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What does it
take to build
an effective
machine

learning
system for
healthcare?

Models and
Computation




M d I . e (Brain) dynamics, longitudinal tracking, diagnosis
O e I n g e Applications: Glioma segmentation, Cancer phylogenetics

e Selecting good metrics for machine learning

Eva I U at I O N e Training models that optimize specialized metrics

e Data synthesis, learning with aggregated data

P rlva Cy e Learning on the edge

T t e Explainability and interpretability using examples
r u S e Individual recourse

Enabling Technologies
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Synthesizing medical images using
generative adversarial networks

Applications to private data release and rare-event simulation

Collaborators
@lllinois: Ishan Deshpande,
Alex Schwing, Peiye Zhuang,
David Forsyth
@Dupage: Nasir A. Siddiqui,
Ayis T. Pyrros



Synthetic Real

Joint work with Ishan Deshpande, Alex Schwing, Ayis Pyrros, Nasir Siddiqui, RSNA 2018



Rate at which users choose GAN images as real
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Experienced radiologists were asked to choose which of a real lung x-ray

and a GAN generated image were real. Subjects favored real images slightly
(on average GAN images were identified as real 39% of the time) but subject
behavior varied widely. Size of blob identifies number of pairs viewed; note
one subject preferred GAN images over 80% of the time, another could identify
real images nearly exactly.



Generative Models

generated distribution true data distribution

B(x)

image space image space

Source: https://blog.openai.com/generative-models/



Synthesis at native resolution ~ 10242 pixels



Synthesizing front and side X-rays




Co-generation (Front => Side, <=)




Synthesizing functional MRI




Application: classifier data augmentation

Input Gen. model|Classifier Accuracy Macro F1 Precision Recall

Real - SVM  0.8181 0.82 0.8333 0.8133
Real+noise - SVM  0.8185 0.82 0.8367 0.82
Real+Synth. GMM SVM  0.8188 0.82 0.8366 0.82
Real+Synth. CVAE SVM  0.8248 0.8267 0.8367 0.8233
Real+Synth. ICW-GAN| SVM  0.8311 0.83 0.8433 0.8333

Real - DNN 0.852 0.857 0.872 0.8523
Real+noise - DNN  0.8581 0.856  0.8719 0.8579
Real+Synth. GMM DNN  0.8604 0.8631 0.8749 0.8604
Real+Synth. CVAE DNN  0.8684 0.869  0.8827 0.8683
Real+Synth. ICW-GAN| DNN  0.8799 0.8825 0.8933 0.88




Privacy Preserving Federated ML

Collaborators
@Illinois:
Cong Xie,
Indy Gupta



= Federated ML

! * ML models can be trained
Serer and deployed in
distributed settings
without transferring data
 Distributed learning

amortizes training costs,
learns without data
sharing

* When implemented
correctly, distributed

Normal device Compromised device lea rr]ing reserves privacy
and is robust to failures



What are the

properties of
ML with

distributed
data?

unbalanced, non-IID device data

limited, heterogeneous device computation

infrequent task scheduling

limited, infrequent communication, congestion

untrusted devices and data poisoning
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5-layer CNN, Unbalanced data, 100 devices
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dimensional
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Glioma Segmentation

Collaborators

@Illinois: Chase Duncan,
Peiye Zhuang, Brad Sutton
@Jump: Matt Bramlet
@OSF: Deepak Nair



Glioma Segmentation Workflow

INPUTS

Standard Brain,
T1/T2 with contrast
(DICOM)

Functional MRI

DICOM and jpeg
(processed in
NordicNeuro?)
Language, Motor

PROCESS

Machine Learning Code
Autoseg tumor (enhance region,
necrotic, edema, non-tumor)
Gray/white matter

3D Activation maps

Pull out activations from subject
and normative data. Use DICOM
to reassemble volume. Image
registration required.
Visualization overlay only

3D Streamlines for Tracts
Group sets of tracks into tubes

for visualizing large fiber bundles.

Image registration required.

%ualization only. /

OUTPUTS

Labeled Tumor
Enhance/necrotic/edema
Gray/White

In 3D STL's

Activation regions
3D map of activation
overlays: Subject and
population average

Merge to
Enduvo VR

Picture modified from: Mukherjee, Berman, Chung, Hess, Henry. AJNR, 2008, 29(4): 632-41



Problem formulation & ® Label each voxel as tumor vs. not tumor
approach ® We use a variation of the U-net with improved regularization



Enhancing tumor: prediction vs. ground truth




Tumor core: prediction vs. ground truth




Cancer Phylogenetics

Collaborators
@Illinois: Juho Kim,
Sarah Christensen,
Mohammed El-Kebir
@Mayo: Nick Chia



Elucidating Patterns
of Cancer Evolution

Sequencing is used to
measure mutations in
patients

Goal: Resolve ambiguity and
recover evolutionary
patterns, i.e., phylogenetic
tree

Clustering patients based on
evolutionary trees resolves
shared patterns, enables
targeted treatments

& ®&).

Subtype |

Subtype |

Repeated
evolutionary
trajectories of

driver mutations
-

Repeated
evolutionary
trajectories of
driver mutations
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Choosing the rig

nt metrics

for heal

‘hcare ML

Collaborators
@Illinois:

Gaurush Hiranandani
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m Accuracy =99%

m Prevalence of Alzheimer's disease is <1% of the population
m False positive rate = Predict healthy when patient has Alzheimer’s = 100%

m False negative rate = Predict Alzheimer’s when patient is healthy =0%

* https://www.alz.org/facts/



e Always
IO :
Predict
_ Healthy
m 94.1% Accuracy m 89.6% Accuracy m 80.1% Accuracy m 99% Accuracy
m 90% false positives m 50% false positives m 10% false positives m 100% false positives
m 5% false negatives m 1% false negatives m 20% false negatives ~ m 0% false negatives

Which ML model should you use?



HOW SHOULD YOU

MEASURE THE
PERFORMANCE OF
YOUR ML MODEL?

't depends... on the relative
cost/benefit of different kinds

of errors.

The metric is a quantitative
description of tradeoffs --
used to compare models, or
optimized directly.




.Eewm

sklearn.metrics : Metrics

Regression metrics Clustering metrics

See the Regression metrics section of the user guide for further details. See the Clustering performance evaluation section of the user guide for further details.
metrics.explained_variance_score (y_true, y_pred) Explained variance regres

metrics.mean_absolute_error (y_true, y_pred) Mean absolute error regreThe silearn.metrics.cluster submodule contains evaluation metrics for cluster analysis results. There are two forms of
metrics.mean_squared_error (y_true,y pred[,...]) Mean squared error regre

metrics.mean_squared_log_error (y_true, y_pred) Mean squared logarithmic

evaluation:

» supervised, which uses a ground truth class values for each sample.

metrics.median_absolute_error (y _true,y pred) Median absolute error reg

metrics.r2_score (y_true, y_pred[, ...]) RA2 (coefficient of determ unsupervised, which does not and measures the ‘quality’ of the model itself.
metrics.adjusted_mutual_info_score (...[,...]) Adjusted Mutual Information between two clusterings.
metrics.adjusted_rand_score (labels true, ...) Rand index adjusted for chance.
metrics.calinski_harabaz_score (X, labels) Compute the Calinski and Harabaz score.
metrics.davies_bouldin_score (X, labels) Computes the Davies-Bouldin score.
metrics.completeness_score (labels true, ...) Completeness metric of a cluster labeling given a ground truth.

Multilabel ranking metrics metrics.cluster.contingency_matrix (...[, ...]) Build a contingency matrix describing the relationship between
labels.

See the Multilabel ranking metrics section of the user guide for further details metrics.fowlkes_mallows_score (labels_true, ...) Measure the similarity of two clusterings of a set of points.
metrics.coverage_error (y_true,y_score[, ...]) Coverage error mea Mmetrics.homogeneity_completeness_v_measure (...) Compute the homogeneity and completeness and V-Measure
metrics.label_ranking_average_precision_score (...) Compute ranking-ba scores at once.
metrics.label_ranking loss (y_true,y score) Compute Ranking Ic metrics.homogeneity_score (labels_true, ...) Homogeneity metric of a cluster labeling given a ground truth.

metrics.mutual_info_score (labels_true, ...) Mutual Information between two clusterings.
metrics.normalized mutual_info_score (...[, ...]) Normalized Mutual Information between two clusterings.
metrics.silhouette_score (X, labels], ...]) Compute the mean Silhouette Coefficient of all samples.
metrics.silhouette_samples (X, labels[, metric]) Compute the Silhouette Coefficient for each sample.

metrics.v_measure_score (labels true, labels_pred) V-measure cluster labeling given a ground truth.



Elicitation Procedure

Preference Query

Constructs queries to
elicit metrics using

minimal feedback [*
Preference Feedback
’ Oracle
Output l
Dataset or Oracle’s
Measurement Space |dm——— Models or Performance
Objects .
Metric

Metric
Elicitation

EFFICIENTLY QUERY

AN EXPERT
TO QUANTIFY UTILITY

OF ML MODELS




Querying
the expert

EXPERTS ARE OFTEN INACCURATE
WHEN ASKED TO QUANTIFY
. VALUE




Goal:
oovany | @ccurately elicit the
QUERIES MAY

RESULT IN FATIGUE expert’s metﬂc US|ng d
few pairwise queries




Example: Binary Classification, Linear Metrics

* Binary search elicitation provably recovers the expert’s weighted metric:

5 () = 1 — (afFP(

* Guaranteed to be € accurate after O (log(1)) queries

* Achieves the theoretical optimal elicitation rate

» Stable to system noise e.g. noisy responses from the expert

Hiranandani, Boodaghians, Mehta, K. (2019) x2



Explainability

and Trust
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Computation




Interpreting Machine
Learning Using Examples

Collaborators

@Vector: Shalmali Joshi
@Berkeley: Rajiv Khanna
@Google: Been Kim
@Texas: Joydeep Ghosh



Why do we
care about

transparency

and
interpretability
in ML?

mm FOr ML experts:

e debugging trained models.

= For healthcare professionals:

e the key to discovery e.g. scientific
applications,

e useful for detecting failure and corner cases.

mmm [Or everyone else:

e ensure that predictions are fair, non-
discriminatory,

e actionable recourse i.e. how do | change the
prediction outcome?




* Probing healthcare ML
systems for counterfactuals

* Components

* generative model of
data distribution

 algorithmic decision,
i.e., classifier

e constrained
optimization to identify
recourse

REVISE

What is the smallest “realistic” change in input
that modifies the model prediction?




M d I . e (Brain) dynamics, longitudinal tracking, diagnosis
O e I n g e Applications: Glioma segmentation, Cancer phylogenetics

e Selecting good metrics for machine learning

Eva I U at I O N e Training models that optimize specialized metrics

e Data synthesis, learning with aggregated data

P rlva Cy e Learning on the edge

T t e Explainability and interpretability using examples
r u S e Individual recourse

Enabling Technologies




Thank you
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