# Fault-tolerant federated and distributed learning

Sanmi Koyejo



Cong Xie



Indranil Gupta



- ML models routinely trained/deployed in distributed settings
- Distributed learning useful for amortizing training costs, learning with physically distributed data.
- Distributed learning has implications for privacy



Centralized Distributed Learning

#### Common strategies for distributed ML



#### **Distributed Training**

distributed gradient computation server aggregates gradient updates



#### **Federated Learning**

distributed training on local data server aggregates model parameters Distributed ML is susceptible to failures



- Hardware failures e.g. bit-flip computation errors
- Software failures e.g. label-flip errors
- Communication failures e.g. dropped updates
- Adversarial attacks (worst case): possibly targeted, coordinated training attacks

### Robust Distributed SGD



Workers compute gradients on local data



#### Distributed SGD

$$\min_x F(x)$$

where 
$$F(x) = E_{z \sim \mathcal{D}}[f(x;z)]$$

m workers, n samples per worker (wlog.)

$$F_i(x) = \frac{1}{n} \sum_{j=1}^{n} f(x; z^{i,j}), \forall i \in [m]$$

Server update rule

$$x^{t+1} = x^t - \gamma^t \text{Aggr}(\{g_i(x^t) : i \in [m]\})$$

$$g_i(x^t) = \begin{cases} * & \text{ith worker is faulty,} \\ \nabla F_i(x^t) & \text{otherwise,} \end{cases}$$

#### Compared to prior work

| Algorithm                          | Byzantine tolerance |                 | Near linear complexity $O(dm)$ | Coolobility |
|------------------------------------|---------------------|-----------------|--------------------------------|-------------|
|                                    | 2q < m              | $m \le 2q < 2m$ | Near-linear complexity O(dm)   | Scalability |
| Krum <sup>1</sup>                  | <b>√</b>            |                 |                                |             |
| Trimmed mean <sup>2</sup> (median) | ✓                   |                 | ✓                              | ✓           |
| Zeno (our work)                    | <b>√</b>            | $\checkmark$    | $\checkmark$                   | ✓           |

- *m* workers
- q malicious workers
- *d* dimensional feature

<sup>1.</sup> Blanchard et al. Machine learning with adversaries: Byzantine tolerant gradient descent. NIPS (2017).

<sup>2.</sup> Yin et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. ICML (2018).

## Important to focus on learning convergence, not generic robustness

 Previous work on robust distributed learning (Median, Krum) has focused on Euclidean norm guarantees, roughly:

$$\|g_t - E[\nabla F_t(x)]\| < \epsilon$$

- Note that norm robustness is less important than robustly estimating the descent direction
- Example: construct an attacker that satisfies norm guarantees, but is pointed in the wrong direction





Breaking Robust Distributed Learning

#### Aggregation using Zeno

**Key idea:** Average the top-k gradients as sorted by

#### stochastic descendant score

$$Score_{\gamma,\rho}(u,x) = f_r(x) - f_r(x - \gamma u) - \rho ||u||^2$$

where 
$$f_r(x) = \frac{1}{n_r} \sum_{i=1}^{n_r} f(x; z_i)$$

•: current model

→:correct updates

→:incorrect updates

Intuition: Correct updates establish a boundary (black dashed circle); Zeno lies inside the boundary



#### Zeno aggregation rule is robust

- Assumptions:
  - Stochastic descendant score estimate is unbiased
  - Loss function f(x;z) is L-smooth and  $\mu$ -weakly convex
  - Variance of population gradient is bounded

Sketch of main result (with up to q failed / malicious workers)

$$\frac{\sum_{t=0}^{T-1} E \|\nabla F(x^t)\|^2}{T} \le \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{(k-q+1)(m-q)}{(m-k)^2}\right)$$

#### 5-layer CNN, CIFAR-10, bit-flipping attack, m=20



### 5-layer CNN, CIFAR-10, label-flipping attack, m=20



## Robust Federated Learning

### Is Federated Learning Simply Re-branded Distributed Learning?



unbalanced, non-IID device data



limited, heterogeneous device computation



infrequent task scheduling



limited, infrequent communication, congestion



untrusted devices and data poisoning



Workers compute updated local model parameters



### Compared to prior work

| Key property                                                       | Solution                             | Ву                         |  |
|--------------------------------------------------------------------|--------------------------------------|----------------------------|--|
| Limited computation                                                | SGD                                  |                            |  |
| Limited communication                                              | Dropped updates                      | Previous work <sup>1</sup> |  |
| Private local data                                                 | Distributed (decentralized) training |                            |  |
| Hardware, Software,<br>Communication failures, Poisoned<br>workers | Robust estimator                     | Our work                   |  |

1. McMahan, H. Brendan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS (2017).

### Federated Learning using Secure Local SGD

$$\min_{x} F(x) \qquad \text{where } F(x) = \frac{1}{n} \sum_{i \in [n]} E_{z^{i} \sim \mathcal{D}^{i}} [f(x; z^{i})]$$

Device update: 
$$x_{t,h}^i \leftarrow x_{t,h-1}^i - \gamma \nabla f(x_{t,h-1}^i; z_{t,h}^i)$$
 [for  $H$  steps]

Server update: 
$$x'_t = \text{Trmean}_b \left( \left\{ x^i_{t,H} : i \in S_t \right\} \right);$$
  
 $x_t \leftarrow (1 - \alpha)x_{t-1} + \alpha x'_t$ 

$$\operatorname{Trmean}_{b}(\{u_{i}: i \in [l]\}) = \frac{1}{l-2b} \sum_{i=b+1}^{l-b} u_{\pi(i):\pi(l)}$$

$$\pi(\cdot) = \operatorname{argsort}(\cdot) \qquad S_{t} = \operatorname{random subset of devices}, |S_{t}| = k$$

#### Proposed aggregation rule is robust

- Assumptions:
  - Existence of at least one global optimum (not necessarily unique)
  - Loss function f(x;z) is L-smooth and  $\mu$ -weakly convex
  - Variance of population gradient is bounded by V<sub>1</sub>

Sketch of main result: With up to q failed/malicious devices,
 Federated learning convergence rate

$$\frac{\sum_{t=0}^{T-1} E \|\nabla F(x^t)\|^2}{T} \le \mathcal{O}\left(\frac{\frac{k(k+b)}{(k-b-q)^2} + \frac{1}{k-q} - \frac{1}{n}}{T}\right) + \mathcal{O}\left(V_1\right)$$

## 5-layer CNN, CIFAR-10; Balanced data 100 workers; k=10; label-flipping attack; q=4 (per)



## 5-layer CNN, CIFAR-10; Unbalanced data 100 workers; k=10; label-flipping attack; q=4 (per)



## Careful aggregation is robust to worst-case failures

1

Suspicion-based aggregation for **distributed SGD**; robust to more than half adversarial workers

2

Regularized trimmed mean aggregation for **federated learning**; robust to non-IID data, communication failures, adversarial devices

Papers presented today

Xie, C., Koyejo, O., & Gupta, I. Zeno: Byzantine-suspicious stochastic gradient descent. ICML 2019 arXiv:1805.10032

Xie, C., Koyejo, O., & Gupta, I. SLSGD: Secure and Efficient Distributed On-device Machine Learning. In ECML PKDD 2019. arXiv: 1903.06996

Some more light reading...

Xie, C., Koyejo, O., & Gupta, I. Zeno++: Robust Asynchronous SGD with an Arbitrary Number of Byzantine Workers (2019). arXiv:1903.07020

Xie, C., Koyejo, S., & Gupta, I. Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation. In UAI 2019. arXiv:1903.03936

Xie, C., Koyejo, S., & Gupta, I. Generalized Byzantine-tolerant SGD (2018). arXiv:1802.10116

#### Asynchronous Federated ML

#### **Worker Side**

 Update local model using SGD on local loss regularized by global model

#### **Server Side**

- Scheduler thread to periodically trigger workers
- Update global model when updates received, with a discount factor proportional to staleness

Taken together, optimizes federated objective yet remains robust to delays, non-IID data, ...

#### 5-layer CNN, CIFAR-10; 100 workers



## 5-layer CNN, CIFAR-10; Unbalanced data 100 workers; k=10; label-flipping attack; q=4 (per)



## Thank you

sanmi@Illinois.edu
@sanmikoveio