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Binary classification

Perhaps the classic problem in machine learning
Often a subroutine in more complex problems e.g. multiclass /
multilabel classification

Formally:
Let Y ∈ {0, 1} denote labels, X ∈ X denote instances
Find classifier θ : X 7→ {0, 1}, using training samples
Dn = {Xi, Yi}ni=1

Classifier is selected from the function class F e.g. linear
functions, neural networks . . .
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We can learn a classifier that makes no mistakes when:
we have sufficient data
function class is sufficiently flexible,
there is no noise i.e. the true mapping between X and Y is
deterministic

In practice:
data are limited
we don’t want function classes that are too flexible c.f.
overfitting, bias vs. variance tradeoff
real-world uncertainty e.g. hidden variables, measurement
error.

Thus in most realistic scenarios, all classifiers will eventually make
mistakes!
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Which kinds of mistakes are (more) acceptable?

Case Study
A medical test determines that a patient has a 30%
chance of having a fatal disease. Should the doctor
treat the patient?

choosing to treat a healthy patient (false
positive) increases risk of side effects.
choosing not to treat a sick patient (false
negative) could lead to serious issues.
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The confusion matrix C summarizes classifier mistakes
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Performance metrics

Now we may express tradeoffs via a metric Φ : [0, 1]4 7→ R

Examples
Accuracy (fraction of mistakes) = TP + TN
Error Rate = 1-Accuracy = FP + FN
For medical diagnosis example, consider the weighted error =
w1FP + w2FN, where w2 � w1

and many more . . .

Recall =
TP

TP + FN
, Fβ =

(1 + β2)TP
(1 + β2)TP + β2FN + FP

,

Precision =
TP

TP + FP
, Jaccard =

TP
TP + FN + FP
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Utility & Regret

performance is measured via utility U(θ, P ) = Φ(C)

we seek a classifier that maximizes this utility within some
function class F

The Bayes optimal classifier, when it exists, is given by:

θ∗ = argmax
θ∈Θ

U(θ, P ), where Θ = {f : X 7→ {0, 1}}

The regret of the classifier θ is given by:

R(θ, P ) = U(θ∗, P )− U(θ, P )
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Towards analysis of the classification procedure

In practice P (X,Y ) is unknown, instead we observe
Dn = {(Xi, Yi) ∼ P}ni=1

The classification procedure estimates a classifier θn
∣∣Dn

Example
Empirical risk minimization via SVM:

f∗ = argmin
f∈F

∑
{xi,yi}∈Dn

max (0, 1− yif(xi))

θn = sign(f∗)
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Consistency

Consider the sequence of classifiers {θn(x), n→∞}

A classification procedure is consistent when R(θn, P )
n→∞−−−→ 0 i.e.

the procedure eventually estimates the Bayes optimal classifier

Consistency is a desirable property:
implies stability of the classification procedure, related to
generalization ability
interestingly, seeking consistent classifiers is often easier than
direct optimization!
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Optimal classification for Decomposable
Metrics



Consider the empirical accuracy:

ACC(θ,Dn) =
1

n

∑
(xi,yi)∈Dn

1[yi=θ(xi)]

Observe that the classification problem

min
θ∈F

ACC(θ,Dn)

is a combinatorial optimization problem
optimal classification is NP-hard for non-trivial F and Dn.
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Bayes Optimal Classifier

Population Accuracy

EX,Y∼P
[
1[Y=θ(X)]

]
= P (Y = θ(X))

Easy to show that θ∗(x) = sign
(
P (Y = 1|x)− 1

2

)
Weighted Accuracy

EX,Y∼P
[

(1− ρ)1[Y=θ(X)=1] + ρ1[Y=θ(X)=0]

]
=(1− ρ)P (Y = θ(X) = 1) + ρP (Y = θ(X) = 0)

Scott (2012) showed that θ∗(x) = sign (P (Y = 1|x)− ρ)
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Where do surrogates come from?

Observe that there is no need to estimate P , instead optimize any
surrogate loss function L(θ,Dn) where:

θn = sign

(
argmin

f
L(f,Dn)

)
n→∞−−−→ θ∗(x)

These are known as classification
calibrated surrogate losses (Bartlett et al.,
2003; Scott, 2012)
research can focus on how to choose L,F
which improve efficiency, sample
complexity, robustness . . .
surrogates are often chosen to be convex
e.g. hinge loss, logistic loss
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Non-decomposability

A common theme so far is decomposability i.e. linearity wrt.
confusion matrix Φ(θ,C) = 〈A,C〉
Fβ , Jaccard, AUC and other common utility functions are
non-decomposable i.e. non-linear wrt. C

Question
Is decomposability necessary for the optimal classifier to be simple
i.e. a pointwise thresholding?

No! counter-examples include Fβ (Ye et al., 2012),
Fractional-linear (Koyejo et al., 2014), Monotonic metrics
(Narasimhan et al., 2014), min-max metric (Poor, 2013)
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The unreasonable effectiveness of thresholding

Some notation: ηx = P (Y = 1|X = x), π = P (Y = 1)

Theorem (Koyejo et al., 2014; Narasimhan et al., 2014; Yan
et al., 2016)
Let U be either:

1 fractional-linear i.e. Φ(C) = 〈A,C〉
〈B,C〉

2 or differentiable and monotonically increasing wrt. TP and TN
then ∃ an oracle δ∗ s.t. if P (ηx = δ∗) = 0, the Bayes optimal
classifier satisfies:

θ∗(x) = sign (ηx − δ∗) a.e.

condition P (ηx = δ∗) = 0 is easily satisfied e.g. when P (X) is continuous.
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Proof Sketch

Consider the relaxed problem:

θ∗F = argmax
θ∈F

U(θ,P)

where F = {f | f : X 7→ [0, 1]}
Show that the optimal “relaxed” classifier is θ∗F = sign(ηx− δ∗)
Observe that Θ ⊂ F . Thus U(θ∗F ,P) ≥ U(θ∗Θ,P).
As a result, θ∗F ∈ Θ implies that θ∗F ≡ θ∗Θ.
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Some recovered and new results



Simulated examples

F1 Jaccard
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Finite sample space X , so we can exhaustively search for θ∗



Empirical estimation via threshold search

Step 1
Option 1: estimate for η̂x via. proper loss (Reid and
Williamson, 2010), then

θ̂δ(x) = sign(η̂x − δ)

Option 2: For classification-calibrated loss (Scott, 2012)

f̂δ = argmin
f∈F

∑
xi,yi∈Dn

`δ(f(xi), yi)

consistently estimates θ̂δ(x) = sign(f̂δ(x))

Step 2

maxδ U(θ̂δ,Dn) is one dimensional, efficiently computable using
exhaustive search (Sergeyev, 1998).
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Consistency

Threshold search is consistent (Koyejo et al., 2014)

R(θ̂δ, P )
n→∞−−−→ 0

Threshold search is O(n2) with naïve implementation,
O(n log n) by pre-sorting η̂x, difficult analyze convergence.
Cutting plane surrogate methods (Joachims, 2005) may have
exponential complexity, and limited statistical guarantees.

Motivating questions
Can we improve on the computational complexity of threshold
search?
What is the convergence rate of the resulting procedure?
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Scaling up Classification with Complex
Metrics



Additional properties of U

Informal theorem (Yan et al., 2016)
Suppose U is fractional-linear or monotonic, under weak conditionsa

on P :
U(θδ, P ) is differentiable wrt δ
U(θδ, P ) is Lipschitz wrt δ
U(θδ, P ) is strictly locally quasi-concave wrt δ

aηx is differentiable wrt x, and its characteristic function is absolutely
integrable



Algorithms

Normalized Gradient Descent (Hazan et al., 2015)
Fix ε > 0, let f be strictly locally quasi-concave, and x∗ ∈ argmin f(x).
NGD algorithm with number of iterations T ≥ κ2‖x1 − x∗‖2/ε2 and step
size η = ε/κ achieves f(x̄T )− f(x∗) ≤ ε.

Batch Algorithm
1 Estimate η̂x via. proper loss (Reid and Williamson, 2010)
2 Solve maxδ U(θ̂δ,Dn) using normalized gradient ascent

Online Algorithm

Interleave η̂t update and δ̂t update



Sample Complexity

Batch Algorithm

With appropriately chosen step size, R(θ̂δ̂,P) ≤ C
∫
|η̂ − η|dµ

Comparison to threshold search
complexity of NGD is O(nt) = O(n/ε2), where t is the
number of iterations and ε is the precision of the solution
when log n ≥ 1/ε2, the batch algorithm has favorable
computational complexity vs. threshold search

Online Algorithm
Let η estimation error at step t given by rt =

∫
|ηt − η|dµ, with

appropriately chosen step size, R(θ̂δt ,P) ≤ C
∑t
i=1 ri
t
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Examples

Ordinary logistic regression

Sample complexity of ordinary logistic regression is O( 1√
n

). Thus,

batch algorithm achieves O( 1√
n

) regret.

Regularized logistic regression
Consider high dimensional (p� n) regularized M-estimation
(Negahban et al., 2009). Under regularity conditions, the `2
estimation error is upper bounded by O

(
s log p
n

)
. Thus, batch

algorithm achieves O( 1√
n

) regret.

Online algorithm

Parameter converges at rate O( 1√
n

) by averaged stochastic
gradient algorithm (Bach, 2014). Thus, online algorithm achieves
O( 1√

n
) regret.
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Empirical Evaluation



Datasets

datasets default news20 rcv1 epsilon kdda kddb

# features 25 1,355,191 47,236 2,000 20,216,830 29,890,095
# test 9,000 4,996 677,399 100,000 510,302 748,401
# train 21,000 15,000 20,242 400,000 8,407,752 19,264,097
%pos 22% 67% 52% 50% 85% 86%

η estimation: logistic regression and boosting tree
Baselines: threshold search (Koyejo et al., 2014), SVMperf and
STAMP/SPADE (Narasimhan et al., 2015)



Batch algorithm

Data set/Metric LR+Plug-in LR+Batch XGB+Plug-in XGB+Batch

news20-Q-Mean 0.948 (3.77s) 0.948 (0.001s) 0.874 (3.87s) 0.875 (0.003s)
news20-H-Mean 0.950 (3.70s) 0.950 (0.003s) 0.859 (3.61s) 0.860 (0.003s)
news20-F1 0.949 (3.49s) 0.948 (0.01s) 0.872 (5.07s) 0.874 (0.01s)
default-Q-Mean 0.664 (14.3s) 0.667 (0.19s) 0.688 (13.7s) 0.701 (0.22s)
default-H-Mean 0.665 (12.1s) 0.668 (0.17s) 0.693 (12.4s) 0.708 (0.18s)
default-F1 0.503 (14.2s) 0.497 (0.19s) 0.538 (16.2s) 0.538 (0.15s)



Online Complex Metric Optimization (OCMO)

Metric Algorithm RCV1 Epsilon KDD-A KDD-B

F1 OCMO 0.952 (0.01s) 0.804 (4.87s) 0.934 (2.43s) 0.941 (5.01s)
sTAMP 0.923 (14.44s) 0.585 (133.23s) - -
SVMperf 0.953 (1.72s) 0.872 (20.39s) - -

H-Mean OCMO 0.964 (0.02s) 0.891 (4.85s) 0.764 (2.5s) 0.733 (5.16s)
sPADE 0.580 (15.74s) 0.578 (135.26s) - -
SVMperf 0.953 (1.72s) 0.872 (20.39s) - -

Q-Mean OCMO 0.964 (0.01s) 0.889 (4.87s) 0.551 (2.11s) 0.506 (4.27s)
sPADE 0.688 (15.83s) 0.632 (136.46s) - -
SVMperf 0.950 (1.72s) 0.872 (20.39s) - -

‘–’ means the corresponding algorithm does not terminate within 100x that of OCMO.



Performance vs run time for various online algorithms

(a) F1 measure on rcv1 (b) H-Mean on rcv1 (c) Q-Mean on rcv1



Conclusion



Conclusion and open questions
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simple threshold form sign(P (Y = 1|X)− δ)
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Can we elucidate utility functions from feedback?
Can we characterize the entire family of utility metrics with
thresholded optimal decision functions?
Can we construct surrogate loss functions i.e. which avoid
estimating P (Y = 1|X)?
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sanmi@illinois.edu
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Two Step Normalized Gradient Descent for optimal
threshold search

1: Input: Training sample {Xi, Yi}ni=1, utility measure U ,
conditional probability estimator η̂, stepsize α.

2: Randomly split the training sample into two subsets
{X(1)

i , Y
(1)
i }

n1
i=1 and {X(2)

i , Y
(2)
i }

n2
i=1;

3: Estimate η̂ on {X(1)
i , Y

(1)
i }

n1
i=1.

4: Initialize δ = 0.5;
5: while not converged do
6: Evaluate TP,TN on {X(2)

i , Y
(2)
i }

n2
i=1 with

f(x) = sign(η̂ − δ).
7: Calculate ∇U ;
8: δ ← δ − α ∇U

‖∇U‖ .
9: end while

10: Output: f̂(x) = sign(η̂ − δ).



Online Complex Metric Optimization (OCMO)
Require: online CPE with update g, metric U , stepsize α;
1: Initilize η0, δ0 = 0.5;
2: while data stream has points do
3: Receive data point (xt, yt)
4: ηt = g(ηt−1);
5: δ

(0)
t = δt, TP

(0)
t = TPt−1,TN

(0)
t = TNt−1;

6: for i = 1, · · · , Tt do
7: if ηt(xt) > δ

(i−1)
t then

8: TP(i)
t ←

TPt−1·(t−1)+(1+yt)/2
t , TN(i)

t ← TNt−1 · t−1
t ;

9: else TP(i)
t ← TPt−1 · t−1

t , TN(i)
t ←

TNt−1·t+(1−yt)/2
t+1 ;

10: end if
11: δ

(i)
t = δ

(i−1)
t −α ∇G(TPt,TNt)

‖∇G(TPt,TNt)‖ , TPt = TP(i)
t ,TNt = TN(i)

t ;
12: end for
13: δt+1 = δ

(Tt)
t ;

14: t = t+ 1;
15: end while
16: Output (ηt, δt).


	Introduction
	Background
	Classification with Complex Metrics
	Scalable Online Classification
	Conclusion
	Backup Slides

