Beyond Accuracy: Scalable Classification with Complex Metrics

Sanmi Koyejo

University of Illinois at Urbana-Champaign

Joint work with

B. Yan @UT Austin

K. Zhong @UT Austin P. Ravikumar @CMU

N. Natarajan @MSR India

I. Dhillon @UT Austin

Binary classification

- Perhaps the classic problem in machine learning
- Often a subroutine in more complex problems e.g. multiclass / multilabel classification

Formally:

- Let $Y \in \{0,1\}$ denote labels, $X \in \mathcal{X}$ denote instances
- Find classifier $\theta: \mathcal{X} \mapsto \{0,1\}$, using training samples $\mathcal{D}_n = \{X_i, Y_i\}_{i=1}^n$
- Classifier is selected from the function class \mathcal{F} e.g. linear functions, neural networks . . .

Binary classification

- Perhaps the classic problem in machine learning
- Often a subroutine in more complex problems e.g. multiclass / multilabel classification

Formally:

- Let $Y \in \{0,1\}$ denote labels, $X \in \mathcal{X}$ denote instances
- Find classifier $\theta: \mathcal{X} \mapsto \{0,1\}$, using training samples $\mathcal{D}_n = \{X_i,Y_i\}_{i=1}^n$
- Classifier is selected from the function class \mathcal{F} e.g. linear functions, neural networks . . .

Completed • Swag

Dogs vs. Cats

Wed 25 Sep 2013 - Sat 1 Feb 2014 (2 years ago)



Create an algorithm to distinguish dogs from cats

In this competition, you'll write an algorithm to classify whether images contain either a dog or a cat. This is easy for humans, dogs, and cats. Your computer will find it a bit more difficult.

We can learn a classifier that makes no mistakes when:

- we have sufficient data
- function class is sufficiently flexible,
- there is no noise i.e. the *true* mapping between X and Y is deterministic

In practice:

- data are limited
- we don't want function classes that are too flexible c.f. overfitting, bias vs. variance tradeoff
- real-world uncertainty e.g. hidden variables, measurement error.

Thus in most realistic scenarios, all classifiers will eventually make mistakes!

We can learn a classifier that makes no mistakes when:

- we have sufficient data
- function class is sufficiently flexible,
- ullet there is no noise i.e. the *true* mapping between X and Y is deterministic

In practice:

- data are limited
- we don't want function classes that are too flexible c.f. overfitting, bias vs. variance tradeoff
- real-world uncertainty e.g. hidden variables, measurement error.

Thus in most realistic scenarios, all classifiers will eventually make mistakes!

We can learn a classifier that makes no mistakes when:

- we have sufficient data
- function class is sufficiently flexible,
- there is no noise i.e. the true mapping between X and Y is deterministic

In practice:

- data are limited
- we don't want function classes that are too flexible c.f. overfitting, bias vs. variance tradeoff
- real-world uncertainty e.g. hidden variables, measurement error.

Thus in most realistic scenarios, all classifiers will eventually make mistakes!

Which kinds of mistakes are (more) acceptable?

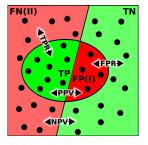
Which kinds of mistakes are (more) acceptable?

Case Study

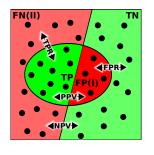
A medical test determines that a patient has a 30% chance of having a fatal disease. Should the doctor treat the patient?

- choosing to treat a healthy patient (false positive) increases risk of side effects.
- choosing not to treat a sick patient (false negative) could lead to serious issues.

The confusion matrix C summarizes classifier mistakes



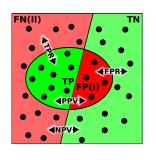
The confusion matrix C summarizes classifier mistakes



Let $X,Y\sim P$

	Y = 1	Y = 0
heta=1	TP $P(Y = 1, \theta = 1)$	FP $P(Y = 0, \theta = 1)$
$\theta = 0$	FN P(Y = 1, $ heta$ = 0)	TN $P(Y=0, \theta=0)$

The confusion matrix C summarizes classifier mistakes



Let $X, Y \sim P$

	Y = 1	Y = 0
$\theta=1$	TP $P(Y = 1, \theta = 1)$	FP $P(Y = 0, \theta = 1)$
heta=0	FN P(Y = 1, $ heta$ $=$ 0)	TN $P(Y=0, \theta=0)$

• we can approximate the confusion using finite samples e.g.

$$\widehat{\mathsf{TP}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[y_i = 1, \; \theta(x_i) = 1]}, \; \widehat{\mathsf{FP}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[y_i = 0, \; \theta(x_i) = 1]}.$$

Now we may express tradeoffs via a metric $\Phi:[0,1]^4\mapsto\mathbb{R}$

Examples

- Accuracy (fraction of mistakes) = TP + TN
- Error Rate = 1-Accuracy = FP + FN
- For medical diagnosis example, consider the weighted error = $w_1 {\rm FP} + w_2 {\rm FN},$ where $w_2 \gg w_1$

and many more . . .

$$\begin{aligned} \text{Recall} &= \frac{\text{TP}}{\text{TP} + \text{FN}}, \qquad F_{\beta} &= \frac{(1+\beta^2)\text{TP}}{(1+\beta^2)\text{TP} + \beta^2\text{FN} + \text{FP}}, \\ \text{Precision} &= \frac{\text{TP}}{\text{TP} + \text{FP}}, \qquad \qquad \text{Jaccard} &= \frac{\text{TP}}{\text{TP} + \text{FN} + \text{FP}}. \end{aligned}$$

Now we may express tradeoffs via a metric $\Phi:[0,1]^4\mapsto\mathbb{R}$

Examples

- Accuracy (fraction of mistakes) = TP + TN
- Error Rate = 1-Accuracy = FP + FN
- For medical diagnosis example, consider the weighted error = $w_1 {\rm FP} + w_2 {\rm FN},$ where $w_2 \gg w_1$

and many more . . .

Recall =
$$\frac{\text{TP}}{\text{TP} + \text{FN}}$$
, $F_{\beta} = \frac{(1 + \beta^2)\text{TP}}{(1 + \beta^2)\text{TP} + \beta^2\text{FN} + \text{FP}}$.

Precision = $\frac{\text{TP}}{\text{TP} + \text{FP}}$, Jaccard = $\frac{\text{TP}}{\text{TP} + \text{FN} + \text{FP}}$.

Now we may express tradeoffs via a metric $\mathbf{\Phi}:[0,1]^4\mapsto\mathbb{R}$

Examples

- Accuracy (fraction of mistakes) = TP + TN
- Error Rate = 1-Accuracy = FP + FN
- \bullet For medical diagnosis example, consider the weighted error = $w_1 {\rm FP} + w_2 {\rm FN},$ where $w_2 \gg w_1$

and many more . . .

$$\begin{aligned} \text{Recall} &= \frac{\text{TP}}{\text{TP} + \text{FN}}, \qquad F_{\beta} &= \frac{(1 + \beta^2)\text{TP}}{(1 + \beta^2)\text{TP} + \beta^2\text{FN} + \text{FP}} \\ \text{Precision} &= \frac{\text{TP}}{\text{TP} + \text{FP}}, \qquad \qquad \text{Jaccard} &= \frac{\text{TP}}{\text{TP} + \text{FN} + \text{FP}} \end{aligned}$$

Now we may express tradeoffs via a metric $\mathbf{\Phi}:[0,1]^4\mapsto\mathbb{R}$

Examples

- Accuracy (fraction of mistakes) = TP + TN
- Error Rate = 1-Accuracy = FP + FN
- \bullet For medical diagnosis example, consider the weighted error = $w_1 {\rm FP} + w_2 {\rm FN},$ where $w_2 \gg w_1$

and many more ...

$$\begin{split} \text{Recall} &= \frac{\text{TP}}{\text{TP} + \text{FN}}, \qquad F_{\beta} = \frac{(1+\beta^2)\text{TP}}{(1+\beta^2)\text{TP} + \beta^2\text{FN} + \text{FP}}, \\ \text{Precision} &= \frac{\text{TP}}{\text{TP} + \text{FP}}, \qquad \qquad \text{Jaccard} = \frac{\text{TP}}{\text{TP} + \text{FN} + \text{FP}}. \end{split}$$

Utility & Regret

- performance is measured via utility $\mathcal{U}(\theta, P) = \Phi(\mathbf{C})$
- ullet we seek a classifier that maximizes this utility within some function class ${\cal F}$

The Bayes optimal classifier, when it exists, is given by:

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \mathcal{U}(\theta, P), \ \ \text{where} \ \Theta = \{f: \mathcal{X} \mapsto \{0, 1\}\}$$

The regret of the classifier θ is given by:

$$\mathcal{R}(\theta, P) = \mathcal{U}(\theta^*, P) - \mathcal{U}(\theta, P)$$

Utility & Regret

- performance is measured via utility $\mathcal{U}(\theta, P) = \Phi(\mathbf{C})$
- ullet we seek a classifier that maximizes this utility within some function class ${\cal F}$

The Bayes optimal classifier, when it exists, is given by:

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \mathcal{U}(\theta, P), \ \text{ where } \Theta = \{f : \mathcal{X} \mapsto \{0, 1\}\}$$

The regret of the classifier θ is given by:

$$\mathcal{R}(\theta, P) = \mathcal{U}(\theta^*, P) - \mathcal{U}(\theta, P)$$

Utility & Regret

- performance is measured via utility $\mathcal{U}(\theta, P) = \Phi(\mathbf{C})$
- ullet we seek a classifier that maximizes this utility within some function class ${\cal F}$

The Bayes optimal classifier, when it exists, is given by:

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \mathcal{U}(\theta, P), \text{ where } \Theta = \{f : \mathcal{X} \mapsto \{0, 1\}\}$$

The regret of the classifier θ is given by:

$$\mathcal{R}(\theta, P) = \mathcal{U}(\theta^*, P) - \mathcal{U}(\theta, P)$$

Towards analysis of the classification procedure

- In practice P(X,Y) is unknown, instead we observe $\mathcal{D}_n = \{(X_i,Y_i) \sim P\}_{i=1}^n$
- ullet The classification $\emph{procedure}$ estimates a classifier $heta_n | \mathcal{D}_n$

Example

Empirical risk minimization via SVM:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{\{x_i, y_i\} \in \mathcal{D}_n} \max(0, 1 - y_i f(x_i))$$
$$\theta_n = \operatorname{sign}(f^*)$$

Towards analysis of the classification procedure

- In practice P(X,Y) is unknown, instead we observe $\mathcal{D}_n = \{(X_i,Y_i) \sim P\}_{i=1}^n$
- ullet The classification $\emph{procedure}$ estimates a classifier $heta_n ig| \mathcal{D}_n$

Example

Empirical risk minimization via SVM:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{\{x_i, y_i\} \in \mathcal{D}_n} \max(0, 1 - y_i f(x_i))$$
$$\theta_n = \operatorname{sign}(f^*)$$

Towards analysis of the classification procedure

- In practice P(X,Y) is unknown, instead we observe $\mathcal{D}_n = \{(X_i,Y_i) \sim P\}_{i=1}^n$
- ullet The classification $\emph{procedure}$ estimates a classifier $heta_n ig| \mathcal{D}_n$

Example

Empirical risk minimization via SVM:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{\{x_i, y_i\} \in \mathcal{D}_n} \max(0, 1 - y_i f(x_i))$$
$$\theta_n = \operatorname{sign}(f^*)$$

Consistency

Consider the sequence of classifiers $\{\theta_n(x), n \to \infty\}$

A classification procedure is consistent when $\mathcal{R}(\theta_n, P) \xrightarrow{n \to \infty} 0$ i.e. the procedure eventually estimates the Bayes optimal classifier

Consistency is a desirable property:

- implies stability of the classification procedure, related to generalization ability
- interestingly, seeking consistent classifiers is often easier than direct optimization!

Consistency

Consider the sequence of classifiers $\{\theta_n(x), n \to \infty\}$

A classification procedure is consistent when $\mathcal{R}(\theta_n, P) \xrightarrow{n \to \infty} 0$ i.e. the procedure eventually estimates the Bayes optimal classifier

Consistency is a desirable property:

- implies stability of the classification procedure, related to generalization ability
- interestingly, seeking consistent classifiers is often easier than direct optimization!

Optimal classification for Decomposable Metrics

Consider the empirical accuracy:

$$\mathsf{ACC}(\theta, \mathcal{D}_n) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}_n} \mathbf{1}_{[y_i = \theta(x_i)]}$$

Observe that the classification problem

$$\min_{\theta \in \mathcal{F}} \mathsf{ACC}(\theta, \mathcal{D}_n)$$

is a combinatorial optimization problem

• optimal classification is NP-hard for non-trivial \mathcal{F} and \mathcal{D}_n .

Consider the empirical accuracy:

$$\mathsf{ACC}(\theta, \mathcal{D}_n) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}_n} \mathbf{1}_{[y_i = \theta(x_i)]}$$

Observe that the classification problem

$$\min_{\theta \in \mathcal{F}} \mathsf{ACC}(\theta, \mathcal{D}_n)$$

is a combinatorial optimization problem

• optimal classification is NP-hard for non-trivial \mathcal{F} and \mathcal{D}_n .

Bayes Optimal Classifier

Population Accuracy

$$\mathbb{E}_{X,Y \sim P} \left[\mathbf{1}_{[Y=\theta(X)]} \right] = P(Y = \theta(X))$$

 \bullet Easy to show that $\theta^*(x) = \mathrm{sign}\left(P(Y=1|x) - \frac{1}{2}\right)$

Weighted Accuracy

$$E_{X,Y \sim P} \left[(1 - \rho) \mathbf{1}_{[Y = \theta(X) = 1]} + \rho \mathbf{1}_{[Y = \theta(X) = 0]} \right]$$

= $(1 - \rho)P(Y = \theta(X) = 1) + \rho P(Y = \theta(X) = 0)$

• Scott (2012) showed that $\theta^*(\mathbf{x}) = \text{sign} (P(Y=1|\mathbf{x}) - \rho)$

Bayes Optimal Classifier

Population Accuracy

$$\mathbb{E}_{X,Y \sim P} \left[\mathbb{1}_{[Y=\theta(X)]} \right] = P(Y=\theta(X))$$

 \bullet Easy to show that $\theta^*(x) = \mathrm{sign}\left(P(Y=1|x) - \frac{1}{2}\right)$

Weighted Accuracy

$$E_{X,Y \sim P} \left[(1 - \rho) \mathbf{1}_{[Y = \theta(X) = 1]} + \rho \mathbf{1}_{[Y = \theta(X) = 0]} \right]$$

= $(1 - \rho)P(Y = \theta(X) = 1) + \rho P(Y = \theta(X) = 0)$

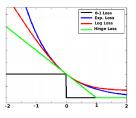
• Scott (2012) showed that $\theta^*(\mathbf{x}) = \text{sign}\left(P(Y=1|\mathbf{x}) - \rho\right)$

Where do surrogates come from?

Observe that there is no need to estimate P, instead optimize any surrogate loss function $L(\theta, \mathcal{D}_n)$ where:

$$\theta_n = \operatorname{sign}\left(\underset{f}{\operatorname{argmin}} L(f, \mathcal{D}_n)\right) \xrightarrow{n \to \infty} \theta^*(x)$$

- These are known as classification calibrated surrogate losses (Bartlett et al., 2003; Scott, 2012)
- research can focus on how to choose L, F which improve efficiency, sample complexity, robustness . . .
- surrogates are often chosen to be convex e.g. hinge loss, logistic loss

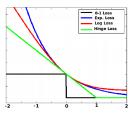


Where do surrogates come from?

Observe that there is no need to estimate P, instead optimize any surrogate loss function $L(\theta, \mathcal{D}_n)$ where:

$$\theta_n = \operatorname{sign}\left(\underset{f}{\operatorname{argmin}} L(f, \mathcal{D}_n)\right) \xrightarrow{n \to \infty} \theta^*(x)$$

- These are known as classification calibrated surrogate losses (Bartlett et al., 2003; Scott, 2012)
- research can focus on how to choose L, \mathcal{F} which improve efficiency, sample complexity, robustness . . .
- surrogates are often chosen to be convex
 e.g. hinge loss, logistic loss

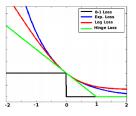


Where do surrogates come from?

Observe that there is no need to estimate P, instead optimize any surrogate loss function $L(\theta, \mathcal{D}_n)$ where:

$$\theta_n = \operatorname{sign}\left(\underset{f}{\operatorname{argmin}} L(f, \mathcal{D}_n)\right) \xrightarrow{n \to \infty} \theta^*(x)$$

- These are known as classification calibrated surrogate losses (Bartlett et al., 2003; Scott, 2012)
- research can focus on how to choose L, \mathcal{F} which improve efficiency, sample complexity, robustness . . .
- surrogates are often chosen to be convex
 e.g. hinge loss, logistic loss



Non-decomposability

- A common theme so far is *decomposability* i.e. linearity wrt. confusion matrix $\Phi(\theta, \mathbf{C}) = \langle \mathbf{A}, \mathbf{C} \rangle$
- F_{β} , Jaccard, AUC and other common utility functions are non-decomposable i.e. non-linear wrt. C

Question

Is decomposability necessary for the optimal classifier to be *simple* i.e. a pointwise thresholding?

No! counter-examples include F_{β} (Ye et al., 2012), Fractional-linear (Koyejo et al., 2014), Monotonic metrics (Narasimhan et al., 2014), min-max metric (Poor, 2013)

Non-decomposability

- A common theme so far is *decomposability* i.e. linearity wrt. confusion matrix $\Phi(\theta, \mathbf{C}) = \langle \mathbf{A}, \mathbf{C} \rangle$
- F_{β} , Jaccard, AUC and other common utility functions are non-decomposable i.e. non-linear wrt. C

Question

Is decomposability necessary for the optimal classifier to be *simple* i.e. a pointwise thresholding?

No! counter-examples include F_{β} (Ye et al., 2012), Fractional-linear (Koyejo et al., 2014), Monotonic metrics (Narasimhan et al., 2014), min-max metric (Poor, 2013)

Non-decomposability

- A common theme so far is *decomposability* i.e. linearity wrt. confusion matrix $\Phi(\theta, \mathbf{C}) = \langle \mathbf{A}, \mathbf{C} \rangle$
- F_{β} , Jaccard, AUC and other common utility functions are non-decomposable i.e. non-linear wrt. C

Question

Is decomposability necessary for the optimal classifier to be *simple* i.e. a pointwise thresholding?

No! counter-examples include F_{β} (Ye et al., 2012), Fractional-linear (Koyejo et al., 2014), Monotonic metrics (Narasimhan et al., 2014), min-max metric (Poor, 2013)

Optimal classification for Non-decomposable Metrics

The unreasonable effectiveness of thresholding

Some notation:
$$\eta_x = P(Y = 1 | X = x), \ \pi = P(Y = 1)$$

Theorem (Koyejo et al., 2014; Narasimhan et al., 2014; Yan et al., 2016)

Let \mathcal{U} be either:

- ① fractional-linear i.e. $\Phi(\mathbf{C}) = \frac{\langle \mathbf{A}, \mathbf{C} \rangle}{\langle \mathbf{B}, \mathbf{C} \rangle}$
- ② or differentiable and monotonically increasing wrt. TP and TN then \exists an oracle δ^* s.t. if $P(\eta_x = \delta^*) = 0$, the Bayes optimal classifier satisfies:

$$\theta^*(x) = \operatorname{sign}(\eta_x - \delta^*)$$
 a.e.

condition $P(n_x = \delta^*) = 0$ is easily satisfied e.g. when P(X) is continuous.

The unreasonable effectiveness of thresholding

Some notation: $\eta_x = P(Y = 1 | X = x), \ \pi = P(Y = 1)$

Theorem (Koyejo et al., 2014; Narasimhan et al., 2014; Yan et al., 2016)

Let \mathcal{U} be either:

- **1** fractional-linear i.e. $\Phi(\mathbf{C}) = \frac{\langle \mathbf{A}, \mathbf{C} \rangle}{\langle \mathbf{B}, \mathbf{C} \rangle}$
- ② or differentiable and monotonically increasing wrt. TP and TN then \exists an oracle δ^* s.t. if $P(\eta_x = \delta^*) = 0$, the Bayes optimal classifier satisfies:

$$\theta^*(x) = \operatorname{sign}(\eta_x - \delta^*)$$
 a.e.

condition $P(\eta_x = \delta^*) = 0$ is easily satisfied e.g. when P(X) is continuous.

Proof Sketch

Consider the relaxed problem:

$$\theta_{\mathcal{F}}^* = \operatorname*{argmax}_{\theta \in \mathcal{F}} \mathcal{U}(\theta, \mathcal{P})$$

where
$$\mathcal{F} = \{f \,|\, f: \mathcal{X} \mapsto [0,1]\}$$

- Show that the optimal "relaxed" classifier is $\theta_{\mathcal{F}}^* = \operatorname{sign}(\eta_x \delta^*)$
- Observe that $\Theta \subset \mathcal{F}$. Thus $\mathcal{U}(\theta_{\mathcal{F}}^*, \mathcal{P}) \geq \mathcal{U}(\theta_{\Theta}^*, \mathcal{P})$.
- As a result, $\theta_{\mathcal{F}}^* \in \Theta$ implies that $\theta_{\mathcal{F}}^* \equiv \theta_{\Theta}^*$.

Proof Sketch

Consider the relaxed problem:

$$\theta_{\mathcal{F}}^* = \underset{\theta \in \mathcal{F}}{\operatorname{argmax}} \ \mathcal{U}(\theta, \mathcal{P})$$

where
$$\mathcal{F} = \{ f \mid f : \mathcal{X} \mapsto [0, 1] \}$$

- Show that the optimal "relaxed" classifier is $\theta_{\mathcal{F}}^* = \operatorname{sign}(\eta_x \delta^*)$
- Observe that $\Theta \subset \mathcal{F}$. Thus $\mathcal{U}(\theta_{\mathcal{F}}^*, \mathcal{P}) \geq \mathcal{U}(\theta_{\Theta}^*, \mathcal{P})$.
- As a result, $\theta_{\mathcal{F}}^* \in \Theta$ implies that $\theta_{\mathcal{F}}^* \equiv \theta_{\Theta}^*$.

Proof Sketch

Consider the relaxed problem:

$$\theta_{\mathcal{F}}^* = \underset{\theta \in \mathcal{F}}{\operatorname{argmax}} \ \mathcal{U}(\theta, \mathcal{P})$$

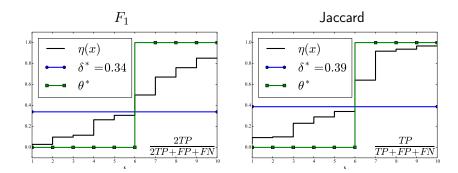
where
$$\mathcal{F} = \{ f \mid f : \mathcal{X} \mapsto [0, 1] \}$$

- Show that the optimal "relaxed" classifier is $\theta_{\mathcal{F}}^* = \operatorname{sign}(\eta_x \delta^*)$
- Observe that $\Theta \subset \mathcal{F}$. Thus $\mathcal{U}(\theta_{\mathcal{F}}^*, \mathcal{P}) \geq \mathcal{U}(\theta_{\Theta}^*, \mathcal{P})$.
- As a result, $\theta_{\mathcal{F}}^* \in \Theta$ implies that $\theta_{\mathcal{F}}^* \equiv \theta_{\Theta}^*$.

Some recovered and new results

METRIC	FORM	OPTIMAL THRESHOLD	
F_eta	$\frac{(1+\beta^2)TP}{(1+\beta^2)TP+\beta^2FN+FP}$	$\delta^* = \frac{\mathcal{L}^*}{1 + \beta^2}$	
Cost-sensitive learning	$c_0 + c_1 TP + c_2 \gamma(heta)$	$\delta^* = -\frac{c_2}{c_1}$	
Precision	$\frac{TP}{TP+FP}$	$\delta^* = \mathcal{L}^*$	
Recall	$\frac{TP}{TP+FN}$	$\delta^* = 0$	
Weighted Accuracy	$\frac{2(TP+TN)}{2(TP+TN)+FP+FN}$	$\delta^* = rac{1}{2}$	
Jaccard Coefficient	$\frac{TP}{TP+FP+FN}$	$\delta^* = rac{\mathcal{L}^*}{1+\mathcal{L}^*}$	

Simulated examples



ullet Finite sample space \mathcal{X} , so we can exhaustively search for θ^*

Empirical estimation via threshold search

Step 1

• Option 1: estimate for $\hat{\eta}_x$ via. proper loss (Reid and Williamson, 2010), then

$$\hat{\theta}_{\delta}(x) = \operatorname{sign}(\hat{\eta}_x - \delta)$$

• Option 2: For classification-calibrated loss (Scott, 2012)

$$\hat{f}_{\delta} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{x_i, y_i \in \mathcal{D}_n} \ell_{\delta}(f(x_i), y_i)$$

consistently estimates $\hat{\theta}_{\delta}(x) = \mathrm{sign}(\hat{f}_{\delta}(x))$

Step 2

 $\max_{\delta} \mathcal{U}(\hat{\theta}_{\delta}, \mathcal{D}_n)$ is one dimensional, efficiently computable using exhaustive search (Sergeyev, 1998).

Empirical estimation via threshold search

Step 1

• Option 1: estimate for $\hat{\eta}_x$ via. proper loss (Reid and Williamson, 2010), then

$$\hat{\theta}_{\delta}(x) = \operatorname{sign}(\hat{\eta}_x - \delta)$$

• Option 2: For classification-calibrated loss (Scott, 2012)

$$\hat{f}_{\delta} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{x_i, y_i \in \mathcal{D}_n} \ell_{\delta}(f(x_i), y_i)$$

consistently estimates $\hat{\theta}_{\delta}(x) = \operatorname{sign}(\hat{f}_{\delta}(x))$

Step 2

 $\max_{\delta} \mathcal{U}(\hat{\theta}_{\delta}, \mathcal{D}_n)$ is one dimensional, efficiently computable using exhaustive search (Sergeyev, 1998).

Consistency

Threshold search is consistent (Koyejo et al., 2014)

$$\mathcal{R}(\hat{\theta}_{\delta}, P) \xrightarrow{n \to \infty} 0$$

- Threshold search is $\mathcal{O}(n^2)$ with naïve implementation, $\mathcal{O}(n \log n)$ by pre-sorting $\hat{\eta}_x$, difficult analyze convergence.
- Cutting plane surrogate methods (Joachims, 2005) may have exponential complexity, and limited statistical guarantees.

Motivating questions

- Can we improve on the computational complexity of threshold search?
- What is the convergence rate of the resulting procedure?

Consistency

Threshold search is consistent (Koyejo et al., 2014)

$$\mathcal{R}(\hat{\theta}_{\delta}, P) \xrightarrow{n \to \infty} 0$$

- Threshold search is $\mathcal{O}(n^2)$ with naïve implementation, $\mathcal{O}(n \log n)$ by pre-sorting $\hat{\eta}_x$, difficult analyze convergence.
- Cutting plane surrogate methods (Joachims, 2005) may have exponential complexity, and limited statistical guarantees.

Motivating questions

- Can we improve on the computational complexity of threshold search?
- What is the convergence rate of the resulting procedure?

Consistency

Threshold search is consistent (Koyejo et al., 2014)

$$\mathcal{R}(\hat{\theta}_{\delta}, P) \xrightarrow{n \to \infty} 0$$

- Threshold search is $\mathcal{O}(n^2)$ with naïve implementation, $\mathcal{O}(n \log n)$ by pre-sorting $\hat{\eta}_x$, difficult analyze convergence.
- Cutting plane surrogate methods (Joachims, 2005) may have exponential complexity, and limited statistical guarantees.

Motivating questions

- Can we improve on the computational complexity of threshold search?
- What is the convergence rate of the resulting procedure?

Scaling up Classification with Complex Metrics

Additional properties of ${\cal U}$

Informal theorem (Yan et al., 2016)

Suppose \mathcal{U} is fractional-linear or monotonic, under weak conditions^a on P:

- $\mathcal{U}(\theta_{\delta}, P)$ is differentiable wrt δ
- $\mathcal{U}(\theta_{\delta}, P)$ is Lipschitz wrt δ
- $\mathcal{U}(\theta_{\delta}, P)$ is strictly locally quasi-concave wrt δ

 $^{^{\}text{a}}\eta_{x}$ is differentiable wrt x, and its characteristic function is absolutely integrable

Algorithms

Normalized Gradient Descent (Hazan et al., 2015)

Fix $\epsilon>0$, let f be strictly locally quasi-concave, and $x^*\in \operatorname{argmin} f(x)$. NGD algorithm with number of iterations $T\geq \kappa^2\|x_1-x^*\|^2/\epsilon^2$ and step size $\eta=\epsilon/\kappa$ achieves $f(\bar{x}_T)-f(x^*)\leq \epsilon$.

Batch Algorithm

- Estimate $\hat{\eta}_x$ via. proper loss (Reid and Williamson, 2010)
- **2** Solve $\max_{\delta} \mathcal{U}(\hat{\theta}_{\delta}, \mathcal{D}_n)$ using normalized gradient ascent

Online Algorithm

Interleave $\hat{\eta_t}$ update and $\hat{\delta_t}$ update

Batch Algorithm

With appropriately chosen step size, $\mathcal{R}(\hat{ heta}_{\hat{\delta}},\mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$

Comparison to threshold search

- complexity of NGD is $O(nt) = O(n/\epsilon^2)$, where t is the number of iterations and ϵ is the precision of the solution
- when $\log n \ge 1/\epsilon^2$, the batch algorithm has favorable computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by $r_t = \int |\eta_t - \eta| d\mu$, with appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\delta_t}, \mathcal{P}) \leq \frac{C \sum_{i=1}^t r_i}{t}$

Batch Algorithm

With appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\hat{\delta}}, \mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$

Comparison to threshold search

- complexity of NGD is $O(nt) = O(n/\epsilon^2)$, where t is the number of iterations and ϵ is the precision of the solution
- when $\log n \ge 1/\epsilon^2$, the batch algorithm has favorable computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by $r_t = \int |\eta_t - \eta| d\mu$, with appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\delta_t}, \mathcal{P}) \leq \frac{C \sum_{i=1}^t r_i}{t}$

Batch Algorithm

With appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\hat{\delta}}, \mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$

Comparison to threshold search

- complexity of NGD is $O(nt) = O(n/\epsilon^2)$, where t is the number of iterations and ϵ is the precision of the solution
- when $\log n \ge 1/\epsilon^2$, the batch algorithm has favorable computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by $r_t = \int |\eta_t - \eta| d\mu$, with appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\delta_t}, \mathcal{P}) \leq \frac{C \sum_{i=1}^t r_i}{t}$

Batch Algorithm

With appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\hat{\delta}}, \mathcal{P}) \leq C \int |\hat{\eta} - \eta| d\mu$

Comparison to threshold search

- complexity of NGD is $O(nt) = O(n/\epsilon^2)$, where t is the number of iterations and ϵ is the precision of the solution
- when $\log n \ge 1/\epsilon^2$, the batch algorithm has favorable computational complexity vs. threshold search

Online Algorithm

Let η estimation error at step t given by $r_t = \int |\eta_t - \eta| d\mu$, with appropriately chosen step size, $\mathcal{R}(\hat{\theta}_{\delta_t}, \mathcal{P}) \leq \frac{C\sum_{i=1}^t r_i}{t}$

Examples

Ordinary logistic regression

Sample complexity of ordinary logistic regression is $O(\frac{1}{\sqrt{n}})$. Thus, batch algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Regularized logistic regression

Consider high dimensional $(p\gg n)$ regularized M-estimation (Negahban et al., 2009). Under regularity conditions, the ℓ_2 estimation error is upper bounded by $O\left(\frac{s\log p}{n}\right)$. Thus, batch algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Online algorithm

Parameter converges at rate $O(\frac{1}{\sqrt{n}})$ by averaged stochastic gradient algorithm (Bach, 2014). Thus, online algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Examples

Ordinary logistic regression

Sample complexity of ordinary logistic regression is $O(\frac{1}{\sqrt{n}})$. Thus, batch algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Regularized logistic regression

Consider high dimensional $(p\gg n)$ regularized M-estimation (Negahban et al., 2009). Under regularity conditions, the ℓ_2 estimation error is upper bounded by $O\left(\frac{s\log p}{n}\right)$. Thus, batch algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Online algorithm

Parameter converges at rate $O(\frac{1}{\sqrt{n}})$ by averaged stochastic gradient algorithm (Bach, 2014). Thus, online algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Examples

Ordinary logistic regression

Sample complexity of ordinary logistic regression is $O(\frac{1}{\sqrt{n}})$. Thus, batch algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Regularized logistic regression

Consider high dimensional $(p\gg n)$ regularized M-estimation (Negahban et al., 2009). Under regularity conditions, the ℓ_2 estimation error is upper bounded by $O\left(\frac{s\log p}{n}\right)$. Thus, batch algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Online algorithm

Parameter converges at rate $O(\frac{1}{\sqrt{n}})$ by averaged stochastic gradient algorithm (Bach, 2014). Thus, online algorithm achieves $O(\frac{1}{\sqrt{n}})$ regret.

Empirical Evaluation

Datasets

datasets	default	news20	rcv1	epsilon	kdda	kddb
# features	25	1,355,191	47,236	2,000	20,216,830	29,890,095
# test	9,000	4,996	677,399	100,000	510,302	748,401
# train	21,000	15,000	20,242	400,000	8,407,752	19,264,097
%pos	22%	67%	52%	50%	85%	86%

- ullet η estimation: logistic regression and boosting tree
- Baselines: threshold search (Koyejo et al., 2014), SVM^{perf} and STAMP/SPADE (Narasimhan et al., 2015)

Batch algorithm

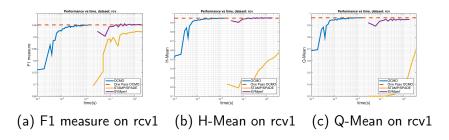
Data set/Metric	LR+Plug-in	LR+Batch	XGB+Plug-in	XGB+Batch
news20-Q-Mean	0.948 (3.77s)	0.948 (0.001s)	0.874 (3.87s)	0.875 (0.003s)
news20-H-Mean news20-F1	0.950 (3.70s) 0.949 (3.49s)	0.950 (0.003s) 0.948 (0.01s)	0.859 (3.61s) 0.872 (5.07s)	0.860 (0.003s) 0.874 (0.01s)
default-Q-Mean	0.664 (14.3s)	0.667 (0.19s)	0.688 (13.7s)	0.701 (0.22s)
default-H-Mean	0.665 (12.1s)	0.668 (0.17s)	0.693 (12.4s)	0.708 (0.18s)
default-F1	0.503 (14.2s)	0.497 (0.19s)	0.538 (16.2s)	0.538 (0.15s)

Online Complex Metric Optimization (OCMO)

Metric	Algorithm	RCV1	Epsilon	KDD-A	KDD-B
F1	ОСМО	0.952 (0.01s)	0.804 (4.87s)	0.934 (2.43s)	0.941 (5.01s)
	sTAMP	0.923 (14.44s)	0.585 (133.23s)	-	-
	SVM^{perf}	0.953 (1.72s)	0.872 (20.39s)	-	-
H-Mean	OCMO	0.964 (0.02s)	0.891 (4.85s)	0.764 (2.5s)	0.733 (5.16s)
	sPADE	0.580 (15.74s)	0.578 (135.26s)	-	-
	SVM^{perf}	0.953 (1.72s)	0.872 (20.39s)	-	-
Q-Mean	OCMO	0.964 (0.01s)	0.889 (4.87s)	0.551 (2.11s)	0.506 (4.27s)
	sPADE	0.688 (15.83s)	0.632 (136.46s)	-	-
	SVM^{perf}	0.950 (1.72s)	0.872 (20.39s)	-	-

^{&#}x27;-' means the corresponding algorithm does not terminate within 100x that of OCMO.

Performance vs run time for various online algorithms



Conclusion

- Optimal classifiers for a large family of binary metrics have a simple threshold form $\mathrm{sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?
- Can we construct surrogate loss functions i.e. which avoid estimating P(Y=1|X)?

- Optimal classifiers for a large family of binary metrics have a simple threshold form $\mathrm{sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?
- Can we construct surrogate loss functions i.e. which avoid estimating P(Y=1|X)?

- Optimal classifiers for a large family of binary metrics have a simple threshold form $\mathrm{sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?
- Can we construct surrogate loss functions i.e. which avoid estimating P(Y=1|X)?

- Optimal classifiers for a large family of binary metrics have a simple threshold form $\mathrm{sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?
- Can we construct surrogate loss functions i.e. which avoid estimating P(Y=1|X)?

- Optimal classifiers for a large family of binary metrics have a simple threshold form $\mathrm{sign}(P(Y=1|X)-\delta)$
- Proposed scalable algorithms for consistent estimation

- Can we elucidate utility functions from feedback?
- Can we characterize the entire family of utility metrics with thresholded optimal decision functions?
- Can we construct surrogate loss functions i.e. which avoid estimating P(Y=1|X)?

Questions?

sanmi@illinois.edu

References

References I

- Francis R Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. *Journal of Machine Learning Research*, 15(1):595–627, 2014.
- Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Large margin classifiers: Convex loss, low noise, and convergence rates. In NIPS, pages 1173–1180, 2003.
- Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex optimization. In *Advances in Neural Information Processing Systems*, pages 1585–1593, 2015.
- Thorsten Joachims. A support vector method for multivariate performance measures. In *Proceedings of the 22nd international conference on Machine learning*, pages 377–384. ACM, 2005.
- Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S Dhillon. Consistent binary classification with generalized performance metrics. In Advances in Neural Information Processing Systems, pages 2744–2752, 2014.
- Harikrishna Narasimhan, Rohit Vaish, and Shivani Agarwal. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In Advances in Neural Information Processing Systems, pages 1493–1501, 2014.
- Harikrishna Narasimhan, Purushottam Kar, and Prateek Jain. Optimizing non-decomposable performance measures: A tale of two classes. In 32nd International Conference on Machine Learning (ICML), 2015.
- Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. In Advances in Neural Information Processing Systems, pages 1348–1356, 2009.
- H Vincent Poor. An introduction to signal detection and estimation. Springer Science & Business Media, 2013.
- Mark D Reid and Robert C Williamson. Composite binary losses. The Journal of Machine Learning Research, 9999:2387–2422, 2010.
- Clayton Scott. Calibrated asymmetric surrogate losses. Electronic J. of Stat., 6:958-992, 2012.
- Yaroslav D Sergeyev. Global one-dimensional optimization using smooth auxiliary functions. Mathematical Programming, 81(1):127–146, 1998.
- Bowei Yan, Kai Zhong, Oluwasanmi Koyejo, and Pradeep Ravikumar. Online classification with complex metrics. In arXiv:1610.07116v1. 2016.
- Nan Ye, Kian Ming A Chai, Wee Sun Lee, and Hai Leong Chieu. Optimizing f-measures: a tale of two approaches. In Proceedings of the International Conference on Machine Learning, 2012.

Backup Slides

Two Step Normalized Gradient Descent for optimal threshold search

- 1: Input: Training sample $\{X_i, Y_i\}_{i=1}^n$, utility measure \mathcal{U} , conditional probability estimator $\hat{\eta}$, stepsize α .
- 2: Randomly split the training sample into two subsets $\{X_i^{(1)},Y_i^{(1)}\}_{i=1}^{n_1}$ and $\{X_i^{(2)},Y_i^{(2)}\}_{i=1}^{n_2};$
- 3: Estimate $\hat{\eta}$ on $\{X_i^{(1)}, Y_i^{(1)}\}_{i=1}^{n_1}$.
- 4: Initialize $\delta = 0.5$;
- 5: while not converged do
- 6: Evaluate TP, TN on $\{X_i^{(2)},Y_i^{(2)}\}_{i=1}^{n_2}$ with $f(x)=\mathrm{sign}(\hat{\eta}-\delta).$
- 7: Calculate $\nabla \mathcal{U}$;
- 8: $\delta \leftarrow \delta \alpha \frac{\nabla \mathcal{U}}{\|\nabla \mathcal{U}\|}$.
- 9: end while
- 10: Output: $\hat{f}(x) = \operatorname{sign}(\hat{\eta} \delta)$.

Online Complex Metric Optimization (OCMO)

```
Require: online CPE with update q, metric \mathcal{U}, stepsize \alpha;
  1: Initilize \eta_0, \delta_0 = 0.5;
  2: while data stream has points do
             Receive data point (x_t, y_t)
  3:
          \eta_t = q(\eta_{t-1});
  4:
         \delta_t^{(0)} = \delta_t, \mathsf{TP}_t^{(0)} = \mathsf{TP}_{t-1}, \mathsf{TN}_t^{(0)} = \mathsf{TN}_{t-1};
  5:
  6:
          for i=1,\cdots,T_t do
                if \eta_t(x_t) > \delta_t^{(i-1)} then
  7:
                      \mathsf{TP}_t^{(i)} \leftarrow \frac{\mathsf{TP}_{t-1} \cdot (t-1) + (1+y_t)/2}{t}, \ \mathsf{TN}_t^{(i)} \leftarrow \mathsf{TN}_{t-1} \cdot \frac{t-1}{t};
  8:
                     else \mathsf{TP}_t^{(i)} \leftarrow \mathsf{TP}_{t-1} \cdot \frac{t-1}{t}, \; \mathsf{TN}_t^{(i)} \leftarrow \frac{\mathsf{TN}_{t-1} \cdot t + (1-y_t)/2}{t+1};
  9:
                 end if
10:
                \delta_t^{(i)} = \delta_t^{(i-1)} - \alpha \frac{\nabla \mathcal{G}(\mathsf{TP}_t, \mathsf{TN}_t)}{\|\nabla \mathcal{G}(\mathsf{TP}_t, \mathsf{TN}_t)\|}, \ \mathsf{TP}_t = \mathsf{TP}_t^{(i)}, \ \mathsf{TN}_t = \mathsf{TN}_t^{(i)};
11:
         end for
12:
13: \delta_{t+1} = \delta_{\star}^{(T_t)}:
14: t = t + 1:
15: end while
16: Output (\eta_t, \delta_t).
```