Time-Varying Functional Connectivity

Sanmi Koyejo Stanford University & University of Illinois

Dynamics of Schizophrenia vs. Bipolar vs. healthy controls (Calhoun et. al., 2015)

Motivating Questions

- How are the regions of the brain functionally connected?
- How do these connections change over time?
- •
- How are the changing connections related to behavior, disease, etc.?

Main Steps

Node Extraction

- Voxels
- ROI
- ICA

Connectivity Measure

- Correlation
- Precision
- Mutual information
- MTD

Time-Varying Evolution

- Nonparametric
- Parametric

Estimation & Summary

- State estimation & description
- Cartographic profiling

Inference

- Parametric
- Nonparametric (e.g. VAR)

Highlights

- Estimation of time-varying functional connectivity
 - o Parametric vs. non-parametric techniques
- Techniques for summarizing results
- Techniques for inference

- Will not cover:
 - Node extraction: Voxels vs. ICA vs. ROI
 - Techniques for selecting model hyper-parameters
 - Selecting the connectivity measure
 - Some signal processing techniques e.g. IVA (Ma et. al., 2014)

Important to Remember

"All models are wrong but some are useful"

- George Box

- In general, models are statistical summaries, and are useful to the extent that the elucidate important properties of the brain
- Thus, these techniques are not "how the brain works" i.e. none of these models are "correct"

Estimating Time-Varying Functional Connectivity

Outline

- Introduction
- Non-parametric temporal evolution
- Parametric temporal evolution
- Summary measures
- Inference
- Summary

Part 1

Non-parametric temporal variation

Nonparametric Approach for Temporal Evolution

Rashid et. al. (2014)

Cribben et. al. (2012)

(Kernel) Sliding Window

$$C^{i,j}(n) = FC(y_{n-m:n}^i, y_{n-m:n}^j)$$

- FC = measure of functional connectivity
- C(n) = connectivity estimate at each time point "n"
- E.g. kernel smoothed sliding window correlation (after subtracting mean)

$$C^{i,j}(n) = \frac{\sum_{s=n-m}^{n} k(s-n)y_s^i y_s^j}{\sqrt{\left(\sum_{s=n-m}^{n} k(s-n)y_s^i\right)\left(\sum_{s=n-m}^{n} k(s-n)y_s^i\right)}}$$

Sliding Window Kernels

Uniform kernel

Gaussian kernel

Lindquist (2014)

Simulated time-varying Connectivity (SimTB toolbox)

Connectivity Measures

- Pearson / Spearman Correlation
- Partial correlation
- Mutual information
- Multiplication of temporal derivatives (MTD)

(plus regularized variations)

MTD: Multiplication of Temporal Derivatives

Shine et. al. (2015)

MTD vs. Pearson's

Figure 4 Increased task-based **functional connectivity between frontoparietal and ventral visual cortical parcels**: left – during 2-back blocks compared to 0-back blocks; right – during face vs place identification (p < 0.001; FDR 0.05).

- 40 subjects from the HCP, visual working memory
- 2-back vs. 0-back & Faces/Places/Tools/Body Parts
- MAC using Gordon ROI's

Shine et. al. (2015)

Change-Point Detection

A. Dynamic Connectivity Regression

B. Regression Tree Diagram

Cribben et. al. (2012)

Main Steps of DCR

- Select a statistic for connectivity within each window e.g. sparse precision
- Select a criterion for splitting the time series which balanced model fit vs. complexity e.g. BIC

Algorithm:

- (Recursively) at each leaf:
 - At each time point "t" within block
 - Estimate model with/without the split @ "t"
 - Compute best split "t*" within the block
 - Split the time series if it improves criterion

Pros of Non-Parametric Temporal Model

- No need to hypothesize model for temporal variation
- Easy to plug-in new kinds of connectivity estimators i.e. (sparse) precision, mutual information, multiplication of temporal derivatives
- Convenient for quick prototyping

Cons of Non-Parametric Temporal Model

 Very limited data within each window, can lead to false positives

Cons of Non-Parametric Temporal Model

- May be difficult to scale e.g. DCR requires an exponential number of model evaluations wrt. length of the sample in the worst case
- Often sensitive to hyper-parameters

Lindquist et. al. (2014)

Outline

- Introduction
- Non-parametric temporal evolution
- Parametric temporal evolution
- Summary measures
- Inference
- Summary

Part 2

Parametric temporal variation

Univariate GARCH

- Popular for modeling financial time series
- Variance evolves following an ARMA-type model

Dynamic Conditional Correlation (DCC)

$$\sigma_{i,t}^2 = \omega_i + \alpha_i y_{i,t-1}^2 + \beta_i \sigma_{i,t-1}^2$$
 for $i = 1, 2$

$$\mathbf{D}_t = diagig\{\sigma_{1,t},\sigma_{2,t}ig\}$$

Univariate GARCH

$$\epsilon_t = \mathbf{D}_t^{-1} \mathbf{e}_t$$

$$\mathbf{Q}_t = (1 - \theta_1 - \theta_2) \overline{\mathbf{Q}} + \theta_1 \epsilon_{t-1} \epsilon'_{t-1} + \theta_2 \mathbf{Q}_{t-1}$$

Cross-correlation

$$\mathbf{R}_{t} = diag\{\mathbf{Q}_{t}\}^{-1/2}\mathbf{Q}_{t}diag\{\mathbf{Q}_{t}\}^{-1/2}$$

$$\Sigma_t = \mathbf{D}_t \mathbf{R}_t \mathbf{D}_t$$
.

Combined covariance

Sinusoidal Signal

Application to Kirby 21 Dataset

Application to Kirby 21 Dataset

Discrete State Hidden Markov Model

Direct analogue to clustering

$$z_t \sim P(z_t | z_{t-1})$$
$$y_t \sim \mathcal{N}(\mu_{z_t}, \Sigma_{z_t})$$

Estimated Network States

Ryali et. al. (2015)

Continuous State Hidden Markov Model

 Direct analogue to factor analysis

$$z_t \sim \mathcal{N}(0, S_t)$$

 $y_t \sim \mathcal{N}(Vz_t, \sigma^2 I)$

 Equivalent to evolving covariance model

$$S_t \sim P(S_{t-1})$$
$$y_t \sim \mathcal{N}(0, VS_tV' + \sigma^2 I)$$

Andersen et. al. (2016)

Factor Model Visualization

Classification Accuracy

- HCP data, Gordon 333 atlas, Motor task
- Task block + motion regressed out, model the residual
- Train on 5 subjects, test on held out subjects using log likelihood

Task	Classification using model	Random guessing
Right Hand Tapping	$0.784 \ (0.078)$	$0.167 \ (0.112)$
Left Foot Tapping	$0.523\ (0.197)$	$0.169 \; (0.116)$
Tongue Wagging	$0.420 \ (0.136)$	$0.174 \ (0.121)$
Right Foot Tapping	$0.409 \; (0.208)$	$0.170 \; (0.112)$
Left Hand Tapping	$0.761\ (0.136)$	$0.168 \ (0.116)$
Rest	$0.352\ (0.132)$	$0.161\ (0.111)$
	, ,	, ,

Pros of Parametric Temporal Model

- Very accurate when model structure is evident in the data
- Tends to be conservative when model structure is not a strong signal

Pros of Parametric Temporal Model

- Explicit about underlying assumptions
- Model summaries are often built-in (discrete HMM)
 e.g. graph states, temporal variation
- Estimation can be faster than non-parametric approaches for simple models
- Certain parametric models have built-in inference

Cons of Parametric Temporal Model

- Often requires expert knowledge to develop and fit the model e.g. variational inference, Viterbi decoding, ...
- May be computationally expensive, particularly when using complicated models with many parameters
- As in all models, some risk of false negative when model does not match data

Ipython Notebook Example

Comparing sliding window to HMM model fit

Outline

- Introduction
- Non-parametric temporal evolution
- Parametric temporal evolution
- Summary measures
- Inference
- Summary

Part 3

Summary Measures

Calhoun et. al. (2015)

Cluster & Estimate States

Model State Transitions

Calhoun et. al. (2015)

Dynamics of Schizophrenia vs. healthy controls (Calhoun et. al., 2015)

Cartographic Profiling

- Estimate modules (clusters) between voxels/regions at each time point
- Compute graph statistics e.g. module degree, participation coefficient

Distinct Segregated and Integrated States

Differences in Task vs. Rest

Summaries for Parametric Temporal Evolution

- Parametric models often have "natural" interpretations e.g. Gaussian HMM automatically estimates "states"
- However, can be difficult to synthesize interpretation for large models
- Suggest to combine both parametric and nonparametric summaries to fully explore the results

Outline

- Introduction
- Non-parametric temporal evolution
- Parametric temporal evolution
- Summary measures
- Inference
- Summary

Part 4 Inference

Asymptotic Tests

- Often interested in rejecting the null hypothesis that non-zero graph edges are due to chance
- Asymptotic tests are not exact, but typically perform well in simulation tests
- There is a test statistic for DCC that is asymptotically normal (Engle & Sheppard., 2001)
- There is a test statistic for sliding window kernel (sparse) precision estimation that is asymptotically normal, even for high dimensional data (Wang & Kolar, 2014, Junwei et. al., 2015)

Non-parametric test

- Parametric tests may not exist for interesting statistics such as summary measures
- Non-parametric approach: generate multiple synthetic time series that are matched to the time averaged connectivity e.g. from vector autoregressive (VAR) model with matched static connectivity
- Compare statistics from stationary model with statistics from the presumed dynamic model using standard non-parametric one-sample test

Example from Zalesky et. al. (2014)

Example from Zalesky et. al. (2014)

Example from Shine et. al. (2016), Submitted

Conclusion

- Discussed parametric vs. nonparametric approaches for modeling temporal variation
 - Standard tradeoffs between parametric vs. non-parametric estimators
- Discussed model summary using clustering and cartographic profiling
 - also useful for parametric evolution models
- Discussed inference using parametric techniques (in a few cases) or non-parametric techniques

Tutorial References

- Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., et al. (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378
- Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262-274

Software

- Discrete Hidden Markov Models: https://github.com/hmmlearn/hmmlearn
- MTD: https://github.com/macshine/coupling
- DCC (Lindquist):
 https://github.com/canlab/
 Lindquist_Dynamic_Correlation

Thank You!!!

Questions?

contact: sanmi@illinois.edu

References-I

- Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262-274.
- Ma, S., Calhoun, V. D., Phlypo, R., & Adalı, T. (2014). Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis. Neuroimage, 90, 196-206.
- Rashid, B., Damaraju, E., Pearlson, G. D., & Calhoun, V. D. (2014). Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in human neuroscience, 8, 897.
- Lindquist, M. A., Xu, Y., Nebel, M. B., & Caffo, B. S. (2014). Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach. Neuroimage, 101, 531-546.
- Nielsen, S. F. V., Madsen, K. H., Røge, R., Schmidt, M. N., & Mørup, M. (2015).
 Nonparametric modeling of dynamic functional connectivity in fmri data. In
 Proceedings of the 5th NIPS Workshop on Machine Learning and Interpretation in
 Neuroimaging (MLINI 2015).
- Engle, R. F., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH (No. w8554). National Bureau of Economic Research.

References-II

- Shine, J. M., Koyejo, O., Bell, P. T., Gorgolewski, K. J., Gilat, M., & Poldrack, R. A. (2015). Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives. Neurolmage, 122, 399-407.
- Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., & Lindquist, M. A. (2012). Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage, 61 (4), 907-920.
- Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., ... & Handwerker, D. A. (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage, 80, 360-378.
- Ryali, S., Supekar, K., Chen, T., Cai, W., Menon, V., (2015). A variational Bayes hidden Markov model for discovering dynamical functional brain networks. OHBM Poster & Talk
- Andersen, J. M., Koyejo, O., & Poldrack, R. A. (2016). Model-based dynamic resting state functional connectivity. Under preparation, OHBM 2016 poster
- Shine, J. M., Bell, P. T., Koyejo, O., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2015). Dynamic fluctuations in integration and segregation within the human functional connectome. arXiv preprint arXiv:1511.02976.

References-III

- Wang, J., & Kolar, M. (2014). Inference for Sparse Conditional Precision Matrices. arXiv preprint arXiv: 1412.7638.
- Lu, Junwei, Mladen Kolar, and Han Liu. "Postregularization Inference for Dynamic Nonparanormal Graphical Models." arXiv preprint arXiv:1512.08298 (2015).
- Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., & Breakspear, M. (2014). Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences, 111(28), 10341-10346.
- Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., et al. (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.