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* ML models routinely
trained/deployed in
distributed settings

Untrusted

* Distributed learning
useful for amortizing
training costs, learning
with physically

Trusted
group

Trusted
group

distributed data.

* Distributed learning has
implications for privacy
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Common strategies for distributed ML

Distributed Training
distributed gradient computation
server aggregates gradient
updates

Federated Learning
distributed training on local data
server aggregates model
parameters
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Distributed
ML is
susceptible
to failures

gradient

Hardware failures e.g. bit-flip computation errors
Software failures e.g. l[abel-flip errors

Communication failures e.g. dropped updates

Adversarial attacks (worst case): possibly targeted, coordinated training
attacks




Robust Distributed SGD
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Distributed SGD

min, F(x) where F(z) = E,p|f(x; 2)]

m workers, n samples per worker (wlog.) Fi (:B) — 1 Z:’;’ 1 f(:c, zi’j>, V1 € [m]
n pr—

Server update rule

pit = 2t — ytAggr({g;(2t) : i € [m]})

( Z,t) I 1th worker is faulty,
” | VE(2?) otherwise,



Compared to prior work

Algorithm Near-linear complexity O(dm) Scalability
2q <m m < 2qg <?2m

Krum?
P 2
Tr|mrT1ed mean v Y /
(median)
| Zeno (our work) v v v v |

* m workers
* g malicious workers
* d dimensional feature

1. Blanchard et al. Machine learning with adversaries: Byzantine tolerant gradient descent. NIPS (2017).
2.Yin et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. ICML (2018).



Important to focus on learning convergence,
not generic robustness

* Previous work on robust distributed learning (Median, Krum) has
focused on Euclidean norm guarantees, roughly:

lge — E[VF(2)]]] < e

* Note that norm robustness is less important than robustly estimating
the descent direction

* Example: construct an attacker that satisfies norm guarantees, but is
pointed in the wrong direction

Xie, K., Gupta “Fall of Empires: Breaking Byzantine-tolerant SGD
by Inner Product Manipulation” (UAI 2019)



Top-1 accuracy
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Aggregation using Zeno

Key idea: Average the top-k gradients as sorted by
stochastic descendant score

SCOT@%P(U“?:E) — fr(x) — fr(x — ’YUJ) — IOHUH2

where f,.(x) = i if(w; i)

g
e: current model
—:correct updates
—:incorrect updates

Intuition: Correct updates establish a
boundary (black dashed circle); Zeno lies
inside the boundary



/eno aggregation rule is robust

* Assumptions:
* Stochastic descendant score estimate is unbiased
* Loss function f(z;z) is L-smooth and p-weakly convex
* Variance of population gradient is bounded

 Sketch of main result (with up to g failed / malicious workers)

> im0 EIVF(z")|? 1\ (E—g+1)(m—q)




5-layer CNN, CIFAR-10, bit-flipping attack, m
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5-layer CNN, CIFAR-10, Ia
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Robust Federated Learnin:




s Federated
Learning
Simply

Re-branded
Distributed
Learning?

unbalanced, non-IID device data

limited, heterogeneous device computation

infrequent task scheduling

limited, infrequent communication, congestion

untrusted devices and data poisoning
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Compared to prior work

Key property Solution By
Limited computation SGD

Limited communication Dropped updates Previous work?
Private local data Distributed (decentralized) training

Hardware, Software, Robust estimator Our work
Communication failures, Poisoned

workers

1. McMahan, H. Brendan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS (2017).




Federated Learning using Secure Local SGD

min, F(x) where F(z) = + v Dicin] Erinpi[f(;2)]

Device update: a:ah — wi’h_l — ’ny(azi,h_l; zgh) for H steps|

Server update: x; — Trmean, ({xng S St})3
Ty < (1 — Ol).ilft_1 + 0433;

Trmean,({u; : @ € [I]}) = 2b Zz b+1 Um(i):m (1)

W() = argsort(-) S¢ = random subset of devices, |S¢| = k



Proposed aggregation rule is robust

* Assumptions:
» Existence of at least one global optimum (not necessarily unique)
e Loss function f(x;2) is L-smooth and [t-weakly convex
* Variance of population gradient is bounded by V,

 Sketch of main result: With up to q failed/malicious devices,
Federated learning convergence rate
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5-layer CNN, CIFAR-10; Balanced data
100 workers; k=10; label-flipping attack; g=4 (per)
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NOTE: SLSGD is equiv. to FedAvg when a = 1; b=0.



5-layer CNN, CIFAR-10; Unbalanced data
100 workers; k=10; label-flipping attack; g=4 (per)
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Careful aggregation is robust to worst-case

failures

Suspicion-based
aggregation for distributed
SGD; robust to more than
half adversarial workers

Regularized trimmed mean
aggregation for federated
learning; robust to non-IID
data, communication
failures, adversarial devices
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Some more

light reading...

Xie, C., Koyejo, O., & Gupta, I. Zeno++: Robust
Asynchronous SGD with an Arbitrary Number
of Byzantine Workers (2019).
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Breaking Byzantine-tolerant SGD by Inner
Product Manipulation. In UAI 2019.
arXiv:1903.03936

Xie, C., Koyejo, S., & Gupta, |. Generalized
Byzantine-tolerant SGD (2018).
arXiv:1802.10116




Asynchronous Federated ML

Worker Side Server Side
* Update local model using SGD on ¢ Scheduler thread to periodically
local loss regularized by global trigger workers
model

* Update global model when
updates received, with a discount
factor proportional to staleness

Taken together, optimizes federated objective yet remains
robust to delays, non-IID data, ...



Top-1 accuracy

5-layer CNN, CIFAR-10; 100 workers
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5-layer CNN, CIFAR-10; Unbalanced data
100 workers; k=10; label-flipping attack; g=4 (per)
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Thank you
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