# Metrics Matter, Examples from Binary and Multilabel Classification

Sanmi Koyejo

University of Illinois at Urbana-Champaign

#### Joint work with







B. Yan @UT Austin

K. Zhong @UT Austin P. Ravikumar @CMU



N. Natarajan @MSR India



I. Dhillon @UT Austin

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

- Direct optimization
- Mixed combinatorial optimization
- Convex lower bound
- Logloss + thresholding

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

- Direct optimization
  - F-measure is not an average. Naïve SGD is not valid
  - The sample F-measure is non-differentiable
- Mixed combinatorial optimization
- Convex lower bound
- Logloss + thresholding

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

- Direct optimization
- Mixed combinatorial optimization
  - e.g. cutting plane method (Joachims, 2005)
  - may require exponential complexity
  - most statistical properties unknown
- Convex lower bound
- Logloss + thresholding

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

- Direct optimization
- Mixed combinatorial optimization
- Convex lower bound
  - difficult to construct
  - most statistical properties unknown
- Logloss + thresholding

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

- Direct optimization
- Mixed combinatorial optimization
- Convex lower bound
- Logloss + thresholding
  - simple, most common approach in practice
  - has good statistical properties!

**Goal**: Train a DNN to optimize F-measure.

$$F_1 = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

- Direct optimization
- Mixed combinatorial optimization
- Convex lower bound
- Logloss + thresholding

Why does thresholding work?

# The confusion matrix summarizes binary classifier mistakes

- $Y \in \{0,1\}$  denotes labels,  $X \in \mathcal{X}$  denotes instances, let  $X,Y \sim P$
- $\bullet$  The classifier  $\theta: \mathcal{X} \mapsto \{0,1\}$

|              | Y = 1                            | Y = 0                     |
|--------------|----------------------------------|---------------------------|
| heta=1       | TP $P(Y = 1,  \theta = 1)$       | FP $P(Y = 0, \theta = 1)$ |
| $\theta = 0$ | FN P( $Y$ = 1, $	heta$ $=$ $0$ ) | TN $P(Y=0, \theta=0)$     |

Metrics tradeoff which kinds of mistakes are (most) acceptable

# Metrics tradeoff which kinds of mistakes are (most) acceptable

#### Case Study



A medical test determines that a patient has a 30% chance of having a fatal disease. Should the doctor treat the patient?

- choosing not to treat a sick patient (test is false negative) could lead to serious issues.
- choosing to treat a healthy patient (test is false positive) increases risk of side effects.

We express tradeoffs via a metric  $\Phi:[0,1]^4\mapsto\mathbb{R}$ 

We express tradeoffs via a metric  $\mathbf{\Phi}:[0,1]^4\mapsto\mathbb{R}$ 

#### Examples

- Accuracy (fraction of mistakes) = TP + TN
- $\bullet \ \mathsf{Error} \ \mathsf{Rate} = 1\text{-}\mathsf{Accuracy} = \mathsf{FP} + \mathsf{FN}$

We express tradeoffs via a metric  $\mathbf{\Phi}:[0,1]^4\mapsto\mathbb{R}$ 

#### Examples

- Accuracy (fraction of mistakes) = TP + TN
- Error Rate = 1-Accuracy = FP + FN
- $\bullet$  For medical diagnosis example, consider the weighted error =  $w_1 {\rm FP} + w_2 {\rm FN},$  where  $w_2 \gg w_1$

We express tradeoffs via a metric  $\mathbf{\Phi}:[0,1]^4\mapsto\mathbb{R}$ 

#### Examples

- Accuracy (fraction of mistakes) = TP + TN
- Error Rate = 1-Accuracy = FP + FN
- $\bullet$  For medical diagnosis example, consider the weighted error =  $w_1 {\rm FP} + w_2 {\rm FN},$  where  $w_2 \gg w_1$

#### and many more ...

$$\begin{split} \text{Recall} &= \frac{\text{TP}}{\text{TP} + \text{FN}}, \qquad F_{\beta} = \frac{(1+\beta^2)\text{TP}}{(1+\beta^2)\text{TP} + \beta^2\text{FN} + \text{FP}}, \\ \text{Precision} &= \frac{\text{TP}}{\text{TP} + \text{FP}}, \qquad \qquad \text{Jaccard} = \frac{\text{TP}}{\text{TP} + \text{FN} + \text{FP}}. \end{split}$$

When is a *perfect* classifier learnable?

#### When is a *perfect* classifier learnable?

- the *true* mapping between input and labels is deterministic i.e. there is no noise
- function class is sufficiently flexible (realizability) and optimal is computable
- we have sufficient data

#### When is a *perfect* classifier learnable?

- the *true* mapping between input and labels is deterministic i.e. there is no noise
- function class is sufficiently flexible (realizability) and optimal is computable
- we have sufficient data

#### In practice:

- real-world uncertainty e.g. hidden variables, measurement error
- true function is unknown, optimization may be intractable
- data are limited

#### When is a *perfect* classifier learnable?

- the *true* mapping between input and labels is deterministic i.e. there is no noise
- function class is sufficiently flexible (realizability) and optimal is computable
- we have sufficient data

#### In practice:

- real-world uncertainty e.g. hidden variables, measurement error
- true function is unknown, optimization may be intractable
- data are limited

Thus, in most realistic scenarios, all classifiers will make mistakes!

# Utility & Regret

• population performance is measured via utility

$$\mathcal{U}(\theta,P) = \Phi(\mathsf{TP},\mathsf{FP},\mathsf{FN},\mathsf{TN})$$

ullet we seek a classifier that maximizes this utility within some function class  ${\cal F}$ 

# Utility & Regret

population performance is measured via utility

$$\mathcal{U}(\theta,P) = \Phi(\mathsf{TP},\mathsf{FP},\mathsf{FN},\mathsf{TN})$$

ullet we seek a classifier that maximizes this utility within some function class  ${\cal F}$ 

The Bayes optimal classifier, when it exists, is given by:

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \mathcal{U}(\theta, P), \text{ where } \Theta = \{f : \mathcal{X} \mapsto \{0, 1\}\}$$

# Utility & Regret

population performance is measured via utility

$$\mathcal{U}(\theta,P) = \Phi(\mathsf{TP},\mathsf{FP},\mathsf{FN},\mathsf{TN})$$

ullet we seek a classifier that  $\emph{maximizes}$  this utility within some function class  $\mathcal F$ 

The Bayes optimal classifier, when it exists, is given by:

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \mathcal{U}(\theta, P), \ \text{ where } \Theta = \{f: \mathcal{X} \mapsto \{0, 1\}\}$$

The regret of the classifier  $\theta$  is given by:

$$\mathcal{R}(\theta, P) = \mathcal{U}(\theta^*, P) - \mathcal{U}(\theta, P)$$



# Towards analysis of the classification procedure

- In practice P(X,Y) is unknown, instead we observe  $\mathcal{D}_n = \{(X_i,Y_i) \sim P\}_{i=1}^n$
- ullet The classification *procedure* estimates a classifier  $heta_n | \mathcal{D}_n$

# Towards analysis of the classification procedure

- In practice P(X,Y) is unknown, instead we observe  $\mathcal{D}_n = \{(X_i,Y_i) \sim P\}_{i=1}^n$
- ullet The classification *procedure* estimates a classifier  $heta_n ig| \mathcal{D}_n$

#### Example

Empirical risk minimization via SVM:

$$\theta_n = \operatorname{sign} \left( \underset{f \in \mathcal{H}_k}{\operatorname{argmin}} \sum_{\{x_i, y_i\} \in \mathcal{D}_n} \max(0, 1 - y_i f(x_i)) \right)$$

#### Consistency

Consider the sequence of classifiers  $\{\theta_n(x), n \to \infty\}$ 

A classification procedure is consistent when  $\mathcal{R}(\theta_n,P) \xrightarrow{n \to \infty} 0$  i.e. the procedure is eventually Bayes optimal

# Consistency

Consider the sequence of classifiers  $\{\theta_n(x),\ n\to\infty\}$ 

A classification procedure is consistent when  $\mathcal{R}(\theta_n,P) \xrightarrow{n \to \infty} 0$  i.e. the procedure is eventually Bayes optimal

Consistency is a desirable property:

 implies stability of the classification procedure, related to generalization performance

# Optimal Binary classification with Decomposable Metrics

#### Consider the empirical accuracy:

$$\mathsf{ACC}(\theta, \mathcal{D}_n) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}_n} \mathbf{1}_{[y_i = \theta(x_i)]}$$

Consider the empirical accuracy:

$$\mathsf{ACC}(\theta, \mathcal{D}_n) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}_n} \mathbf{1}_{[y_i = \theta(x_i)]}$$

Observe that the classification problem

$$\min_{\theta \in \mathcal{F}} \mathsf{ACC}(\theta, \mathcal{D}_n)$$

is a combinatorial optimization problem

ullet optimal classification is computationally hard for non-trivial  ${\mathcal F}$  and  ${\mathcal D}_n$ 

# Bayes Optimal Classifier

#### Population Accuracy

$$\mathrm{E}_{X,Y\sim P}\left[\mathbf{1}_{[Y=\theta(X)]}\right]$$

 $\bullet$  Easy to show that  $\theta^*(x) = \mathrm{sign} \left( P(Y=1|x) - \frac{1}{2} \right)$ 

# Bayes Optimal Classifier

#### Population Accuracy

$$\mathbf{E}_{X,Y\sim P}\left[\mathbf{1}_{[Y=\theta(X)]}\right]$$

 $\bullet$  Easy to show that  $\theta^*(x) = \mathrm{sign} \left( P(Y=1|x) - \frac{1}{2} \right)$ 

#### Weighted Accuracy

$$E_{X,Y \sim P} [(1 - \rho) \mathbf{1}_{[Y = \theta(X) = 1]} + \rho \mathbf{1}_{[Y = \theta(X) = 0]}]$$

 $\bullet$  Scott (2012) showed that  $\theta^*(\mathbf{x}) = \mathrm{sign} \; (P(Y=1|\mathbf{x}) - \rho)$ 



# Where do surrogates come from?

Observe that there is no need to estimate P, instead optimize any surrogate loss function  $L(\theta, \mathcal{D}_n)$  where:

$$\theta_n = \operatorname{sign}\left(\underset{f}{\operatorname{argmin}} L(f, \mathcal{D}_n)\right) \xrightarrow{n \to \infty} \theta^*(x)$$

# Where do surrogates come from?

Observe that there is no need to estimate P, instead optimize any surrogate loss function  $L(\theta, \mathcal{D}_n)$  where:

$$\theta_n = \operatorname{sign}\left(\underset{f}{\operatorname{argmin}} L(f, \mathcal{D}_n)\right) \xrightarrow{n \to \infty} \theta^*(x)$$

 These are known as classification calibrated surrogate losses (Bartlett et al., 2003; Scott, 2012)

# Where do surrogates come from?

Observe that there is no need to estimate P, instead optimize any surrogate loss function  $L(\theta, \mathcal{D}_n)$  where:

$$\theta_n = \operatorname{sign}\left(\underset{f}{\operatorname{argmin}} L(f, \mathcal{D}_n)\right) \xrightarrow{n \to \infty} \theta^*(x)$$

- These are known as classification calibrated surrogate losses (Bartlett et al., 2003; Scott, 2012)
- ullet research can focus on how to choose  $L, \mathcal{F}$  which improve efficiency, sample complexity, robustness . . .
- surrogates are often chosen to be convex
   e.g. hinge loss, logistic loss



## Non-decomposability

 A common theme so far is decomposability i.e. linearity wrt. confusion matrix

$$\mathrm{E}\left[\Phi(\widehat{\mathbf{C}})\right] = \left\langle \mathbf{A}, \mathrm{E}\left[\,\widehat{\mathbf{C}}\,\right]\right\rangle = \Phi(\mathrm{E}\left[\,\widehat{\mathbf{C}}\,\right])$$

## Non-decomposability

 A common theme so far is decomposability i.e. linearity wrt. confusion matrix

$$\mathrm{E}\left[\Phi(\widehat{\mathbf{C}})\right] = \left\langle \mathbf{A}, \mathrm{E}\left[\widehat{\mathbf{C}}\right]\right\rangle = \Phi(\mathrm{E}\left[\widehat{\mathbf{C}}\right])$$

- However,  $F_{\beta}$ , Jaccard, AUC and other common utility functions are non-decomposable i.e. non-linear wrt. C
- Thus imples that the averaging trick is no longer valid

$$\mathrm{E}\left[\Phi(\widehat{\mathbf{C}})\right] \neq \Phi(\mathrm{E}\left[\widehat{\mathbf{C}}\right])$$

## Non-decomposability

 A common theme so far is decomposability i.e. linearity wrt. confusion matrix

$$\mathrm{E}\left[\,\Phi(\widehat{\mathbf{C}})\,\right] = \left\langle \mathbf{A}, \mathrm{E}\left[\,\widehat{\mathbf{C}}\,\right]\right\rangle = \Phi(\mathrm{E}\left[\,\widehat{\mathbf{C}}\,\right])$$

- However,  $F_{\beta}$ , Jaccard, AUC and other common utility functions are non-decomposable i.e. non-linear wrt. C
- Thus imples that the averaging trick is no longer valid

$$\mathrm{E}\left[\Phi(\widehat{\mathbf{C}})\right] \neq \Phi(\mathrm{E}\left[\widehat{\mathbf{C}}\right])$$

Primary source of difficulty for analysis, optimization, . . .

# Optimal Binary classification with Non-decomposable Metrics

# The unreasonable effectiveness of thresholding

## Theorem (Koyejo et al., 2014; Yan et al., 2016)

Let  $\eta_x = P(Y=1|X=x)$  and let  $\mathcal U$  be differentiable wrt. the confusion matrix, then  $\exists$  a  $\delta^*$  such that:

$$\theta^*(x) = \mathrm{sign} \left( \eta_x - \delta^* \right)$$

is a Bayes optimal classifier almost everywhere.

<sup>&</sup>lt;sup>1</sup>Condition:  $P(\eta_x = \delta^*) = 0$ , easily satisfied e.g. when P(X) is continuous.

# The unreasonable effectiveness of thresholding

## Theorem (Koyejo et al., 2014; Yan et al., 2016)

Let  $\eta_x = P(Y=1|X=x)$  and let  $\mathcal{U}$  be differentiable wrt. the confusion matrix, then  $\exists$  a  $\delta^*$  such that:

$$\theta^*(x) = \mathrm{sign} \, (\eta_x - \delta^*)$$

is a Bayes optimal classifier almost everywhere.

ullet result does not require concavity of  $\mathcal{U}$ , or other "nice" properties

<sup>&</sup>lt;sup>1</sup>Condition:  $P(\eta_x = \delta^*) = 0$ , easily satisfied e.g. when P(X) is continuous.

#### Proof Sketch

Let 
$$\mathcal{F}=\{f\,|\,f:\mathcal{X}\mapsto[0,1]\}$$
 and  $\Theta=\{f\,|\,f:\mathcal{X}\mapsto\{0,1\}\}$ 

• Consider the relaxed problem:

$$\theta_{\mathcal{F}}^* = \underset{\theta \in \mathcal{F}}{\operatorname{argmax}} \ \mathcal{U}(\theta, \mathcal{P})$$

#### Proof Sketch

Let 
$$\mathcal{F}=\{f\,|\,f:\mathcal{X}\mapsto[0,1]\}$$
 and  $\Theta=\{f\,|\,f:\mathcal{X}\mapsto\{0,1\}\}$ 

Consider the relaxed problem:

$$\theta_{\mathcal{F}}^* = \underset{\theta \in \mathcal{F}}{\operatorname{argmax}} \ \mathcal{U}(\theta, \mathcal{P})$$

ullet Show that the optimal "relaxed" classifier is  $heta_{\mathcal{F}}^* = \operatorname{sign}(\eta_x - \delta^*)$ 



#### Proof Sketch

Let 
$$\mathcal{F} = \{f \mid f : \mathcal{X} \mapsto [0,1]\}$$
 and  $\Theta = \{f \mid f : \mathcal{X} \mapsto \{0,1\}\}$ 

Consider the relaxed problem:

$$\theta_{\mathcal{F}}^* = \underset{\theta \in \mathcal{F}}{\operatorname{argmax}} \ \mathcal{U}(\theta, \mathcal{P})$$

- ullet Show that the optimal "relaxed" classifier is  $heta_{\mathcal{F}}^* = \mathsf{sign}(\eta_x \delta^*)$
- Observe that  $\Theta \subset \mathcal{F}$ . Thus  $\mathcal{U}(\theta_{\mathcal{F}}^*, \mathcal{P}) \geq \mathcal{U}(\theta_{\Theta}^*, \mathcal{P})$ .
- As a result,  $\theta_{\mathcal{F}}^* \in \Theta$  implies that  $\theta_{\mathcal{F}}^* \equiv \theta_{\Theta}^*$ .

#### Some recovered and new results

| METRIC                  | FORM                                               | OPTIMAL THRESHOLD                                    |  |
|-------------------------|----------------------------------------------------|------------------------------------------------------|--|
| $F_eta$                 | $\frac{(1+\beta^2)TP}{(1+\beta^2)TP+\beta^2FN+FP}$ | $\delta^* = \frac{\mathcal{L}^*}{1 + \beta^2}$       |  |
| Cost-sensitive learning | $c_0 + c_1 TP + c_2 \gamma(	heta)$                 | $\delta^* = -\frac{c_2}{c_1}$                        |  |
| Precision               | $\frac{TP}{TP+FP}$                                 | $\delta^*=\mathcal{L}^*$                             |  |
| Recall                  | $\frac{TP}{TP+FN}$                                 | $\delta^* = 0$                                       |  |
| Weighted Accuracy       | $\frac{2(TP+TN)}{2(TP+TN)+FP+FN}$                  | $\delta^* = rac{1}{2}$                              |  |
| Jaccard Coefficient     | $\frac{TP}{TP+FP+FN}$                              | $\delta^* = \frac{\mathcal{L}^*}{1 + \mathcal{L}^*}$ |  |

 $F_{eta}$  (Ye et al., 2012), Monotonic metrics (Narasimhan et al., 2014)

# Simulated examples



ullet Finite sample space  $\mathcal{X}$ , so we can exhaustively search for  $heta^*$ 

# Algorithm 1 (Koyejo et al., 2014)

#### Step 1: Conditional probability estimation

Estimate  $\hat{\eta}_x$  via. proper loss (Reid and Williamson, 2010), then

$$\hat{\theta}_{\delta}(x) = \operatorname{sign}(\hat{\eta}_x - \delta)$$

# Algorithm 1 (Koyejo et al., 2014)

#### Step 1: Conditional probability estimation

Estimate  $\hat{\eta}_x$  via. proper loss (Reid and Williamson, 2010), then

$$\hat{\theta}_{\delta}(x) = \operatorname{sign}(\hat{\eta}_x - \delta)$$

#### Step 2: Threshold search

$$\max_{\delta} \ \mathcal{U}(\hat{\theta}_{\delta}, \mathcal{D}_n)$$

One dimensional, efficiently computable using exhaustive search (Sergeyev, 1998).

 $\hat{ heta}_{\hat{s}}$  is consistent

# Algorithm 2 (Koyejo et al., 2014)

#### Step 1: Weighted classifier estimation)

For classification-calibrated loss (Scott, 2012)

$$\hat{f}_{\delta} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{x_i, y_i \in \mathcal{D}_n} \ell_{\delta}(f(x_i), y_i)$$

consistently estimates  $\hat{\theta}_{\delta}(x) = \mathrm{sign}(\hat{f}_{\delta}(x))$ 

#### Step 2: Threshold search

$$\max_{\delta} \ \mathcal{U}(\hat{\theta}_{\delta}, \mathcal{D}_n)$$

 $\hat{ heta}_{\hat{\delta}}$  is consistent

# Algorithm 3 (Yan et al., 2016)

Under additional assumptions,  $\mathcal{U}(\theta_{\delta}, P)$  is differentiable and strictly locally quasi-concave wrt.  $\delta$ 

# Algorithm 3 (Yan et al., 2016)

Under additional assumptions,  $\mathcal{U}(\theta_{\delta},P)$  is differentiable and strictly locally quasi-concave wrt.  $\delta$ 

#### Online Algorithm

Iteratively update

- $\bullet$   $\hat{\eta}_x$  via. proper loss (Reid and Williamson, 2010)
- ②  $\hat{\delta_t}$  using normalized gradient ascent

# Online algorithm sample complexity

Let  $\eta$  estimation error at step t given by  $r_t = \int |\eta_t - \eta| d\mu$ , with appropriately chosen step size,  $\mathcal{R}(\hat{\theta}_{\delta_t}, \mathcal{P}) \leq \frac{C\sum_{i=1}^t r_i}{t}$ 

#### Example: Online logistic regression

Parameter converges at rate  $O(\frac{1}{\sqrt{n}})$  by averaged stochastic gradient algorithm (Bach, 2014). Thus, online algorithm achieves  $O(\frac{1}{\sqrt{n}})$  regret.

# Empirical Evaluation

#### Datasets

| datasets   | default | news20    | rcv1    | epsilon | kdda       | kddb       |
|------------|---------|-----------|---------|---------|------------|------------|
| # features | 25      | 1,355,191 | 47,236  | 2,000   | 20,216,830 | 29,890,095 |
| # test     | 9,000   | 4,996     | 677,399 | 100,000 | 510,302    | 748,401    |
| # train    | 21,000  | 15,000    | 20,242  | 400,000 | 8,407,752  | 19,264,097 |
| %pos       | 22%     | 67%       | 52%     | 50%     | 85%        | 86%        |

- ullet  $\eta$  estimation: logistic regression and boosting tree
- Baselines: threshold search (Koyejo et al., 2014), SVM<sup>perf</sup> and STAMP/SPADE (Narasimhan et al., 2015)

# Batch algorithm

| Data set/Metric | LR+Plug-in    | LR+Batch       | XGB+Plug-in   | XGB+Batch      |
|-----------------|---------------|----------------|---------------|----------------|
| news20-Q-Mean   | 0.948 (3.77s) | 0.948 (0.001s) | 0.874 (3.87s) | 0.875 (0.003s) |
| news20-H-Mean   | 0.950 (3.70s) | 0.950 (0.003s) | 0.859 (3.61s) | 0.860 (0.003s) |
| news20-F1       | 0.949 (3.49s) | 0.948 (0.01s)  | 0.872 (5.07s) | 0.874 (0.01s)  |
| default-Q-Mean  | 0.664 (14.3s) | 0.667 (0.19s)  | 0.688 (13.7s) | 0.701 (0.22s)  |
| default-H-Mean  | 0.665 (12.1s) | 0.668 (0.17s)  | 0.693 (12.4s) | 0.708 (0.18s)  |
| default-F1      | 0.503 (14.2s) | 0.497 (0.19s)  | 0.538 (16.2s) | 0.538 (0.15s)  |

# Online Complex Metric Optimization (OCMO)

| Metric | Algorithm            | RCV1           | Epsilon         | KDD-A         | KDD-B         |
|--------|----------------------|----------------|-----------------|---------------|---------------|
| F1     | ОСМО                 | 0.952 (0.01s)  | 0.804 (4.87s)   | 0.934 (2.43s) | 0.941 (5.01s) |
|        | sTAMP                | 0.923 (14.44s) | 0.585 (133.23s) | =             | -             |
|        | SV M <sup>perf</sup> | 0.953 (1.72s)  | 0.872 (20.39s)  | -             | -             |
| H-Mean | OCMO                 | 0.964 (0.02s)  | 0.891 (4.85s)   | 0.764 (2.5s)  | 0.733 (5.16s) |
|        | sPADE                | 0.580 (15.74s) | 0.578 (135.26s) | -             | =             |
|        | SV M <sup>perf</sup> | 0.953 (1.72s)  | 0.872 (20.39s)  | -             | -             |
| Q-Mean | OCMO                 | 0.964 (0.01s)  | 0.889 (4.87s)   | 0.551 (2.11s) | 0.506 (4.27s) |
|        | sPADE                | 0.688 (15.83s) | 0.632 (136.46s) | -             | -             |
|        | SV M <sup>perf</sup> | 0.950 (1.72s)  | 0.872 (20.39s)  | -             | -             |

<sup>&#</sup>x27;-' means the corresponding algorithm does not terminate within 100x that of OCMO.

# Performance vs run time for various online algorithms



Optimal Multilabel classification with Non-decomposable Averaged Metrics

#### Multilabel Classification



 Multiclass: only one class associated with each example



 Multilabel: multiple classes associated with each example

# **Applications**

| Data type  | Application         | Resource         | Labels Description (Examples)         |
|------------|---------------------|------------------|---------------------------------------|
| text       | categorization      | news article     | Reuters topics (agriculture, fishing) |
|            |                     | web page         | Yahoo! directory (health, science)    |
|            |                     | patent           | WIPO (paper-making, fibreboard)       |
|            |                     | email            | R&D activities (delegation)           |
|            |                     | legal document   | Eurovoc (software, copyright)         |
|            |                     | medical report   | MeSH (disorders, therapies)           |
|            |                     | radiology report | ICD-9-CM (diseases, injuries)         |
|            |                     | research article | Heart conditions (myocarditis)        |
|            |                     | research article | ACM classification (algorithms)       |
|            |                     | bookmark         | Bibsonomy tags (sports, science)      |
|            |                     | reference        | Bibsonomy tags (ai, kdd)              |
|            |                     | adjectives       | semantics (object-related)            |
| image      | semantic annotation | pictures         | concepts (trees, sunset)              |
| video      | semantic annotation | news clip        | concepts (crowd, desert)              |
| audio      | noise detection     | sound clip       | type (speech, noise)                  |
|            | emotion detection   | music clip       | emotions (relaxing-calm)              |
| structured | functional genomics | gene             | functions (energy, metabolism)        |
|            | proteomics          | protein          | enzyme classes (ligases)              |
|            | directed marketing  | person           | product categories                    |

#### The Multilabel Classification Problem

- Inputs:  $X \in \mathcal{X}$ , Labels:  $Y \in \mathcal{Y} = [0,1]^M$  (with M labels)
- ullet Classifier  $oldsymbol{ heta}: \mathcal{X} \mapsto \mathcal{Y}$

#### Example: Hamming Loss

$$\mathcal{U}(\boldsymbol{\theta}) = \mathbf{E}_{X,Y \sim \mathbb{P}} \left[ \sum_{m=1}^{M} \mathbf{1}_{[Y_m = \theta_m(X)]} \right] = \sum_{m=1}^{M} \mathbb{P}(Y_m = \theta_m(X))$$

#### Optimal Prediction for Hamming Loss

$$heta_m^*(\mathbf{x}) = \operatorname{sign}\left(\mathbb{P}(Y_m = 1|\mathbf{x}) - rac{1}{2}
ight)$$

Well known convex surrogates e.g. hinge loss (Bartlett et al., 2006)

#### Multilabel Confusion

Recall the binary confusion matrix



Jaccard ←□ト←置ト←置ト←置・◆②へ@

 $<sup>^{1}</sup>$ We focus on linear-fractional metrics e.g. Accuracy,  $F_{eta}$ , Precision, Recall,

#### Multilabel Confusion

Recall the binary confusion matrix

|              | Y = 1                            | Y = 0                     |
|--------------|----------------------------------|---------------------------|
| heta=1       | TP $P(Y = 1,  \theta = 1)$       | FP $P(Y = 0, \theta = 1)$ |
| $\theta = 0$ | FN P( $Y$ = 1, $	heta$ $=$ $0$ ) | TN $P(Y=0, 	heta=0)$      |

Similar idea for multilabel classification, now across both labels m and examples n.

$$\widehat{\mathbf{C}}_{m,n} = \begin{bmatrix} \widehat{\text{TP}}_{m,n} = \mathbf{1}_{\left[\theta_m(x^{(n)}) = 1, y_m^{(n)} = 1\right]}, & \widehat{\text{FP}}_{m,n} = \mathbf{1}_{\left[\theta_m(x^{(n)}) = 1, y_m^{(n)} = 0\right]} \\ \widehat{\text{FN}}_{m,n} = \mathbf{1}_{\left[\theta_m(x^{(n)}) = 0, y_m^{(n)} = 1\right]}, & \widehat{\text{TN}}_{m,n} = \mathbf{1}_{\left[\theta_m(x^{(n)}) = 0, y_m^{(n)} = 0\right]} \end{bmatrix}$$

 $<sup>^1</sup>$ We focus on linear-fractional metrics e.g. Accuracy,  $F_{eta}$ , Precision, Recall, Jaccard

Most popular multilabel metrics are averaged metrics Some notation: Let  $\eta_m(x) = \mathbb{P}(Y_m = 1|x)$ 

## Macro-Averaging

Average over examples for each label

Most popular multilabel metrics are averaged metrics Some notation: Let  $\eta_m(x) = \mathbb{P}(Y_m = 1|x)$ 

## Macro-Averaging

Average over examples for each label

$$\widehat{\mathbf{C}}_m = \frac{1}{N} \sum_{n=1}^{N} \widehat{\mathbf{C}}_{m,n},$$

Most popular multilabel metrics are averaged metrics

Some notation: Let  $\eta_m(x) = \mathbb{P}(Y_m = 1|x)$ 

## Macro-Averaging

Average over examples for each label

$$\widehat{\mathbf{C}}_m = rac{1}{N} \sum_{n=1}^N \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{macro}} := rac{1}{M} \sum_{m=1}^M \Psi(\widehat{\mathbf{C}}_m).$$

Most popular multilabel metrics are averaged metrics Some notation: Let  $\eta_m(x) = \mathbb{P}(Y_m = 1|x)$ 

#### Macro-Averaging

Average over examples for each label

$$\widehat{\mathbf{C}}_m = \frac{1}{N} \sum_{n=1}^N \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{macro}} := \frac{1}{M} \sum_{m=1}^M \Psi(\widehat{\mathbf{C}}_m).$$

Bayes optimal classifier:

$$\boldsymbol{\theta}_m^*(x) = \mathrm{sign}(\eta_m(x) - \delta_m^*) \quad \forall m \in [M]$$



# Instance Average

Average over labels for each example

$$\widehat{\mathbf{C}}_n = \frac{1}{M} \sum_{m=1}^{M} \widehat{\mathbf{C}}_{m,n},$$

## Instance Average

Average over labels for each example

$$\widehat{\mathbf{C}}_n = rac{1}{M} \sum_{m=1}^M \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{instance}} := rac{1}{N} \sum_{n=1}^N \Psi(\widehat{\mathbf{C}}_n).$$

## Instance Average

Average over labels for each example

$$\widehat{\mathbf{C}}_n = rac{1}{M} \sum_{m=1}^M \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{instance}} := rac{1}{N} \sum_{n=1}^N \Psi(\widehat{\mathbf{C}}_n).$$

Bayes optimal classifier:

$$\boldsymbol{\theta}_m^*(x) = \operatorname{sign}(\eta_m(x) - \delta^*) \quad \forall m \in [M]$$

- $\bullet$  Only require marginals  $\eta_m(x)$  i.e. label correlations have weak affect on optimal classification
- Note: Marginals may still be deterministically coupled across labels e.g. low rank, shared DNN representation
- Shared threshold across labels

# Micro Average

Average over both examples and labels

Average over both examples and labels

$$\widehat{\mathbf{C}} = \frac{1}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \widehat{\mathbf{C}}_{m,n},$$

Average over both examples and labels

$$\widehat{\mathbf{C}} = \frac{1}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{instance}} := \Psi(\widehat{\mathbf{C}}).$$

Average over both examples and labels

$$\widehat{\mathbf{C}} = \frac{1}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{instance}} := \Psi(\widehat{\mathbf{C}}).$$

Bayes optimal classifier:

$$\boldsymbol{\theta}_m^*(x) = \operatorname{sign}(\eta_m(x) - \delta^*) \quad \forall m \in [M]$$

Average over both examples and labels

$$\widehat{\mathbf{C}} = rac{1}{NM} \sum_{n=1}^N \sum_{m=1}^M \widehat{\mathbf{C}}_{m,n}, \quad \Psi_{\mathsf{instance}} := \Psi(\widehat{\mathbf{C}}).$$

Bayes optimal classifier:

$$\boldsymbol{\theta}_m^*(x) = \operatorname{sign}(\eta_m(x) - \delta^*) \quad \forall m \in [M]$$

- Bayes optimal is identical to instance averaging
- Only require marginals  $\eta_m(x)$  i.e. label correlations have weak affect on optimal classification
- Shared threshold across labels

# Simulated Micro-averaged F1



# **Empirical Evaluation**

| Dataset  | BR     | Plugin | Macro-Thres | BR     | Plugin  | Macro-Thres |
|----------|--------|--------|-------------|--------|---------|-------------|
|          |        | $F_1$  |             |        | Jaccard |             |
| Scene    | 0.6559 | 0.6847 | 0.6631      | 0.4878 | 0.5151  | 0.5010      |
| Birds    | 0.4040 | 0.4088 | 0.2871      | 0.2495 | 0.2648  | 0.1942      |
| Emotions | 0.5815 | 0.6554 | 0.6419      | 0.3982 | 0.4908  | 0.4790      |
| Cal500   | 0.3647 | 0.4891 | 0.4160      | 0.2229 | 0.3225  | 0.2608      |

Table: Comparison of plugin-estimator methods on multilabel  $F_1$  and Jaccard metrics. Reported values correspond to  $\it{micro-averaged}$  metric ( $F_1$  and Jaccard) computed on test data (with standard deviation, over 10 random validation sets for tuning thresholds). Plugin is consistent for micro-averaged metrics, and performs the best consistently across datasets.

| Dataset  | BR     | Plugin   | Macro-Thres | BR     | Plugin  | Macro-Thres |
|----------|--------|----------|-------------|--------|---------|-------------|
|          |        | $F_1$    |             |        | Jaccard |             |
| Scene    | 0.5695 | 0.6422   | 0.6303      | 0.5466 | 0.5976  | 0.5902      |
| Birds    | 0.1209 | 0.1390   | 0.1390      | 0.1058 | 0.1239  | 0.1195      |
| Emotions | 0.4787 | 7 0.6241 | 0.6156      | 0.4078 | 0.5340  | 0.5173      |
| Cal500   | 0.3632 | 0.4855   | 0.4135      | 0.2268 | 0.3252  | 0.2623      |

Table: Comparison of plugin-estimator methods on multilabel  $F_1$  and Jaccard metrics. Reported values correspond to *instance-averaged* metric  $(F_1$  and Jaccard) computed on test data (with standard deviation, over 10 random validation sets for tuning thresholds). Plugin is consistent for instance-averaged metrics, and performs the best consistently across datasets.

| Dataset  | BR     | Plugin | Macro-Thres | BR     | Plugin  | Macro-Thres |
|----------|--------|--------|-------------|--------|---------|-------------|
|          |        | $F_1$  |             |        | Jaccard |             |
| Scene    | 0.6601 | 0.6941 | 0.6737      | 0.5046 | 0.5373  | 0.5260      |
| Birds    | 0.3366 | 0.3448 | 0.2971      | 0.2178 | 0.2341  | 0.2051      |
| Emotions | 0.5440 | 0.6450 | 0.6440      | 0.3982 | 0.4912  | 0.4900      |
| Cal500   | 0.1293 | 0.2687 | 0.3226      | 0.0880 | 0.1834  | 0.2146      |

Table: Comparison of plugin-estimator methods on multilabel  $F_1$  and Jaccard metrics. Reported values correspond to the  $\it macro-averaged$  metric computed on test data (with standard deviation, over 10 random validation sets for tuning thresholds). Macro-Thres is consistent for macro-averaged metrics, and is competitive in three out of four datasets. Though not consistent for macro-averaged metrics, Plugin achieves the best performance in three out of four datasets.

# Correlated Binary Decisions

• Same procedure applies to more general correlated binary decisions using averaged metrics



 Example application: point estimates of brain networks from posterior distributions

# Conclusion

- Optimal classifiers for a large family of metrics have a simple threshold form  ${\rm sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

- Optimal classifiers for a large family of metrics have a simple threshold form  ${\rm sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

Open Questions:

- Optimal classifiers for a large family of metrics have a simple threshold form  ${\rm sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

### Open Questions:

• Can we elucidate utility functions from feedback?

- $\bullet$  Optimal classifiers for a large family of metrics have a simple threshold form  ${\rm sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

#### Open Questions:

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?

- Optimal classifiers for a large family of metrics have a simple threshold form  ${\rm sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

#### Open Questions:

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?
- What of more general structured prediction?

# Questions?

sanmi@illinois.edu

# References

#### References 1

- Francis R Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. *Journal of Machine Learning Research*, 15(1):595-627, 2014.
- Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Large margin classifiers: Convex loss, low noise, and convergence rates. In NIPS, pages 1173-1180, 2003.
- Peter L Bartlett, Michael | Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006.
- Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex optimization. In Advances in Neural Information Processing Systems, pages 1585-1593, 2015.
- Thorsten Joachims. A support vector method for multivariate performance measures. In Proceedings of the 22nd international conference on Machine learning, pages 377-384. ACM, 2005.
- Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S Dhillon. Consistent binary classification with generalized performance metrics. In *Advances in Neural Information Processing Systems*, pages 2744–2752, 2014.
- Harikrishna Narasimhan, Rohit Vaish, and Shivani Agarwal. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In Advances in Neural Information Processing Systems, pages 1493–1501, 2014.
- Harikrishna Narasimhan, Purushottam Kar, and Prateek Jain. Optimizing non-decomposable performance measures: A tale of two classes. In 32nd International Conference on Machine Learning (ICML), 2015.
- Mark D Reid and Robert C Williamson. Composite binary losses. The Journal of Machine Learning Research, 9999:2387-2422, 2010.
- Clayton Scott. Calibrated asymmetric surrogate losses. Electronic J. of Stat., 6:958-992, 2012.

approaches. In Proceedings of the International Conference on Machine Learning, 2012.

- Yaroslav D Sergeyev. Global one-dimensional optimization using smooth auxiliary functions. Mathematical Programming, 81(1):127-146, 1998.
- Bowei Yan, Kai Zhong, Oluwasanmi Koyejo, and Pradeep Ravikumar. Online classification with complex metrics. In arXiv:1610.07116v1, 2016.
- Nan Ye, Kian Ming A Chai, Wee Sun Lee, and Hai Leong Chieu. Optimizing f-measures: a tale of two

# Backup Slides

# Two Step Normalized Gradient Descent for optimal threshold search

- 1: Input: Training sample  $\{X_i, Y_i\}_{i=1}^n$ , utility measure  $\mathcal{U}$ , conditional probability estimator  $\hat{\eta}$ , stepsize  $\alpha$ .
- 2: Randomly split the training sample into two subsets  $\{X_i^{(1)},Y_i^{(1)}\}_{i=1}^{n_1}$  and  $\{X_i^{(2)},Y_i^{(2)}\}_{i=1}^{n_2};$
- 3: Estimate  $\hat{\eta}$  on  $\{X_i^{(1)},Y_i^{(1)}\}_{i=1}^{n_1}.$
- 4: Initialize  $\delta = 0.5$ ;
- 5: while not converged do
- 6: Evaluate TP, TN on  $\{X_i^{(2)},Y_i^{(2)}\}_{i=1}^{n_2}$  with  $f(x)=\mathrm{sign}(\hat{\eta}-\delta).$
- 7: Calculate  $\nabla \mathcal{U}$ ;
- 8:  $\delta \leftarrow \delta \alpha \frac{\nabla \mathcal{U}}{\|\nabla \mathcal{U}\|}$
- 9: end while
- 10: Output:  $\hat{f}(x) = \operatorname{sign}(\hat{\eta} \delta)$ .

# Online Complex Metric Optimization (OCMO)

```
Require: online CPE with update g, metric \mathcal{U}, stepsize \alpha;
  1: Initialize \eta_0, \, \delta_0 = 0.5;
  2: while data stream has points do
              Receive data point (x_t, y_t)
  3:
           \eta_t = q(\eta_{t-1});
  4:
          \delta_t^{(0)} = \delta_t, \mathsf{TP}_t^{(0)} = \mathsf{TP}_{t-1}, \mathsf{TN}_t^{(0)} = \mathsf{TN}_{t-1};
  5:
  6:
           for i=1,\cdots,T_t do
                   if \eta_t(x_t) > \delta_t^{(i-1)} then
  7:
                        \begin{aligned} & \mathsf{TP}_t^{(i)} \leftarrow \frac{\check{\mathsf{TP}}_{t-1} \cdot (t-1) + (1+y_t)/2}{t}, \ \mathsf{TN}_t^{(i)} \leftarrow \mathsf{TN}_{t-1} \cdot \frac{t-1}{t}; \\ & \mathsf{else} \ \mathsf{TP}_t^{(i)} \leftarrow \mathsf{TP}_{t-1} \cdot \frac{t-1}{t}, \ \mathsf{TN}_t^{(i)} \leftarrow \frac{\mathsf{TN}_{t-1} \cdot t + (1-y_t)/2}{t+1}; \end{aligned}
  8:
  9:
                    end if
10:
                   \delta_t^{(i)} = \delta_t^{(i-1)} - \alpha \frac{\nabla \mathcal{G}(\mathsf{TP}_t, \mathsf{TN}_t)}{\|\nabla \mathcal{G}(\mathsf{TP}_t, \mathsf{TN}_t)\|}, \ \mathsf{TP}_t = \mathsf{TP}_t^{(i)}, \mathsf{TN}_t = \mathsf{TN}_t^{(i)};
11:
           end for
12:
        \delta_{t+1} = \delta_{\perp}^{(T_t)}
13:
14: t = t + 1:
15: end while
16: Output (\eta_t, \delta_t).
```

# Scaling up Classification with Complex Metrics

# Additional properties of ${\cal U}$

## Informal theorem (Yan et al., 2016)

Suppose  $\mathcal U$  is fractional-linear or monotonic, under weak conditions<sup>a</sup> on P:

- ullet  $\mathcal{U}( heta_\delta,P)$  is differentiable wrt  $\delta$
- $\bullet$   $\mathcal{U}(\theta_{\delta}, P)$  is Lipschitz wrt  $\delta$
- ullet  $\mathcal{U}( heta_\delta,P)$  is strictly locally quasi-concave wrt  $\delta$

 $<sup>{}^{\</sup>text{a}}\eta_x$  is differentiable wrt x, and its characteristic function is absolutely integrable

# Algorithms

## Normalized Gradient Descent (Hazan et al., 2015)

Fix  $\epsilon>0$ , let f be strictly locally quasi-concave, and  $x^*\in \mathop{\rm argmin} f(x)$ . NGD algorithm with number of iterations  $T\geq \kappa^2\|x_1-x^*\|^2/\epsilon^2$  and step size  $\eta=\epsilon/\kappa$  achieves  $f(\bar x_T)-f(x^*)\leq \epsilon$ .

## Batch Algorithm

- Estimate  $\hat{\eta}_x$  via. proper loss (Reid and Williamson, 2010)
- **2** Solve  $\max_{\delta} \mathcal{U}(\hat{\theta}_{\delta}, \mathcal{D}_n)$  using normalized gradient ascent

## Online Algorithm

Interleave  $\hat{\eta_t}$  update and  $\hat{\delta_t}$  update

## Batch Algorithm

With appropriately chosen step size,  $\mathcal{R}(\hat{\theta}_{\hat{\delta}},\mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$ 

## Batch Algorithm

With appropriately chosen step size,  $\mathcal{R}(\hat{\theta}_{\hat{\delta}}, \mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$ 

### Comparison to threshold search

- complexity of NGD is  $O(nt) = O(n/\epsilon^2)$ , where t is the number of iterations and  $\epsilon$  is the precision of the solution
- when  $\log n \ge 1/\epsilon^2$ , the batch algorithm has favorable computational complexity vs. threshold search

## Batch Algorithm

With appropriately chosen step size,  $\mathcal{R}(\hat{\theta}_{\hat{\delta}}, \mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$ 

### Comparison to threshold search

- complexity of NGD is  $O(nt) = O(n/\epsilon^2)$ , where t is the number of iterations and  $\epsilon$  is the precision of the solution
- when  $\log n \geq 1/\epsilon^2$ , the batch algorithm has favorable computational complexity vs. threshold search

## Online Algorithm

Let  $\eta$  estimation error at step t given by  $r_t = \int |\eta_t - \eta| d\mu$ , with appropriately chosen step size,  $\mathcal{R}(\hat{\theta}_{\delta_t}, \mathcal{P}) \leq \frac{C\sum_{i=1}^t r_i}{t}$ 

