
Metrics Matter,
Examples from Binary and Multilabel Classi�cation

Sanmi Koyejo

University of Illinois at Urbana-Champaign

Joint work with

B. Yan @UT Austin K. Zhong @UT Austin P. Ravikumar @CMU

N. Natarajan @MSR India I. Dhillon @UT Austin

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

Mixed combinatorial optimization

Convex lower bound

Logloss + thresholding

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

Mixed combinatorial optimization

Convex lower bound

Logloss + thresholding

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

F-measure is not an average. Naïve SGD is not valid
The sample F-measure is non-di�erentiable

Mixed combinatorial optimization

Convex lower bound

Logloss + thresholding

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

Mixed combinatorial optimization

e.g. cutting plane method (Joachims, 2005)
may require exponential complexity
most statistical properties unknown

Convex lower bound

Logloss + thresholding

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

Mixed combinatorial optimization

Convex lower bound

di�cult to construct
most statistical properties unknown

Logloss + thresholding

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

Mixed combinatorial optimization

Convex lower bound

Logloss + thresholding

simple, most common approach in practice
has good statistical properties!

Learning with complex metrics

Goal: Train a DNN to optimize F-measure.

F1 =
2TP

2TP + FN + FP

Direct optimization

Mixed combinatorial optimization

Convex lower bound

Logloss + thresholding

Why does thresholding work?

The confusion matrix summarizes binary classi�er mistakes

Y ∈ {0, 1} denotes labels, X ∈ X denotes instances, let
X,Y ∼ P
The classi�er θ : X 7→ {0, 1}

Metrics tradeo� which kinds of mistakes are (most)
acceptable

Case Study

A medical test determines that a patient has a 30%
chance of having a fatal disease. Should the doctor
treat the patient?

choosing not to treat a sick patient (test is false
negative) could lead to serious issues.

choosing to treat a healthy patient (test is false
positive) increases risk of side e�ects.

Metrics tradeo� which kinds of mistakes are (most)
acceptable

Case Study

A medical test determines that a patient has a 30%
chance of having a fatal disease. Should the doctor
treat the patient?

choosing not to treat a sick patient (test is false
negative) could lead to serious issues.

choosing to treat a healthy patient (test is false
positive) increases risk of side e�ects.

Performance metrics

We express tradeo�s via a metric Φ : [0, 1]4 7→ R

Examples

Accuracy (fraction of mistakes) = TP + TN

Error Rate = 1-Accuracy = FP + FN

For medical diagnosis example, consider the weighted error =
w1FP + w2FN, where w2 � w1

and many more . . .

Recall =
TP

TP + FN
, Fβ =

(1 + β2)TP

(1 + β2)TP + β2FN + FP
,

Precision =
TP

TP + FP
, Jaccard =

TP

TP + FN + FP
.

Performance metrics

We express tradeo�s via a metric Φ : [0, 1]4 7→ R

Examples

Accuracy (fraction of mistakes) = TP + TN

Error Rate = 1-Accuracy = FP + FN

For medical diagnosis example, consider the weighted error =
w1FP + w2FN, where w2 � w1

and many more . . .

Recall =
TP

TP + FN
, Fβ =

(1 + β2)TP

(1 + β2)TP + β2FN + FP
,

Precision =
TP

TP + FP
, Jaccard =

TP

TP + FN + FP
.

Performance metrics

We express tradeo�s via a metric Φ : [0, 1]4 7→ R

Examples

Accuracy (fraction of mistakes) = TP + TN

Error Rate = 1-Accuracy = FP + FN

For medical diagnosis example, consider the weighted error =
w1FP + w2FN, where w2 � w1

and many more . . .

Recall =
TP

TP + FN
, Fβ =

(1 + β2)TP

(1 + β2)TP + β2FN + FP
,

Precision =
TP

TP + FP
, Jaccard =

TP

TP + FN + FP
.

Performance metrics

We express tradeo�s via a metric Φ : [0, 1]4 7→ R

Examples

Accuracy (fraction of mistakes) = TP + TN

Error Rate = 1-Accuracy = FP + FN

For medical diagnosis example, consider the weighted error =
w1FP + w2FN, where w2 � w1

and many more . . .

Recall =
TP

TP + FN
, Fβ =

(1 + β2)TP

(1 + β2)TP + β2FN + FP
,

Precision =
TP

TP + FP
, Jaccard =

TP

TP + FN + FP
.

No need for metrics if you can learn a "perfect" classi�er!

When is a perfect classi�er learnable?

the true mapping between input and labels is deterministic i.e.
there is no noise

function class is su�ciently �exible (realizability) and optimal
is computable

we have su�cient data

In practice:

real-world uncertainty e.g. hidden variables, measurement error

true function is unknown, optimization may be intractable

data are limited

Thus, in most realistic scenarios, all classi�ers will make mistakes!

No need for metrics if you can learn a "perfect" classi�er!

When is a perfect classi�er learnable?

the true mapping between input and labels is deterministic i.e.
there is no noise

function class is su�ciently �exible (realizability) and optimal
is computable

we have su�cient data

In practice:

real-world uncertainty e.g. hidden variables, measurement error

true function is unknown, optimization may be intractable

data are limited

Thus, in most realistic scenarios, all classi�ers will make mistakes!

No need for metrics if you can learn a "perfect" classi�er!

When is a perfect classi�er learnable?

the true mapping between input and labels is deterministic i.e.
there is no noise

function class is su�ciently �exible (realizability) and optimal
is computable

we have su�cient data

In practice:

real-world uncertainty e.g. hidden variables, measurement error

true function is unknown, optimization may be intractable

data are limited

Thus, in most realistic scenarios, all classi�ers will make mistakes!

No need for metrics if you can learn a "perfect" classi�er!

When is a perfect classi�er learnable?

the true mapping between input and labels is deterministic i.e.
there is no noise

function class is su�ciently �exible (realizability) and optimal
is computable

we have su�cient data

In practice:

real-world uncertainty e.g. hidden variables, measurement error

true function is unknown, optimization may be intractable

data are limited

Thus, in most realistic scenarios, all classi�ers will make mistakes!

No need for metrics if you can learn a "perfect" classi�er!

When is a perfect classi�er learnable?

the true mapping between input and labels is deterministic i.e.
there is no noise

function class is su�ciently �exible (realizability) and optimal
is computable

we have su�cient data

In practice:

real-world uncertainty e.g. hidden variables, measurement error

true function is unknown, optimization may be intractable

data are limited

Thus, in most realistic scenarios, all classi�ers will make mistakes!

Utility & Regret

population performance is measured via utility

U(θ, P) = Φ(TP,FP,FN,TN)

we seek a classi�er that maximizes this utility within some
function class F

The Bayes optimal classi�er, when it exists, is given by:

θ∗ = argmax
θ∈Θ

U(θ, P), where Θ = {f : X 7→ {0, 1}}

The regret of the classi�er θ is given by:

R(θ, P) = U(θ∗, P)− U(θ, P)

Utility & Regret

population performance is measured via utility

U(θ, P) = Φ(TP,FP,FN,TN)

we seek a classi�er that maximizes this utility within some
function class F

The Bayes optimal classi�er, when it exists, is given by:

θ∗ = argmax
θ∈Θ

U(θ, P), where Θ = {f : X 7→ {0, 1}}

The regret of the classi�er θ is given by:

R(θ, P) = U(θ∗, P)− U(θ, P)

Utility & Regret

population performance is measured via utility

U(θ, P) = Φ(TP,FP,FN,TN)

we seek a classi�er that maximizes this utility within some
function class F

The Bayes optimal classi�er, when it exists, is given by:

θ∗ = argmax
θ∈Θ

U(θ, P), where Θ = {f : X 7→ {0, 1}}

The regret of the classi�er θ is given by:

R(θ, P) = U(θ∗, P)− U(θ, P)

Towards analysis of the classi�cation procedure

In practice P (X,Y) is unknown, instead we observe
Dn = {(Xi, Yi) ∼ P}ni=1

The classi�cation procedure estimates a classi�er θn
∣∣Dn

Example

Empirical risk minimization via SVM:

θn = sign

argmin
f∈Hk

∑
{xi,yi}∈Dn

max (0, 1− yif(xi))



Towards analysis of the classi�cation procedure

In practice P (X,Y) is unknown, instead we observe
Dn = {(Xi, Yi) ∼ P}ni=1

The classi�cation procedure estimates a classi�er θn
∣∣Dn

Example

Empirical risk minimization via SVM:

θn = sign

argmin
f∈Hk

∑
{xi,yi}∈Dn

max (0, 1− yif(xi))



Consistency

Consider the sequence of classi�ers {θn(x), n→∞}

A classi�cation procedure is consistent when R(θn, P)
n→∞−−−→ 0 i.e.

the procedure is eventually Bayes optimal

Consistency is a desirable property:

implies stability of the classi�cation procedure, related to
generalization performance

Consistency

Consider the sequence of classi�ers {θn(x), n→∞}

A classi�cation procedure is consistent when R(θn, P)
n→∞−−−→ 0 i.e.

the procedure is eventually Bayes optimal

Consistency is a desirable property:

implies stability of the classi�cation procedure, related to
generalization performance

Optimal Binary classi�cation with

Decomposable Metrics

Consider the empirical accuracy:

ACC(θ,Dn) =
1

n

∑
(xi,yi)∈Dn

1[yi=θ(xi)]

Observe that the classi�cation problem

min
θ∈F

ACC(θ,Dn)

is a combinatorial optimization problem

optimal classi�cation is computationally hard for non-trivial F
and Dn

Consider the empirical accuracy:

ACC(θ,Dn) =
1

n

∑
(xi,yi)∈Dn

1[yi=θ(xi)]

Observe that the classi�cation problem

min
θ∈F

ACC(θ,Dn)

is a combinatorial optimization problem

optimal classi�cation is computationally hard for non-trivial F
and Dn

Bayes Optimal Classi�er

Population Accuracy

EX,Y∼P
[
1[Y=θ(X)]

]
Easy to show that θ∗(x) = sign

(
P (Y = 1|x)− 1

2

)

Weighted Accuracy

EX,Y∼P
[

(1− ρ)1[Y=θ(X)=1] + ρ1[Y=θ(X)=0]

]
Scott (2012) showed that θ∗(x) = sign (P (Y = 1|x)− ρ)

Bayes Optimal Classi�er

Population Accuracy

EX,Y∼P
[
1[Y=θ(X)]

]
Easy to show that θ∗(x) = sign

(
P (Y = 1|x)− 1

2

)
Weighted Accuracy

EX,Y∼P
[

(1− ρ)1[Y=θ(X)=1] + ρ1[Y=θ(X)=0]

]
Scott (2012) showed that θ∗(x) = sign (P (Y = 1|x)− ρ)

Where do surrogates come from?

Observe that there is no need to estimate P , instead optimize any
surrogate loss function L(θ,Dn) where:

θn = sign

(
argmin

f
L(f,Dn)

)
n→∞−−−→ θ∗(x)

These are known as classi�cation

calibrated surrogate losses (Bartlett et al.,
2003; Scott, 2012)

research can focus on how to choose L,F
which improve e�ciency, sample
complexity, robustness . . .

surrogates are often chosen to be convex
e.g. hinge loss, logistic loss

Where do surrogates come from?

Observe that there is no need to estimate P , instead optimize any
surrogate loss function L(θ,Dn) where:

θn = sign

(
argmin

f
L(f,Dn)

)
n→∞−−−→ θ∗(x)

These are known as classi�cation

calibrated surrogate losses (Bartlett et al.,
2003; Scott, 2012)

research can focus on how to choose L,F
which improve e�ciency, sample
complexity, robustness . . .

surrogates are often chosen to be convex
e.g. hinge loss, logistic loss

Where do surrogates come from?

Observe that there is no need to estimate P , instead optimize any
surrogate loss function L(θ,Dn) where:

θn = sign

(
argmin

f
L(f,Dn)

)
n→∞−−−→ θ∗(x)

These are known as classi�cation

calibrated surrogate losses (Bartlett et al.,
2003; Scott, 2012)

research can focus on how to choose L,F
which improve e�ciency, sample
complexity, robustness . . .

surrogates are often chosen to be convex
e.g. hinge loss, logistic loss

Non-decomposability

A common theme so far is decomposability i.e. linearity wrt.
confusion matrix

E
[

Φ(Ĉ)
]

=
〈
A,E

[
Ĉ
]〉

= Φ(E
[

Ĉ
]
)

However, Fβ , Jaccard, AUC and other common utility
functions are non-decomposable i.e. non-linear wrt. C

Thus imples that the averaging trick is no longer valid

E
[

Φ(Ĉ)
]
6= Φ(E

[
Ĉ
]
)

Primary source of di�culty for analysis, optimization, . . .

Non-decomposability

A common theme so far is decomposability i.e. linearity wrt.
confusion matrix

E
[

Φ(Ĉ)
]

=
〈
A,E

[
Ĉ
]〉

= Φ(E
[

Ĉ
]
)

However, Fβ , Jaccard, AUC and other common utility
functions are non-decomposable i.e. non-linear wrt. C

Thus imples that the averaging trick is no longer valid

E
[

Φ(Ĉ)
]
6= Φ(E

[
Ĉ
]
)

Primary source of di�culty for analysis, optimization, . . .

Non-decomposability

A common theme so far is decomposability i.e. linearity wrt.
confusion matrix

E
[

Φ(Ĉ)
]

=
〈
A,E

[
Ĉ
]〉

= Φ(E
[

Ĉ
]
)

However, Fβ , Jaccard, AUC and other common utility
functions are non-decomposable i.e. non-linear wrt. C

Thus imples that the averaging trick is no longer valid

E
[

Φ(Ĉ)
]
6= Φ(E

[
Ĉ
]
)

Primary source of di�culty for analysis, optimization, . . .

Optimal Binary classi�cation with

Non-decomposable Metrics

The unreasonable e�ectiveness of thresholding

Theorem (Koyejo et al., 2014; Yan et al., 2016)

Let ηx = P (Y = 1|X = x) and let U be di�erentiable wrt. the
confusion matrix, then ∃ a δ∗ such that:

θ∗(x) = sign (ηx − δ∗)

is a Bayes optimal classi�er almost everywhere.

result does not require concavity of U , or other "nice"
properties

1

1
Condition: P (ηx = δ∗) = 0, easily satis�ed e.g. when P (X) is continuous.

The unreasonable e�ectiveness of thresholding

Theorem (Koyejo et al., 2014; Yan et al., 2016)

Let ηx = P (Y = 1|X = x) and let U be di�erentiable wrt. the
confusion matrix, then ∃ a δ∗ such that:

θ∗(x) = sign (ηx − δ∗)

is a Bayes optimal classi�er almost everywhere.

result does not require concavity of U , or other "nice"
properties

1

1
Condition: P (ηx = δ∗) = 0, easily satis�ed e.g. when P (X) is continuous.

Proof Sketch

Let F = {f | f : X 7→ [0, 1]} and Θ = {f | f : X 7→ {0, 1}}

Consider the relaxed problem:

θ∗F = argmax
θ∈F

U(θ,P)

Show that the optimal �relaxed� classi�er is θ∗F = sign(ηx− δ∗)
Observe that Θ ⊂ F . Thus U(θ∗F ,P) ≥ U(θ∗Θ,P).

As a result, θ∗F ∈ Θ implies that θ∗F ≡ θ∗Θ.

Proof Sketch

Let F = {f | f : X 7→ [0, 1]} and Θ = {f | f : X 7→ {0, 1}}

Consider the relaxed problem:

θ∗F = argmax
θ∈F

U(θ,P)

Show that the optimal �relaxed� classi�er is θ∗F = sign(ηx− δ∗)

Observe that Θ ⊂ F . Thus U(θ∗F ,P) ≥ U(θ∗Θ,P).

As a result, θ∗F ∈ Θ implies that θ∗F ≡ θ∗Θ.

Proof Sketch

Let F = {f | f : X 7→ [0, 1]} and Θ = {f | f : X 7→ {0, 1}}

Consider the relaxed problem:

θ∗F = argmax
θ∈F

U(θ,P)

Show that the optimal �relaxed� classi�er is θ∗F = sign(ηx− δ∗)
Observe that Θ ⊂ F . Thus U(θ∗F ,P) ≥ U(θ∗Θ,P).

As a result, θ∗F ∈ Θ implies that θ∗F ≡ θ∗Θ.

Some recovered and new results

Fβ (Ye et al., 2012), Monotonic metrics (Narasimhan et al., 2014)

Simulated examples

F1 Jaccard

1 2 3 4 5 6 7 8 9 10
x

0.0

0.2

0.4

0.6

0.8

1.0

2TP
2TP+FP+FN

η(x)

δ ∗ =0.34

θ ∗

1 2 3 4 5 6 7 8 9 10
x

0.0

0.2

0.4

0.6

0.8

1.0

TP
TP+FP+FN

η(x)

δ ∗ =0.39

θ ∗

Finite sample space X , so we can exhaustively search for θ∗

Algorithm 1 (Koyejo et al., 2014)

Step 1: Conditional probability estimation

Estimate η̂x via. proper loss (Reid and Williamson, 2010), then

θ̂δ(x) = sign(η̂x − δ)

Step 2: Threshold search

max
δ
U(θ̂δ,Dn)

One dimensional, e�ciently computable using exhaustive search
(Sergeyev, 1998).

θ̂δ̂ is consistent

Algorithm 1 (Koyejo et al., 2014)

Step 1: Conditional probability estimation

Estimate η̂x via. proper loss (Reid and Williamson, 2010), then

θ̂δ(x) = sign(η̂x − δ)

Step 2: Threshold search

max
δ
U(θ̂δ,Dn)

One dimensional, e�ciently computable using exhaustive search
(Sergeyev, 1998).

θ̂δ̂ is consistent

Algorithm 2 (Koyejo et al., 2014)

Step 1: Weighted classi�er estimation)

For classi�cation-calibrated loss (Scott, 2012)

f̂δ = argmin
f∈F

∑
xi,yi∈Dn

`δ(f(xi), yi)

consistently estimates θ̂δ(x) = sign(f̂δ(x))

Step 2: Threshold search

max
δ
U(θ̂δ,Dn)

θ̂δ̂ is consistent

Algorithm 3 (Yan et al., 2016)

Under additional assumptions, U(θδ, P) is di�erentiable and strictly
locally quasi-concave wrt. δ

Online Algorithm

Iteratively update

1 η̂x via. proper loss (Reid and Williamson, 2010)

2 δ̂t using normalized gradient ascent

Algorithm 3 (Yan et al., 2016)

Under additional assumptions, U(θδ, P) is di�erentiable and strictly
locally quasi-concave wrt. δ

Online Algorithm

Iteratively update

1 η̂x via. proper loss (Reid and Williamson, 2010)

2 δ̂t using normalized gradient ascent

Online algorithm sample complexity

Let η estimation error at step t given by rt =
∫
|ηt − η|dµ, with

appropriately chosen step size, R(θ̂δt ,P) ≤ C
∑t
i=1 ri
t

Example: Online logistic regression

Parameter converges at rate O(1√
n

) by averaged stochastic

gradient algorithm (Bach, 2014). Thus, online algorithm achieves
O(1√

n
) regret.

Empirical Evaluation

Datasets

datasets default news20 rcv1 epsilon kdda kddb

features 25 1,355,191 47,236 2,000 20,216,830 29,890,095
test 9,000 4,996 677,399 100,000 510,302 748,401
train 21,000 15,000 20,242 400,000 8,407,752 19,264,097
%pos 22% 67% 52% 50% 85% 86%

η estimation: logistic regression and boosting tree

Baselines: threshold search (Koyejo et al., 2014), SVMperf and
STAMP/SPADE (Narasimhan et al., 2015)

Batch algorithm

Data set/Metric LR+Plug-in LR+Batch XGB+Plug-in XGB+Batch

news20-Q-Mean 0.948 (3.77s) 0.948 (0.001s) 0.874 (3.87s) 0.875 (0.003s)
news20-H-Mean 0.950 (3.70s) 0.950 (0.003s) 0.859 (3.61s) 0.860 (0.003s)
news20-F1 0.949 (3.49s) 0.948 (0.01s) 0.872 (5.07s) 0.874 (0.01s)
default-Q-Mean 0.664 (14.3s) 0.667 (0.19s) 0.688 (13.7s) 0.701 (0.22s)
default-H-Mean 0.665 (12.1s) 0.668 (0.17s) 0.693 (12.4s) 0.708 (0.18s)
default-F1 0.503 (14.2s) 0.497 (0.19s) 0.538 (16.2s) 0.538 (0.15s)

Online Complex Metric Optimization (OCMO)

Metric Algorithm RCV1 Epsilon KDD-A KDD-B

F1 OCMO 0.952 (0.01s) 0.804 (4.87s) 0.934 (2.43s) 0.941 (5.01s)
sTAMP 0.923 (14.44s) 0.585 (133.23s) - -

SVMperf 0.953 (1.72s) 0.872 (20.39s) - -
H-Mean OCMO 0.964 (0.02s) 0.891 (4.85s) 0.764 (2.5s) 0.733 (5.16s)

sPADE 0.580 (15.74s) 0.578 (135.26s) - -

SVMperf 0.953 (1.72s) 0.872 (20.39s) - -
Q-Mean OCMO 0.964 (0.01s) 0.889 (4.87s) 0.551 (2.11s) 0.506 (4.27s)

sPADE 0.688 (15.83s) 0.632 (136.46s) - -

SVMperf 0.950 (1.72s) 0.872 (20.39s) - -

`�' means the corresponding algorithm does not terminate within 100x that of OCMO.

Performance vs run time for various online algorithms

(a) F1 measure on rcv1 (b) H-Mean on rcv1 (c) Q-Mean on rcv1

Optimal Multilabel classi�cation with

Non-decomposable Averaged Metrics

Multilabel Classi�cation

Multiclass: only one class
associated with each
example

Multilabel: multiple classes
associated with each
example

Applications

The Multilabel Classi�cation Problem

Inputs: X ∈ X , Labels: Y ∈ Y = [0, 1]M (with M labels)

Classi�er θ : X 7→ Y

Example: Hamming Loss

U(θ) = EX,Y∼P

[
M∑
m=1

1[Ym=θm(X)]

]
=

M∑
m=1

P(Ym = θm(X))

Optimal Prediction for Hamming Loss

θ∗m(x) = sign

(
P(Ym = 1|x)− 1

2

)
Well known convex surrogates e.g. hinge loss (Bartlett et al., 2006)

Multilabel Confusion

Recall the binary confusion
matrix

Similar idea for multilabel classi�cation, now across both labels m
and examples n.

Ĉm,n =

T̂Pm,n = 1[
θm(x(n))=1,y

(n)
m =1

], F̂Pm,n = 1[
θm(x(n))=1,y

(n)
m =0

]
F̂Nm,n = 1[

θm(x(n))=0,y
(n)
m =1

], T̂Nm,n = 1[
θm(x(n))=0,y

(n)
m =0

]


1We focus on linear-fractional metrics e.g. Accuracy, Fβ , Precision, Recall,
Jaccard

Multilabel Confusion

Recall the binary confusion
matrix

Similar idea for multilabel classi�cation, now across both labels m
and examples n.

Ĉm,n =

T̂Pm,n = 1[
θm(x(n))=1,y

(n)
m =1

], F̂Pm,n = 1[
θm(x(n))=1,y

(n)
m =0

]
F̂Nm,n = 1[

θm(x(n))=0,y
(n)
m =1

], T̂Nm,n = 1[
θm(x(n))=0,y

(n)
m =0

]


1We focus on linear-fractional metrics e.g. Accuracy, Fβ , Precision, Recall,
Jaccard

Label Averaging

Most popular multilabel metrics are averaged metrics
Some notation: Let ηm(x) = P(Ym = 1|x)

Macro-Averaging

Average over examples for each label

Ĉm =
1

N

N∑
n=1

Ĉm,n, Ψmacro :=
1

M

M∑
m=1

Ψ(Ĉm).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗m) ∀m ∈ [M]

Label Averaging

Most popular multilabel metrics are averaged metrics
Some notation: Let ηm(x) = P(Ym = 1|x)

Macro-Averaging

Average over examples for each label

Ĉm =
1

N

N∑
n=1

Ĉm,n,

Ψmacro :=
1

M

M∑
m=1

Ψ(Ĉm).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗m) ∀m ∈ [M]

Label Averaging

Most popular multilabel metrics are averaged metrics
Some notation: Let ηm(x) = P(Ym = 1|x)

Macro-Averaging

Average over examples for each label

Ĉm =
1

N

N∑
n=1

Ĉm,n, Ψmacro :=
1

M

M∑
m=1

Ψ(Ĉm).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗m) ∀m ∈ [M]

Label Averaging

Most popular multilabel metrics are averaged metrics
Some notation: Let ηm(x) = P(Ym = 1|x)

Macro-Averaging

Average over examples for each label

Ĉm =
1

N

N∑
n=1

Ĉm,n, Ψmacro :=
1

M

M∑
m=1

Ψ(Ĉm).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗m) ∀m ∈ [M]

Instance Average

Average over labels for each example

Ĉn =
1

M

M∑
m=1

Ĉm,n,

Ψinstance :=
1

N

N∑
n=1

Ψ(Ĉn).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Note: Marginals may still be deterministically coupled across
labels e.g. low rank, shared DNN representation

Shared threshold across labels

Instance Average

Average over labels for each example

Ĉn =
1

M

M∑
m=1

Ĉm,n, Ψinstance :=
1

N

N∑
n=1

Ψ(Ĉn).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Note: Marginals may still be deterministically coupled across
labels e.g. low rank, shared DNN representation

Shared threshold across labels

Instance Average

Average over labels for each example

Ĉn =
1

M

M∑
m=1

Ĉm,n, Ψinstance :=
1

N

N∑
n=1

Ψ(Ĉn).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Note: Marginals may still be deterministically coupled across
labels e.g. low rank, shared DNN representation

Shared threshold across labels

Micro Average

Average over both examples and labels

Ĉ =
1

NM

N∑
n=1

M∑
m=1

Ĉm,n, Ψinstance := Ψ(Ĉ).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Bayes optimal is identical to instance averaging

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Shared threshold across labels

Micro Average

Average over both examples and labels

Ĉ =
1

NM

N∑
n=1

M∑
m=1

Ĉm,n,

Ψinstance := Ψ(Ĉ).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Bayes optimal is identical to instance averaging

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Shared threshold across labels

Micro Average

Average over both examples and labels

Ĉ =
1

NM

N∑
n=1

M∑
m=1

Ĉm,n, Ψinstance := Ψ(Ĉ).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Bayes optimal is identical to instance averaging

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Shared threshold across labels

Micro Average

Average over both examples and labels

Ĉ =
1

NM

N∑
n=1

M∑
m=1

Ĉm,n, Ψinstance := Ψ(Ĉ).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Bayes optimal is identical to instance averaging

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Shared threshold across labels

Micro Average

Average over both examples and labels

Ĉ =
1

NM

N∑
n=1

M∑
m=1

Ĉm,n, Ψinstance := Ψ(Ĉ).

Bayes optimal classi�er:

θ∗m(x) = sign(ηm(x)− δ∗) ∀m ∈ [M]

Bayes optimal is identical to instance averaging

Only require marginals ηm(x) i.e. label correlations have weak
a�ect on optimal classi�cation

Shared threshold across labels

Simulated Micro-averaged F1

1 2 3 4 5 6
x

0.0

0.2

0.4

0.6

0.8

1.0
δ ∗ =0.40

η0 (x)

θ ∗0

1 2 3 4 5 6
x

0.0

0.2

0.4

0.6

0.8

1.0

2TP
2TP+FP+FN

δ ∗ =0.40

η1 (x)

θ ∗1

Empirical Evaluation

Dataset BR Plugin Macro-Thres BR Plugin Macro-Thres
F1 Jaccard

Scene 0.6559 0.6847 0.6631 0.4878 0.5151 0.5010

Birds 0.4040 0.4088 0.2871 0.2495 0.2648 0.1942

Emotions 0.5815 0.6554 0.6419 0.3982 0.4908 0.4790

Cal500 0.3647 0.4891 0.4160 0.2229 0.3225 0.2608

Table: Comparison of plugin-estimator methods on multilabel F1 and
Jaccard metrics. Reported values correspond to micro-averaged metric
(F1 and Jaccard) computed on test data (with standard deviation, over
10 random validation sets for tuning thresholds). Plugin is consistent for
micro-averaged metrics, and performs the best consistently across
datasets.

Dataset BR Plugin Macro-Thres BR Plugin Macro-Thres
F1 Jaccard

Scene 0.5695 0.6422 0.6303 0.5466 0.5976 0.5902

Birds 0.1209 0.1390 0.1390 0.1058 0.1239 0.1195

Emotions 0.4787 0.6241 0.6156 0.4078 0.5340 0.5173

Cal500 0.3632 0.4855 0.4135 0.2268 0.3252 0.2623

Table: Comparison of plugin-estimator methods on multilabel F1 and
Jaccard metrics. Reported values correspond to instance-averaged metric
(F1 and Jaccard) computed on test data (with standard deviation, over
10 random validation sets for tuning thresholds). Plugin is consistent for
instance-averaged metrics, and performs the best consistently across
datasets.

Dataset BR Plugin Macro-Thres BR Plugin Macro-Thres
F1 Jaccard

Scene 0.6601 0.6941 0.6737 0.5046 0.5373 0.5260

Birds 0.3366 0.3448 0.2971 0.2178 0.2341 0.2051

Emotions 0.5440 0.6450 0.6440 0.3982 0.4912 0.4900

Cal500 0.1293 0.2687 0.3226 0.0880 0.1834 0.2146

Table: Comparison of plugin-estimator methods on multilabel F1 and
Jaccard metrics. Reported values correspond to the macro-averaged

metric computed on test data (with standard deviation, over 10 random
validation sets for tuning thresholds). Macro-Thres is consistent for
macro-averaged metrics, and is competitive in three out of four datasets.
Though not consistent for macro-averaged metrics, Plugin achieves the
best performance in three out of four datasets.

Correlated Binary Decisions

Same procedure applies to more general correlated binary
decisions using averaged metrics

Mul$%scale*Models* Perturb*single*genes*
OR*single*phenotypes**

Measure*outcomes*
Demonstrate*causality*

Figure 4: Multi-scale models will be used to identify hub genes of gene modules that are
associated with a particular neural or behavioral trait of interest. We will perturb the expression
of single genes (or phenes)and then measure the outcomes (i.e. changes in the neural network
structure, gene module stucture, etc) to determine causal relationships.

Example application:

point estimates of brain
networks from posterior
distributions

Conclusion

Conclusion and open questions

Optimal classi�ers for a large family of metrics have a simple
threshold form sign(P (Y = 1|X)− δ)
Proposed scalable algorithms for consistent estimation

Open Questions:

Can we elucidate utility functions from feedback?

Can we characterize the entire family of utility metrics with
thresholded optimal decision functions?

What of more general structured prediction?

Conclusion and open questions

Optimal classi�ers for a large family of metrics have a simple
threshold form sign(P (Y = 1|X)− δ)
Proposed scalable algorithms for consistent estimation

Open Questions:

Can we elucidate utility functions from feedback?

Can we characterize the entire family of utility metrics with
thresholded optimal decision functions?

What of more general structured prediction?

Conclusion and open questions

Optimal classi�ers for a large family of metrics have a simple
threshold form sign(P (Y = 1|X)− δ)
Proposed scalable algorithms for consistent estimation

Open Questions:

Can we elucidate utility functions from feedback?

Can we characterize the entire family of utility metrics with
thresholded optimal decision functions?

What of more general structured prediction?

Conclusion and open questions

Optimal classi�ers for a large family of metrics have a simple
threshold form sign(P (Y = 1|X)− δ)
Proposed scalable algorithms for consistent estimation

Open Questions:

Can we elucidate utility functions from feedback?

Can we characterize the entire family of utility metrics with
thresholded optimal decision functions?

What of more general structured prediction?

Conclusion and open questions

Optimal classi�ers for a large family of metrics have a simple
threshold form sign(P (Y = 1|X)− δ)
Proposed scalable algorithms for consistent estimation

Open Questions:

Can we elucidate utility functions from feedback?

Can we characterize the entire family of utility metrics with
thresholded optimal decision functions?

What of more general structured prediction?

Questions?

sanmi@illinois.edu

References

References I
Francis R Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic

regression. Journal of Machine Learning Research, 15(1):595�627, 2014.

Peter L Bartlett, Michael I Jordan, and Jon D McAuli�e. Large margin classi�ers: Convex loss, low
noise, and convergence rates. In NIPS, pages 1173�1180, 2003.

Peter L Bartlett, Michael I Jordan, and Jon D McAuli�e. Convexity, classi�cation, and risk bounds.
Journal of the American Statistical Association, 101(473):138�156, 2006.

Elad Hazan, K�r Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. In Advances in Neural Information Processing Systems, pages 1585�1593, 2015.

Thorsten Joachims. A support vector method for multivariate performance measures. In Proceedings of
the 22nd international conference on Machine learning, pages 377�384. ACM, 2005.

Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S Dhillon. Consistent
binary classi�cation with generalized performance metrics. In Advances in Neural Information
Processing Systems, pages 2744�2752, 2014.

Harikrishna Narasimhan, Rohit Vaish, and Shivani Agarwal. On the statistical consistency of plug-in
classi�ers for non-decomposable performance measures. In Advances in Neural Information
Processing Systems, pages 1493�1501, 2014.

Harikrishna Narasimhan, Purushottam Kar, and Prateek Jain. Optimizing non-decomposable
performance measures: A tale of two classes. In 32nd International Conference on Machine Learning
(ICML), 2015.

Mark D Reid and Robert C Williamson. Composite binary losses. The Journal of Machine Learning
Research, 9999:2387�2422, 2010.

Clayton Scott. Calibrated asymmetric surrogate losses. Electronic J. of Stat., 6:958�992, 2012.

Yaroslav D Sergeyev. Global one-dimensional optimization using smooth auxiliary functions.
Mathematical Programming, 81(1):127�146, 1998.

Bowei Yan, Kai Zhong, Oluwasanmi Koyejo, and Pradeep Ravikumar. Online classi�cation with complex
metrics. In arXiv:1610.07116v1, 2016.

Nan Ye, Kian Ming A Chai, Wee Sun Lee, and Hai Leong Chieu. Optimizing f-measures: a tale of two
approaches. In Proceedings of the International Conference on Machine Learning, 2012.

Backup Slides

Two Step Normalized Gradient Descent for optimal
threshold search

1: Input: Training sample {Xi, Yi}ni=1, utility measure U ,
conditional probability estimator η̂, stepsize α.

2: Randomly split the training sample into two subsets

{X(1)
i , Y

(1)
i }

n1
i=1 and {X(2)

i , Y
(2)
i }

n2
i=1;

3: Estimate η̂ on {X(1)
i , Y

(1)
i }

n1
i=1.

4: Initialize δ = 0.5;
5: while not converged do

6: Evaluate TP,TN on {X(2)
i , Y

(2)
i }

n2
i=1 with

f(x) = sign(η̂ − δ).
7: Calculate ∇U ;
8: δ ← δ − α ∇U

‖∇U‖ .

9: end while

10: Output: f̂(x) = sign(η̂ − δ).

Online Complex Metric Optimization (OCMO)
Require: online CPE with update g, metric U , stepsize α;
1: Initialize η0, δ0 = 0.5;
2: while data stream has points do
3: Receive data point (xt, yt)
4: ηt = g(ηt−1);

5: δ
(0)
t = δt, TP

(0)
t = TPt−1,TN

(0)
t = TNt−1;

6: for i = 1, · · · , Tt do
7: if ηt(xt) > δ

(i−1)
t then

8: TP
(i)
t ←

TPt−1·(t−1)+(1+yt)/2
t , TN

(i)
t ← TNt−1 · t−1

t ;

9: else TP
(i)
t ← TPt−1 · t−1

t , TN
(i)
t ←

TNt−1·t+(1−yt)/2
t+1 ;

10: end if

11: δ
(i)
t = δ

(i−1)
t −α ∇G(TPt,TNt)

‖∇G(TPt,TNt)‖ , TPt = TP
(i)
t ,TNt = TN

(i)
t ;

12: end for

13: δt+1 = δ
(Tt)
t ;

14: t = t+ 1;
15: end while

16: Output (ηt, δt).

Scaling up Classi�cation with Complex
Metrics

Additional properties of U

Informal theorem (Yan et al., 2016)

Suppose U is fractional-linear or monotonic, under weak conditionsa

on P :

U(θδ, P) is di�erentiable wrt δ

U(θδ, P) is Lipschitz wrt δ

U(θδ, P) is strictly locally quasi-concave wrt δ

aηx is di�erentiable wrt x, and its characteristic function is absolutely
integrable

Algorithms

Normalized Gradient Descent (Hazan et al., 2015)

Fix ε > 0, let f be strictly locally quasi-concave, and x∗ ∈ argmin f(x).

NGD algorithm with number of iterations T ≥ κ2‖x1 − x∗‖2/ε2 and step

size η = ε/κ achieves f(x̄T)− f(x∗) ≤ ε.

Batch Algorithm

1 Estimate η̂x via. proper loss (Reid and Williamson, 2010)

2 Solve maxδ U(θ̂δ,Dn) using normalized gradient ascent

Online Algorithm

Interleave η̂t update and δ̂t update

Sample Complexity

Batch Algorithm

With appropriately chosen step size, R(θ̂δ̂,P) ≤ C
∫
|η̂ − η|dµ

Comparison to threshold search

complexity of NGD is O(nt) = O(n/ε2), where t is the
number of iterations and ε is the precision of the solution

when log n ≥ 1/ε2, the batch algorithm has favorable
computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by rt =
∫
|ηt − η|dµ, with

appropriately chosen step size, R(θ̂δt ,P) ≤ C
∑t
i=1 ri
t

Sample Complexity

Batch Algorithm

With appropriately chosen step size, R(θ̂δ̂,P) ≤ C
∫
|η̂ − η|dµ

Comparison to threshold search

complexity of NGD is O(nt) = O(n/ε2), where t is the
number of iterations and ε is the precision of the solution

when log n ≥ 1/ε2, the batch algorithm has favorable
computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by rt =
∫
|ηt − η|dµ, with

appropriately chosen step size, R(θ̂δt ,P) ≤ C
∑t
i=1 ri
t

Sample Complexity

Batch Algorithm

With appropriately chosen step size, R(θ̂δ̂,P) ≤ C
∫
|η̂ − η|dµ

Comparison to threshold search

complexity of NGD is O(nt) = O(n/ε2), where t is the
number of iterations and ε is the precision of the solution

when log n ≥ 1/ε2, the batch algorithm has favorable
computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by rt =
∫
|ηt − η|dµ, with

appropriately chosen step size, R(θ̂δt ,P) ≤ C
∑t
i=1 ri
t

Sample Complexity

Batch Algorithm

With appropriately chosen step size, R(θ̂δ̂,P) ≤ C
∫
|η̂ − η|dµ

Comparison to threshold search

complexity of NGD is O(nt) = O(n/ε2), where t is the
number of iterations and ε is the precision of the solution

when log n ≥ 1/ε2, the batch algorithm has favorable
computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by rt =
∫
|ηt − η|dµ, with

appropriately chosen step size, R(θ̂δt ,P) ≤ C
∑t
i=1 ri
t

	Introduction
	Background
	Classification with Complex Metrics
	Classification with Multilabel Metrics
	Introduction and Background
	Conclusion
	Backup Slides

