hence it is logical to believe
that price can repeat its feat. Some examples of popular patterns are head-and-
shoulder, cup-with-handle, rectangle, triangle, flag, wedge, bump-and-run-reversal,
etc..

Chart patterns define the movement of raw price like closing or opening price
or their derivatives. For example, moving average is a running average of price.
We call these raw prices and their derivatives technical indicators, because they
indicate the state of the market. Indicators like moving average are mathematical
formulae expressed in terms of the prices/volume associated with a discrete set of

time periods.

1.2 Implementing CPL

Functional language has widely been used as a paradigm for constructing domain-
specific application. In this paradigm, most of the work required to design, imple-
ment and document a domain-specific language (DSL) is inherited from a functional
language, such as Haskell [28]. As mentioned by Hudak in his position paper [18],
‘DSL [in Haskell] can be viewed as a higher-order algebraic structure, a first-class

value that has the “look and feel” of syntax.” Furthermore, the interpretive nature



1.3 Lazy Divide & Conquer Constraint Solving

of Haskell, and functional languages in general, provides a friendly and effective
framework for the usually small programs in DSL to be executed.

However, running DSL programs in interpretive mode can be slow, because it
precludes any opportunity to optimize the program. While domain-specific compi-
lation [10, 21] attempts to solve this efficiency problem, it does so by reducing the
interpretability of the embedded language; the resulting language is no more an em-
bedded language in true spirit. Eventually, it limits the profitability of embedded
approach for rapid prototyping.

In Chapter 4 we address the issues of inefficient interpretation of CPL. CPL
models the domain-specific entities like patterns and technical indicators as func-
tions. Functions which in one hand is a natural and intuitive choice, they are
not amenable to optimizations that can be done if patterns were modeled as data
types.

We address this problem of optimization by exploiting Haskell’s type class sys-
tem; we overload some functions in our language with new data type. Using
this new type, we can change the behavior of a function into one that reveals its
own internal structure at interpretation time. This internal structure enables the
interpreter to avoid redundant computation. Furthermore, we utilize local quan-
tification annotation feature of Haskell to overcome the typing problem that arises

from this overloading.

1.3 Lazy Divide & Conquer Constraint Solving

The pattern definitions of CPL are constraint based. Searching for patterns is
thus a Constraint Satisfaction Problem(CSP). CPL uses an innovative constraint
solving algorithm called “lazy divide & conquer”.

Constraint Satisfaction Problems (CSP) have drawn a great deal of attention

because of their simple and general definitions and wide application in diverse



1.3 Lazy Divide & Conquer Constraint Solving

fields. For the past two decades, there have been numerous improvements of the
naive backtracking algorithm, which was proposed a century before. Some of the
popular ones are, backjumping, backmarking, forward checking, arc consistency,
and of course their various combinations and variants.

However, none of these algorithms has adopted divide and conquer (d&c)
paradigm. Although there are schemes for identifying constraint networks that
are decomposable [8, 15|, these works restrict the manner in which a problem can
be decomposed.

The main reason for not expressing constraint solving algorithms in d&c paradigm
is the difficulty in cleanly dividing a constraint satisfaction problem into indepen-
dent subproblems, with no constraint inter-connecting these subproblems. If global
constraints that inter-connect subproblems exist, a naive solution, in the spirit of
d&c, is to temporarily ignore these constraints, solve the subproblems indepen-
dently, and later check for consistency of those global constraints. This method
might cause many unnecessary consistency checks during solving of subproblems.
Specifically, the existence of global constraints inter-connecting two subproblems
might make their solutions incompatible.

On the other hand, such “over-checking” of constraints on a subproblem can be
eliminated by working on the subproblems only on demand. Programming-wise,
this amount to solving problems under lazy evaluation.

Lazy evaluation is a notion that comes from functional programming language
like Haskell [28], where a computation is performed if and only if its result is
required for further computations. For example, consider the following definition

of a function £ with parameter x and function body that always returns 2.
fun f x = 2

When the function f is called, its actual argument — which might be a complicated

expression — is never evaluated because it is not needed for calculating the result



of £ (which is 2.)
In Chapter 5 we describe a lazy d&c strategy for constraint solving, and show
that this strategy can significantly reduce the number of consistency checks. We

apply this algorithm to finding CPL patterns and N-queen problem.



Chapter

Technical Indicators

Stock charts are usually displayed as bar charts. Here, there is one bar for each
time period. One time period can be a day on a daily chart, or a week on a weekly
chart, etc.. Each bar is associated with five kinds of values for that time period;
they are: the close price, open price, high price, low price, and the number of
transactions (volume) for that time period. Throughout the thesis, we use bar,
time and “a day” interchangeably without loss of generality.

We represent bars by integers, and technical indicators are hence functions from

bars to values.
type Indicator a = Bar — (Maybe a)

Indicator takes a bar b and returns an indicator value for that bar. Since each
bar is associated with five basic fields: high, low, open, close price, and transaction
volume, we have five primitive indicators: high, low, open, close and volume. Thus,

we have

high, low, open, close :: Indicator Price

volume :: Indicator Volume

More complicated indicators can be composed of the simpler ones, with the help



of a combinator library.
As the first example, we define a technical indicator for typical price, which is

the average of the high, low and close prices of a day:

tPrice :: Indicator Price

tPrice = (high + low + close)/3.0

Note that any arithmetic combination of indicators is also an indicator, because
indicators are an instance of the Num class, which has operations for addition,
subtraction, multiplication, etc.:'! Indicators and their operations are reminiscent
of Frans’ behaviours [11], and of observable used in composing financial contracts
[27]; operations on them are supported by combinators like lift1, lift2, etc. that

lift functions to the indicator level, as follows,

liftl" =» (a — b) — (Maybe a — Maybe b)
liftl" f Nothing = Nothing
Liftl" f (Just a) = Just (f a)

Ifit2" :: (a = b — ¢) = (Maybe a — Maybe b — Maybe c)
lift2" f (Just a) (Just b) = Just (f a b)
lift2" _ _ _ = Nothing

liftl == (¢ — b) — (Indicator a — Indicator b)

Lftl f = Xi bar . (lift1' f) (i bar)

lift2 :: (a — b — ¢) = (Indicator a — Indicator b — Indicator c)

Lft2 f = XNil 2 bar . (lift2" f) (i1 bar) (i2 bar)

ITt suffices to understand that the usual arithmetic operations work on indicators too.



instance (Num a) = Num (Maybe a) where
fromInteger = Just . fromInteger
abs = liftl" abs
(+) = Lft2" (+)

instance (Num (Maybe a)) = Num (Indicator o) where
fromInteger = const . fromInteger
abs = liftl abs
(+) = lft2 (+)

const is a Haskell prelude function that always returns its first argument. Its type
is,a > b — a.

It is very common while defining indicators to use past values of an indicator.
To support this, we have a combinator () which enables relative indexing into
past data. Given a bar (time), while an indicator, say high, evaluates to the high
price at the bar, high £ n yields the high price of nth previous bar. () is defined

as follows:?

(£) == Indicator a — Integer — Indicator a

indtn = Xb.ind (b—n)

Relative indexing can used to define Moving average. This is a popular indicator
which represents current market trend by smoothing small price fluctuations. An
“n-day” moving average of an indicator on a given day is calculated by averaging

the values of the indicator for previous n days:

movingAuvg :: (Num a) = Integer — Indicator a — Indicator a

movingAvg n price = (sum lastnbar)/n

2In Haskell, an infix operator can be turned into a function by enclosing it in braces. Con-

versely, a function can be turned into an infix operator by enclosing it in backquotes.



where  lastnbar = takel n price

Function sum is a standard Haskell function for summing up a list. takel re-
trieves the value of an indicator for the last n days, and is defined through relative

indexing:

takel :: Integer — Indicator a — [Indicator al

takel n f = map (f £)]0.. (n —1)]

Day 0 1 2 3 4 5 6 7
Close Price | 4.2 | 45143 14.1|145 |46 |43 |44

Day 8 9 |10 | 11 | 12 | 13 | 14 | 15
Close Price | 4.2 143144141139 |36|37]3.8

In the above table if we evaluate (takel 5 close) 15, we get a list of closing prices
from 15" day down to 11*" day.
Now we can explain why an indicator evaluates to a value of the Maybe type.

Maybe is defined in Haskell as follows [28]:
data Maybe a = Nothing | Just a

From the “n-day” moving average definition we can see that the first bar in the
price history when moving average can be calculated is the nth bar. Before this
bar, computation of “n-day” moving average will require prices before the start
of history, which is not available. By making the result of indicator Maybe type,
successful computation of an indicator will return a value of the form Just v, where
v is the desired value. Value Nothing denotes an error in computation, as explained
above.

One of the popular use of moving average is to compare it with the raw price,

say close price. A buy signal is generated when the security’s current price rises



from below its moving average to above it, and a sell signal is generated if current
price falls from above its moving average to below it. Following are definitions of

the above rule in CPL:

buy, sell :: Indicator Bool
buy =close ‘riseAbove’ (movingAvg close 13)

sell =close ‘fallBelow* (movingAvg close 13)

riseAbove, fallBelow :: (Num a) =
Indicator a — Indicator a — Indicator Bool
f1 riseAbove’ f2 =(f1 > f2)&& (f141) < (f241)
f1 ‘fallBelow* f2 =(f1 < f2)&& (f141) > (f241)
As shown in Figure 2.1, due to declarations 4 and 8 indicators can be compared

and logically combined through (&&) and (]|) operations as in the above example.

A more complex example of technical indicator is momentum. This formula
computes a number (between 0 and 1) that signifies the momentum of the last
14-day trend. If the momentum is high (closer to 1), the trend is bullish, and
money should be put along the trend. Momentum is calculated in terms of the
total price increase in all the “up days” and the total decrease in all the “down
days”. A day is called an “up day” if its close is greater than its previous day’s
close; otherwise, it is called a “down day”. For example, in the preceding table
the up days are 1,4,5,7,9,10,14,15 and the down days are 2,3,6,8,11,12,13. The

momentum is calculated by the following formula:
momentum = sum_up / (sum_down + sum_up)

where sum_up sums up the “diff. of a day” for all up days, and sum_down sums up
the “diff. of a day” for all down days. A “diff. of a day” is the absolute difference

between the day’s close and the previous day’s close. In CPL this translates to:



momentum :: Integer — Indicator Price

momentum n = sum_up / (sum_down + sum_up)

where

sum_up  =sum (takel n up_day)

sum_down =sum (takel n down_day)

up_day =ifI (close > close §1) (close — close1)0

down_day =ifI (close < closet1) (closetl — close) 0

Function #fl mimics the conditional operation at the indicator level; it is defined

as follows:

ofl = Indicator Bool — Indicator a — Indicator a
ifl cond f1f2 = \b.case (cond b) of

Nothing  — Nothing

Just True — f10b

Just False — f2b

To a (non-functional) programmer, the fact that momentum is defined over a period
of time may indicate a use of for-loop construct. But to many financial analysts,
this seemingly innocuous control structure pose a steep learning curve, whereas
they are very comfortable with the formula-like language of spreadsheets. A little
reflection on how momentum is calculated in a spreadsheet application reveals much
similarity to the above definition. So, anybody who can work with a spreadsheet
will find CPL easy to use. To this effect, higher-order functions play a crucial role
in creating such an intuitive spreadsheet-like syntax.

We end this section by introducing a technical indicator which is recursively
defined. One of the popular recursive indicators is exponential moving average.
This variant of moving average is exponentially weighted such that more recent
values are given higher weight than older values. The formula for an exponential

moving average (for closing price) at time ¢, emug,, is as follows:



emug; = a x emvg; 1 + (1 — ) * close;, 0 < a < 1

emugy = closey

The exponential moving average for the first day (day 0) in a price history is just
its closing price. At any other day, the exponential moving average is computed by
summing the weighted closing price of that day and the weighted moving average

of the previous day. In CPL, this can be defined as follows:

emuvg :: Indicator Price

emvg = (0.8 * (emuvgtl) + 0.2 x close) ‘seed* close

seed :: Indicator a — Indicator a — Indicator a
seed il 12 = b .if (r == Nothing) then i2 b
where r = Z_le})ser
In the definition above, « is taken as 0.8. seed function takes two indicators 71 and
12, where 2 represents the seed indicator. Given a bar b, seed returns the value

of seed indicator 2 if (i1 b) cannot be evaluated. Otherwise, it returns the value

(i1 b).



class CrispOrd a b where
(>),(<),(==) =t a > a — b

instance (Ord a) = CrispOrd a Bool where

instance (Ord a) =
CrispOrd (Maybe a) (Maybe Bool) where

instance (Ord (Maybe a)) =
CrispOrd (Indicator a) (Indicator Bool) where

class Logic a where

(&&), () = a - a = a

instance Logic Bool Bool where

instance (Logic a) = Logic (Maybe Bool) (Maybe Bool) where

instance (Logic (Maybe Bool)) =
Logic (Indicator Bool) (Indicator Bool) where

Figure 2.1: A Partial List of Haskell Type Classes for CPL




Chapter

Chart Patterns

Chart patterns are geometrical shapes. They capture general trends or movements
of price over a period of time. We adopt a constructive approach for defining chart
patterns: chart patterns are built from six primitive patterns — bar, up, down,

horizontal, resistance line and support line, their derivatives and composites.

1. The pattern bar characterizes price movement at a particular time.

2. The price movement from a time a to a time b constitutes an up pattern if

high; < high, for all ¢ € [a,b) and low;, > low,, for all ¢ € (a, b].

3. The price movement from a time a to b constitutes a down pattern if low,

> lowy, for all ¢ € [a,b) and high; < high,, for all ¢ € (a,b].

4. The price movement from a time a to b constitutes a horizontal pattern if

close, is approzimately the same as closey, for all ¢ € [a, b).

5. A line segment from a time a to b constitutes a resistance line pattern if for
all ¢t € [a, b], high; falls on or below the line, and there are at least 2 days in

(a,b) when the respective high prices falls on the line.

16



6. A line segment from a time a to b constitutes a support line if for all t € (a, b),
low, falls on or above the line, and there are at least 2 days when (a,b) when

the respective low prices falls on the line.

We distinguish between a pattern and a pattern instance. A pattern is a description

of a shape and a pattern instance is an occurrence of the pattern in the price history.

Type-wise, patterns are of type Pattern, and pattern instances are of type Patt.
Primitive patterns are defined by the primitive functions bar, up, down, hor,

res and sprt, respectively.

3.1 Landmarks & Components

Study in human vision system [7] shows that humans find it natural to describe
patterns based on their anchor points. In their proposal of a new model for pattern
matching in time-series databases [26], Perng et al. call these anchor points land-
marks, and show that they are crucial for effective pattern matching. We follow
the same terminology for the anchor points of a chart pattern/pattern instance.
Furthermore, we often use landmarks to define constraints of complex patterns.
Landmarks are referred to by their positions in the price history, i.e., the values of
type Bar in CPL. Thus, an up pattern instance has two landmarks: the start and
end points of the instance and so have the other primitive “line” patterns: down,
horizontal, resistance and support lines. On the other hand, a bar pattern instance
has just one landmark, indicating the time when the bar occurs. We will describe
the landmarks of complex pattern instances when we discuss pattern composition.
In CPL, we have a built-in function Ims :: Patt — [Bar], that takes in a pattern
instance and returns its list of landmarks.

Besides using landmarks, we can also directly access the sub-components of a

composite pattern. sub :: Patt — [Patt] returns a list of the component pattern



instances of a composite pattern instance. For primitive pattern instances, sub
returns a singleton list containing the primitive. We shall provide details of lms

and sub in Section 3.3.

3.2 Constrained-by Operation

The first pattern we shall present is a bar pattern called inside day. This pattern
describes the market behavior of a stock for one day. In Figure 3.1, each inside

day has a circular mark above it. Following is a definition of inside day:

insideDay :: Pattern
insideDay = bar > Au . let [t] = Ims u
in[lowt > (lowfl)t,
high t < (high£1) t]

The above declaration can be interpreted as follows: An inside day is a bar
pattern such that, for any of its pattern instances occurring at a time ¢, its low
price is greater than the previous day’s low, and its high price is less than the
previous day’s high.

The (1) operation associates a constraint function to a pattern. It has the

following type:
(<) = (ToFuzzy a) = Pattern — (Patt — [a]) — Pattern

This operation provides an elegant and high-level way of defining patterns. A
pattern can be defined in two parts: in the first part, sub-components are defined.
In the second part, a constraint function specifies a list of global constraints about
the pattern. These constraints are usually expressed in terms of the pattern’s
landmarks and sub-components. They will be evaluated to values, the types of

which belong to the class ToFuzzy.
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Figure 3.1: Inside days

class ToFuzzy a where

toFuzzy :: a — Fuzzy

Basically, a type belongs to the class ToFuzzy if its values can be converted to fuzzy
values. Currently, these types are: Fuzzy, Bool, Maybe Fuzzy, and Maybe Bool.

Notice that the constraint function is defined over a pattern instance, rather
than a pattern. This is necessary, as the constraint function is evaluated with
respect to a pattern instance. However, it is not wrong to view the constraint
function as part of a pattern, since the constraint function applies consistently
to all instances of that pattern. Similarly, we apply Ims function to a pattern
instance, even though we frequently talk about the landmarks of a pattern.

Now let us introduce fuzzy constraints through a simple pattern called bigUp.
This is a primitive up pattern with a constraint function specifying that increase

in price is usually greater than 10 units. In CPL, this can be defined as follows:

bigUp :: Pattern
bigUp = up > Au.let[p,q] = Imsu
in [(high ¢ — low p) = 10]



1. class FuzzyOrd o b where
(>),(<),(x) = a = a—=b
2. instance (Ord a) = FuzzyOrd a Fuzzy where

3. instance (Ord a) =
FuzzyOrd (Maybe a) (Maybe Fuzzy) where

4. instance (Ord o) =

FuzzyOrd (Indicator a) (Indicator Fuzzy) where

Figure 3.2: A Partial List of Haskell Type Classes for CPL

Note the use of fuzzy operator > in defining the constraint. This reflects some
degree of subjectivity in the definition of a pattern, as is frequently done in de-
scribing patterns that cannot be quantified exactly. Consequently, it is necessary
to attach each pattern instance with a fuzzy value, so as to provide the user a
gauge on how closely that instance matches the specified pattern.

Fuzzy values are floating-points between 0.0 and 1.0:
type Fuzzy = Float — 0.0, 1.0]

For example, 4.9 > 5.0 and 4.9 =< 5.0 both have truth values greater than 0
and less than 1, whereas both 4.9 > 5 and 4.9 = 5 have the truth value Fulse.
Evaluation of fuzzy constraints is done through the support of fuzzy membership
functions [22]. In the example of 4.9 < 5.0, we can use the following triangular

function to compute the fuzzy value:



{(a—l—x—y) ~a,y >z
fazy =
(a+y—2z) +a,y <=z
The function f computes the fuzzy value for y < z. The value of a in the
function determines the amount of fuzziness. The bigger a’s value is, the more
values lying farther from z will have non-zero truth value. In CPL, a default value
is set for a that can be tuned by experienced users. For further details on coding
fuzzy logic in Haskell readers are referred to the work by Meeham and Joy [23].
To support fuzzy operations, We define FuzzyOrd class as shown in Figure 3.2.
The FuzzyOrd class of operators are >, <, <. CrispOrd class, shown in Figure 2.1
consists of conventional crisp operators >, < and ==, which return values of
types Bool, MaybeBool or Indicator Bool depending on the type of operands. Sim-
ilar to crisp operators these fuzzy operators too return Fuzzy, Maybe Fuzzy and

Indicator Fuzzy types depending on the type of operands.

3.3 Composing patterns

In this section, we describe how simple patterns can be composed to construct
interesting and useful chart patterns. We introduce two operations, “followed-by”
and “overlay”, which enables the construction of most of the line patterns described

in the Encyclopedia of Chart Patterns [6].

3.3.1 Followed-By Composition

We demonstrate followed-by composition by defining a pattern hill, which has an
up pattern followed by a down pattern, such that the two “bottoms” of the hill
(i.e., the start point of up and the end point of down) are almost at the same
level. ITn CPL, we use the followed-by operation, denoted by (=), to concatenate

these two patterns, and the constrained-by operation (i) to express the global



constraint of the hill.

hill = (up > down) <1 A h.let [a,b,c] = Imsh

in [low a < low ]

The (>>) operation has the following type:
(>) :: Pattern — Pattern — Pattern

It takes in two patterns and concatenates them so that the two sub-patterns join
at one point. Specifically, the rightmost landmark of the left pattern-operand must
be identical to the leftmost landmark of the right pattern-operand. In listing its
landmarks, we list the landmarks of its left operand, followed by the landmarks
of its right operand, while ensuring that the common landmark is not duplicated.
Consequently, the number of landmarks of the composite pattern will be one less
than the sum of the number of landmarks of the two sub-patterns. A hill pattern
instance thus has three landmarks: the left hill bottom, the peak, and the right
hill bottom, in that order.

We mentioned briefly before that function sub retrieves sub-components of a
pattern instance. For a pattern composed via followed-by operation, sub operates
recursively on its components to retrieve a list of component-pattern instances
which are either primitive or overlay pattern instances. (An overlay pattern is a
composite pattern whose top-level composition is an overlay operation.) In this
list, components of left operand are placed before those of right operand. For
example, applying sub to a hill pattern instance will yield a list [p, ¢|, where p and
q are the up instance and the down instance respectively.

We now use the hill pattern to further compose a pattern that can actually
earn you big money. Head-and-Shoulder is one of the most popular patterns. It
looks like as its name suggests. As Figure 3.3 shows, we can define this pattern

as a back to back concatenation of three hills, such that the middle hill (head) is



higher than the other two (shoulders), and the peaks of the shoulders are almost
at the same height. In CPL, this translates to,

head _shoulder = (hill > hill > hill) > A hs .
let [a,b,c,d e, f,g] = Ims hs

in[highd > high b,

high d > high f,

highb = high f]

T r}hLl'r ST - . . :;‘ FLRN OVH/LAC Daily r
l[ ' 33 r I H
) IIJLHPI 2 JLIH}HII L“J n]m o

o . . .
At rﬂ *
L1’J (Jl UUH ;B FW}W} ldrer MJ)HL‘N HWPWJ‘HHNF Jvl"hr 56

u 20

25
} ! .
24

1 1 L 1 1 1 23 1 1 1 i 1 'l 'l
May33 Jungl Juigl Augd3 Sepd3 Qcta3 Julas Augas Sep3s Ock95 Movas Decads Jan36

Figure 3.3: Head and Shoulder Figure 3.4: Rectangle

3.3.2 Overlay Composition

It is not uncommon to see multiple patterns appearing during a single time interval
of the price history, with each pattern measuring different aspects of price move-

ment. In CPL, this is accomplished by the overlay operation, denoted by (<>).

(<) :: Pattern — Pattern — Pattern

This takes in two patterns, and produces a composite pattern, where the two input
patterns occur exactly at the same time period. Specifically, both patterns have the

same leftmost landmark, as well as the same rightmost landmark. For an overlay



pattern instance, /ms function returns the landmarks of its left operand, followed
by the landmarks of its right operand, while ensuring that the common landmarks
are not duplicated. Furthermore, the first and last landmarks in the result list is
the first and last landmarks of any of its operand respectively. Consequently, the
number of landmarks of the composite pattern will be two less than the sum of the
number of landmarks of the component patterns.

Applying sub function to an overlay pattern returns components that are either
primitive or followed-by instances. (A followed-by instance is a composite instance
whose top-level composition is the followed-by operation.) Like in case of followed-
by operation, this list of pattern instances are then ordered such that components
of the left operand of the overlay operator are listed before the components of the
right operand.

As an example of overlay operation, we define an area pattern which is obtained
by overlaying a support-line pattern on a resistance-line pattern. The resulting
pattern is so simple that by its own, it is not useful, but it can be used as a

building block for other meaningful patterns.
area = res <> sprt

This area pattern has two landmarks, signifying the starting and the ending time
of the pattern (these are also the starting and the ending time of the components:
res and sprt).

Now, consider an area pattern that ends at a time when the closing price either
crosses above the resistance line or falls below the support line. Price breaking
out of any of the two lines is known as “breakout”. An upArea pattern is an area
with an upside break out; i.e., close price moves past the resistance line. Dually,
a downArea pattern is an area with downside breakout. In CPL, they are defined

as follows:



downArea = area > A u.let[m,n] = sub u

[a,b] = Ilms n
in [breakout n b]

In these examples, m and n returned from evaluating (sub u) are the instances of re-
sistance line and support line respectively. Function breakout takes in a line(either
a support or a resistance line) and a landmark b. If the input line is a support
line (n), it evaluates to True in case the price goes below the support line at time
(b +1). Otherwise, it evaluates to False. If the input line is a resistance line (m),
then it evaluates to True in case the price goes above the line at time (b + 1). Else
it returns False.

With these building blocks, we can define a useful pattern called rectangle.
This pattern denotes confusion and uncertainty of the market. It is developed
when there is doubt about the price of an underlying stock; ¢.e., traders do not
know if the stock should be priced higher or lower, and the stock’s price keeps
fluctuating in a very narrow range which is defined by two nearly parallel lines.
When a rectangle pattern occurs, financial analysts look for the price to break in
either direction. Following is a definition of rectangle pattern constructed on top

of downArea.

rect = downArea > A u .

let [m,n] = sub u

in [slope m =< slope n]
Function slope takes either a support or a resistance line and returns its slope.

Our next example is an exotic pattern called diamond. Diamond is formed by

overlaying a series of support lines on a series of resistance lines. Figure 3.5 shows
a diamond on chart. This pattern generally occurs before price starts trending in
either upward or downward direction, depending on whether the price breaks up
or down from the diamond respectively. In CPL, a downward breaking diamond

is defined as follows:
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Figure 3.5: Diamond Figure 3.6: Flag

dmnd = ((res > res) <> (sprt > sprt)) >

A u . let [rlines, slines] = sub u

[m, n] = sub rlines
[p, q] = sub slines
[c, d] =Ims q
in [diverge m p, converge n q, breakout q d |

Given a diamond instance u, (sub u) returns its components, the resistance lines
(rlines) and the support lines (slines) respectively. These lines can be further
decomposed using the sub function. Graphically, the components are labeled as

follows:

rlines slines

A

N

r(%?, > Q:,S,) < (8\1? > iﬁ;ﬁi
In the constraint function specification, both converge and diverge functions take
two lines(either support or resistance) and return True if these two lines converge
or diverge respectively, otherwise they return False.

We end the section by defining a pattern constructed via both composition
operations. A flag pattern is formed when a rapid steep decline of the price is

followed by a congestion area where the price moves between two parallel lines (a

rectangle) for some days before falling off in downward direction. An instance of a



flag pattern is shown in Figure 3.6. A financial analyst may wish to define a flag

as follows:

flag = (down > rect) < Af.

let [dn,rt] = sub f
la,b,c] = Imsf
pr = high a

in [(len dn) < 5,
pr — (low b) = 0.1 pr,
(len rt) < 10]
Here, a flag is defined by an Down pattern followed by a rectangle pattern(defined
earlier). The landmarks are: a marks the beginning of down; b denotes the joint
between down and rect as well as the start-point of rect; ¢ the end-point of rect.
Component-wise, dn refers to the down pattern, rt refer to the rectangle. The
constraint function associated with the flag specifies that the down pattern usually
lasts less than 5 days, the price drop during down pattern is around 10% or more,
and price congestion (the rect) should usually last less than 10 days. len function
returns the difference of the end and the start landmarks of a pattern.
In summary, we have described an effective means for constructing chart pat-
terns. This is formulated as a chart pattern language (CPL). Figure 3.7 depicts
CPL’s syntax.

3.4 Definitions of Combinators

In this section, we provide a formal definition of the pattern combinators, together
with some of the essential accessor functions to pattern instances. A pattern is
interpreted as a function which takes a time interval (b;, b2) and returns a (possibly
empty) set of pattern instances, all of which occur entirely within the time interval

in the active price history. Type-wise, we have:



Pattern  ::= Primitive | (Pattern)
| Pattern PatOp Pattern
| Pattern > A var . FCExp

Primitive ::= bar | up | down | hor | sprt | res
PatOp == > | <

FCFErxp  —  Fuzzy constraint Expressions

Var —  Variables

Figure 3.7: Syntax of Chart Pattern Language
Pattern :: (Bar, Bar) — SetOfInstances

A naive implementation of SetO fInstances is to make it [Patt], but this is
inefficient. We will dwell on this more in Chapter 4.1. In the following, we provide

a notation for describing this set of pattern instances.

Definition 1 (Set of Pattern Instances) Given a pattern p and a time inter-
val (by, ba), P(by, by, p) is the set of all pattern instances of p that start from
tl, t1 S [bl,bg] and end at tg, t2 S [bl,bQ], t2 Z tl.

Data type for pattern instances are defined in Figure 3.8. A pattern instance
consists of information showing where exactly in the price history does it occur, as
well as a fuzzy measure indicating how closely it matches the pattern definition.
Note that a bar pattern instance has the constructor named Bar; the argument
to this constructor is a time value (of type Bar). Each of the other primitive
pattern instances keeps a pair of bars indicating the starting and ending times of
the instance. Constructor Fb captures followed-by instances and its component

pattern instances which are either primitives or overlay-pattern instances are kept



in a list; similarly, constructor Quver represents overlay instances and keeps a list of
its component pattern instances which are either primitives or followed-by pattern

instances.

data Patt =Bar Bar Fuzzy
| Up (Bar, Bar) Fuzzy
| Down (Bar, Bar) Fuzzy
| Hor (Bar, Bar) Fuzzy
| Res (Bar, Bar) Fuzzy
| Sprt (Bar, Bar) Fuzzy
| Fb [Patt] Fuzzy
| Ovr [Patt] Fuzzy

Figure 3.8: Data Type for Pattern Instances

Associated with a pattern instance are some accessors: Function fuzzy takes
a pattern instance and returns its fuzzy values. Its definition is trivial and thus

omitted. Function sub retrieves an instance’s sub-components:

sub  :: Patt — [Patt]

sub p = case p of
(Ovr ps v) — ps
(Fb ps v) — ps
otherwise — [p]

Function Ims retrieves an instance’s landmarks, and is defined as follows:



Ims : Patt — [Bar]

Ims p = case p of

(Ovr ps v) — ImsQur p
(Fb ps v) — ImsFb p
(Bar b v) — [b]

(Up (b1,02) v)  — [b1,02]
(Down (b1,b2) v) — [bl, b2]
(Sprt (b1,02) v) — [bl,b2]
(Res (b1,02) v) — [bl,b2]

ImsFb (Fb ps v) = let (bs : bss) = map Ims ps

in bs + concat (map tail bss)

ImsOur (Ovr ps v) =  letlss = map Ims ps
[s = head Iss
bl = head ls
nif (g 15} —— 1 then Is

else b1 : (concat (map cut Iss) + [b2])
Haskell function tail returns the tail of a list; concat flattens a list of sub-lists;
head and last returns the first and the last element in a list, respectively. Recall
that in computing Ims, we avoid duplication of those landmarks common to mul-
tiple component-pattern instances. For followed-by composition, we discard the
beginning landmark of all, except the first, followed-by components. For overlay
composition, we employ a list function cut to discard both the first and the last

landmarks of all overlay components. The definition of cut is,
cut = tail . init

tail and init are standard prelude functions. Furthermore, we make use of the fol-

lowing fact when computing the landmarks of an overlay pattern instance: Since



all components of overlay composition must begin at the same time and end at the
same time, if one of the components is a bar primitive (thus consisting of only one
landmark), then all component instances must be bar primitives too. In this case,

Ims returns only one landmark.

Constrained Patterns The (<) operation introduces constraints into a pat-

tern. We give a set-theoretic definition of (1) as follows:

P(by, by, p < f) =
{insl | ins € P(by,be,p) N v = fuzzy ins A

v = (foldr min 1.0 (f ins)) A

v > 0.0 A insl = addFuzzy ins (min v v')}
To perform the constrained-by operation, we first evaluate the argument pattern
p to a list of pattern instances. Each of these pattern instance has a fuzzy value
denoted by v. We then solve the list of constraints for each of these instances,
making use of the knowledge about individual instance. Solving the constraints
with respect to an instance produces a list of values, which are then converted to
values of type Fuzzy. (foldr min) operation is then performed on this list of fuzzy
values, signifying a conjunction operation. If the result is non-zero, minimum of
this result and v is the new fuzzy value for the instance. Function (addFuzzy) is

defined as follows:

addFuzzy (Fb ps fz) f2' = Fb ps (min fz f2')
addFuzzy (Ouvr ps fz) [z’ = Qur ps (min fz f2')
addFuzzy (Bar b fz) f2' = Bar b (min fz f2')
addFuzzy (Up (b1,02) fz) fz' = Up (b1, b2) (min fz f2')
addFuzzy . .. (Omitted)

From the user’s perspective, () operation enables him to adapt an existing pattern

to the desired one. Operationally, (1) works like a filter. This is expressed by the



following properties:"

Property 1 Let p be a pattern and f be the constraint function on pattern in-

stances of p, then

1. For any time interval (by, by),

P(bl,bQ,p > f) g P(blab27p)'

2. Let g be another constraint function on pattern instances of p, then for any

time interval (by, by),

P(b1, by, (p > f) > g) =
P(b,b2,p >4 (A (f u) + (g u)))

Followed-by Composition An instance of the pattern p; > p, is obtained
by composing an instance of p; with another of py such that both instances meet
at one point. The fuzzy value of the new instance is the minimum of those of its

components. A set-theoretic definition of the (>>) operation is as follows:

P(bi,ba,pr > p2) =
{(foy inl in2 v) |
inl € P(by, by, p1) A in2 € P(by, by, pa) A
(last (Ims inl)) = (head (lms in2)) A
(0 = fuzzy inl) A (vy = fuzzy in2) A
v = min vy vy}
Function fby combines the two component instances of followed-by operation to

yield a followed-by instance. It is defined as follows:

IThe Haskell function ++ concatenates two lists.



foy :: Patt — Patt — Fuzzy — Patt

foy pl p2 v =

case (pl, p2) of

(Fb esl vl, Fb ¢s2 v2) — Fb (csl ++ ¢s2) v
(Fb esl vl, p2) — Fb (sl +[p2]) v
(pl, Fb cs2 v2) — Fb (pl : ¢s2) v
(p1,p2) — Fb [pl,p2] v

Since a followed-by instance maintains a list of components that have been com-
posed by followed-by operations, the (=) operation is therefore associative. For-

mally,

Property 2 Let py, po and ps be three patterns. For any time interval (by, by),

P(b1, b, (pr > p2) > p3) = P(br, by, pr > (p2 > p3)).

Overlay Composition An instance of the pattern p; <> ps is obtained by
composing an instance of p; with another of p, such that both instances meet at
both the start and the end point. Again, the fuzzy value of the new instance is
the minimum of those of its components. A set-theoretic definition of the (<>)

operation is as follows:

P(bi, b2, p1 < p2) =
{(overlay inl in2 v) |
inl € P(by, by, p1) A in2 € P(by, by, pa) A
(head (Ims inl)) = (head (Ims in2)) A
(last (Ims inl)) = (last (Ims in2)) A
(01 = fuzzy inl) A (v, = fuzzy in2) A

v = min v vy}.



Function overlay combines the two component instances of an overlay operation

to yield an overlay instance. It is defined as follows:

overlay :: Patt — Patt — Fuzzy — Patt
overlay pl p2 v =
case (pl, p2) of

(Ovr esl vl, Ovr cs2 v2) — Ovr (esl + cs2) v
(Ovr ¢csl vl, p2) — Ovr (csl +[p2]) v
(pl, Ovr cs2 v2) — Ovr (pl : es2)wv
(p1,p2) — Our [pl,p2] v

Just like the (>>) operation, (<>) operation possesses the associative property:
Property 3 Let py, po and ps be three patterns. For any time interval (by, by),

P(b1, ba, (p1 <> p2) <> p3) =
P(b1,ba,pr <> (p2 <> p3))-

3.5 Pattern Reusability

For CPL to be acceptable to the financial analysts, it is necessary to provide a
library of commonly-used patterns. Therefore, reusability of patterns becomes
crucial as users may want to refine and compose these library patterns. It is
unreasonable for users to be unduly concerned about the exact sequence of sub-
components in the pattern definition. Users should be able to access the landmarks
and sub-components of a pattern in a standard order, regardless of the exact se-
quence of composition of the pattern.

For example, consider the use of a diamond pattern already defined in the

system library. While the user is aware of the fact that a diamond is composed of



overlaying two resistance lines on two support lines, he should not be concerned of

whether the diamond is constructed by

(res > res) <> (sprt > spt)
or

(sprt > sprt) <> (res > res)

However, these two compositions will produce different ordering of landmarks and
components, if the user were to access them via Ims and sub functions. To overcome
this problem, we propose a standard ordering for component-pattern instances and
landmarks.

Note that this problem does not occur in case of followed-by operation, since
> is not commutative. The ordering the landmarks and sub-components of a
followed-by instance is always from left to right or in other words in chronological
order of their occurrence. Therefore, we focus on ordering the components and
landmarks of overlay patterns only.

Next, we observe that once the component-pattern instances are properly or-
dered, landmark ordering problem will no longer exist. In other words, having
a standard ordering on the components is sufficient to ensure a standard order-
ing on the landmarks. Consequently, we restrict our attention to the ordering of
component-pattern instances only.

So, exactly what constitutes a good ordering of component-pattern instances?
We believe that a good ordering is one that can be determined uniquely from the
pattern definition, not the pattern instance. By fixing an ordering on a pattern,
we treat all its instances in a uniform way.

Thus, we define an ordering over pattern instances as follows:

Definition 2 (Pattern Instance Ordering)



1. Pattern instances are ordered based on their data constructors, as follows:

Bar < Res < Up < Hor < Down < Sprt < Fb < Ouwr .

2. Two composite instances with the same data constructor are ordered by lexi-

cographic ordering of their lists of components.

3. Otherwise, two pattern instances are of equal order.

For example,

(Res (2,10)10.4) < (Up (4,5)0.6) < (Fb][.]0.3)
Fb[Res (2,5)1.50.4,.] < Fb[Sprt (1,5)0.50.3, .

In CPL, we have a built-in function orderPat which takes a pattern instance and
returns a new instance such that sub-components of its overlay components are

recursively ordered according to this rule. orderPat is defined as follows:

orderPat :: Patt — Palt

orderPat p =

case p of

(Fb ps v) — Fb (map orderPat ps) v
(Ovr ps v) — orderOuvr p

otherwise — p

where orderOuvr (Ovr ps v) =
let ps1 = map orderPat ps

ps2 = sortBy ovrOrder psl
in Ouvr ps2 v

Haskell function sortBy takes a comparison function and a list of data, and sorts
the list using the comparison function. ovrOrder is the comparison function defined

according to Definition 2. The detail is omitted.



As an example, consider applying orderPat to the following pattern instances

(we show each component by its data constructors only):
Ovr [Fb [Res, Ovr [Up, Sprt]], Fb [Res, Ovr [Down, Res]||
The resulting pattern instance is of following structure:
Ovr [Fb [Res, Ovr [Res, Down]], Fb [Res, Ouvr [Up, Sprt]||

Notice that in the resulting pattern instance, the components of all the overlay
sub-patterns follow the pattern instance ordering.
Now, for our diamond example, no matter how dmnd is defined, the user can

reuse the pattern as follows:

dmnd <1 A u . let o/ = orderPat u

(rs,ss] = sub u'
in ...

There is another advantage for ordering the components based on pattern def-
inition rather than pattern instances: It enables the ordering information to be
largely computed at compile time. On the other hand, there are limitations to

overlay ordering:

1. It does not uniquely order two component-pattern instances which are con-

structed by the same primitive, but with different constraint functions.

2. It may not uniquely order a pattern instance with dynamic component against
another pattern. For example, the following two patterns cannot be ordered:

(if ... then res else sprt) and up.

For those patterns with ambiguous ordering, user has to know how they are con-

structed to use Ims and sub operations.



3.6 Related Work

CPL is a programming language for specifying geometrical patterns in time-series
databases. In CPL, patterns are specified using syntactic constraints (in terms
of primitive patterns) and semantic constraints (in terms of a set of constraints).
On its own, syntactic pattern specification and its recognition techniques have
been studied extensively in [13]. Here, patterns are described using some primitive
patterns, and the recognition techniques translates the entire pattern into a string
of tokens (primitive curves) for matching.

The syntactic constraint of CPL is related to the Shape Description Language
(SDL) proposed by Agrawal et al. [2]. In SDL, patterns are described in term of
primitives like up, down, stable, etc., each of which are one time-unit long. Patterns
can then be composed from these primitives in the form of regular expressions.
SDL does not handle overlay patterns. Furthermore, it suffers from the following
limitations: Firstly, SDL takes a microscopic approach in defining patterns. As
such, it is difficult to express in SDL the global features of a pattern using these
primitives, which are local in nature. For example, a triangle pattern is formed by
a pair of support and resistance line, ignoring the small fluctuations within those
line. Defining triangle using above microscopic primitives can become a complex
task. Secondly, CPL has a strong support for creating indicators and using them
in pattern definitions. An Indicator is actually a new time series (eg. moving
average) created out of raw a time series like closing prices. So it is very useful to
be able to define patterns not only on the raw time series, but a new transformed
series created out of it. SDL does not have such a facility.

The semantic constraints of CPL are inspired by the landmark model proposed
by Perng et al. for similarity-based pattern matching [26]. Briefly, this model
is built from study of human visual system, which finds that much of the visual

data perceived by human being is redundant; some dominant points on the shape



contour are rich in information content, and are sufficient to characterize a shape
[7, 19]. Consequently, we define landmarks in a pattern to be those points having
important shape attributes; i.e., those that form the joints of the skeleton of a
pattern. By providing constraint on the landmarks, patterns can be defined from
a macroscopic level, ignoring unnecessary details.

Our choice of pattern-composition operations allows us to support interval-
based temporal reasoning of price history. These operations are closely related to
those defined in Allen’s algebra for modeling times and events [3]. Allen’s alge-
bra (as well as its associated operators) has been used widely in developing query
languages for temporal databases, such as TQUEL [31], TSQL [24], etc. How-
ever, these languages mainly translate Allen’s operations into point-based tempo-
ral query; they do not make full use of interval-related temporal properties in their
implementation. On the other hand, CPL as presented so far only supports two
of the Allen’s operators; we are currently extending CPL to fully support Allen’s
operators.

Lastly, we have modeled technical indicators as functions, similar to Behaviors
in Fran [11] and Observables in the work on Financial contract [27]. Since technical
indicators operate on history data of a security, which can be viewed as a list of
data, it is possible to model indicators as operations over infinite streams, as in
LUSTRE [17]. However, the treatment of patterns as illustrated in this paper shows
that we usually work on a finite period of time, and many operations — such
as accessing a pattern’s landmark — do not access history data in chronological

order.



Chapter

Implementation

4.1 Causes of Inefficiency

Embedding CPL within Haskell provides an expressive algebraic structure with
intuitive syntax to the user, for free. Whereas, getting an efficient implementation
demands more expensive endeavor.

The primary objective of the interpreter is to retrieve all pattern instances
occurring in price histories that match a pattern definition. As we have already
seen, patterns are defined using constraints on their landmarks and constituting
sub-patterns. So searching for pattern instances in price history involves satisfying
those constraints; in other words, a good interpreter calls for an efficient constraint
solver.

A naive implementation of the interpreter uses Haskell list to represent the set, of
pattern instances, which matches the semantics of CPL(as described in Section 3.4)
very nicely. But its performance leaves much to be expected (the program does
not terminate for hours) when we feed it with 10 years data of 30 companies (Each
yearly data has daily information of 5 basic technical indicators.)

By profiling the performance of the naive interpreter, we have identified three
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major bottlenecks, which must be addressed to achieve the desired efficiency. These
three bottlenecks are: Inefficient constraint solving; frequent analysis on layers of
data types which have been used to enforce strong typing; and inefficient reading
of huge amount of price histories from the file.

Inefficient constraint solving can be attributed to modeling of domain specific
entities, like patterns as functions which inhibit their inspection, which is required
for optimization. It also precludes any scope for their optimizing transformations.
In this chapter, we present an interesting solution to this problem of inspecting
functions by exploiting the advance type system features like type classes and
local quantification annotation. Although the intention of our function inspection
is typical to our problem domain, ie it facilitates efficient constraint solving, we

believe that the approach is general and can be applied to other domains.

4.2 Choosing A Tree Structure

As we mentioned in the previous chapter, patterns are modeled as functions of

type Pattern, which is defined as follows,
type Pattern = (Bar, Bar) -> SetOfInstances

We have deliberately chosen to use a different font from previous chapter to show
the Haskell codes, to emphasize that codes appearing in this chapter are actually
executable, whereas in the previous chapter they represented specification. No-
tably, we used >, <>, 1 for followed-by, overlay and constraint-by operations,
but in actual implementation they are replaced by >.>, | .| and ? respectively.
The first efficiency consideration is to choose an efficient data structure for
SetOfInstances. A naive representation of it, is a list of pattern instances,

[Patt](Patt was defined in Figure 3.8) This representation leads to redundant



computation during searching of pattern instances. For example, consider the fol-

lowing pattern definition,

(up >.> down) ? \p—> let [a,b,c] = 1ms p
in [(low b < low a)]

To evaluate this pattern for an interval, say (2,10), we first find all instances
of (up >.> down) within the interval (2,10). Suppose up, down patterns give

following pattern instances when evaluated for the interval (2,10),

[(Up (2,4), Up (2,6), Up (2,7), Up (3,6), Up (3,7)]
[Down (6,8), Down (6,9), Down (7,9), Down (8,9)]

Evaluating >.> with above instances will generate a list of instances-

[Fb [Up (2,6), Down (6,8)], Fb [Up (2,6), Down (6,9)],
Fb [Up (3,6), Down (6,8)], Fb [Up (3,6), Down (6,9)],
Fb [Up (3,7), Down (7,9)]1]

Next, for each of these instances we check if the constraint (1ow b < low a) holds.
Suppose that (Up (2,6)) with a=2, b=6 fails to satisfy the constraint. In that
case, both the first and the second instances in the above list will not be in the final
result since they both contain (Up (2,6)). However, since constraint satisfaction
is performed on each instance, the constraint on (Up (2,6)) will be checked twice
instead of one.

To avoid this unnecessary checking of constraints, we employ a tree structure
for the set of pattern instances, such that instances whose list of landmarks have
common prefix are grouped under one subtree, as shown in Figure 4.1 for the
above instances. Now, when the constraint solver fails to satisfy a constraint
using some prefix, such as Up (2,6), it will avoid checking all instances that have
the same prefix. Therefore, we use list of trees as an efficient implementation of

SetO0fInstances.



(2 (3)
O \?
& © 6 e O

Figure 4.1: Trees of instances

type SetOfInstances = [Tree]

data Tree = Tree Bar [Tree]

Each tree in the list represents a set of instances that have the same starting
landmark, ie. the value store in the root of the tree. We refer these trees as
pattern-instance trees.

For efficiency, we enforce two invariants on this list of trees:
e No two trees in the list have roots having same value.
e The list is sorted in increasing order of values of their roots.

These two invariants make the implementation of (>.>) operator efficient in the

following way. Here is an informal algorithm for p; >.> ps operation:

For each instance x in Set0f Instances of p;
find all instances y in Set0f Instances of ps

such that y begins from the end point of x

In case, where the trees were not sorted, in order to find an instance of p, that

can be joined to the end of an instance of p;, our interpreter would, in the worst



case, have to scan all the trees in the list of po. However, when the trees are sorted
according to the values of their root, we need only to scan the list until we encounter
a tree with root of value greater than the end point of the p; instance under
consideration. The first invariant strengthens the above terminating condition for
scanning the second list. It assures that it is correct to stop scanning further when
we find a tree in the second list that can be joined with a p; instance (we would

not find another tree with same root from further scanning.)

4.2.1 Associativity: Left Vs. Right

In a (>.>) operation, the two operand sub-pattern instances are combined by
matching the ending landmark of the left-operand against the starting landmark
of the right-operand (they should be same.)

End landmarks of a set of instances that are stored in the same pattern-instance
tree are the leaves of the tree. And the root of a tree is the first landmark of all
the instances represented by that tree. So for (>.>) operation, for each leaf of the
left-operand tree, we find a tree from the list of right-operand trees whose root has
the same value as that of the leaf. It means that, the number of times the list
of right-operand trees is scanned, is proportional to the number of leaves of the
left-operand tree. Under such condition, if we were to make (>.>) left associative,
as the interpreter joined a series of trees from left to right, the number of leaves
in the combined left tree would multiply rapidly, resulting in more scan needed
on the right-operand trees. Hence, by defining (>.>) to be right associative, we

effectively cut down the number of scans over the right-operand trees.



4.3 Constraint Solving

The general form of pattern specification is p ? f. For this form, our pattern-
searching algorithm does the following: (1) It searches the sub-patterns of p in a
divide-and-conquer fashion, yielding a set of pattern instances for p; (2) it performs

backtracking on the set of pattern instances by solving the constraints encapsulated

in f.

4.3.1 Lazy Divide-and-Conquer Constraint Solving

As we have seen in previous examples, patterns are often composed of sub-patterns
using (>.>) and (].]) operations. So intuitively, to search for pattern instances,
we first search for the instances of its sub-patterns, which are later combined to
form the instances of the original pattern. Effectively, we have adopted a divide-
and-conquer (D&C) approach to search for pattern instances, where the division
of the problem is determined from the users’ pattern definition.

Lazy evaluation of Haskell adds a new flavor to the divide-and-conquer ap-
proach; it conquers the subproblems lazily, if and when required. The requirement
arises when we combine the solutions of the sub-problems. In our application,
suppose we have a pattern (a >.> b). When we evaluate the subproblems ie. find
the instances of sub-patterns a and b, we do not find all instances of them first,
rather their evaluation is driven by >.> function that consumes the instances of a
and b. As a result, we may not evaluate some of the instances of the sub-patterns.
As an example, if none of the instances of sub-pattern a end at bar(day) n, lazy
evaluation takes care not to find any instances of b that start at n.

In our application, divide-and-conquer was the natural choice of evaluation,
given that patterns are written in a compositional style. And as have we pointed
out, lazy evaluation makes this approach more effective. Although natural in our

case, finding pattern instances is operationally constraint solving. This suggests



that our approach is applicable to normal constraint solving. We have applied
this algorithm to N-queen problem and reported our results in [4]. Next chapter

presents this algorithm in more detail.

4.3.2 Constrain-by Operator (?)

For a pattern definition of the form p ? f, first we find all the instances of p
and then for each of them we check the constraints f. The patterns instances,
as we described in Section 4.2, are represented as trees whose nodes contain the
landmarks of the instances, and instances with same prefix landmarks share a
common branch. So checking the constraints for these tree structured pattern
instances involves traversing the tree depth-first and at each level(node) checking
the constraints that involve landmarks constituting the path from root upto that
node. And if in any node, the constraint is not satisfied, there is no benefit going
down further, instead we backtrack and take another branch. So effectively, we do
a simple backtracking on the pattern-instance trees. The result of this backtracking
is a pattern-instance tree similar to the input tree, sans those branches that do not
satisfy the constraints.

As simple it might sound, implementation of this naive backtracking on pattern-
instance tree turn out to be involved. Because CPL is a “truly” embedded language
in Haskell, we can not analyze the pattern definition. So we shall start with an
intuitive definition of backtracking and later point out two problems and present

their solutions with the final and correct version of backtracking.
backtrack cons = (prune id) . (check cons)

Function backtrack takes a constraint function cons (a list of constraints)
and a pattern-instance tree and returns a tree with those branches that do not
satisfy the constraints pruned off. As its name suggests, check does the constraint

check and annotates each node in the tree with a boolean flag denoting if the path



leading to it(corresponding pattern instance) satisfy the constraints. prune takes
in such an annotated tree and prunes off all subtrees in the tree whose root has
been flagged False. We would like to point out that due to lazy evaluation model
these pruned subtrees are never evaluated beyond its root.

Now we look into the implementation of check function. To annotate each node
in the tree with a boolean flag, it has to find out which of the list of constraints
can be evaluated at that level. Those constraints that can be evaluated that will
involve only landmarks found on the path from the the root to the current node. It
should not try to evaluate constraints that require the values of the landmarks that
correspond to levels below the current level. For example, consider the following

definition,

patt = ... ? cons
where cons =

\p > let [a,b,c,d] = Ims p

in [close b > close c, -- (1
high a == high d, -- (2)
open a - open ¢ < 10 1 -- (3)

In the above definition, the constraint 1 and 3 can be checked when we have
reached the third level (The root is considered to be at level 1 and contain the value
of landmark a) of the tree as the values of landmarks a, b and ¢ become known.
Whereas constraint 2 can only be checked at level 4 when we have the value of
landmark d. But given that, individual constraints are of type Bool, check has
no ways to find out this syntactic information during runtime, which is our first
problem. This leads us to the realization that for check to work, it needs some
more information about the constraints. So we change our backtrack definition

as follows,

backtrack cons = (prune id) . (check cons indx)



where indx = ...

Where indx is a list of type [(Int,[Int])]. An element in this list of the form
(i,[j1s 72, - - - »Jn]) represents that information available at a node at i level of a
tree (values of 1% to i*" landmarks) is sufficient to evaluate the j, j», ..., 5
constraints in the cons function. We defer the description of calculation of indx
to next section.

Before we introduce the second problem, we explain how check evaluates the

constraints encapsulated in cons. cons has the following type,
cons :: Patt -> [Booll]

To evaluate the constraints, check calls cons function with a pattern instance
as argument and receives from cons a list of boolean values, which denotes the
satisfaction of each constraint for the input pattern instance; for a resultant list
of booleans of the form [by, bo, ..., b], b; represents if i constraint is satisfied.
But the pattern-instance tree contains the landmarks, so where does check get
a pattern instance to pass to cons? This is done by a supporting function called
toPatt which conjures up a pattern instance (of type Patt) from a list of landmarks
(of type [Bar]). But unfortunately, toPatt requires a complete list of landmarks
to come up with the pattern instance. By complete list we mean, if the pattern
has, say, 4 landmarks, toPatt requires that its input list has 4 elements. This
brings us to the second problem: in the above example, suppose we are at the level
3 of the tree, and hence have enough information (values of landmarks a, b and c)
to evaluate the third constraint. But we can not pass a list of values of a, b and ¢
to toPatt; it needs a list of 4 values. In the following, we present two solutions to
this problem, both using laziness.

In the first solution, toPatt function substitutes undefined in place of all
unknown landmarks. undefined stands for bottom in Haskell. Since invoking

cons at any level of the tree, will not attempt to evaluate constraints involving



unknown landmarks (that corresponds to levels below the current level), undefined
landmarks will never be touched. Although this solution is simple, it is inefficient.
It involves a call to toPatt function at every node of the tree. We alleviate this
inefficiency in our second solution as follows.

We introduce a function tTransform that takes in the pattern-instance tree,
where the nodes contain values of landmarks, and returns a tree where each node
is replaced by the path from the root to the leftmost leaf of the subtree rooted at

this node. Figure 4.2 gives a pictorial example of the operation of tTransform.

Figure 4.2: tTransform

How does tTransform help? In our first solution, we used to replace undefined
in place of all unknown landmarks. Here we will instead use the list of values of
landmarks contained in a node as the argument to cons. And the advantage is: as
is obvious in Figure 4.2, in the resulting tree the left child of a node has the same
value as itself. This implies that when all the relevant constraints are satisfied for
a node, we do not need to call cons again for its left child, instead we can use the
list of booleans values returned by cons; and we check the particular elements of
this list corresponding to constraints that can be checked in its left child.

With regard to the conformance of this solution to backtracking algorithm,



lazy evaluation takes care of that. Although each node contains a complete list of
landmarks starting from root to the leftmost leaf of the node, Haskell maintains
thunks for the values of landmarks from a node’s left child to its leftmost leaf; they
are explored only on demand.

Incorporating tTransform into our backtrack function we get,

backtrack cons = (prune id) . (check cons indx) . tTransform

where indx

Figure 4.3 shows the complete listing of the functions described above.

4.3.3 Indexing

We now turn our attention to indx calculation. cons takes a pattern instance (com-
plete path) and returns the result of all the constraints. Had these constraints been
represented as first-order data types, we would have done some manipulation to
find which constraint involve which variables. Functional representation of con-
straints is natural and simple in one hand, but poses this problem of disallowing
any analysis on it on the other hand. Here we present a solution to this problem,
without changing the functional representation of constraints. Let’s consider the

constraint function of the previous example:

cons = \p -> let [a,b,c,d] = lms p

in [close b > close c, -— 3>
high a == high d, -— <4>
open a - open ¢ < 10 ] -- <3>

The first constraint involves the second and third landmarks. This means that the
constraint can be evaluated when these two landmarks have been instantiated. In

other words, at the 3™ level of a tree we will have enough information (partial



solution) to verify (the satisfiability of) this constraint. Using similar reasoning,
we find that the second and third constraints can be verified at levels 4 and 3 of a
tree, respectively. These level information are listed to the right of the constraints.

Informally, in order to find out these levels, we first replace the landmark vari-
ables (i.e., a,b,c,d) by their positions in the list of variables (i.e., [a,b,c,d]). Thus,
a, b, ¢, and d should be replaced by 1, 2, 3 and 4 respectively. Next, for each con-
straint, we find the maximum of those replaced values used in the constraint. For
example, in the second constraint above, we replace a and d by 1 and 4 respec-
tively, and the maximum of them is thus 4. We refer this resulting number as the
“deepest involved variable” of a constraint, since for example, the variables (land-
marks) involved in the second constraint are a and d and d is situated deeper than
a in the tree, which makes d (infact its index in the list of landmarks ie. 4) as the
deepest involved variable.

Once we compute list of deepest involved variables corresponding to each con-
straint ([3,4,3] in this case), we can compute indx by applying index’ function
to this list. It returns [(1,[1), (2,[1), (3,[1,3]), (4,[2]1)] in our example,
which implies- there are no constraints that can evaluated at level 2 and at level

3, we can check the constraints 1 and 3.

index’ :: [Int] -> [(Int,[Int])]
index’ divs = foldl (\acc d ->
if null (d ‘lookup‘ acc)
then (d, elemIndices d divs) :acc

else acc) [] divs

lookup’ :: (Ord a) => a -> [(a,[b])] -> [b]

lookup’ x ((y,bs):rest) | x == = bs

| otherwise = lookup’ x rest



lookup’ _ [1 =[]

This analysis is very intuitive, and Implementing this in a compiled language is
straight forward, but in an interpreted language it needs some tricky manipulation
as follows.

Consider one of the three constraints of the previous example,
open a - open ¢ < 10

The deepest involved variable for this constraint is 3 (corresponding to landmark
c), which we aim to find out in an interpretive mode. Recall that open is one of

the basic technical indicators, with the following type,

type Indicator a = Int -> Maybe a

open :: Indicator Float
For our analysis, we change the indicator type to as follows,

type Indicator a = Value Bar -> Value a

open :: Indicator Float

data Value a = Value a | DIV Int | Nope

Following table gives the correspondence between the behavior of the new decla-

ration and the original one. To get the opening price of day 3 for example,

original new
we evaluate: open 3 open (Value 3)
it may return: Just 5.6 Value 5.6
or it may reutrn: Nothing Nope

Apart from the above, the new open function also takes (DIV n) and returns (DIV
n); behaves like an identity function. We also instantiate the Num class of Haskell

for the (Value a) type, which supports all arithmetic operations for it.



instance (Num a) => Num (Value a) where

(Value i) + (Value j) = Value (i + j)

(Value i) + (DIV j) Value (i + j)

(DIV i)  + (Value j)

Value (i + j)

(DIV i) + (DIV j) = DIV (i ‘max‘ j) -- Tricky line
- + = Nope
fromInteger x = DIV O -- One more trick
>), (), ... :: (0rd a) => Value a -> Value a —> Value Bool

—-- We hide the prelude definition of these
-- by doing a qualified import of prelude
(Value i) > (Value j)

Value (i > j)
(Value i) > (DIV j)

Value (i > j)

(DIV i) > (Value j) = Value (i > j)

(DIV i) > (DIV j)

DIV (i ‘max‘ j)

Now we return to our example of finding the deepest involved variable for the
constraint open a - open c¢ < 10 and see how the above changes will lead us to
a solution. Suppose in this constraint, we have a = (DIV 1) and ¢ = (DIV 3),
then according to the above declarations, evaluation of this constraint will yield
(DIV 3), which we interpret as, deepest involved variable for this constraint is 3.

But how do the landmarks a and ¢ get the values (DIV 1) and (DIV 3)7
Looking at the definition of cons in the example, we see that the values of a and ¢
are returned by the 1ms function. 1ms has the type Patt -> [Bar]. We introduce
few more constructors (called tricky constructors) into Patt type as follows. 1lms

definition is also changed to handle these new constructors.



We change Patt type which we change as following,

Patt = Up (Bar,Bar) Fuzzy
l...
| UpT | DownT | FbT [Patt] | ... -- Tricky Constructors

1ms :: Patt -> [Value Bar]

lms Up (bl, b2) = [bl,b2]

lms p = map DIV [1..(count p)]
-- p 1s one of the tricky constructors
—-- like UpT, DownT, FbT ..

where count UpT =2

count DownT 2

count (FbT ps) = sum (map count ps) + length ps - 1

Now when 1lms is input with (FbT [UpT, DownT]), it returns [DIV 1, DIV 2,
DIV 3]. Also, it returns [Value 5, Value 7, Value 9] forinput (Fb [Up (5,7)
0.2, Down (7,9) 0.1]).

So to summarize the whole picture, there are two phases in constraint solving:
(1) calculating indx (2) actual constraint solving. To calculate indx, constraint-by
operator (?7) passes a dummy pattern instance to the constraint function instead
of the actual instance, which triggers the evaluation at DIV [evel to compute indx.
A dummy pattern instance is made up of tricky constructors and is structurally
similar to the actual instance. For example, (FbT [UpT, DownT]) is a dummy
pattern instance for (Fb [Up (5,7) 0.2, Down (7,9) 0.1]). In second step,
backtrack uses indx and checks for the constraints on the pattern-instance tree.
During this phase, backtrack invokes the constraint function with actual pattern

instance as argument.



The problem we addressed here can be categorized as, on-the-fly function in-
spection and analysis. We believe that the solution is interesting, and may be
applicable to other applications, especially for embedded languages, where this
need to inspect functions arises often. But unfortunately, the solution is computa-

tionally inefficient, as is evidenced from the following profiling:*

total time 49.74 secs (2487 ticks @ 20 ms)
total alloc = 5,482,674,952 bytes

(excludes profiling overheads)

COST CENTRE MODULE htime Jalloc
parse Mutables 46.5 41.8
GC GC 24.1 0.0
7! Mutables 8.6 5.7
1ift2V Operators 6.0 4.6

From the above profile, we realize there are two culprits. Firstly, the parse
function which parses the data from text format to floating point values takes up
a lot of time and space. Function (?!) is the indexing operator used to access
data from the arrays. Since constraint solving involves a lot of such access, it is
not surprising that it takes a significant time. The second culprit is the 1ift2V
function that is defined below. It supports the binary operations on the (Value

a) type that encompass DIV and Value data constructors.

1ift2V :: (a->b->c) —-> (Value a -> Value b -> Value c)

LAll the performance statistics presented in this paper are run under Linux in a desktop PC
with P4 1.7GHz processor and 256 Mbytes of RAM. The interpreter is called to search for all
head-and-shoulder pattern instances occurring in 10 years of daily price histories of 40 companies.

The head-and-shoulder pattern is defined in Appendix A.



1ift2V op (Value x) (Value y) = Value (x ‘op‘ y)
1ift2V op (DIV x) (DIV y) = DIV (x ‘max‘ y)

Any operators that works on the (Value a) data type will have to perform pat-
tern matching over these data constructors. Although we use DIV data constructor
only during index computation, we have to pay for its overhead throughout con-
straint solving. This degrades the performance rapidly, since constraints generally
consists of a lot of binary operations on values of this type.

To overcome this computational inefficiency, instead of putting the tricky data
constructors in the Patt type, we create a new data type for them, called PattT.
Similarly, we introduce a new type DIV, to have the DIV constructor separated from

Value.

data PattT = UpT | DownT | FbT [PattT] |

data DIV = DIV Int
Next, we introduce the following classes, to handle these new types.

class (Fractional b) => Indicator a b | a -> b where
close, open, low, high :: a -> b

instance Indicator Bar (Maybe a) where

instance Indicator DIV DIV where

class LMS a b | a -> b where

Ims :: a -> [b]

instance LMS Patt Int where



instance LMS PattT DIV where

class (Logic b) => Compare a b | a -> b where
(>),(),(==),(K=),0>=),(>) ::a->a->0b

instance Compare Price Bool where

instance Compare DIV DIV where

With this setting, we see that constraint function is overloaded to handle both
PattT and Patt types. backtrack function will use both versions of constraint
functions; i.e., one that takes PattT when evaluating indx, and another that takes
Patt inside check function. The normal Haskell Type system does not allow
co-existence of these two versions of constraint function. But we overcome this
problem by introducing local quantification type annotation as follows. This
helps the type system to decide which version of the function to choose at each of

the function’s call sites.

backtrack ::
(forall a b ¢ d. (LMS a b, Indicator b ¢, Compare c d) => a -> [d])

-> Tree -> Tree

—— constraint_function :: PattT -> DIV , OK

-- constraint_function :: Patt -> [Bool] , OK

The following profile shows the improvement after separating the tricky con-
structors from the actual constructors into two different types, eliminating the

overhead incurred by 1iftV function.



total time 36.16 secs (1808 ticks @ 20 ms)

total alloc 3,941,450,740 bytes

(excludes profiling overheads)

COST CENTRE MODULE %time %alloc
mypars Mutables 61.3 58.1
GC GC 27.9 0.0
71 Mutables 8.9 7.9
? Pattern 8.4 10.7

In summary, we have accomplished our initial goal of constructing a back-
tracking algorithm to traverse the pattern-instance tree and check the constraints
efficiently. As we saw, this led to us few problems due to the interpretive setting.
Functions do not allow inspection. To this, we presented an interesting solution.
And we addressed the inefficiency of our initial solution by using features of Haskell

type system. We took full advantage of laziness of Haskell in our solutions.

4.4 Efficient Inputing

As mentioned earlier, the input price history consists of 5 values. Since Haskell’s
standard mechanism for I/O allows these data to be read only in a textual rep-
resentation, the standard way to store price histories in files is to keep them in
ASCII representation. Considering accessing ten-year price histories of 300 com-
panies, one can imagine the amount of time spent on translating these data to
floating points.

Inspired by the result reported by Wallace and Runciman on heap compression

and use of binary I/O [32], we store these price histories in binary, and make use



of Haskell’s binary I/O to read in the data. The following profile shows the dra-
matic improvement due binary IO. Notice that the function mypars (responsible for
parsing), visible in previous profile, does not appear among the top time-consumers

here.

total time 13.52 secs (676 ticks @ 20 ms)

total alloc 1,962,840,344 bytes

(excludes profiling overheads)

COST CENTRE MODULE %time %alloc
GC GC 26.2 0.0
cons CPL 21.0 23.6
71 Mutables 19.5 12.8

4.5 Related Work

In this chapter, we presented the efficiency bottlenecks and their solutions in CPL
implementation. There are two main contributions: A novel constraint solving
algorithm and on-the-fly analysis and optimization of pattern definitions. We will
present the works related to constraint solving algorithm in the next chapter.
Embedded language, as we elicited before, does not lend itself nicely to opti-
mization. This is especially true, when the domain specific entities like pattern
definitions for example, are modeled as functions. In that case, it is not possible
to analyze the function and optimize it. The alternative to this approach is, model
them as algebraic data types; in that case, the interpreter can analyze the defi-
nitions and transform it. This approach has been taken in [10] for optimization

of their image synthesizing language called PAN. But we advocate that, with this



approach, the resulting language is not an embedded language in true spirit as we
do not use the compiler of the host language, rather we write a compiler in the
host language.

Our solution is, to take a middle path i.e. we do not model the pattern defi-
nitions as data types, but to analyze the function we pass a special argument to
pattern functions. When a pattern definition receives this argument, instead of
producing pattern instances, it produces some information that is useful for opti-
mization like indices of constraints. This is achieved by overloading the functions.

The limitation of our approach and also that of [10] is, in the resulting lan-
guage, the user does not have unrestricted access to all library functions, unless
the embedded compiler supports it(it is overloaded to accept the special argument).
We realize that there are some more limitations in this approach like supporting
recursive functions and to be able to do more aggressive analysis and optimization
of patterns. In future, we plan to use meta-haskell[30] for optimizing CPL. Meta-
haskell provides an handle into the internal representation of Haskell program,
which is used by the Haskell compiler. With access to that, we can do almost any
type of analysis and transformation on our embedded language program, which is

also a valid Haskell program.



tTransformer = foldTreeO f ([],0) g
where f node (acc,level) = (node:acc, level+1l)
g nodes [] = Tree (nodes, [])
g (_,level) ts = Tree (((fst.label.head) ts,level), ts)

fo0ldTreel :: (a->c->c) -> ¢ -> (c->[b]l->b) -> Tree a -> b
foldTree0 f ¢ g (Tree (a,ts)) =
let ¢’ =f ac

in g ¢’ (map (foldTreeO f c’ g) ts)

prune :: (a->Bool) -> Tree a -> [Tree a]
prune p = foldTree0 const undefined g

where g node ts

| not (p node) = []

| null ts = [Tree (node,[])]
| otherwise =
let ts’ = concat ts

in if null ts’ then [] else [Tree (node,ts’)]

check cons indx dummy = foldTreeO const undefined g
where g (ass,level) ts = Tree ((cc (reverse ass) level), ts)

cc path level =

let inds = lookup’ level indx
bools = map (cons patt!!) inds
patt = toPatt path dummy

in not (elem False bools)

Figure 4.3: Haskell Code for Backtracking



Chapter

Lazy Divide and Conquer Constraint

Solving

In this chapter, we present the constraint solving algorithm that is used in CPL

implementation.

5.1 Background

We formulate constraint satisfaction problems as constraint networks. A constraint
network consists of a set of variables X = {xy, ..., x,}, domains D ={Dy, ..., D,},
D; = {vy,..., vy} (finite domain) and constraints Rg,,..., Rs,, where S; C X,
1 < i < k. For any subset of variables S = {zy,..., 2.}, the domain of S is
Dy x...xD,. A constraint is a pair (R, S) where S is a subset of variables S C X,
also called its scope and R is a relation defined over the domain of S, whose tuples
denote the legal combination of domain values. The pair (R, S) is also denoted
Rg. The arity of a constraint Rg is defined as the cardinality of S.

Given a set, of variables Y C X, we define Ky as follows:

Ky = (J{Rs, | Si CV,1<i<k}.
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As an example, an n-queen problem can be formulated as a constraint network
consisting of a set of variables X = {q1,...,q}, domains D = {D,..., D4} such
that D; = {1,2,3,4}, for 1 < i < 4, and constraints Uy<;c;j<s Rig.q,), Where
Ryg. 4y specifies that a queen at row ¢ cannot attack another queen at row j.
Furthermore, Kg, ¢2.0:3 = Big1,000 U Bigiasr U B3 Kigr,g,05) TEPTESENE the set

of all constraints involving ¢, ¢ and g3.

5.2 Motivation for Lazy D&C

In this section, we give the motivation for using lazy d&c strategy through simple
examples. Consider Figure 5.1, which shows the partial search space for 4-queen
problem. There are 4 variables in the problem: ¢, ¢2, ¢3 and ¢4, each represents a
level in the search space, and the first level (the root) contains a dummy node. A
node in the tree at level ¢ with value v represents the assignment ¢; = v.

A solution is represented by a complete path in the corresponding solution
tree, joined by solid edges. A complete path is one that contains assignment to all
variables in the subproblem. The only complete path shown in the figure contains
the assignment ¢; = 3, g = 1, ¢3 = 4, and g, = 2. Moreover, a dashed edge joined
a node at level ¢ to another at level ¢ + 1 represents an assignment of a value to
the variable at level ¢ 4+ 1 that fails a consistency check. Consequently, no further
search is carried out starting from the node of each dashed edge.

Two nodes labeled a and b in the tree have value 1, indicating that the 2nd queen
(g2) is positioned at column 1. The search spaces rooted at a and b are identical,
as both of them are associated with three constraints namely, Rg, 4.3, R{gs,4.}, and
Rygs,q0y, With go being assigned the value 1. Comparing the subtrees rooted at a
and b, we see that two dashed edges, joining pair of assignments (g2 = 1,93 = 1)
and (¢g = 1,q3 = 2) respectively, are explored and discarded at both subtrees.

This re-computation can be avoided if we can save our exploration result at a and



reuse it at b.

However, backtracking algorithm, or any of its intelligent siblings like back-
jumping or backmarking [14], do not achieve the desired saving. Backmarking
comes close to meeting our expectation; it does not redundantly check the con-
straints involving a node living in the subtree and the common ancestors of nodes
a and b. However, in this example, backmarking does not eliminate redundant

checks, as the common ancestor of nodes a and b is just the dummy root node.

(root)
g, 4
g a:1.... b:1....
2 -~ <, ~
/////\ /////T \\
-7 // ! -7 // \\A
q 1 2 3 4 1 2 3 4
3 T\ 28
// \\\\\ //// |\\
/ \ ~ PR ' N
d, 123 4 1 2 3 4

Figure 5.1: Partial Solution Trees of 4-queen problem

In general, caching a solution subtree for future reuse can reduce the number
of consistency checks drastically, since the number of identical nodes(nodes with
same assignments) occurring at a level can be potentially exponential, resulting
in exponential number of identical subtrees. Every time a solver comes to such
a node, like a in level ¢, of Figure 5.1, it has to check the constraints involving
variables that lie in or below level 2 of the tree. In the worst case, the complete

subtree might get re-evaluated.
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Figure 5.2: Partial Solution Tree of 4-queens problem divided into two sub-

problems with variables ¢;, g2 and ¢, g3, q4.

We can view the subtree rooted at a as representing the search space for a
variant of 3-queen problem (with domain values ranged from 1 to 4). In the spirit
of divide-and-conquer strategy, we wish to solve this subproblem and combine its
result with those obtained from other subproblems. In many traditional problems,
such as sorting, we can intuitively divide a problem into independent subproblems,
and merge the individual results to form the final solution. For constraint satis-
faction problems, however, it is generally not possible to cleanly divide a problem
into subproblems that can be solved independently. For instance, if we divide
the 4-queen problem such that ¢; and ¢z live in different subproblems, there is
a constraint, Ry, 4.1, connecting these two subproblems. So when should such
constraint be checked?

One simple solution, is to first ignore those constraints that involve variables



living in different subproblems, solve each of the subproblems and later use the
ignored constraints to filter their combined solution. But this forceful division of
problem may cause redundant consistency checks; some instantiations of the so-
lution of one subproblem, II; say, may prune part of the search tree of another
subproblem IIy, and thus make the computation of that part of II,’s solution re-
dundant.

Figure 5.2 shows a division of 4-queen problem into two subproblems: The
first subproblem contains variables {qi, 2}, and the second contains variables
{q2,q3,q4}. (The astute readers will notice the repetition of variable g, in both
subproblems. This arrangement will facilitate merging of solutions from two sub-
problems (cf., Section 5.3.2).)

When solving the second subproblem independently, two subtrees rooted at
level ¢3, with assigned values 3 and 4 respectively, are explored. However, as we
have already seen in Figure 5.1, if we were to choose only one solution for the
entire problem, we would only need to explore the path passing through node a,
and explore the subtree rooted at the node with assignment ¢3 = 4. In this case,
the computation performed at second subproblem on subtree rooted at q3 = 3
becomes redundant.

In general, consistency checks done at subproblem can become redundant even
when we are finding all solutions to a CSP. This problem can be addressed conve-
niently by a lazy computation framework like that of Haskell [28]. Subproblems are
solved lazily, whenever they are demanded. The demand arises when constraints
connecting subproblems are checked to produce final solutions for the entire prob-
lem. This demand-driven nature of computation allows some parts of the search
trees of subproblems to remain unevaluated, thus eliminating the risk of redundant

consistency checks.



5.3 Algorithm

We identify a constraint satisfaction problem with a constraint network, and a
subproblem with a subnetwork. The lazy divide-&-conquer algorithm is defined by
function DivCong, as shown in Figure 5.3. The function is subscripted by a solver
S, and takes in two arguments: a constraint network N; and a map p describing how
to divide NV into subnetworks. If the network is not to be divided (ie., the map p is a
primitive map), the solver S is called to find all solutions for N. Otherwise, function
divide is called to partition the network into a list of subnetworks; it returns
two components: nms is the list of subnetworks and their associated “submaps”
describing how each subnetwork should be further divided. C'is the set of global
constraints (taken from ) inter-connecting these subnetworks. Each subnetwork
is solved recursively. The results are combined, and the global constraints are

solved (with the same solver S) by calling the function joing.

function DivCong (N : network, p : map) : solnSet
local o : solnSetSet
nms : network-mapSet
if primitiveMap (p) then return S(N) ;
(C,nms) « divide (N, p) ;
for each (N',p') € nms lazy-do
add DivCong (N', p') to o ;

return joing(C, o)

Figure 5.3: Lazy Divide-&-Conquer Algorithm

The algorithm is executed lazily. Firstly, every function call invocation is per-
formed lazily; when a function is applied to a tuple of arguments, the call invocation

does not begin with the evaluation of its arguments. Rather, the function body



is executed first. When the value of an argument is required to advance the ex-
ecution, that argument is evaluated up to the point when the required value is
obtained. For example, if an argument will evaluate to a linear list of values, and
only the first two elements of the list are needed to complete the function-body
execution, then the argument will be evaluated to produce the first two elements;
it will not produce the other list elements. In programming terminology, this sus-
pension of an expression evaluation is achieved by building a thunk to encapsulate
the computation of the expression. When the value of an expression (in this case,
the argument) is required, its corresponding thunk will be forced.!

In addition to lazy function calls, a lazy-loop command, for each ... lazy-
do, executes its loop-body lazily too. Instead of eagerly adding solution set of
subproblem (N’,p') to o at each iteration, a thunk corresponding to the execution
of this addition (of the solution set) is created. This thunk will be forced when
the corresponding solution set is needed (by the joing operation). Consequently,
during run-time, o does not really contain all solution sets. For those subproblems
that have been (partially) solved, o keeps their (partial) solutions else o maintains

the thunks representing the pending computations.

5.3.1 Map

A map describes how a network can be subdivided. Our strategy assumes some
variable ordering. When dividing a network, we assert that subnetworks preserve
this variable ordering; e., variables occurring in a subnetwork must obey the same
variable ordering as the original network.

Network division is done such that two consecutive subnetworks share exactly

one common variable. This facilitates merging of solution sets of subnetworks at

IThe thunk must contain the information required to execute the expression. The process of

executing the expression in a thunk is called forcing [16].



later stage (as will be explained in Section 5.3.2.) Hence, given a network with
variable ordering

(xla T2, T3,T4,T5,Te, T, 'TS)

The division

(xla T2, X3, 1'4) and (1'4, Ts5,Te, T, xS)

is valid, but the division
(xla T, X3, 'T4) and ("I’.57 Te, T, ‘TS)

is invalid because the first two subnetworks do not share a common variable.
Without loss of generality, we assume that division of a map always produce
two submaps, and division operations can be nested.
In defining a constraint-satisfaction problem, we first order the variables, and
index them, beginning from 1. Hence, a division of a map can be succinctly
described by specifying the index of the common variable. The syntax of a map

can be expressed by the following grammar:
map = map ::int:: map | None

For example, the earlier example of dividing a network of eight variables can
be expressed as:

p = None :: 4 :: None
A possible nested map will be:
p' = None :: 4 :: (None :: 7 :: None)

Given a network N of eight variables, and the above map p'. The call divide (N,

p') will return

(C4, {(N1,None), (Na, (None :: 7 : None))})



where N; consists of the set of variables A = {z1,x9, 3,24}, and constraints K 4;
N, consists of the set of variables B = {x4, x5, z6, xs}, and constraint C'g, where
Cp = Kp \ Rz,y. Thus, all unary constraints on the common variable x4 appears
in the first subnetwork, but not the second. Lastly, Cy = Kaup \ (Ka U Kp) is
the set of constraints between variables in (A - {z4}) and (B - {x4}); ie., the
inter-connecting constraints between N; and N.

To proceed further, divide(Ns, (None :: 7 :: None)) yields
(077 {(N217 NOIle), (N227 NOH@)})

where Ny consists of variables D = {x5, 6,27}, and constraints p; Noy has
variables E' = {27, 23}, and constraints Cy, where C; = K \ Ry,y. Lastly, C7 =
Kpue \ (KpUKEg).

Note that unary constraint on the common variable appears only in one subnet-
work. If it were to exist in both subnetworks, redundant consistency checks of this
unary constraint would occur. While we shall not delve into the technical details,
we claim that placing this unary constraint in the second subnetwork will also incur

redundant checks, and thus the decision to place it with the first subnetwork.

5.3.2 Function joing

Function joing combines the solution sets of all subproblems created earlier by the
divide function, and subjects them to global constraint (C') satisfaction. Because
of the existence of common variable between two subproblems, combining two
solution sets is equivalent to “equi-join” operation on two tables in database, where
two tables are joined on the condition of equality of their common attribute (the
common variable, in our case.)

Under lazy evaluation, when the solution set of a subproblem is needed for the
first time, its corresponding thunk is forced, resulting in the thunk being replaced

by the (progressively constructed) solution set.



Demand for the solution set of a subnetwork arises from the need to solve
global constraints C' (which is needed in order to construct a solution for the
entire constraint network.) In solving global constraints, we can employ techniques
different from that provided by the solver S, although it is simpler to use the same
solving technique throughout the entire process.

The result of joing will be one (possibly empty) solution set that satisfies all

constraints on the variables of the combined subproblems.

5.3.3 Solving S(N)

In the degenerate case (with the presence of a primitive map None), the call S(N) is
also executed lazily. Note that S(N) yields solutions that only satisfy constraints
local to the subproblem, and these solutions may not satisfy constraints inter-
connecting the current subproblem with other subproblems. The possible output

of S(N) are as follows:

1. S(IN) may not be executed at all, if there is no need for its solution set. This
happens when the algorithm aborts because one subproblem (not the current

N) turns out to be unsatisfiable.

2. S(N) may be executed to produce all solutions. This happens when the algo-
rithm is used to generate all possible solutions to the constraint-satisfaction

problem.

3. S(N) may be executed to produce some (and possibly all) solutions. This
happens when the algorithm is used to generate just one solution, and the
execution of S(N) will halt when the first solution that satisfies the global

constraints connecting the subproblems is found.

It is important to understand that, due to lazy evaluation, all functions are

executed in an interweaving manner. Thus, it is not the case that S(N) runs to its



completion and passes its result to joing. Rather, we can imagine both S(N) and
joing as running in a fine-scale co-routine manner, with joing pauses to request
for some intermediate result from S(N), and continues when the requested result

is available.

5.4 Experimentation

We have implemented our lazy D&C strategy in Haskell — the de-facto lazy func-
tional language. In our implementation, the subproblems corresponding to primi-
tive map are solved using backtracking. Given two subproblems sharing a common
variable, the joing operation solves left subproblem first and then the second sub-
problem(lazily) and checks the global constraints in backtracking manner on the
combined solution.

To illustrate the effectiveness of our approach, we apply our program to solve
n-queen problems. We benchmark it against the standard search algorithms de-
veloped by Nordin etc. in Haskell [25]. A widely used metric for evaluating con-
straint solving algorithms is the number of consistency checks performed by the
algorithms. Adopting this metric, we obtain very encouraging results, as shown in
Table 1. Notice that in all cases, our d&c strategy performs the least number of
consistency checks.

In the following, we present two experiments. All measurements are taken on
a 1.7Ghz pentium IV machine running linux. The programs were compiled with
ghc-5.02 with -O2 and profiling flags.

Table 5.2 shows the effect of different partitioning on the number of consistency
checks and running time. Here, each test case represents a different map for 12-
queen problem and DivConyy is run using the map. For simplicity, we express
the map in list format: a list [a,b,c] is equivalent to the map None :: a ::

(None :: b :: (Nonme :: ¢ :: DNone)).From the table, we can see that the



Queens 8 9 10 11 12

bt 46752 243009 1297558 7416541 45396914
bjbt 41128 214510 1099796 6129447 36890689
bjff1 11579 47375 191776 868066 4280093

DivConpy 10064 40548 172198 790634 3976570

Solutions 92 352 724 2680 14200
Legend: bt backtracking algorithm [25]
bjbt backjumping algorithm [25]
bjffl backjumping with forward checking

(The fastest algorithm reported in [25])

DivConpt d&c framework with backtracking solver

Table 5.1: Number of consistency checks performed by various algorithms on the

all solutions to n-queen problem.

number of consistency checks decreases with finer granularity of partitioning.
This experiment shows that DivConpt solves the n-queen problem the best
when the map is right-skewed, and has finest granularity. We contribute this
behavior to the following two reasons: 1. The n-queen problem has uniform distri-
bution of constraints over all variables; 2. The solver bt and the operation joinyy
find solutions in depth-first manner, traversing the list of variables from left to
right. Thus, maximal reuse of solutions can be attained by grouping the subprob-
lem in right-associative fashion. But in general, topology of constraint network ,
the solver used to solve the subproblems and the method of combining the solutions

of subproblems would decide the goodness of a particular division of the problem.



Test Consistency Time

case checks (seconds)
L] 45,396,914 23.1
[2] 28,398,804  20.8
[2,3] 18,087,264  22.5
[2,3,4,5] 7,978,112 33.2
[2,3,4,5,6, 3,976,579  66.7
7,8,9,10,11]

Table 5.2: Impact of granularity on running time for 12-queen problem

Table 5.3 shows the effect of different partitioning on the heap usage and num-
ber of consistency checks. Heap usage is measured in MBytes X Seconds. If size
of the live heap is plotted against time, heap usage is measured by the area en-
closed between the time axis and the live heap curve over the total running time
of the program. The figures demonstrate that with increased granularity heap
usage increases and number of consistency checks decreases. Greater heap usage
is due to the fact that with increase in granularity solutions of greater number of

subproblems are saved and reused.

5.5 Application to CPL

In this section we demonstrate the usefulness of our d-&-c framework for efficient
pattern matching in CPL.

As mentioned before, head-and-should is one of the most popular patterns used



Test Consistency Heap Usage

case checks (MBytes X seconds)
] 1,297,558 0.001

[2,3] 545,392 10.01
[2,3,4,5] 262,822 33.17
[2,3,4,5,6,7 178,816 48.52
[2,3,4,5, 172,198 52.16
6,7,8,9]

Table 5.3: Impact of granularity on heap usage for 10-queen problem

by analysts—it bodes of decline of price. Appendix A gives one definition of head-
and-shoulder pattern in CPL. But to show the effectiveness of d-&-c approach,
below we provide three different definitions of the pattern; they differ in the way
the pattern is divided. The definitions uses simple Haskell syntax.

global = (up >.> down >.> up >.> down >.> up >.> down) ? [..]

conc let b2d = (down >.> up) ? [..]
b2e = (b2d >.> down) ? [..]

b2f

(b2e >.> up) ? [..]

b2g = (b2f >.> down) ? [..]

in (up >< b2g) 7 [..]

right = let e2g = (up >.> down) 7 [..]

d2g = (down >.> e2g) ? [..]

c2g = (up >.> d2g) 7 [..]
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Figure 5.4: Head and Shoulder

b2g = (down >.> c2g) 7 [..]
in (up >.> b2g) 7 [..]

n the definition of global, all constraints are globally specified; the pattern thus has
the coarsest granularity. In conc, the sub-patterns are composed in left-associative
manner. In the equation b2e = (b2d >.> down) ? [..], the list of constraints
([..1) contains global constraints connecting sub-patterns b2d and down (shown
in Appendix A). Lastly, in right, sub-patterns are composed in right-associative
manner. Both conc and right has the finest granularity.

Table 5.4 shows the time taken to search all instances of head-and-shoulder
pattern over 20 years of daily data of 20 companies, under different decompositions
and maximum lengths of patterns. In practice, patterns that occur over a very
long period of time are not useful for forecasting. So the program only searches

for patterns of length less than a particular value given by the user.



Division Variation Maximum Length of a pattern (days)

250 450 650 850

global 16.5 24.4 29.8 33.8

conc 14.0 17.2 20.6 23.0

right 12.3 15.2 17.0 19.0

Number of instances found 21 26 27 27

Table 5.4: Running time (in seconds) for searching all head-&-shoulder pattern

instances

Matching a pattern defined by global is similar to solving a constraint net-
work using backtracking algorithm. While backtracking algorithm is still used at
subproblems, we see that pattern matching can be done efficiently using lazy d&c
strategy with finer granularity. The motivation behind decomposing a pattern into
conc format is that it is efficient to have subgraphs with more local constraints, so
that there will be more saving obtained from reusing its solutions. For the current
pattern, we find that there are most constraints associated with landmarks b to
f. Thus, we chose to make that a b2f a subproblem, and provide further division
of this subproblem. As one can see, there can be many way to partition a prob-
lem, and the topology of the constraint graph can be exploited during partitioning.
However, unlike other works, where decomposition is possible only with a topology
that satisfy some properties, our algorithm works for any arbitrary decomposition;
though performance may be different.

It is interesting to see that the essence of our lazy d&c strategy has been
encoded in the operators >.> and ? of CPL. As such, a pattern defined using these

operators reflects actual division of a pattern. Such encoding thus opens up the



opportunity for a CPL system to transform and optimize the execution of the lazy

d&c strategy, through transformation of pattern definition at compile time.

5.6 Related Works & Future Work

The prevalent method used in decomposing constraint network is the tree cluster-
ing method [8, 15]. The objective has been to identify constraint networks that can
be compiled into an equivalent tree of subnetworks whose respective solutions can
be combined into a complete solution efficiently. Some of these tree-decomposition
schemes are join-tree clustering [8], junction-tree decompositions, and hyper-tree
decomposition [15]. In contrast, what we propose in this chapter is a scheme for
programmer to freely divide the network, through introduction of maps, in a man-
ner that fits the properties of the network. To support general division of network,
we show that lazy evaluation is crucial to the elimination of redundant consistency
checks. It will be interesting to determine if the introduction of lazy evaluation
can help broaden the range of constraint networks handled by the existing tree-
decomposition schemes.

Lazy evaluation is not new to constraint satisfaction algorithms. A flavor of this
technique was first exploited by Zweben and Eskey in [33] and later in [9] and [29]
to improve forward checking and arc consistency algorithms. Although these algo-
rithms delay some constraint checks, they do not really require a lazy-evaluation
framework. In a stroke, these algorithms cleverly infer the amount of “laziness”
required to avoid redundant checks?, so it is more apt to describe these algorithms
as “minimal” rather than “lazy”. Our algorithm addresses the redundant com-

putation problem associated with application of divide-and-conquer approach to

?Bacchus and Grove remarked that “we rediscovered this (minimal forward checking) not by
thinking about lazy evaluation, but instead as a corollary of our results connecting backmarking

and forward checking” in page 3 of [5].



constraint satisfaction problem by employing lazy evaluation. We show that, by
performing backtracking algorithm in a lazy d&c framework, we can eliminate
redundant computations, leading to a reduction in consistency checks. But this
improvement comes with a price; the space complexity of the algorithm is too high
for the algorithm to scale up to large problems. One solution is related to “learn-
ing” algorithm[12] for constraint solving, where as the algorithm explores different
frontiers of the search space, it learns from it mistakes, that is, when it reaches a
node in the solution tree that can not be further extended, it records “nogoods”
that will prevent it to come to the same dead end again. A nogood is a set of assign-
ments that is not a subset of any solution of the problem. The nogoods recorded
during learning represents an approximation of the already explored search space.
In our current algorithm, we store a complete copy of the search space explored so
far, thus increasing the space requirement. But we can instead store nogoods as

an approximation of the search space like learning algorithms.



Chapter

Conclusion

In this thesis, we have introduced a very interesting application of programming
language in finance and business. Forecasting future trend of the stock market is
a long researched area. Probably the attractiveness of the end result has drawn
interest from multiple disciplines of science to this problem. And the author was
no exception; whom the challenge of using computer science to investing drew him
to this problem.

There are many approaches to stock forecasting problem, ranging from ap-
plication of esoteric techniques of artificial intelligence area to fundamental and
technical analysis. Later techniques are more accepted in the actual practice. Our
topic comes from technical analysis of stock, which interpret the patterns in stock
market price charts as precursor to future trend of the market. So the techni-
cal analysts have a need to program their patterns and search them in the huge
database. To this effect we have designed and implemented a domain specific
language to program chart patterns.

We chose to embed our language in a state-of-the-art functional language
Haskell instead writing a compiler for our language. The decision was motivated

by the success of Haskell in hosting a flurry of small domain specific languages in
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recent past. Some of the salient features of our language are,

1. It provides a high-level platform upon which analysts can define and search
patterns easily without much programming expertise; this is different from
works in neural network which treat the pattern discovery process as a black

box [20] — something that the user can be uncomfortable with.

2. Its specification is close to how analysts would describe the patterns in human

terms(fuzzy constraints), but without compromising on precision.

3. Patterns are defined in a compositional style, which is how the real analysts

like to define.

4. It allows to define new technical indicators and use them in pattern defini-
tions to specify constraints. This allows an easy and elegant way to specify

constraints and reuse them.

Embedding domain-specific languages within a functional language does not
only provide the domain experts with elegant and convenient specification of do-
main problem, but also brings about many benefits from the host language. But
efficiency of embedded languages often turn out to be unsatisfactory. Because,
any attempt to apply domain specific optimizations is hindered by the inability to
inspect the functions, which is invariably needed when the domain specific entities
are modeled as functions(most likely case when the host language is Haskell.) The
obvious solution to this problem is to write a compiler in the host language. But we
chose to take a slightly different approach, which we find interesting and believe to
be general enough to be applied to other fields. Our approach relies on Haskell type
classes and other advanced features of the type system. Besides this problem, we
face few more problems, specific to our application. We take advantage of laziness
of Haskell to devise an elegant to solution to it. Though by tricky manipulation of

type system and laziness, we have been successful in incorporating some domain



specific optimizations into our system, we realize that writing a compiler for our
language is inevitable to be able to do more powerful analysis and transformations.

In course of implementation, we have discovered a new approach to constraint
solving based on divide and conquer. we identify the redundant computation prob-
lem associated with application of divide-and-conquer approach to constraint sat-
isfaction problem. We propose a novel way of overcoming this problem by em-
ploying lazy evaluation. Our initial experimentation with N-queen problem using
this approach has been encouraging and enlightening. Enlightening, because it
led us to many problems, that we did not realize before. Most importantly, the
space complexity of our algorithm is prohibitively large to be able to scale upto
large problems. Though we still believe that the approach is novel. Lately, we
have adopted our approach into no-good driven learning algorithms for constraint

solving and the results are encouraging. We plan to carry on this work further.



Appendix

Head-and-Shoulder Pattern Definition

The following pattern is used to generate the performance statistics as presented

in the paper. The unary operator cast converts an integer to a floating-point.

h.s =
up >.> down >.> wup >.> down >.> up >.> down 7
\p—>
let [a,b,c,d,e,f,g]l = 1ms p

xl1=c¢
yl = low x1
X2 = e
y2 = low x2

z1l = yl+(y2-y1)*cast(g-x1)/cast(x2-x1)
z2 = yl+(y2-yl)*cast(a-x1)/cast(x2-x1)
z3 = yl+(y2-yl1)*cast(b-x1)/cast(x2-x1)
hl = high b - z3

z4 = yl+(y2-yl)*cast(f-x1)/cast(x2-x1)
h2 = high f - z4

z5 = yl+(y2-yl)*cast(d-x1)/cast(x2-x1)
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h3 = high d - z5

m = h2 / h3

n = hi/h3

in [

high d > high b,

high e < high b,

high d > high £,

high ¢ < high f,

close g < zl1 && close (g-1) > zl &&
low a < z2 && low (a+l) > z2 &&

abs (2% (h1-h2)/(h1+h2)) < 0.1 &&
m<O0.7&& m>0.4&& n>0.4&& n<20.7
]
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