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Healthcare data often released in aggregated form
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Aggregation sometimes used to satisfy privacy concerns
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Mul$%scale*Models* Perturb*single*genes*
OR*single*phenotypes**

Measure*outcomes*
Demonstrate*causality*

Figure 4: Multi-scale models will be used to identify hub genes of gene modules that are 
associated with a particular neural or behavioral trait of interest. We will perturb the expression 
of single genes (or phenes)and then measure the outcomes (i.e. changes in the neural network 
structure, gene module stucture, etc) to determine causal relationships. 

Brain Imaging Data:

Observations are aggregated
over both space (i.e. voxels)
and time



Data often released in aggregated form in practice (Burrell
et al., 2004; Lozano et al., 2009; Davidson et al., 1978)

Naive �tting of aggregated data may result in ecological
fallacy (Freedman et al., 1991; Robinson, 2009)

Reconstruction (before model �tting) is expensive and
unreliable



Motivating question:

Is it possible to learn accurate individual level models from
aggregated data?

Yes! In at least two cases:

high dimensional linear model with group-wise IID data,
compressed sensing will recover sparse modela

spatiotemporal data with a linear model estimator, proposed
procedure achieves strong generalization error guaranteesa

aunder certain conditions...
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Related work in statistics

known as ecological regression (Goodman, 1953; Freedman
et al., 1991)

often considered a reasonable technique for anonymizing
data (Armstrong et al., 1999)

Related work in machine learning

most popular in classi�cation, known as learning from label
proportions (Quadrianto et al., 2009; Patrini et al., 2014)

particularly relevant for big data with high label acquisition
costs

Other related work

sensor network / internet of things data may be aggregated to
reduce communication overhead (Li et al., 2013; Wagner,
2004; Zhao et al., 2003)
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Part 1:

Learning a Sparse Linear model from

Group-Wise Aggregated Data



Group-wise data aggregation

(a) Features / Covariates

(b) Targets



Group-wise data aggregation

(a) Features / Covariates (b) Targets



Observed training data

group-wise averages from k population sub-groups

Dagg =
{
µj = Êj [x], νj = Êj [y] | j = 1, 2, · · · k

}
.



Population statistics

for each group j ∈ [k],

µj = Ej [x], νj = Ej [y].

With a linear model

y = x>β∗ + ε.

if E[ε] = 0,

E[y] = E[X]β∗ ⇐⇒ υ = Mβ∗.

where expectation is wrt. each group-wise distribution



Population statistics

for each group j ∈ [k],

µj = Ej [x], νj = Ej [y].

With a linear model

y = x>β∗ + ε.

if E[ε] = 0,

E[y] = E[X]β∗ ⇐⇒ υ = Mβ∗.

where expectation is wrt. each group-wise distribution



Group-wise expectation preserves linear model

if k ≥ d, straightforward to estimate β∗ ∈ Rd by solving the
linear system

υ = Mβ∗ where, M ∈ Rk×d,υ ∈ Rk

if k � d i.e. under-determined system, recovery is no longer
possible without additional assumptions
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Sparse parameter estimation from true group means

Restricted Isometry Property

M satis�es (s, δs)-RIP if for any s-sparse z

(1− δs)‖z‖22 ≤ ‖Mz‖22 ≤ (1 + δs)‖z‖22

Informally, every small submatrix behaves approximately like
an orthonormal system

Informal Lemma (Recovery with population means)

Suppose M satis�es (s, δs)-RIP, given (M,υ), a sparse β∗ can be
estimated using standard compressed sensing techniquesa

aDonoho (2006); Candes et al. (2006); Foucart (2010)



Sparse parameter estimation from true group means

Restricted Isometry Property

M satis�es (s, δs)-RIP if for any s-sparse z

(1− δs)‖z‖22 ≤ ‖Mz‖22 ≤ (1 + δs)‖z‖22

Informally, every small submatrix behaves approximately like
an orthonormal system

Informal Lemma (Recovery with population means)

Suppose M satis�es (s, δs)-RIP, given (M,υ), a sparse β∗ can be
estimated using standard compressed sensing techniquesa

aDonoho (2006); Candes et al. (2006); Foucart (2010)



Empirical aggregation error

however, (M,υ) unknown in practice, instead use estimates:

M̂n[j] =
1

n

n∑
i=1

xi,j , υ̂n[j] =
1

n

n∑
i=1

yi,j .

results in additional empirical error:

M̂n = M + ζx,n, υ̂n = υ + ζy,n.

Key Insight: aggregation is a linear procedure, thus:

υ̂n = M̂>nβ
∗ and ζy,n = ζ>x,nβ

∗.
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Main Results



Additive noise-free aggregated data

Solve min
β
‖β‖1 s.t. M̂nβ = υ̂n.

Theorem (Bhowmik, Ghosh, and Koyejo (2016))

β∗ is recovered exactly with probability at least 1− e−C0n,
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Observe that fewer samples required for estimating M̂n when:

smaller RIP constant for true means M i.e. δ2s0

thinner tails i.e. smaller σ2



Additive noise-free aggregated data

Solve min
β
‖β‖1 s.t. M̂nβ = υ̂n.

Theorem (Bhowmik, Ghosh, and Koyejo (2016))

β∗ is recovered exactly with probability at least 1− e−C0n,

where:

C0 ∼ O
(

(Θ0 − δ2s0)2

kdσ2(1 + δ2s0)

)

contrast with prior work that assume error in measurement
matrix and/or targets, but only provide approximate
recovery (Herman and Strohmer, 2010; Zhao and Yu, 2006;
Rudelson and Zhou, 2015)



Aggregated data with observation noise

each sample measurement corrupted by zero mean additive
noise as

y = x>β∗ + ε.

means (M̂n, υ̂ε) computed from noisy obs. for each group

M̂n = M + ζx,n, υ̂n = υ + ζy,n + εn.



Aggregated data with observation noise - II

Solve β̂ = arg min
β

‖β‖1 s.t. ‖M̂nβ − υ̂ε‖2 < ξ.

Theorem (Bhowmik, Ghosh, and Koyejo (2016))∥∥∥β∗ − β̂
∥∥∥ ≤ O(ξ) with probability at least 1− e−C1n − e−C2n.
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Aggregated data with observation noise - II

Solve β̂ = arg min
β

‖β‖1 s.t. ‖M̂nβ − υ̂ε‖2 < ξ.

Theorem (Bhowmik, Ghosh, and Koyejo (2016))∥∥∥β∗ − β̂
∥∥∥ ≤ O(ξ) with probability at least 1− e−C1n − e−C2n.
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(
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)
, C2 ∼ O

(
ξ2

ρ2k

)

Observe that fewer samples required for estimating M̂n when:

smaller RIP constant for true means M i.e. δ2s0

thinner tails i.e. smaller σ2, ρ2

looser tolerance ξ



Empirical Evaluation



Synthetic data
d = 150, k = 45, σ2 = 0.1, s = 30

Figure: Probability of exact parameter recovery and exact support recovery for
Gaussian ensemble

vs. random M which achieves exact recovery



Synthetic data - II
d = 150, k = 45, σ2 = 0.1, s = 30

Figure: Probability of exact parameter recovery and exact support recovery for
Bernoulli ensemble

vs. random M which achieves exact recovery



Annual outpatient reimbursement (Lousiana, 2008)
dataset from the Centers for Medicare and Medicaid Services
predictor variables include duration of coverage, chronic
conditions, etc. (d = 24, k = 12)

Figure: Parameter Recovery and Support Recovery vs. Lasso



Healthcare charges (Texas, 4th quarter of 2006)
dataset from Texas Department of State Health Services
predictor variables include demographic information, length of
hospital stay, etc. (d = 213, k = 15)

Figure: Parameter Recovery and Support Recovery vs. Lasso



Summary
Part 1

Presented an analysis of sparse parameter recovery from
aggregated data, subject to:

empirical aggregation errors
additive noise

Application to healthcare
predictive modeling of CMS Medicare reimbursements
estimation of Texas state hospital charges

Manuscript includes additional discussion:
higher order moments
data aggregated as histograms



Part 2:

Learning a Linear model with

Aggregated Spatio-temporal Data



Images courtesy: Econintersect (BEA), NOAA, Blue Hill Observatory



Motivation

Aggregation often applied to time series, spatial data,
spatio-temporal data, . . .

Worse, aggregation periods may not be aligned or uniform1

ratio of government debt to GDP reported yearly
GDP growth rate reported quarterly
unemployment rate and in�ation rate reported monthly
interest rate, stock market indices and currency exchange rates
reported daily

1Bureau of Labor Statistics, Bureau of Economic Analysis



Main Contribution

Model estimation procedure in the frequency domain

avoids input data reconstruction

achieves provably bounded generalization error.

Problem Setup

Features x(t) = [x1(t), x2(t) · · ·xd(t)], targets y(t)

Weak Stationarity+

zero-mean E[y(t)] = 0.

�nite variance E[y(t)] <∞
autocorrelation function satis�es: E[y(t)y(t′)] = ρ(‖t− t′‖)

Same assumptions for x(t)
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Residual process

let εβ(t) = x(t)>β − y(t) be the residual error process of a
linear model

observe that εβ(t) is weakly stationary

Performance Evaluation

performance measure is the expected squared residual error

L(β) = E[|εβ(t)|2] = E[|x(t)>β − y(t)|2]

which is optimized as:

β∗ = arg min
β

L(β)
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Data aggregation in time series

non-aggregated feature X1

aggregated feature X1

non-aggregated feature X2

aggregated feature X2

non-aggregated feature X3

aggregated feature X3

non-aggregated target Y
aggregated target Y



Data aggregation in time series - II

each coordinate of the feature set is aggregated

xi[l] =
1

Ti

lTi/2∫
(l−1)Ti/2

xi(τ)dτ

similarly, the targets are aggregated

y[k] =
1

T

kT/2∫
(k−1)T/2

y(τ)dτ

for k, l ∈ Z = {· · · − 1, 0, 1, · · · }.



Aggregation: time and frequency domain
Fourier space captures global properties of the signal

In time domain, convolution with square wave + sampling

z(t)
convolution−−−−−−−→ sampling−−−−−−→ −→ z[k]

In frequency domain, multiplication with sinc function + sampling

Z(ω)
multiplication−−−−−−−−−→ sampling−−−−−−→ −→ Z(ω)



Restricted Fourier transform

For signal z(t), T -restricted Fourier Transform de�ned as:

ZT (ω) = FT [z](ω) =

∫ T

−T
z(t)e−ιωtdt

equivalent to a full Fourier Transform if the signal is
time-limited within (−T, T )

always exists �nitely if the signal z(t) is �nite



Time-limited data

in�nite time series data are not available, instead assume data
available between time intervals (−T0, T0)

we apply T0-restricted Fourier transforms computed from
time-limited data

assume time-restricted Fourier transform decay rapidly with
frequency e.g. autocorrelation function is a Schwartz
function (Terzio�glu, 1969)

thus, most of the signal power between frequencies (−ω0, ω0)



Proposed Algorithm



Step I

1 input parameters T0, ω0, D, aggregated data samples x[k],y[l]

2 sample D frequencies uniformly between (−ω0, ω0)

Ω = {ω1, ω2, · · ·ωD : ωi ∈ (−ω0.ω0)}

3 for each ω ∈ Ω, compute T0-restricted Fourier Transforms
XT0(ω),YT0(ω) from aggregated signals x[k],y[l]
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Step II

Recall: UT is Fourier transform of square wave

4 estimate non-aggregated Fourier transforms

X̂i,T0(ω) =
X̂i,T0(ω)

UTi(ω)
, υ̂T0(ω) =

YT0(ω)

UT (ω)

5 estimate parameter β̂ as:

β̂ = arg min
β

1

|Ω|
∑
ω∈Ω

E‖X̂T0(ω)>β − υ̂T0(ω)‖2
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Generalization Analysis



Main result I

Theorem (Bhowmik, Ghosh, and Koyejo (2017))

For every small ξ > 0, ∃ corresponding T0, D such that:

E
[
|x(t)>β̂ − y(t)|2

]
< (1 + ξ)

(
E
[
|x(t)>β∗ − y(t)|2

])
+ 2ξ

with probability at least 1− e−O(D2ξ2)

Thus, generalization error bounded with su�ciently large T0, D



Aliasing e�ects, non-uniform sampling

signals not bandlimited ⇒ Aliasing

errors minimum for frequencies around 0

=⇒

non-uniform sampling leads to further error

performance will depend on rapid decay of power spectral
density
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Main result II
Non-uniform aggregation, �nite samples

Theorem (Bhowmik, Ghosh, and Koyejo (2017))

Let ωi, ωy be the sampling rate for xi(t), y(t) respectively. Let

ωs = min{ωy, ω1, ω2, · · ·ωd}. Then, for small ξ > 0, ∃
corresponding T0, D such that:

E
[
|x(t)>β̂ − y(t)|2

]
<(1 + ξ)

(
E
[
|x(t)>β∗ − y(t)|2

])
+4ξ + 2e−O((ωs−2ω0)2)

with probability at least 1− e−O(D2ξ2) − e−O(N2ξ2)

Generalization error can be made small if T0, D are high, ω0 is small,

minimum sampling frequency ωs is high



Additional details

more detailed analysis (not shown) allows for more precise
error control

algorithm and analysis easily extend to multi-dimensional
indexes e.g. spatio-temporal data using the multi-dimensional
Fourier transform

number of frequency samples may depend exponentially on
index dimension (typically < 4)

extends to cases where aggregation and sampling period are
non-overlapping.

extends to sliding windows, weighted smoothing



Empirical Evaluation



Synthetic Data

Fig 1(a): No discrepancy Fig 1(b): Low discrepancy

performance on synthetic data with varying ω0, and increasing
sampling and aggregation discrepancy



Synthetic Data - II

Fig 1(c): Medium discrepancy Fig 1(d): High discrepancy

performance on synthetic data with varying ω0, and increasing
sampling and aggregation discrepancy



Las Rosas dataset

Regressing corn yield against nitrogen levels, topographical
properties, brightness value, etc.



UCI forest �res dataset

Regressing burned acreage against meteorological features, relative
humidity, ISI index, etc. on UCI Forest Fires Dataset



Comprehensive climate dataset (CCDS)

Regressing atmospheric vapor levels over continental United States
vs readings of carbon dioxide levels, methane, cloud cover, and

other extra-meteorological measurements



Conclusion
Part 2

proposed a novel procedure with bounded generalization error
for learning with aggregated data

signi�cant improvements vs reconstruction-based estimation.

Future work:

exploit frequency domain structure e.g. sparse spectrum to
improve estimates.

exploit generative structure e.g. sparse models to improve
estimates.
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Overall conclusion

It possible to learn provably accurate individual level models from
aggregated data in at least two cases

high dimensional linear model with group-wise IID data,
compressed sensing will recover sparse modela

spatiotemporal data with a linear model estimator, freq-domain
regression achieves strong generalization error guaranteesa

aunder certain conditions...



Future work

Can we learn from richer aggregate information?
c.f. distribution regression (Szabó et al., 2016; Bhowmik et al.,
2015)

What can we say about non-linear models?

Can we design aggregation that makes learning easier?
Related to su�cient statistics, sketching

Can we design aggregation that makes learning harder?
Related to preserving privacy
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Thank You!

Bhowmik, A., Ghosh, J. and Koyejo, O. Frequency Domain Predictive

Modeling with Aggregated Data, AISTATS 2017.
Bhowmik, A., Ghosh, J. and Koyejo, O. Sparse Parameter Recovery from

Aggregated Data, ICML 2016.

Bhowmik, A., Ghosh, J. and Koyejo, O. Generalized linear models for

aggregated data. AISTATS 2015.

sanmi@illinois.edu
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