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A Search for Best Constants
in the Hardy-Littlewood
Maximal Theorem
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ABSTRACT.  Let Mf(x) = sup(1/2r) j; x_t’ |f(t)) dt be the centered maximal operator on
the line. Through a numerical search procedure, we have conjectural best constants for the
weak-type 1-1 estimate (3/2) and the L estimate (the constant B(p, 1) such that M(|x|~V/?) =
B(p, 1)|x|~'/P). We prove that these constants are lower bounds for the best constants and discuss

the numerical evidence for the conjectures.

1. Introduction

L? estimates for specific operators are statements with empirical content, so it should be
possible to obtain information about them, at least conjectural, through numerical experiments. As
far as we know, this approach has not been tried before. This paper reports on a “pilot study” of
the one-dimensional centered maximal operator. Since the L? mapping properties are given by the
well-known theorem of Hardy and Littlewood, we concentrated on the problem of finding the best
constants in the weak-type (1, 1) estimate and the L estimates (1 < p < 00). A more challenging
project would be to study an operator for which the L? mapping properties are not known.

The maximal operator is a positive operator, so it suffices to consider only nonnegative func-
tions. Also, because of positivity, it is not necessary to do computations with extreme accuracy to
obtain reliable experimental results. It would seem prudent, at first, to limit experimental studies
to positive operators, for these reasons. On the other hand, the maximal operator is nonlinear. It is
possible that linear operators might be easier targets for the experimental approach.

As a result of our experiments, we obtained conjectures for the best constants. In §§2 and 3
we present proofs that these conjectural constants are lower bounds for the best constants. These
sections are presented in traditional mathematical form, with no reference to the experiments. It is
quite possible that these results could have been discovered without using the experimental approach,
but in fact they emerged directly from an analysis of the experimental results. (After this work was
completed, the paper by Christ and Grafakos [ 1] appeared, which also contains a proof of our Theorem
3.2.) To this extent, the experimental approach has already been successful. Of course, we will not
be able to claim an impressive victory until someone succeeds in proving that our conjectured bounds
are optimal.

Note Added June 1996. A recent preprint of Grafakos, Montgomery-Smith, and Motrunich
[4] proves our conjectured L? bound for a class of “bell-shaped” functions.
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One disappointment we have to report is that we are not able to say anything about the higher
dimensional case. The complexities that arise in computing the maximal operator even in two
dimensions make it seem unlikely that a direct search could yield anything useful. It was our hope
that the one-dimensional results would shed some light on the situation in higher dimensions. They
do not. We attempted to mimic the one-dimensional construction for the weak-type (1, 1) estimate,
but the results were too inconclusive to report. For the L? bound, there is an obvious generalization
to R”, but we show in §3 that it is inadequate. The existence of L? bounds that are independent of
n was established in Stein [6]. See also Stein and Stromberg [8].

In §§4 and 5 we discuss the computer search that led to the results presented in §§2 and 3 and
the extent to which the experimental evidence supports our conjectures. Strictly speaking, there are
no mathematical theorems in these sections. Nevertheless, they contain some of the main ideas we
wish to communicate.

Notation. We write

M =
FE =910 G

f £ (e + ) dy
lylsr

for the centered maximal operator in R”, where 2, denotes the volume of the unit ball in R". We
let w,_; denote the (n — 1)-dimensional area of the unit sphere in R". We let A(1, n) denote the
smallest constant in the weak-type (1, 1) estimate

l{x - Mf(x) = s}| < AQ, )| fll1/s

and A(p, n) for 1 < p < oo denote the smallest constant in the L? estimate

IMflp < A(p, WIS lp-

The existence of such bounds can be found in many standard references, such as [2] by de Guzman
and [5, 7] by Stein. Related work on the uncentered maximal function is reported by Grafakos and
Montgomery-Smith in [3]. [J

2. Bounds for the Weak-Type Estimate

It is well known that we can replace the space L! by the space M of finite measures in the
weak-type estimate without changing the norm

Hx - Mu(x) > s}| < ACL n)||ull/s. @1

Without loss of generality we may assume that 4 is a probability measure, and by dilation invariance
we may assume s = 1. Thus the constant A(1, n) is just the sup of |{x : Mu(x) > 1}| as pu varies
over all probability measures. Also, a fairly routine argument shows that we can restrict attention
to finite discrete measures . = Z,’cvzl a;8(x — x;) (this is true even though M is not continuous in
the weak topology). The reason is roughly as follows. By sacrificing ¢ we can assume that f is a
continuous function of compact support and in the computation of Mf the sup is taken over all r
satisfying r > r¢ for some fixed ry > 0; then approximate all integrals by Riemann sums.

When n = 1, it is known that A(1, 1) < 2. The same estimate works for the uncentered
maximal function, and in that case the best constant is exactly 2. It seems unlikely that the smaller
centered maximal function would need the same bound. We conjecture that A(1, 1) = 3/2.

Theorem 2.1.
A(L,1) > 3/2.

Proof. For any N, consider the probability measure p = 3 p o (1/N)8(x — 3k/2N). We
claim that Mu(x) > 1 exactly on the interval (—1/2N, (3/2) — (1/N)) of length (3/2) — (1/2N),
which will give the desired estimate as we let N — oo.
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To prove the claim, observe that for any point x in the interval ((3k — 1)/2N, (3k + 1)/2N),
we can take r = |x — 3k/2N| and obtain an interval of length 2r < 1/N containing a single
point mass of weight 1/N; hence Mu(x) > 1. On the other hand, for a point x in the interval
((3k+1)/2N, (3k+2)/2N) (fork < N —2) we cantake r = max(x — 3k/2N, (3(k+1)/2N) —x)
and obtain an interval of length 2r < 2/N containing two point masses (at 3k/2N and 3(k + 1)/2N)
of total weight 2/N; hence Mu(x) > 1. These two types of intervals fill up the entire interval
(—1/2N, (3/2) — (1/N)) as claimed. O

The two types of intervals generated in the proof are nonoverlapping. Furthermore, there are
no intervals where Mu(x) > 1 because of a choice of r that engulfs three or more point masses.
It is possible to give more complicated examples involving such interactions, but they do not yield
a better bound for A(1, 1). This will be discussed further in §4. Notice that we do not produce a
single measure that attains the value 3/2 for |[{x : Mu(x) > 1)}|, and we conjecture that no such
extremal exists. Also, it would be a mistake to pay attention to the fact that the sequence of measures
that we give is converging weakly to the function 2/3x ([0, 3/2]). For this limit function the set
{x : Mf(x) > 1} is empty. To obtain a sequence of functions rather than measures you should put
tall skinny spikes of area 1/N around each of the points 3k/2N.

3. Lower Bounds for L? Estimates

We begin by stating a result that follows easily by a homogeneity argument.

Lemma 3.1.

Let f(x) = |x|™P? for p > 1. Then there exist constants B(p, n) and r, (also depending on
n) such that

Mf =B(p,n)f 3.1
and moreover

1
Mf(x)= ————— f(@) dt. (3.2

Qn(rpl-an t—x|<rp|x|
For large n and p we may have B(p, n) = 1and r, = 0. The following theorem also appears
in [1] by Christ and Grafakos.
Theorem 3.2.

For1 < p < o0 we have

A(p,n) = B(p,n). (3.3)
Proof. Fix p and define
fu@) = 1xI™?x(1 < x| < N). G4
Then we have
I fwllp = (wn-1log N)VP. (3.5

We compute a lower bound for M fy in the region 1 < |x| < N/(1+r,) by taking the average over
the ball of radius 7, |x| about x. Note that the condition |x| < N/(1 + rp) implies that this ball lies
entirely in |x| < N. Thus

1
Mfy(x) > ————— / le|=/P dt—/ [e1="/P dt | .
Qu(rp XD | Jie—xi<r,ixi lrl<1

By the lemma we have
Mfn(x) = B(p,m)Ix|™7 —clx|™ in 1<|x| <N/(1+r,),
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where ¢ = p’/ nry, of in other words,
Mfy(x) = B(p,n) fn/q+r,)(x) — g(x), (3.6)
where g(x) = c|x]™x(|x] = 1) isin L?. By (3.5) we obtain
IMfnll, > B(p, n),", (log N — log(1 +1,)) " = ligll:
hence,

log(1 +rp)
IMfx s/l fulp = B(p.m) (‘ Sl

Thus limy oo |Mfnllp/I fullp = B(p,m). O

When n = 1 we conjecture that A(p, 1) = B(p, 1). In that case we give an implicit equation
for r,, that enables us to understand the behavior of B(p, 1).

Lemma 3.3.
Letn = 1. Thenr,, is the unique solution inr > 1 of

(A —=r/p)Yr+1)=A+r/p)?@r—1D. 3.7

1/p .
) ~ ligllp/(wn—1log NP

Proof. For f(x) = |x|~'/? we have

1+r
B(p,) =Mf(1) = sup(l/2r)f t]7YP dt
r 1

-

and r,, is the value of r where the sup is attained. Since
1
5((1+t)—1/1’+(1 —"YP)>1 for 0<t<1,

it is clear that the sup is attained in the region r > 1. Thus we have the calculus problem of

maximizing
1+r r—1
g(r) = (1/2r) (f t7VP dy +/ t~lp dt)
0 0 (3.8)

= (/21) (@ + D7+ = DY),
Note that lim, _, o, g(r) = 0, so the maximum is attained. We have
gy = (1720 (r + D7 + - = D7)~ (/2 (r + DVP 0 = DY) (39)

and g'(1) = +00, so r = 1 is not the maximum. Thus r, is a solution of g'(r) = 0, and after some
algebraic manipulations this equation becomes (3.7). It is easy to see that (3.7) has only one solution
since the derivative of the right side is greater than the derivative of the left side. O

In particular, r, = 2/+/3 and g(r2) = 27/ V2. For p an integer, rp is a solution of a
polynomial equation. In general, we can easily compute numerical approximations to r, and g(r,)
using Newton’s method. The solution of (3.7) requires that r < p since the right side is always
positive. In fact, it is easy to compute the limits r; = lim,_, r, and 7o, = lim,_,7,. We have
r1 = 1, and r, is the solution to

e r+D)=€@r-1) (3.10$)
or, equivalently,

r=cothr  (re & 1.1996786). (3.11)
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For large p we have the asymptotic behavior

1 re 1 1
— — 4 — — 00 3.12
I'p =TI 32 1 2 0( 3), 14 » ( )

and for small p we have
rp=1+(p—-1/4+0(p-1)?, p— 1 (3.13)

These results follow from (3.7) and some routine calculations. Then by substituting these results for
rp in (3.8) we obtain

1 ~ o — 1) log(re — 1
B(p, 1) =1+ ;(1 _ ot Dloglres + 1); (Foo = 1) log(r )) +0(1/p®) as p— oo,
* (3.14)
Bp. 1) = 1/(p— 1) + %log(p D40 as po L. 3.15)

We can also see that r,, is increasing and B(p, 1) is decreasing as a function of p. It is somewhat
easier to do this if we introduce the variable s = 1/p. Then (3.7) is equivalent to

log(1 — rs) + s log(r + 1) = log(1 + rs) + s log(r — 1), (3.16)

which shows rs < 1. Differentiating (3.16) and simplifying (also using (3.16)) we obtain

dr  —(? =D = r¥s?) (lo 1—rs 2rs )

— = 3.17
ds 2(rs)2(1 — s2) l+rs  1—(rs)? (3-17)
which is negative since
1- 2
log1+i+—1——_-£x—2>0 for 0<x <1

Thus r,, is increasing. In principle we could use the same method to show B(p, 1) is decreasing, but
the result is exceedingly complicated. Instead, since B(p, 1) = sup g(r, s) for g(r, s) = 1 5 ((r +
r>1
D=5 4 (r —1)17%), it suffices to show %%(r, 5) > Oforall (r, s) satisfying | <r <r,and0 <s < 1.
But this follows easily since 1—‘_—; —log(r + 1) > 0 under these restrictions (using ro, < e — 1).
We discuss briefly the case n > 1.

Lemma 3.4.
Ifp <n/(n—2), then B(p,n) > 1.

Proof. Consider the spherical average operator

S f(x) = fGx + ru) du. (3.18)

Wp—1 Jsn-1

The result will follow if we can show S, f(x) > f(x) for all r satisfying 0 < r < & for some ¢, and
x| = 1, where f(x) = |x|™. But then S, f (x) is just

b 4
f (1 +2rcosf + r?)™/%(sin6)*~? do
hG) =22 - (3.19)
/ (sin6)"~? do
0
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We have h(0) = 1 and

n
/ cosO(sin8)" 2 do
0 =0

K (0) = —ns =
/ (sin6)*~? do
0

forn > 2. But

/” [(ns +2) cos®6 — 1] (sin6)" 2 do
h//(o) =ns 0

7 =ns(s — (n —2)/n),
f (sin®)"~2 do
0

so h"(0) > 0if p < n/(n — 2). This shows h(r) > Ofor0 < r < ¢ as claimed. [

When n = 3 we have
A+t =11=rP
2Ar

for . = 2 — 35, which means 1 < A < 2 in the region p > 3 where the lemma does not apply.
When p =3 wehave h(r) = 1for0 < r < land h(r) < 1forr > 1, so B(3,3) = 1; while
for p > 3 we have h(r) < 1 forall r > O (this is trivial for r > 1 and follows from the inequality
(1+r* <2rai+ (A —r)*for0 <r < land 1 < A < 2), so again we have B(p, 3) = 1, and now
rp = 0. It seems likely that B(p, n) = 1 whenever p > n/(n — 2).

In these cases, Theorem 3.2 gives no information, since A(p, n) > 1.

h(r) =

4. Computational Aspects of the Search (p = 1)

Asdescribed in §2, the constant A(1, n) isthesup of | {x : Mu(x) > 1}| as u varies over all finite
discrete probability measures. Given such a finite discrete probability measure . = Y, axd(x —
xi), let E = {x : Mu(x) > 1}. We describe our method for computing | E| in the one-dimensional
case, but the method generalizes easily to higher values of n. We implemented it on a computer for
n=1andn =2,

Whenn =1,

Mu(x) = sug(Zr)_lp, (Ix —r.x+r)). @.1
r>
Label the point masses so that x; < x; < -+ < xy. Given indices m and n satisfying 1 <m <n <
N,leta=Y,_ a. Ifa > x, — xp, the point (x,, + x,,)/2 is guaranteed to lie in E, since taking
r = (xXp — xXm)/2 gives Mu((x, + x)/2) = 1. Moreover, if a is strictly greater than x, — x,,, a
certain interval centered at (x,, — x,,,)/2 is guaranteed to lie in E.

Specifically, let I, , be the interval [x, — a/2, x,, + a/2] if x, — a/2 < x, + a/2, and the
empty interval otherwise. I, , liesin E forall 1 < m < n < N. The maximum in (4.1) clearly
occurs when |x; — x| = r for some j. Thus, E = |J,_,, .,<xn Im - To compute |E|, we consolidate
the possibly overlapping intervals 1, , into disjoint intervals and sum their lengths.

Since we are interested in maximizing | E|, we need only consider those probability measures
for which x;,; — x; < 1 for all j (separating x; and x;; further will only reduce |E|). Suppose
we fix the value of N and require that x; = 0 and that each x; and each g; be multiples of some
small number b. There are then only a finite number of possibities for . Using a computer, we can
compute | E| for each of these and determine the maximum value of | E| and the measure that gives
this value. This is what we mean by a search to a given resolution.

We performed such exhaustive searches for small values of N. Clearly, such a search does
not prove anything; a search at a finer resolution may have revealed a maximum that was previously
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missed. However, a small change in the configuration can only lead to a small change in | E|, so for
N <5, we were able to determine the best configurations with a fair degree of certainty.

For N = 2, 3, and 4, the best configurations correspond to those described in the proof of
Theorem 2.1, which we refer to as the even configurations of N masses (see Figure 4.1a). The
masses are evenly distributed and evenly spaced so that in general I, , exactly touches I,_; , and
I, n+1. Intervals of the form [, ,, where n — m > 2, are empty; those for which n — m = 2 are
negligible because they consist of a single point. In other words, we can compute | E | by considering
various single point masses and adjacent pairs of point masses. If we are to increase the value of
|E|, we must find a configuration where some intervals resulting from the interactions of three or
more point masses (intervals of the form I, ,, with n — m > 2) have positive measure. Although
such configurations are possible using three or more point masses, they do not maximize | E| when
N = 3 or 4 because of the large amount of overlap between the various intervals 1, ,.

a,=1/3 a,=1/3 a;=1/3

(@
\,= ......
12 1 716
3
®)
177 177 1/7 1/7
-1/14 0 3/14 9/14 15/14 18/14 19/14
/7 1/7 17 1/7 177 17 1/7
© O —je-+—0— «(—l—)- —(—1—)— 4-(——1——)- o —O—fe- o —0—]
-4 0 3/14 6/14 9/14 12/14 15/14 18/14 19/14

FIGURE 4.1. For three point masses, the optimal configuration (a) is the even configuration. For five masses, the optimal
configuration (b) is not even, but covers exactly the same interval as the even configuration of seven masses (c). In these
diagrams, the large dots represent the locations of the point masses, the heights of the vertical bars represent their weights,
and the horizontal lines represent the various intervals I, ,. Solid horizontal lines indicate intervals covered by one point
mass (I, ), dashed lines indicate those covered by the interaction of two point masses (/, »+1), and dotted lines indicate
those covered by the interaction of three point masses (I, n+2)-

When N = 5, however, one can improve on the even configuration of Theorem 2.1. The
best configuration with five masses is shown in Figure 4.1b. This configuration resembles the even
configuration of seven masses, shown in Figure 4.1c, with the three central masses consolidated into
a single mass in the center. The two configurations cover the same interval, but in the five-mass
configuration, I; 3 and /3 s cover part of it, and these are intervals that lic in E because of the interaction
of three point masses. Note that the various 1,, , are not disjoint in this case. They overlap in several
places. Using more point masses, we can construct more complicated configurations resembling this
one. With nine point masses, for example, we have a configuration that covers the same interval E as
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the even configuration of 25 masses. However, we cannot eliminate the overlap between the various
I,.» without decreasing the total measure |E|. In general, these configurations seem to achieve the
same value of | E| as an even configuration involving more point masses. We conjecture that as the
number of point masses increases, the best configuration becomes more and more complex, taking
advantage of intervals of the form /, , for greater and greater k to cover ever larger intervals. But
we believe these intervals are always of the form [—1/2, 3/2 — 1/j] for some integer j and could
therefore be covered by the even configuration of j masses. The limit of | E | as the number of masses
increases remains 3/2. We therefore conjecture that A(1, 1) = 3/2.

The limitations of our technique become apparent as N increases. To begin with, even with
N = 4, it is difficult to prove which configuration is the best because so many different interactions
between different groups of point masses must be considered. For N > 5, the optimal configurations
become increasingly complex. Moreover, for N > 5, several configurations are “local maxima”—
that is, while they may not be optimal configurations, they have the property that a small variation of
the mass distribution always leads to a decrease in | E|. The prospect of proving which configuration
is optimal for each positive integer N is not attractive.

For values of N greater than 5, it is computationally expensive even to perform searches at a
resolution high enough to determine the optimal configurations with a fair degree of certainty. Each
time we add a point mass to our configuration, we add two independent variables (its location and
weight) to the system we wish to optimize. The number of possibilities through which we must search
grows exponentially. In fact it grows even more quickly because, as N increases, finer searches are
necessary to determine the best of several local maxima. These search techniques helped lead to our
conjecture that A(1, 1) = 3/2, but other techniques will probably be required to prove the conjecture
if it is true.

These practical limitations became an even more serious obstacle when we considered point
mass distributions in two dimensions. As in one dimension, we can compute |{x : Mu(x) > 1}
for any given configuration. To see patterns in two dimensions, however, a larger number of masses
are necessary. Five will certainly not suffice. While we found some attractive configurations in two
dimensions, we were not able to perform exhaustive searches of large enough sets of configurations
to produce any conclusive results. We may be able to make progress on this problem by improving
our search techniques.

5. Computational Aspects of the Search (p > 1)

For the case of p > 1, we can no longer use finite discrete probability measures to approximate
arbitrary functions; instead we use step functions. As with the probability measures, we can search
over the space of functions such that || f||, = 1 by fixing the number and length of the steps (as
opposed to point-masses) and again varying their values (heights) by a small “resolution.” Again,
this reduces our search space to a finite namber of functions, given a certain resolution.

Thus, we needed to be able to compute || M f ||, for any given step function f. Suppose f isa
step function given as

cjifxisinfaj,aj41) for0<j<N-1,

fx) = [ .1)

0 ifx <apgorx > ax.

It is possible to compute || M f ||, because, for any x, we need only consider a finite set of values
of r as possibilities in the expression of the maximal function—namely, the set of distances |x — a;|
from x to the endpoints of the intervals of the step function. The reason is that as r increases so that
x + r and x — r remain in the same interval,

1 x+r
2—-/ f@)dt =a+b/(c+r) forconstantsa, bandc; (5.2)
r xX—r
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this function is either increasing or decreasing depending on the sign of b, so it assumes its supremum
(and thus is equal to M f(x)) at one of the endpoints of the intervals. So, for f a step function as
above,

1 x+r
Mf(x) =max[;/ fO dtir=x—ajlj= o,...,N]. (5.3)

For any of these possible choices of r, it is easy to compute the integral of f over (x —r, x+r). It
isthe sum of c; such that (a;, a; 1) is contained in [x —r, x +r] plus one term of the form ¢ (x +r —ayx)
or ¢x(ay+1 — x +r) as the contribution to the integral from an interval (a;, ay ;) that partially overlaps
[x —r, x +r]. Thus, when f is a step function, computing M f (x) for any given x is merely finding
the largest of a finite set of easily calculable numbers.

Moreover, in theory it is possible to calculate ||M f ||, exactly. From the above, we see that on
certain intervals M f (x) is the maximum of a finite number of rational functions. Thus, we could solve
for which of these rational functions are dominant on which subintervals and integrate accordingly.
As it turns out, we used a combination of these “exact” techniques and numerical integration to
compute |[Mf||,. For the best combination of computational accuracy, speed, and simplicity, we
chose to do numerical integration on the support of the step function and exact integration outside
its support.

Suppose f is a step function of N steps as above, with support in [0, ay). Here is the outline
of the strategy for integrating M f(x) “to the right of the support,” over (ay, o0) (the strategy is
symmetrically similar to the left). For each point in this set, there are the same N “candidates” for
M f (x)—those obtained by taking 7 to be x — a; for 0 < j < N — 1. Note that f;frr f(@) dtis
merely ), ; ¢j- So, each of the functions in (5.3) is a rational function as in (5.2). By algebraically
solving for when pairs of these functions are equal, we can determine which functions are dominant
on which subintervals of (ay, 00) and then integrate accordingly. This task is made computationally
simpler by the fact that we need only look at these functions “in order.” If we have determined that
the function obtained by taking r = x — a; is dominant over some interval beginning at a point y,
then we need only compare it with the functions obtained by taking successively larger r; i.e., first
take r = x — a; — 1, thenr = x — a; — 2, and so on, until one of the resulting functions takes over
at some point 7 > y.

These computations, though possible on the support of the step function as well, are much more
complicated. So instead we used numerical integration by Simpson’s method, on the support of the
step function, because we could much more easily provide the necessary information for numerical
integration, namely, the value of M f(x) at a number of discrete points.

An example, where this entire procedure is carried out for a step function with two steps, is
shown in Figure 5.1.

We initially approached the problem of searching through spaces of step functions in the same
manner we approached that of the finite discrete probability measures—we searched through the
space of functions f such that || f||, = 1, beginning with small numbers of steps and progressing
to larger numbers as far as computationally feasible. From the optimal configurations yielded by
these searches for small numbers of steps, we hoped to find a pattern pointing toward the ideal
configuration in the limit (i.e., as number of steps goes to infinity).

For all our searches involving step functions, we made the support of an “N-step” function
[0, N), with the ith step over [i — 1, i), and required that the value of each step ¢; was a multiple of
some fixed small number b. We also noticed early in our investigation that only step functions with
an odd number of steps would be useful for our purposes. We reasoned that the ideal configuration
in the limit will be a symmetric configuration; with small numbers of steps, only functions with an
odd number of steps could exhibit such behavior.
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FIGURE 5.1. The maximal function of the step function

0.5 ifxin[0, 1),
fx)= 1.0 ifxin[l,2),

0 otherwise.
For each x, there are three possibilities for r in the expression of Mf(x) : |x|, |x — 1|, and |x — 2|. Each produces a
“candidate” for M f (x). This set of candidates will be identical for points within the following intervals: (—o0, 0), (0, 1/2),
(172, 1), (1, 3/2), (3/2, 2), and (2, +00). (Note that any step function with steps of measure 1 behaves similarly; there will
be a distinct set of candidates for M f (x) on each half of each step.) For each of these intervals, we listed the candidates for
M f (x) and identified which of these is dominant; i.e., which is actually Mf (x).

Thus, let us turn to the results of our searches through functions with three, five, seven, and nine
steps. We first examined the case of p = 2; fairly “fine” searches through the spaces of functions with
three, five, and seven steps yielded no discernible pattern through the optimal configurations in these
cases. However, our experiments with functions of seven steps revealed an interesting phenomenon.
There is a much more regular arrangement, whose step heights decrease as one moves outward from
the center and which yields a maximal function with p-norm only slightly less than that yielded by
the irregular optimal configuration. Our nine-step search revealed that such a symmetric decreasing
arrangement is the best configuration with nine steps. This seems also to be the case with eleven
steps. These arrangements seem to be the same as those produced by the steepest ascent search as
described below. We denote them by SD(N, p).

So, in the case of p = 2, it seemed as if SD(N, p), though not the best configuration for
small N, became the best configuration once there were “enough” steps. We next tried to see if this
behavior held for other p. Working on the idea that the L? spaces are more “flexible” for smaller p
and less so for larger p, we tested functions with p = 1.5. As we expected, the SD(N, p) eventually
became the optimal configuration, but now such a pattern became the dominant one with only five
steps. With three steps, we still saw a “nondecreasing” pattern as the best. But, when we decreased
p to 1.25, SD(N, 1.25) was the optimal configuration even with only three steps.

Conversely, our searches with larger p supported the idea that these L? spaces are less flexible.
For example, with p = 4, for both nine and eleven steps, SD(N, 4) is not the best configuration.
Thus, it seems likely that for any p there is some integer N, such that if N > N,, SD(N, p) is the
optimal configuration among step functions with N steps. Moreover, the number of steps needed to
see this behavior increases as p increases.

The conjecture that A(p, 1) = B(p, 1) gained support from our work with functions composed
of a larger number of steps N. As we increase N, the number of possible functions at any given
resolution grows quickly, making exhaustive searches difficult. Such searches become even more
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difficult because higher resolution is necessary to determine which one of several configurations with
similar values of | Mf ||, is in fact optimal. We therefore use an alternate approach. One can think
of g = ||Mf||, as a single-valued function of N independent variables that determine the height of
each of the N stepsin f. If the function g is sufficiently smooth, one can apply calculus-based search
algorithms to find local maxima. We implemented a steepest ascent search, which involves choosing
some step function as an initial point, approximating the gradient of g at that point, moving in the
direction of the gradient until the function stops increasing, and then recomputing the gradient and
repeating the process. The function g is not differentiable everywhere, but it turns out to be smooth
enough that the steepest ascent search brings us readily to local maxima.

These local maxima become increasingly numerous as N increases; we have no systematic
way to find them all. We noticed, however, that for all but very small values of N, we can achieve
the previously noted SD(N, p) by a steepest ascent search beginning with an initial configuration
in which the entire weight of the step function is concentrated in the central step. This allows us to
produce the configurations we believe are optimal for odd values of N as high as 499.

As N increases, the configurations seem to approach curves reminiscent of functions of the
form f(x) = |x|™ for some «. These configurations suggested the approach described in §3. The
step functions shown in Figures 5.2a, b and 5.3 represent the best configurations that we were able
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FIGURE 5.2. Optimal configurations with five steps for (a) p = 2 and (b) p = 1.5. The configuration in (a) is not a
symmetric decreasing arrangement, but that in (b) is SD(5, 1.5).
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FIGURE 5.3. The optimal configuration with nine steps for p = 2 is SD(9,2).

to find with the given numbers of steps. Note, however, that they give values of || Mf]|, well below
the lower bounds for A(p, 1) given in Theorem 3.2. For p = 2, for example, arbitrarily close
approximations to the function f(x) = |x|~!/2 give values of || M|, approaching 1.612.. .; while
§D(499, 2), shown in Figure 5.4, gives |[Mf ||, = 1.459 . ... This suggests two possibilities. One is
that while the SD(N, p) do not approximate |x[~1/7 well in terms of the values they give for | Mf ||,
they are the best possible approximations with any given number of steps. The other possibility is
that, for some given number of steps, we can improve on SD(N, p) by more closely approximating
the function |x|~'/7. Al our attempts to approximate this function with a finite number of steps,
however, produced values of || M f ||, lower than that of the SD(N, p) with the same number of steps.
We therefore believe that the SD(N, p) are indeed the optimal configurations for large numbers of
steps and that a very large number of steps is necessary to obtain a value of || Mf||, close to B(p, 1).
While the rate of convergence seems logarithmic, it is faster for lower values of p. Figure 5.5a shows
S$D(99, 1.01). For comparison, Figure 5.5b shows an approximation to the function |x|~'/1%!, which
lies in L', Note, first, the similarity between the two graphs, and second, the fact that both give
values of ||Mf||, close to B(1.01,1). The primary difference between the two graphs is in the
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FIGURE 5.4. $D(499,2), which we believe is the optimal configuration with 499 steps for p = 2.



Best Constants in the Hardy-Littlewood Maximal Theorem 485

region close to the center, where we would expect the greatest error in approximating a function that
goes to infinity. For any p, we conjecture that as N increases, the optimal configurations better and
better approximate f(x) = |x|~1/?. The value for the constant A(p, 1) would then be B(p, 1), as
described in Theorem 3.2.
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FIGURE 5.5. (a) SD(99,1.01) has [|Mf||1.01 = 96.295. (b) This 99-step approximation to f (x) = x~!/1%! was determined
by using values of f(x) at regular intervals as step heights and normalizing so that the step function has a 1.01-norm of 1.
Here |Mfll1.01 = 96.284, slightly less than the value of SD(99,1.01). Note, however, that the two norms are very close to
each other and relatively close to B(1.01, 1) = 98.277.
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