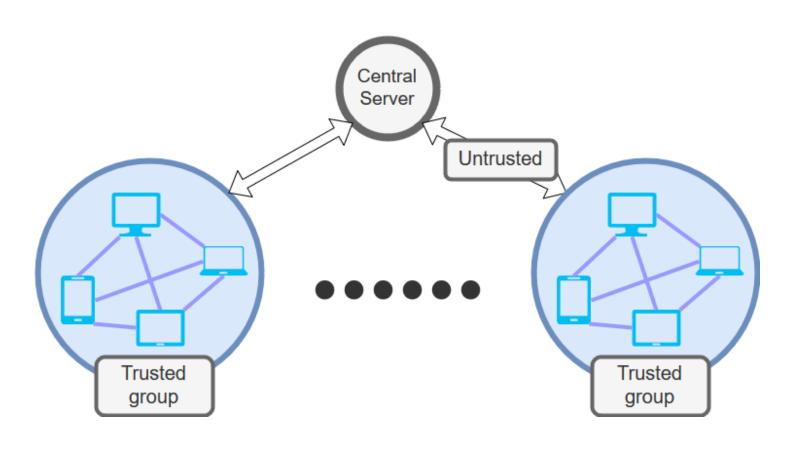
Fault-tolerant federated and distributed learning

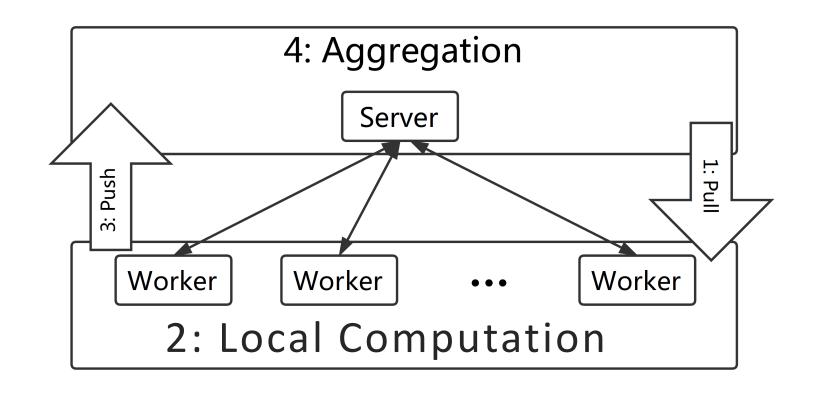
Sanmi Koyejo

Cong Xie

Indranil Gupta



- ML models routinely trained/deployed in distributed settings
- Distributed learning useful for amortizing training costs, learning with physically distributed data.
- Distributed learning has implications for privacy



Centralized Distributed Learning

Common strategies for distributed ML

Distributed Training

distributed gradient computation server aggregates gradient updates

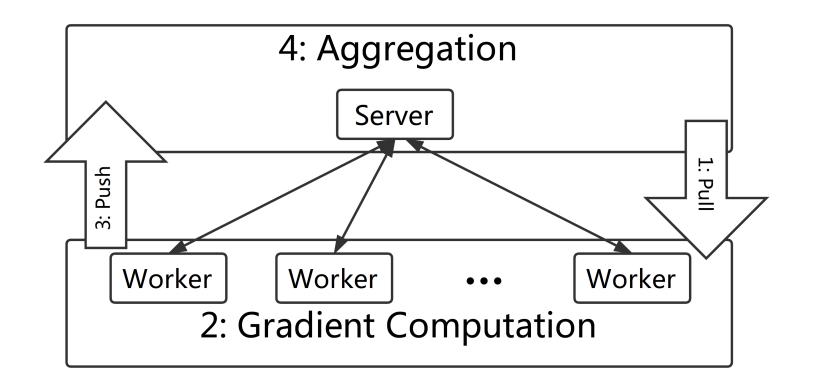
Federated Learning

distributed training on local data server aggregates model parameters Distributed ML is susceptible to failures

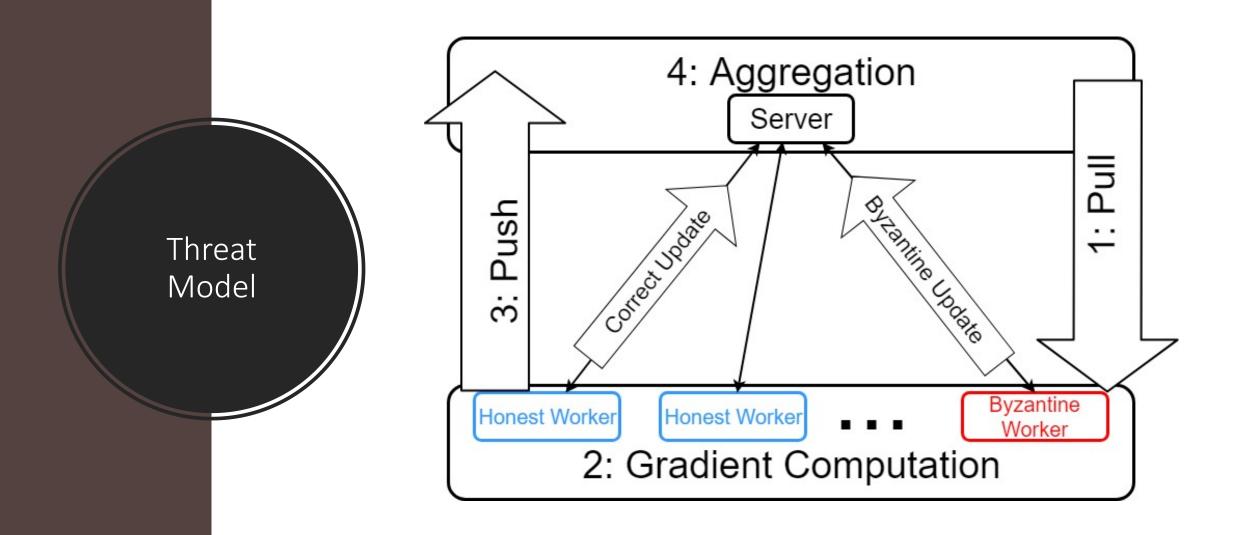


- Hardware failures e.g. bit-flip computation errors
- Software failures e.g. label-flip errors
- Communication failures e.g. dropped updates
- Adversarial attacks (worst case): possibly targeted, coordinated training attacks

Robust Distributed SGD



Workers compute gradients on local data



Distributed SGD

$$\min_x F(x)$$

where
$$F(x) = E_{z \sim \mathcal{D}}[f(x;z)]$$

m workers, n samples per worker (wlog.)

$$F_i(x) = \frac{1}{n} \sum_{j=1}^{n} f(x; z^{i,j}), \forall i \in [m]$$

Server update rule

$$x^{t+1} = x^t - \gamma^t \text{Aggr}(\{g_i(x^t) : i \in [m]\})$$

$$g_i(x^t) = \begin{cases} * & \text{ith worker is faulty,} \\ \nabla F_i(x^t) & \text{otherwise,} \end{cases}$$

Compared to prior work

Algorithm	Byzantine tolerance		Near linear complexity $O(dm)$	Coolobility
	2q < m	$m \le 2q < 2m$	Near-linear complexity O(dm)	Scalability
Krum ¹	√			
Trimmed mean ² (median)	✓		✓	✓
Zeno (our work)	√	\checkmark	\checkmark	✓

- *m* workers
- q malicious workers
- *d* dimensional feature

^{1.} Blanchard et al. Machine learning with adversaries: Byzantine tolerant gradient descent. NIPS (2017).

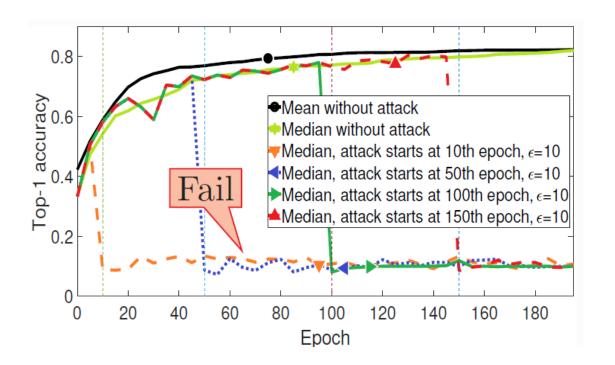
^{2.} Yin et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. ICML (2018).

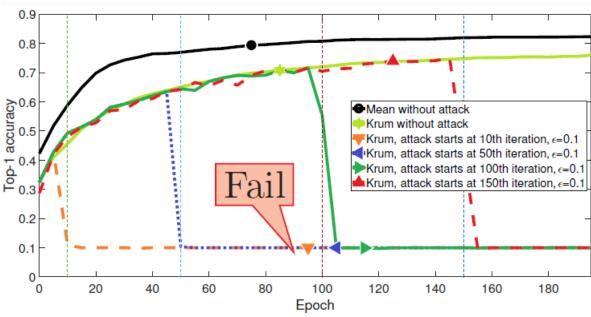
Important to focus on learning convergence, not generic robustness

 Previous work on robust distributed learning (Median, Krum) has focused on Euclidean norm guarantees, roughly:

$$\|g_t - E[\nabla F_t(x)]\| < \epsilon$$

- Note that norm robustness is less important than robustly estimating the descent direction
- Example: construct an attacker that satisfies norm guarantees, but is pointed in the wrong direction





Breaking Robust Distributed Learning

Aggregation using Zeno

Key idea: Average the top-k gradients as sorted by

stochastic descendant score

$$Score_{\gamma,\rho}(u,x) = f_r(x) - f_r(x - \gamma u) - \rho ||u||^2$$

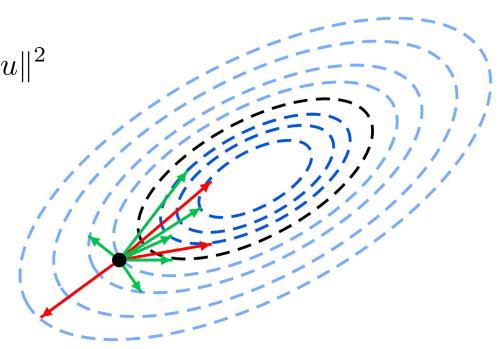
where
$$f_r(x) = \frac{1}{n_r} \sum_{i=1}^{n_r} f(x; z_i)$$

•: current model

→:correct updates

→:incorrect updates

Intuition: Correct updates establish a boundary (black dashed circle); Zeno lies inside the boundary



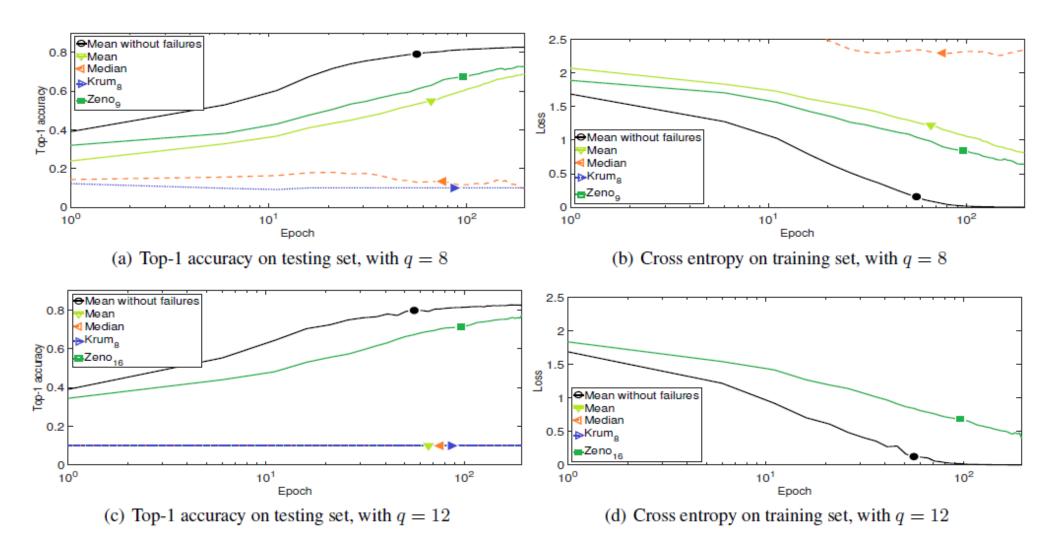
Zeno aggregation rule is robust

- Assumptions:
 - Stochastic descendant score estimate is unbiased
 - Loss function f(x;z) is L-smooth and μ -weakly convex
 - Variance of population gradient is bounded

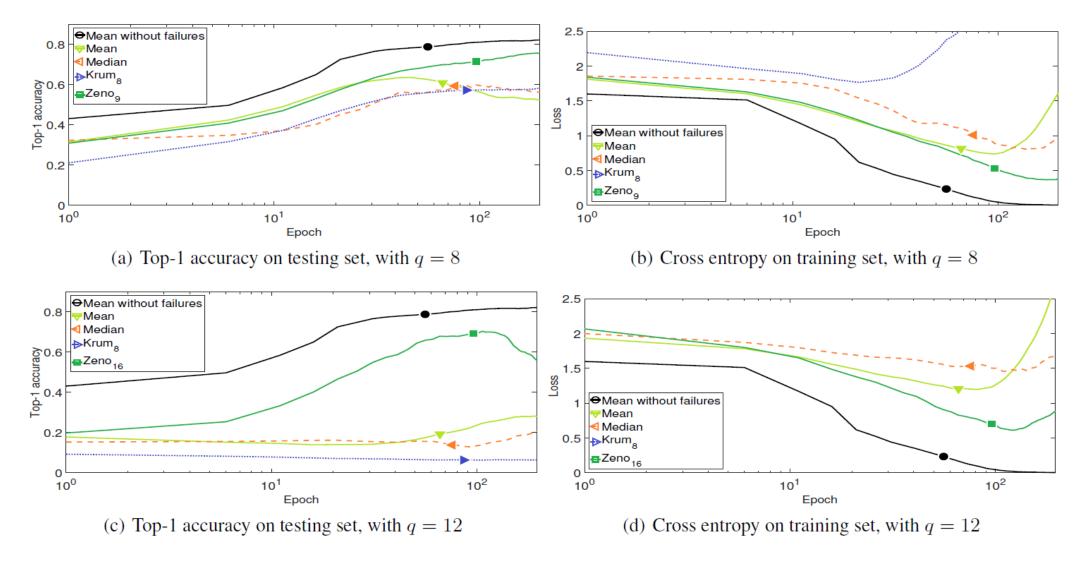
Sketch of main result (with up to q failed / malicious workers)

$$\frac{\sum_{t=0}^{T-1} E \|\nabla F(x^t)\|^2}{T} \le \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{(k-q+1)(m-q)}{(m-k)^2}\right)$$

5-layer CNN, CIFAR-10, bit-flipping attack, m=20



5-layer CNN, CIFAR-10, label-flipping attack, m=20



Robust Federated Learning

Is Federated Learning Simply Re-branded Distributed Learning?

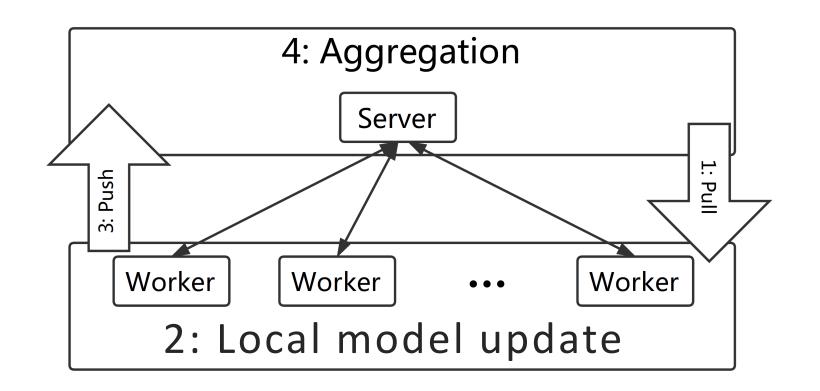
unbalanced, non-IID device data

limited, heterogeneous device computation

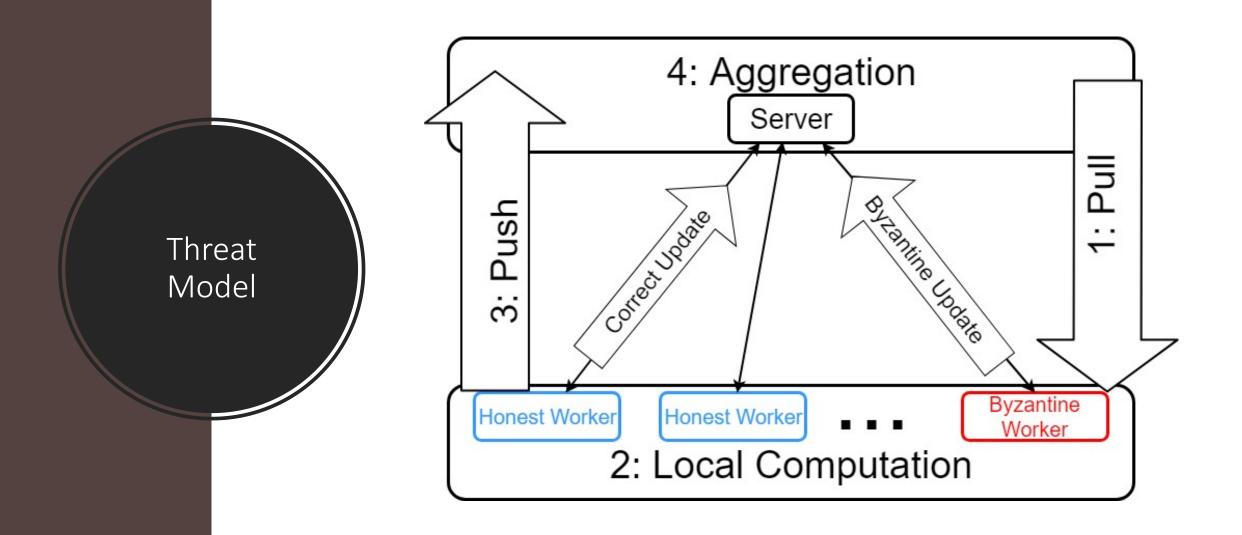
infrequent task scheduling

limited, infrequent communication, congestion

untrusted devices and data poisoning



Workers compute updated local model parameters



Compared to prior work

Key property	Solution	Ву	
Limited computation	SGD		
Limited communication	Dropped updates	Previous work ¹	
Private local data	Distributed (decentralized) training		
Hardware, Software, Communication failures, Poisoned workers	Robust estimator	Our work	

1. McMahan, H. Brendan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS (2017).

Federated Learning using Secure Local SGD

$$\min_{x} F(x) \qquad \text{where } F(x) = \frac{1}{n} \sum_{i \in [n]} E_{z^{i} \sim \mathcal{D}^{i}} [f(x; z^{i})]$$

Device update:
$$x_{t,h}^i \leftarrow x_{t,h-1}^i - \gamma \nabla f(x_{t,h-1}^i; z_{t,h}^i)$$
 [for H steps]

Server update:
$$x'_t = \text{Trmean}_b \left(\left\{ x^i_{t,H} : i \in S_t \right\} \right);$$

 $x_t \leftarrow (1 - \alpha)x_{t-1} + \alpha x'_t$

$$\operatorname{Trmean}_{b}(\{u_{i}: i \in [l]\}) = \frac{1}{l-2b} \sum_{i=b+1}^{l-b} u_{\pi(i):\pi(l)}$$

$$\pi(\cdot) = \operatorname{argsort}(\cdot) \qquad S_{t} = \operatorname{random subset of devices}, |S_{t}| = k$$

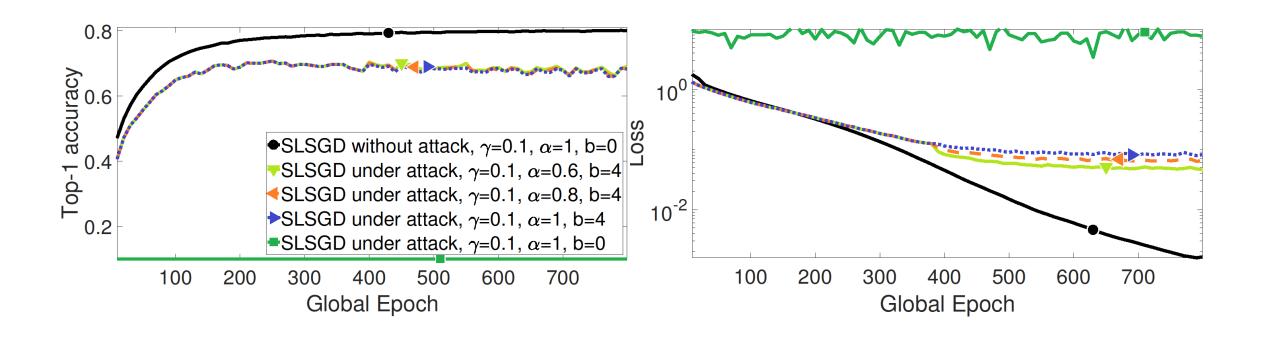
Proposed aggregation rule is robust

- Assumptions:
 - Existence of at least one global optimum (not necessarily unique)
 - Loss function f(x;z) is L-smooth and μ -weakly convex
 - Variance of population gradient is bounded by V₁

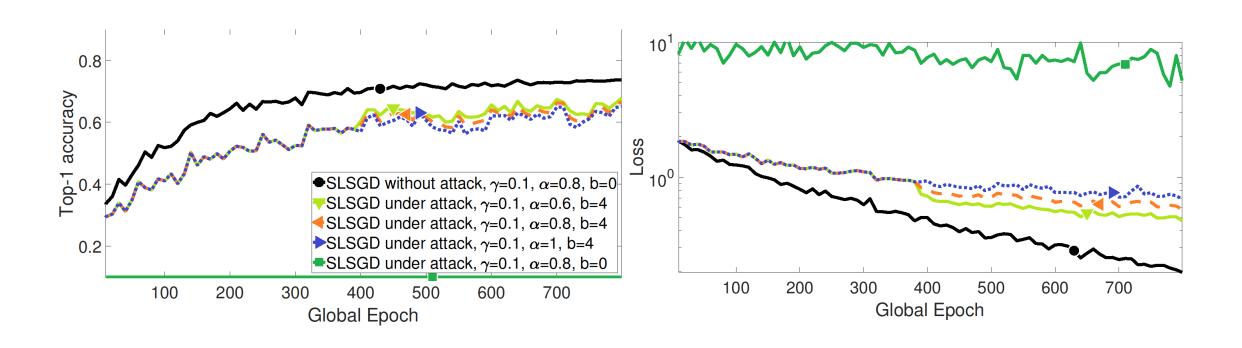
Sketch of main result: With up to q failed/malicious devices,
 Federated learning convergence rate

$$\frac{\sum_{t=0}^{T-1} E \|\nabla F(x^t)\|^2}{T} \le \mathcal{O}\left(\frac{\frac{k(k+b)}{(k-b-q)^2} + \frac{1}{k-q} - \frac{1}{n}}{T}\right) + \mathcal{O}\left(V_1\right)$$

5-layer CNN, CIFAR-10; Balanced data 100 workers; k=10; label-flipping attack; q=4 (per)



5-layer CNN, CIFAR-10; Unbalanced data 100 workers; k=10; label-flipping attack; q=4 (per)



Careful aggregation is robust to worst-case failures

1

Suspicion-based aggregation for **distributed SGD**; robust to more than half adversarial workers

2

Regularized trimmed mean aggregation for **federated learning**; robust to non-IID data, communication failures, adversarial devices

Papers presented today

Xie, C., Koyejo, O., & Gupta, I. Zeno: Byzantine-suspicious stochastic gradient descent. ICML 2019 arXiv:1805.10032

Xie, C., Koyejo, O., & Gupta, I. SLSGD: Secure and Efficient Distributed On-device Machine Learning. In ECML PKDD 2019. arXiv: 1903.06996

Some more light reading...

Xie, C., Koyejo, O., & Gupta, I. Zeno++: Robust Asynchronous SGD with an Arbitrary Number of Byzantine Workers (2019). arXiv:1903.07020

Xie, C., Koyejo, S., & Gupta, I. Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation. In UAI 2019. arXiv:1903.03936

Xie, C., Koyejo, S., & Gupta, I. Generalized Byzantine-tolerant SGD (2018). arXiv:1802.10116

Asynchronous Federated ML

Worker Side

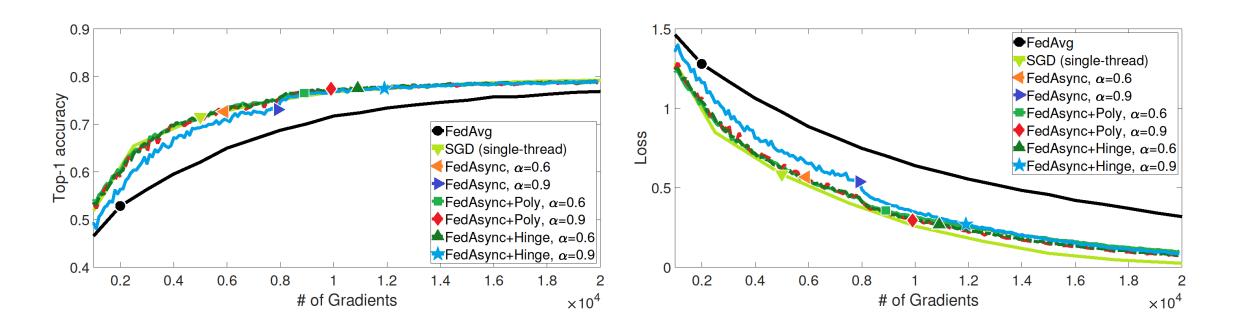
 Update local model using SGD on local loss regularized by global model

Server Side

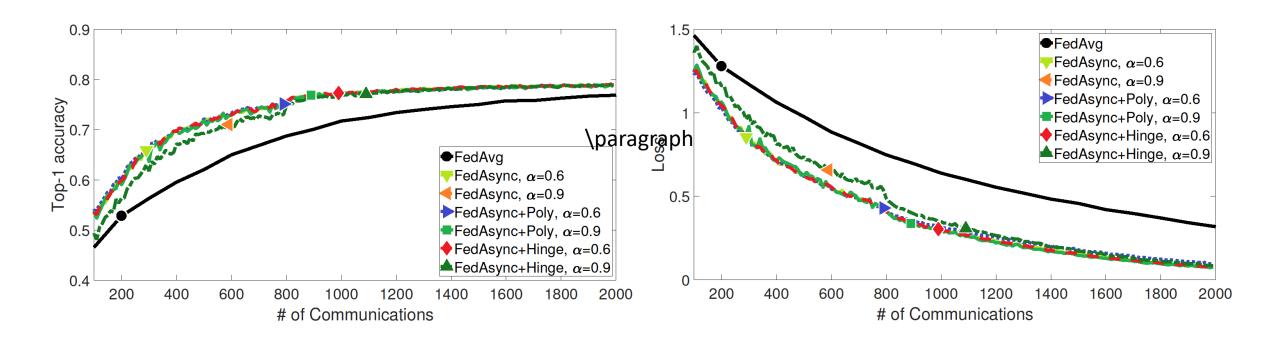
- Scheduler thread to periodically trigger workers
- Update global model when updates received, with a discount factor proportional to staleness

Taken together, optimizes federated objective yet remains robust to delays, non-IID data, ...

5-layer CNN, CIFAR-10; 100 workers



5-layer CNN, CIFAR-10; Unbalanced data 100 workers; k=10; label-flipping attack; q=4 (per)



Thank you

sanmi@Illinois.edu
@sanmikoveio