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Motivation

Data often released in aggregated form in practice (Burrell
et al., 2004; Lozano et al., 2009; Davidson et al., 1978)

Worse, sampling periods need not be aligned, aggregation
periods need not be uniform1

ratio of government debt to GDP reported yearly
GDP growth rate reported quarterly
unemployment rate and in�ation rate reported monthly
interest rate, stock market indices and currency exchange rates
reported daily

1Bureau of Labor Statistics, Bureau of Economic Analysis



Motivation - II

Naive �tting of aggregated data may result in ecological
fallacy (Freedman et al., 1991; Robinson, 2009)

Reconstruction (before model �tting) is expensive and
unreliable

Main Contribution

Model estimation procedure in the frequency domain

avoids input data reconstruction

achieves provably bounded generalization error.
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Problem Setup



Features x(t) = [x1(t), x2(t) · · ·xd(t)], targets y(t)

Weak Stationarity+

Zero-mean E[y(t)] = 0.

Finite variance E[y(t)] <∞
Autocorrelation function satis�es: E[y(t)y(t′)] = ρ(‖t− t′‖)

same assumptions for x(t)

Residual process

Let εβ(t) = x(t)>β − y(t) be the residual error process of a
linear model

Observe that εβ(t) is weakly stationary
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Problem Setup - II

Performance measure is the expected squared residual error

L(β) = E[|εβ(t)|2] = E[|x(t)>β − y(t)|2]

which is optimized as:

β∗ = arg min
β

L(β)



Data Aggregation in Time Series

Non-Aggregated Feature X1

Aggregated Feature X1

Non-Aggregated Feature X2

Aggregated Feature X2

Non-Aggregated Feature X3

Aggregated Feature X3

Non-Aggregated Target Y
Aggregated Target Y



Data Aggregation in Time Series - II

Each coordinate of the feature set is aggregated

xi[l] =
1

Ti

lTi/2∫
(l−1)Ti/2

xi(τ)dτ

Similarly, the targets are aggregated

y[k] =
1

T

kT/2∫
(k−1)T/2

y(τ)dτ

for k, l ∈ Z = {· · · − 1, 0, 1, · · · }.



Aggregation in Time and Frequency Domain
Fourier captures global properties of the signal

In time domain, convolution with square wave + sampling

z(t)
convolution−−−−−−−→ sampling−−−−−−→ −→ z[k]

In frequency domain, multiplication with sinc function + sampling

Z(ω)
multiplication−−−−−−−−−→ sampling−−−−−−→ −→ Z(ω)



Restricted Fourier Transform

For signal z(t), T -restricted Fourier Transform de�ned as:

ZT (ω) = FT [z](ω) =

∫ T

−T
z(t)e−ιωtdt

Equivalent to a full Fourier Transform if the signal is
time-limited within (−T, T )

Always exists �nitely if the signal z(t) is �nite



Time-limited Data

In�nite time series data are not available, instead assume data
available between time intervals (−T0, T0)

We apply T0-restricted Fourier transforms computed from
time-limited data

Assume time-restricted Fourier transform decay rapidly with
frequency e.g. autocorrelation function is a Schwartz
function (Terzio�glu, 1969)

Thus, most of the signal power between frequencies (−ω0, ω0)



Proposed Algorithm



Step I

1 Input parameters T0, ω0, D, aggregated data samples x[k],y[l]

2 Sample D frequencies uniformly between (−ω0, ω0)

Ω = {ω1, ω2, · · ·ωD : ωi ∈ (−ω0.ω0)}

3 For each ω ∈ Ω, compute T0-restricted Fourier Transforms
XT0(ω),YT0(ω) from aggregated signals x[k],y[l]
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Step II

Recall: UT is Fourier transform of square wave

4 Estimate non-aggregated Fourier transforms

X̂i,T0(ω) =
X̂i,T0(ω)

UTi(ω)
, ŶT0(ω) =

YT0(ω)

UT (ω)

5 Estimate parameter β̂ as:

β̂ = arg min
β

1

|Ω|
∑
ω∈Ω

E‖X̂T0(ω)>β − ŶT0(ω)‖2
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Generalization Analysis



Main result I

Theorem (Bhowmik, Ghosh, and Koyejo (2017))

For every small ξ > 0, ∃ corresponding T0, D such that:

E
[
|x(t)>β̂ − y(t)|2

]
< (1 + ξ)

(
E
[
|x(t)>β∗ − y(t)|2

])
+ 2ξ

with probability at least 1− e−O(D2ξ2)

Thus, generalization error bounded with su�ciently large T0, D



Aliasing E�ects, Non-uniform Sampling

Signals not bandlimited ⇒ Aliasing

Errors minimum for frequencies around 0

=⇒

Non-uniform sampling leads to further error

Performance will depend on rapid decay of power spectral
density
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Main result II
Non-uniform aggregation, Finite samples

Theorem (Bhowmik, Ghosh, and Koyejo (2017))

Let ωi, ωy be the sampling rate for xi(t), y(t) respectively. Let

ωs = min{ωy, ω1, ω2, · · ·ωd}. Then, for small ξ > 0, ∃
corresponding T0, D such that:

E
[
|x(t)>β̂ − y(t)|2

]
<(1 + ξ)

(
E
[
|x(t)>β∗ − y(t)|2

])
+4ξ + 2e−O((ωs−2ω0)2)

with probability at least 1− e−O(D2ξ2) − e−O(N2ξ2)

Generalization error can be made small if T0, D are high, ω0 is small,

minimum sampling frequency ωs is high



Empirical Evaluation



Synthetic Data

Fig 1(a): No Discrepancy Fig 1(b): Low Discrepancy

Performance on synthetic data with varying ω0, and increasing
sampling and aggregation discrepancy



Synthetic Data - II

Fig 1(c): Medium Discrepancy Fig 1(d): High Discrepancy

Performance on synthetic data with varying ω0, and increasing
sampling and aggregation discrepancy



Las Rosas Dataset

Regressing corn yield against nitrogen levels, topographical
properties, brightness value, etc.



UCI Forest Fires Dataset

Regressing burned acreage against meteorological features, relative
humidity, ISI index, etc. on UCI Forest Fires Dataset



Comprehensive Climate Dataset (CCDS)

Regressing atmospheric vapour levels over continental United
States vs readings of carbon dioxide levels, methane, cloud cover,

and other extra-meteorological measurements



Conclusion



Additional Details

More detailed analysis (not shown) allows for more precise
error control

Algorithm and analysis easily extend to multi-dimensional
indexes e.g. spatio-temporal data using the multi-dimensional
Fourier transform

number of frequency samples may depend exponentially on
index dimension (typically < 4)

Extends to cases where aggregation and sampling period are
non-overlapping.



Conclusion and Future Work

Proposed a novel procedure with bounded generalization error
for learning with aggregated data

Signi�cant improvements vs reconstruction-based estimation.

Future Work:

Exploit other frequency domain structure e.g. sparse spectrum
to improve estimates.

Extensions to non-linear estimators
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Questions?

For more details:

Bhowmik, A., Ghosh, J. and Koyejo, O., 2017. Frequency Domain

Predictive Modeling with Aggregated Data. In Proceedings of the
20th International conference on Arti�cial Intelligence and Statistics
(AISTATS).

sanmi@illinois.edu
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