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Supporting Information Text12

1. Recovering conventional active learning from Social Situated AI13

Our socially situated learning generalizes different variants of conventional active learning methods.14

• For example, query membership synthesis active learning (1), the agent queries for a label for an input x ∈ X and15

receives a label y ∈ Y as a response. So, A = X, S = Y and the transition dynamics P (·|·, a = x) = V(x).16

• Similarly, we can recover pool-based active learning (1), where the agent queries for labels for an entire pool of data17

points {x1, x2, . . .} where xi ∈ X and receives a set of labels {y1, y2, . . .} where yi ∈ Y.18

• Finally, we can also recover the final type of active learning: stream-based active learning. In this scenario, the agent19

has access to a stream of incoming inputs x ∈ X decides whether or not to ask for a label y ∈ Y. So, S ∈ X × Y and20

A ∈ [0, 1], where a = 1 indicates that we will receive a label s = (x, y) and when a = 0, we will receive no label s = (x, ∅).21

These variants of active learning have been studied for tasks in computer vision and natural language processing, including22

topic classification (2, 3), object recognition (4), digit classification (5), and named entity recognition (6). Recently, methods23

have even proposed extending active learning methods that learn to generate questions: A is a set of possible natural language24

questions (7) and V is a visual question answering model. However, in all these methods, Rknowledge is the primary source of25

innovation, with methods that estimate V’s least confidence measurements (8–10), epistemic uncertainty (11–13), Bayesian26

uncertainty (14, 15), disagreement (5, 16), and core-set selection (17). In all active learning methods introduced so far, α is set27

to 0, encouraging interactions that maximize the acquisition function Rknowledge and making the assumption that an oracle28

will provide new information for any interaction, therefore, ignoring Rinteraction. In contrast, by extending the framework as a29

reinforcement learning problem that characterizes social interactions within the reward Rinteraction, we hope that this will lead30

to a generalization of active learning where interactions involve real humans.31

2. Protocols for interactive AI systems32

Informed consent procedures. Our research was approved (protocol #50287) by Stanford University’s Institutional Review33

Board (IRB) through an expedited non-medical review. Our IRB approves data collection from two online population pools:34

one from workers on Amazon Mechanical Turk and another from users worldwide on a social network.35

We poll images from a social network, generate questions about concepts in the image and ask social network users by36

posting the question on their posted image. The questions are programmatically generated and vetted by Amazon Mechanical37

Turk workers as not being problematic or offensive. Only questions that are approved by workers are posted online to users.38

Mechanical Turk workers are fully informed about the purpose of the study. They are told that we plan to generate questions39

would fit the social norms within the community and would be likely to receive an answer from an online social network user.40

Since our questions are automatically generated, workers are asked to identify questions that might be construed as offensive or41

rude to ask. They are informed that all questions that are vetted will be posted on social media. They are shown the image42

associated with the question but are not provided with links to the social network post or the poster’s account.43

Social network users are informed that we are asking a question about their image. All questions are preceded by the44

following introduction: "We are a computer science research project." The social network profile used to post the question also45

has the same message printed as its biography. Regardless of whether users respond, we debrief them of their participation46

by sending them a direct message on the social network after 48 hours of posting the question. We provide them with an47

email address in case they have further questions or reservations: “Thank you for responding to our question. Your answers48

will be used to improve an AI agent’s ability to recognize concepts in images. Your original image and answer will not49

be released publicly. If you wish that we do not use your response or have questions about the study, please email us at50

<EMAIL_ADDRESS> or reply to this message.”51

Data privacy. We collect worker IDs from Mechanical Turk workers (which are anonymized). We also collect usernames for52

social media participants, which are publicly available (however usernames, personal information, etc. will not be used for any53

experiments or stored). Data is transferred using secured folders on Stanford University’s AFS file system. Since our primary54

contribution is a framework and a proof-of-concept prototype, the data we collect will not be shared publicly. Participants are55

only be contacted by us if their posts are publicly accessible. We only collect publicly available data.56

3. Designing a socially situated agent for social media57

We argue that active learning efforts have myopically focused on only what the model requires, rather than what people58

want: what people are interested to label or identify, and the kinds of requests they are likely to respond to (18). Our socially59

situated AI framework outlines the various elements that need to be designed to deploy an agent in a social environment. The60

framework introduces socially situated learning as an iterative reinforcement learning problem with new rewards.61

In this section, we describe the various components that were involved in deploying an agent on social media to improve its62

visual intelligence. We start by choosing the interaction modality and environment. Next, we design the inputs X and outputs63

Y for the computer vision model V. Then, we formulate the state of the environment S. Next, we draw on recent advances in64

natural language process and machine learning to design the agent’s policy π, enabling it to explore the combinatorially vast65

space of interactions. Finally, we explain the parsing model, which extracts new concepts from user responses.66
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Application, environment, and mode of interaction. Modern computer vision systems rely on mountains of labeled67

training data, but generating labeled datasets remains challenging. In computer vision, for example, the ImageNet dataset (19)68

required fourteen million labels of basic human knowledge such as whether an image contains a chair. Unfortunately, this69

knowledge is both so simple that it is extremely tedious for humans to label, and also so tacit that it is often absent from the70

image’s metadata. Although many volunteer labeling efforts have been deployed to incentivize labeling vision data (20–22),71

these methods have seen limited success. This combination of tedious and tacit leaves images online missing useful metadata72

describing its contents, and is why we chose it as the application domain to study socially situated AI.73

Social networks are a popular platform for photo storage and sharing. Popular photo sharing platforms estimate that over74

46, 740 pictures are uploaded every single minute with billions of active users. Given the large number of interactions centered75

around visual data on social networks, we chose it as our environment E.76

Since most information is exchanged using the comment section on image posts, we chose natural language as our interaction77

modality A. To limit the scope of our experiments, we chose to design interactions by the agent to be a single question.78

Although one could extend our experiments to dialogues with multiple question-answering turns, we restricted our exploration79

to compare directly to active learning and existing data collection methods, where each piece of data is independently collected.80

The computer vision model to optimize. Since we were using images with question-answers to collect data, we chose81

visual question answering as the computer vision model V. It expects inputs (it, qt) ∈ X to be an image and corresponding82

natural language question (23). It expects the output to be a natural language answer anst ∈ Y. We use the popular stacked83

attention architecture for V , though other architectures can be used if desired. The original architecture expects an image and84

a question as input and classifies an answer amongst a fixed set of 1000 answers (â = m(i, q)). We modified the output of85

the original stacked attention model to generate an answer in natural language instead of just classifying within a fixed set86

of predefined categories. This allows our model to generate answers containing new concepts as it discovers them. Answer87

generation uses using a 2-layer LSTM with pretrained word embeddings from GloVe (24). So, as we learn about more concepts,88

we can use the pretrained GloVe embeddings to learn to answer questions about new concepts.89

The knowledge reward. To ensure that our agent asks questions to learn new visual concepts, we design the knowledge90

reward. Drawing on active learning’s uncertainty acquisition functions, we choose the knowledge reward to be V’s uncertainty91

in answering a question, Rknowledge : (i, q)→ [0, 1]. Intuitively, this encourages the agent to generate questions that V doesn’t92

currently know how to answer. Typically, in the active learning literature, uncertainty is measured using entropy over all93

possible answers (8, 9). However, since we have an open vocabulary set of answers, measuring entropy is intractable because the94

normalization term requires measuring the probability of generating every possible answer. Instead, we approximate entropy95

by using beam search to generate the top 60 answers and measure entropy using these top 60 answers. We find that 60 is96

an empirically sufficient number of candidate answers to consider as the probability mass is concentrated within these top97

answers. We further normalize our approximate entropy measure to lie in the range [0, 1]. Our work is agnostic to any specific98

measurement of uncertainty and future work can explore other measurements.99

The knowledge reward tracks the constantly shifting space of informative interactions as V learns. As our agent interactions100

with people, V uses the answers extracted from people’s responses as training data. This re-training process updates which101

questions can now be answered. So, using V’s uncertainty as a reward updates our agent to generate questions that result in102

informative responses.103

The interaction reward. As the agent interacts with people online, it updates its policy to generate more socially acceptable104

interactions, which results in more responses. This goal is modeled using the interaction reward, S : (i, q) → [0, 1], to105

approximate which interactions result in a response containing the answer. Responses that contain an answer are used a106

positive (+1), and all other responses or lack thereof are used as negative (0) examples to train the function. The image107

and question are encoded into agent’s policy πθ(·) and a two-layer LSTM question encoder encψ(·); their representations are108

concatenated and used to regress onto a score using a learned linear transformation. The function is trained using a standard109

the mean squared error loss.110

Language reward for the baseline agent. Since the baseline agent doesn’t restrict its action space to the interaction111

representation, it can generate interactions using any sequence of words stitched together. Initially, the rewards learned are112

noisy, guiding the baseline to generate grammatically incorrect or incoherent questions. Existing state of the art dialogue113

generation agents have used a language modeling reward to encourage grammatically coherent generation (25, 26). We use114

the same reward to showcase that even with such a reward, there are no guarantees that the agent will be capable of quickly115

recovering useful questions when learning is restricted to a few thousand human interactions. We pre-train an LSTM language116

generation model on the questions about visual data (27, 28). The reward for a question is calculated as the inverse of the117

language model’s perplexity. Intuitively, this reward encourages the generation of questions that grammatically resemble118

those found in available datasets. Our experiments indicate that when this reward’s relative weight is set too high, the agent119

ignores the other rewards and doesn’t deviate from its initialized behavior; similarly, when it is set too low, the agent quickly120

degenerates to producing nonsensical questions.121

State of the environment. The formalization describes each environment state as containing st = (it, anst), where122

it is a new image uploaded to the social network and anst is the human answer to the agent’s previous question qt−1.123

However, practically, we batch interactions to speed up training and average out the effects of any specific noisy interaction.124

So, practically, each state contains N ′ new images and N responses from the questions generated in the previous state:125

st = ({it1, . . . , itN′}, {anst1, . . . , anstN}). N ′ is > N since we generate more questions than we receive responses. We126

filter new images {it1, . . . , itN′} to avoid asking questions about images that contain memes, cartoon, or ads (Section 6).127
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{anst1, . . . , anstN} is parsed (Section 7) to extract training data for Rinteraction and V. The updated rewards are then used to128

train the agent’s policy. We set N = 10K, i.e. the rewards and policies are updated every 10,000 informative responses received.129

Searching the space of possible interactions. The space of possible language interactions is combinatorially vast—the130

agent must learn to select the optimal set of tokens (words) to stitch together to form the optimal question. To decouple131

the agent’s need to concurrently learn what interactions to initiate with how to generate those interactions, we utilize recent132

advances from machine learning. Specifically, we learn an lower dimensional interaction representation where questions about133

visual contents are likely to lie (see Figure S1). We use the interaction representation as a surrogate action space, which reduces134

the space of all possible interactions to a tractable search space. An agent’s policy maps images encountered on social media to135

the interaction representation, z ∼ πθ(i). A decoder projects from the interaction representation to produce natural language136

questions q ∼ decφ(z). Once the policy is initialized, the agent is deployed on social media to learn from social interactions137

with people.138

Learning the interaction representation. Given the readily available Computer Vision datasets containing pairs of images
and associated questions (27, 28), (i, q), the default approach to learning the interaction representation is to train a variational
image-to-question generation model (29). This optimization maximizes the evidence lower bound (ELBO) or equivalently
minimizes the following loss:

Loss(θ, φ) = − E
z∼πθ(i)

[decφ(q|z)] +DKL[πθ(z|i)||p(z)] [1]

where πθ(·) is the policy parameterized by θ and expects image i and generates an interaction representation z. Similarly,139

decφ(q|z) is the decoder parameterized by parameters φ and maps z to produce the question q. p(z) is a uniform prior140

distribution. The first term maximizes the maximum likelihood estimation, or minimizes the reconstruction loss, of generating141

the associated question for a given image. The second term minimizes the Kullback-Leibler (KL) divergence of the categorical142

latent variables z with p(z). Intuitively, minimizing KL-divergence with a uniform distribution is the same as maximizing143

the entropy of the predictions between the latent categories, encouraging the model to pick different categories for different144

questions.145

This objective, as with many variational objectives, suffers from posterior collapse (30). Posterior collapse over z causes the146

decoder to produce near-deterministic outputs with little interesting variation since the latent categories are uninformative147

and ignored. Consequently, the decoder generates safe, overly general questions instead of learning the overall variance of all148

possible questions. Intuitively, this problem occurs because an image-to-question translation is a one-to-many mapping, i.e. a149

single image can create many questions. The model essentially learns to ignore all but one question. For example, it learns that150

asking “what color is the sky?” is a valid question for many images and resorts to asking that general question instead of151

focusing on other parts of the image.152

To overcome posterior collapse in the interaction representation, we add a variational autoencoder objective that enforces153

that the interaction representation encodes and the decoder decodes a wide variety of questions for a given image. This new154

objective requires a new neural network module, encψ(·), which learns to encode questions into z and is parameterized by ψ.155

This new question encoder is utilized to train the policy, the decoder.156

Our new optimization loss is defined as:

Loss(θ, φ, ψ) = DKL[encψ(z|q)||p(z)]− E
z∼encψ(q)

[decφ(q|z)] +DKL[πθ(z|i)||encψ(z|q)] [2]

This optimization, specifically, the first and second terms, produces a one-to-one mapping from the input question to the157

output question by conditioning on a z, relieving the collapse and allowing the representation to learn to encode a wide variety158

of questions. The question encoder, encψ(·), is used to train the question decoder instead of using the policy πθ(·). The third159

term uses the question encoder to train the policy, πθ(·). This term holds the weights of the question encoder constant and160

trains the policy to match the question encoder’s outputs with a KL-divergence loss. This objective allows us to use the161

interaction representation as a surrogate action space that is lower dimensional than the complete space of possible interactions162

but is still expressive enough to represent a host of possible interactions.163

We train encψ(·) and decφ(·) first and then finetune all three modules together. After which, we no longer need encψ(·) as164

πθ(·) has already learned to pick image-relevant questions — and only use πθ(·) and decφ(·) to generate questions from images.165

When deployed on social media, we hold the decoder’s weights constant and only update the policy to encode better latent166

interaction representations. Since we are utilizing the representation as a surrogate action space for reinforcement learning, we167

would ideally design the space to be large enough to represent the large variation of human-human interactions and small168

enough to learn without requiring hundreds of millions of interactions.169

An obvious approach to try is designing the representation as a continuous d-dimensional space, constrained to lie within170

a multivariate Gaussian (30). However, we found it difficult to prevent the reinforcement learning updates from producing171

previously unseen continuous interaction representations. During training, the decoder sees values of z sampled from encψ(z|q)172

but never sees values sampled from πθ(z|i), which is used during the deployment. In practice, we found that πθ(z|i) changes173

sufficiently between reinforcement learning updates and leads to the generation of nonsensical questions. To overcome this174

challenge, we draw on recent work in dialogue systems, which suggest that discrete latent spaces (31) lead to more diverse175

language decoding (32) and are more consistent (33).176

Therefore, we design the representation as pseudo-discrete using the Gumbel-Softmax relaxation (34). Specifically, the177

interaction representation is designed as m dimensions, each of which is a k-way classification. The interaction policy produces178
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m classifications, which are then embedded and utilized by the decoder to generate a question. This discretization leads to an179

action space of m× k while being able to represent km questions. We find that by limiting the space to a finite discrete space,180

we reduce the likelihood of generating out of distribution questions.181

The decoder that generates question from the interaction representation. The decoder maps the m latent k-way182

categorizations in the interaction representation into a natural language question. We choose m = 10 and k = 50. First, it183

embeds the m latent variables, denoted as zj∀j ∈ [1,m], into an embedding space: ej = Ej(zj), where Ej is the embedding184

function for the jth latent variable. Since we have m latent embeddings ej∀j ∈ [1,m], we need to decide how to utilize them in185

the decoding process.186

Prior work has traditionally used a simple Long Short Term Memory (LSTM) network (35) to generate sequences, such as
questions (29, 36). These approaches usually concatenate the latent embeddings into a single representation that can be used
as the initial hidden representation for the LSTM. Today it is more popular to use an attention variant of the LSTM decoder
such that at every time step, it uses its current hidden state to attend over the all the latent variables (37). This attention
mechanism can be summarized by the following equations:

αjt = softmax(hTt Waej) ∀j ∈ [1,m], ct =
m∑
j=1

αjtej , ĥt = tanh(Wb

[
ct
ht

]
) [3]

where ht is the hidden representation generated by the LSTM at time step t, and Wa and Wb are linear layers with learned187

weights. αjt is the attention weight over on the jth latent variable at time step t. ĥt is the hidden representation sent to the188

next LSTM cell to generate the next word. Intuitively, this attention mechanism can be thought of as allowing the LSTM more189

capability by asking it to learn to focus on different latent variables at every time step instead of memorizing all the variables190

at the beginning and never being able to reference them mid-generation. We initialize the first hidden representation for the191

LSTM as h0 =
∑M

m=1 em, which is often called a summation attention (33).192

Our experiments are agnostic to any particular decoder model and recent successes in Transformer based sequence models193

might be a worthy exploration for future work (38).194

Parsing responses from people. We need a response model that parses people’s free form responses to our questions on195

social media. Our agent continuously polls to check if any of posted questions received a response. It continuously monitors196

posts for up to 48 hours. The likelihood of receiving a response after 48 hours drops significantly, so we categorize such posts197

as a negative interactions.198

For the posts that do receive responses, those responses can include additional information beyond just the answer to199

the question (see Section 7). All responses are, therefore, parsed using a response model that extracts the answer from the200

freeform text response. The response model produces three outputs: (1) a binary flag indicating whether the the question was201

answered or whether the person was confused about the question, and (2) the start, and the (3) end indices of the response202

that contains the answer: b, start, end = R(response) where b = 1 indicates that the person answered the question and203

a = response[start : end] represents the extracted answer.204

Our response model uses the Bidirectional Encoder Representations for Transformers (BERT-small) (39) model’s pretrained205

contextual embeddings and fine-tunes them for our task using a dataset of 50,628 responses we collected from social media206

interactions (see Section 7). We tokenize each response and feed it to BERT, which outputs a representation per token. We207

pass these representations through a single fully connected layer that accumulates the final representations and attends over all208

the tokens to output a distribution over start and end spans. The accumulated representation also produces a single score209

b ∈ [0, 1] with another linear layer and sigmoid activation. Since BERT performs subword tokenization, we align predicted start210

and end indices to their corresponding word tokens. While the response model is not a core contribution of this work, having a211

performant response model is crucial to the functioning of our agent (See Section 7 for more detailed analysis of the response212

model training and evaluation).213

If the response model generates b > 0.5, then we infer that it has identified a response that contains an answer. With214

the answer, we generate a new training data point for the recognition model (i, q, a), consisting of the image, our agent’s215

generated question, and the response model’s extracted answer. This training data is used to update the recognition model.216

Each interaction generated, (i, q), is also sent to the social reward function, where it serves as a positive example if b > 0.5 or217

as a negative example if b < 0.5 or if the person never responds.218

Updating the policy using interactions with people. With all our components in place, our agent can utilize its policy
to generate interactions and learn from people’s responses. The interaction policy generates a question, q given an image i:

z ∼ πθ(i) q ∼ decφ(z). [4]

The question is posted as a comment on the post associated with the image i.219

Once the agent receives responses from N =10,000 people, the responses are parsed by the response model and used to
generate training data {{(i0, q0, ans0), . . . , (iN−1, qN−1, ansN−1)} for V. We batch the data into training batches of N to
average out the gradients in a training step to avoid significant changes caused by a single noisy interaction. The reward
functions are re-trained with the new data. Finally, the reward functions are used to train the interaction policy using proximal
policy gradients (40) to maximize:

θ∗ = arg max
θ

Ez∼πθ(i),q∼decφ(z)[
N∑
n=0

R(in, qn)] [5]
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Fig. S1. The space of possible interactions is combinatorially vast and intractable for standard reinforcement learning agents to navigate, limiting their ability to learn from
interactions with others. We use recent advances in machine learning to identify a lower dimensional interaction representation of real human-human interactions and uses it as
a tractable surrogate action space. We visualize a t-SNE projection of the representation space of natural language questions about images. Green dots represent valid
questions while gray dots represent nonsensical interactions. A standard sequence-to-sequence approach (visualized using the gray path) generates increasingly meaningless
questions while restricting the agent’s actions to the interaction space produces increasingly refined questions.
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where

R(i, q) = αRinteraction(i, q) + (1− α)Rknowledge(i, q), [6]
0 ≤ α ≤ 1. [7]

4. Related work comparison220

Our work draws inspiration from a number of human-in-the-loop learning agents. We explore the various machine learning221

paradigms that influenced our design decisions, including question generation, active learning, lifelong learning, and reinforcement222

learning. Next, we place our work in context with conversational agents, interactive machine learning systems, and interactions223

through language.224

Developmental robotics and reinforcement learning with humans. Reinforcement learning has gained popularity by achieving high225

performance in Atari games through deep q-learning and policy gradient methods (41, 42). Most reinforcement learning226

research makes two assumptions: (1) simulated environments with (2) a small action space. Work has begun to question227

the first assumption, engaging with human teachers (43). This line of work finds that people prefer to provide guidance228

instead of rewards (44–46) and provide more positive rewards than negative (47). Agents can minimize the amount of feedback229

required for training by modeling when they are uncertain about an action (48) or by visibly slowing down their action to230

indicate a need for human assistance (49). With these design decisions in mind, the Cobot and TAMER developmental robotics231

frameworks (50–52) build agents that use rewards from trained human participants. Our work generalizes these approaches232

by learning how to interact with people in social environments without needing to train people to interact with our agent.233

Our framework infers rewards implicitly from human interactions as opposed to these methods, which teach people to provide234

explicit rewards. Additionally, prior work has still to address the second assumption, the small action space. In particular, our235

work is the first to explore a language-based reinforcement learning agent with rewards attained from direct human conversation.236

Question generation. In the field of Natural Language Processing, a few methods have attempted to automatically generate237

questions from knowledge bases, using rule based (53) or deep learning based approaches (54). In Computer Vision, a few238

recent projects have explored the task of visual question generation (36, 55). These projects have also either followed an239

algorithmic rule-based(53, 56) or learning-based(57, 58) approach. Newer papers have treated the generation process as a240

variational process (29, 36) or placed it within an active learning (7) or reinforcement learning framework (55). The closest241

related work to ours frames question generation in the context of synthetic images and simulated oracles who respond to all242

queries (7). Our work draws inspiration from these previous methods by using question as a modality for continuous learning.243

It also draws on recent information maximization work to initialize the question generator within a variational autoencoding244

framework.(29) We introduce a latent discretization of the question topic using the latent interaction respresentation, allowing245

our agent to tractably explore and unearth useful social interactions.246

Active learning. Active learning is an machine learning paradigm where a model iteratively maximizes its performance while247

minimizing the number of annotations (1). Typical strategies for choosing which data points to label involve formulating248

an approximation of model uncertainty such as entropy, least confidence measurements, or the expected impact on the249

model (8–10). Active learning has successfully been deployed with crowd workers to improve the state of the art on large scale250

tasks (13, 59, 60). Unfortunately, recent work has concluded that users don’t want to serve as simple oracles by repeatedly251

providing labels, breaking a fundamental assumption in active learning (61–63).252

Our framework is a reaction to this observation: active learning doesn’t take into account what others are willing to253

teach in realistic social environments (see Section 12). We seek to learn which requests are acceptable within a given social254

context—concepts that people are willing to teach us should be as important of the concepts we want to learn. Furthermore, we255

study data acquisition through natural questions, generalizing most existing active learning methods, which focuses primarily256

on obtaining classification decisions (8, 9).257

Lifelong and never-ending learning. We draw inspiration from prior work on lifelong learning and never-ending learning. In258

lifelong learning, models are trained continuously to accumulate knowledge over time (64–66). In never-ending learning, the259

latest models are trained to scrape new information from the web and iteratively retrain (67–72). Unlike these approaches, we260

enable the collection of novel or tacit information that is not already available online. No amount of re-reading existing web261

pages will enable these approaches to obtain information that is simply not present or well-structured enough to be extracted;262

but, by asking questions, our prototype agent can quickly bootstraps new knowledge. Unlike never-ending learning (70), our263

framework is task-focused: it directly aims to improve performance on an underlying model’s learning goal.264

Curiosity and intrinsic motivation Our work is also related to recent work on curiosity-based exploration strategies in reinforcement265

learning (73, 74). Existing methods have explored strategies that guide AI agents to discover novel states (75–77) or surprising266

behaviors (78–81). Recent work has also shown that socially situated robots can learn to choose amongst a small set of267

predefined actions when interacting with real people (82). Our work draws on these ideas and uses uncertainty to design268

the knowledge reward to decide which states to explore and which to avoid. Unlike previous work, our prototype explores a269

knowledge-based motivation in a large space of states and actions.270
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Interactive machine learning. Over the last decade, there has been a shift towards considering the role of end users in machine271

learning systems (83). Crayons was the first such system, demonstrating that end users can quickly author ad-hoc classifiers272

through demonstration (84). Follow-on work generalized this technique to other domains such as image search and more directly273

integrated an understanding of the successes and vagaries of human labeling behavior (85). At a professional level, developing274

machine learning systems is an iterative process that can be difficult to understand or evaluate (86). Generalizing common275

machine learning workflows can help developers quickly transition back and forth between implementation and analysis (87).276

Likewise, iterative reflection interfaces allow annotators to update their decisions and improve the labeling quality (88, 89).277

Machine teaching and play-along learning explore the role of a human teacher in providing guidance to an agent to improve278

its performance (90, 91). Today, developing machine learning systems is a complex interactive process, where users manage,279

version, customize, and reuse both their data and their model components (92). Given this complexity, recent work has280

also proposed a set of design guidelines to help developers navigate the space human-AI interactions (93). Our framework281

builds on this work by generalizing to contexts where the user’s main goal is not to train a model but to simply engage in282

human-human interactions; by modeling people’s interests, our agent shows that it is possible to extract learning signals from283

social interactions.284

Interaction through language. The use of natural language as a medium for interaction has spurred many systems (94–96).285

Natural language enables commands in complicated design tools such as GIMP (97), clothing searches in fashion databases (98),286

visualization authoring (99), language teaching (100), and image editing (101). Users often express their goals through natural287

language, then author or integrate computer-readable code as a result (100, 102). We extend this work: rather than using288

language as an input command language, we utilize it as an interaction modality for intelligent agents on social media, without289

any restrictions on vocabulary or grammar.290

Conversational agents. For over half a century, researchers have been studying how to program computers to participate in291

open-ended conversations (103). Though initial programs were hand-crafted to handle simulated environments (104), recent292

agents can guide a user through a real world data science workflow (105). Today’s deep learning dialogue agents (26) are capable293

of engaging in long conversations with users and utilize language modeling rewards when learning from human interactions to294

prevent the agent from veering off its initialization (25). Conversational assistants have also moved from research into products,295

such as Apple’s Siri, Amazon’s Alexa, and Google’s Assistant. These agents, however, are currently limited to specific speech296

commands that have been coded for pre-determined domains (106–112). As a result, substantial effort has been placed on297

teaching people how to talk to these assistants. Noticing this limitation, more robust crowd-powered conversational systems298

have been created by hiring professionals, as in the case of Facebook M (113), or crowd workers (96, 114). Although impractical299

for deployment because of their high latency and cost, crowd-machine hybrid systems have emerged as a solution that combines300

the robustness of crowds with the speed of automated agents (95, 115–117). Unlike the past research on conversational301

agents where humans have a goal and invoke a passive conversational agent, we take an alternative approach—our framework302

instantiates active agents that engage people in conversations to express its knowledge gaps and accomplish its own learning303

goal.304

Asking questions on social media. Today, broadcasting questions on social media is a common occurrence, giving rise to305

specialized question-answering platforms like Quora and StackOverflow (118, 119). Numerous studies have noted that the306

phenomenon of social search is not limited to such specialized platforms but abundant in most networks, including Twitter,307

Instagram, and Facebook (120–122). These studies have been identifying and predicting what questions people post online (120),308

the quality of answers they receive (118, 123), user satisfaction (124, 125), learning to rank answers (126, 127), identifying309

motivations for answering (122, 128, 129), and modeling the user authority and level of expertise (130). While we do not310

directly study what kinds of questions are likely to succeed, we find that our agent’s emergent behavior is consistent with311

strategies employed by people. Namely, our deployed agent learns to ask shorter questions, ground objects in its questions to312

establish social proof, ask fewer vague questions, prefer questions that can be easily answered.313

5. Data workflow for social media deployment314

In this section, we detail our agent’s workflow — how it interacts with people online and uses the responses to update itself315

(see Figure S2). To reiterate, once the interaction policy and the decoder are initialized, the agent is ready to interact with316

people on social media. Through each interaction, the agent learns to improve its ability to generate better questions while also317

improving its visual intelligence.318

Our agent searches for new posts on social media and filters images to interact with. Images that pass through the filter are319

embedded into a representation space, from which the decode generates questions. Once initialized, the decoder’s parameters320

are not updated, even as the agent interacts with people to collect new data. The generated question is posted back to the social321

media post as a comment. For example, it can post “Is that animal on the tree a fox?”. If the question receives a response from322

the poster, the response is parsed using a pre-trained parsing model. Responses that contain an answer, e.g. “it’s a red panda”,323

are treated as a positive reward for the interaction reward and the answer is used as new training data for the recognition324

model. The recognition model’s uncertainty is used as the knowledge reward. If the question does not receive a response or if325

the response doesn’t narrow the space of possible answers, e.g. “it’s not a fox”, it is treated as a negative interaction reward.326

The two rewards, the interaction and knowledge rewards, are updated after 10,000 answers are received. They in turn serve327

as reward functions to update the interaction policy. Once updated, the agent continues interacting with more people on social328

media to dynamically continue learning.329
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Sarah: Found these little 
ones during my trip.

Agent: How many animals are 
there in this photo?

Social media posts

images

questions

Socially Situated Visual Intelligence Prototype

Sarah: ……………………………..
responses

Interaction 
policy

Response 
parser

Sarah: <no response>

Sarah: Those are deer

Sarah: I see 2

Negative (-1)  reward 
if responses do not 
answer the question

Knowledge 
reward

Positive (+1) reward 
if answer is present

Accumulate new 
data

Interaction
reward

Interaction policy 
maximizes rewards

What is the food 
on the table?

What is the person 
sitting doing?

Why is the person 
wearing a helmet?

OUTPUT: continuously 
improving computer vision 
model

it is a
pizza

reading 
a book

they are 
bicycling

Fig. S2. Overall system diagram depicting the various components of our deployment. The agent filters through recently uploaded images to find concepts that it doesn’t
currently recognize and generates questions to ask people. These questions are posted as comments to social media posts. Each poster’s response is parsed and used as
either a positive or negative interaction reward, depending on whether the the response contains the answer to the question. The answers are also used as new data to re-train
and continuously improve a computer vision model, which is used to calibrate the knowledge reward. After receiving a certain number of answers, the rewards are used to
update the interaction policy. Overtime, the agent learns to generate questions that are more likely to receive responses while simultaneously updating the computer vision
model.
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6. Filtering images330

Our agent only interacts with new social media images that have been posted because it is unusual to find interactions between331

users on older posts. We poll images that contain hashtags related to food, furniture, fashion, nature, sports, or animals (see332

Table S1). We only interact with image posts that have been posted for at least one hour, because we find that two thirds333

of social media images are deleted within the first few minutes of posting. We also check for duplicate images that we have334

already interacted with.335

Images posted to social media can contain memes, cartoons, advertisements or other content that does not teach the AI336

model about the visual world. Therefore, all images are filtered by a trained classifier to remove cartoons, animations, videos,337

images containing any text, and inappropriate content. We train the classifier by curating a dataset of 100K real photos and338

100K unwanted content. We train the filter by finetuning ResNet50 (131), pretrained on ImageNet (19) using a dataset of339

100K images collected by polling hashtags that contain unwanted images. The dataset contains an even split between real340

images and other content. We evaluate the filter on a held out test set, which we manually annotate using online workers from341

Amazon Mechanical Turk. The filter achieves a precision of 97% and recall of 78%. Precision is the important metric in this342

evaluation as we want to minimize the amount of noise passed through our system.343

During deployment, around 33% of images typically remain after the filter. These images are sent to the agent. The rest are344

discarded.345

7. How well do we parse responses?346

In this section, we analyze the responses received by our agent from users on social media over a deployment of 8 months. We347

detail how the parsing model was trained and compare its performance, against existing baselines, at classifying whether the348

user answers the question, and at extracting answers from the responses.349

Dataset. Prior to our deployment, we manually annotated 50,628 responses from social media users, gathered over 2 months.350

The questions were generated by the initial agent and verified by paid annotators hired from Amazon Mechanical Turk. Workers351

were asked to verify whether each question was answerable, given only the image, i.e. “would you be able to answer this question352

about this image?”. Questions that passed the verification were posted to social media. The responses were annotated using353

additional paid annotators, who assigned binary classification labels indicating whether the response contained an answer, and354

indicated the answer span in the response. Crowd workers who verified each response were not necessarily the same ones who355

annotated the answer spans for a particular response. We randomly sampled our dataset into 80%/10%/10% train/val/test356

splits to train the response model.357

Response statistics. Our agent received a wide range of responses, ranging from short 1 word responses to as long as 100358

words with a mean of 35.9 characters and 6.8 words. In contrast, the average word length of answers in the VQA 2.0 dataset(28)359

is 4.5 words. Out of the 2 million words in the responses that we annotated from 50,628 responses, there were a total of 54,877360

unique words. In contrast, the VQA dataset has 22,234 unique words in 10 million total answers manually generated by paid361

crowd workers: half the unique words in five times the data. We find that when users reply, 67% answer the question.362

When users receive an irrelevant question, they usually respond asking for clarifications, suggesting that they are willing to363

engage in future exchanges. For example, when asked “where are the people ?” to a picture with no people, the user responded364

“only food on this post aha !”. In another example, when asked “what is the person holding?” to a picture with multiple people,365

the user responded “which person?”.366

Users’ affective response to our agent vary: some users treat our agent with matter of fact answers, others use it as an367

opportunity to get a new follow and follow our agent back. Some tell us long detailed stories about their images (see Figure S3).368

Metrics. We evaluate performance on the binary classification of whether an answer exists by computing precision, recall369

and F1. Performance on the answer span localization is evaluated with F1 and exact match scores, following the standard370

established by the Natural Language Processing community (132), where the task requires models to extract answers from371

passages.372

Baselines. We compare our BERT-based model against two baseline models: (1) a bag of words and (2) GloVe embeddings (24).373

The bag of words model performs a naïve tokenization of words in questions and responses, and generates a fixed vocabulary374

from the 10,000 most frequent words appearing in the training set. All questions and responses are then encoded as bag-of-375

words frequency vectors of size 10,000. The question vector and response vector are individually passed through separate376

fully-connected layers and ReLU non-linearities, before being concatenated and passed through a final fully-connected layer.377

The GloVe model uses pre-trained GloVe embeddings instead of bag-of-words, encoding the question and response using an378

LSTM (35) before concatenating them and passing through a linear layer.379

Performance. Across all of our metrics reported in Table S2, we find that the BERT response model performs much better380

than the baselines we considered, achieving improvements of 17 F1 points over GloVe on the answer-exists task, which represents381

a 32% relative improvement. Jointly training the response model on both tasks performs slightly better, by 1 to 2 F1 points,382

than when the model is trained on each task individually. By performing the two tasks in tandem, the model is able to383

learn from its shared representations and perform better together. This performance gap is consistent with existing language384

processing tasks explored in the original BERT paper (39).385

Error analysis. It is informative to consider the errors that the response model can make. Most of the errors incurred by386

the response model are a direct consequence of our agent generating questions that are irrelevant to the image. For example,387

consider this exchange: our agent asks “What is on top of the cake?” and the response is “chilli, that is not cake that’s chicken”.388
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Table S1. Categories of images polled on social media. We poll images using 30 different hashtags across 6 categories. These categories
were chosen heuristically by exploring which of the top 500 hashtags contain mainly natural images and not memes or cartoons.

Category Hashtags (#)

Food eathealth, foodporn, eeeeeats, foodandwine, nomnomnom, tryi-
tordiet, buzzfeast, forkyeah

Furniture interiordesign, home, furniture, furnituredesign, livingroom,
homesweethome, homeinterior

Fashion dress, outfit, clothes, fashiongram, fashionista, fashionblog
Animals dogsofinstagram, catsofinstagram, cats, pet, petsofinstagram
Sports athletics, soccer_nation
Nature nature, forest
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Table S2. The BERT-based response model we use performs better than simple GloVe embeddings by .17 F1, a 32% relative improvement, at
detecting whether the user has answered the question. Its F1 score at classifying the span of the answer at 0.74 indicates that our agent can
gather useful data from the responses.

Answer exists? Answer Span Prediction
Model Precision Recall F1 Exact match F1

Bag of Words 0.37 0.18 0.24 N/A N/A
GloVe embeddings 0.62 0.46 0.53 N/A N/A
BERT (individually trained) 0.71 0.66 0.68 0.57 0.74
BERT (jointly trained) 0.73 0.67 0.70 0.60 0.77
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This causes the response model to output “chilli” as the correct answer span along with the incorrect prediction that the389

answer does not exist, likely because it misinterpreted “that is not a cake” to imply an irrelevant question. In another instance,390

our agent and the user do not reach a shared understanding: our agent asks “What is on the building”, and the user responds391

“it’s a kindergarten”. The user corrects our agent’s classification of the building by noting that it is a kindergarten, but doesn’t392

actually answer the question. The response model however, predicts incorrectly that something called “kindergarden” is on the393

building. Finally, occasionally the response model only selects half of the correct answer and ignores half the answer. For the394

question “What is on the table?” and the response “beet and carrot juice”, it predicts the answer span as only “juice”.395

In summary, we receive a wide variety of responses from social media, and our response model is effective at extracting396

answers from the responses.397

8. How are the questions vetted before posting online?398

Human oversight is a necessary step when deploying AI systems that interact with humans. Human oversight, in the form399

of vetting (133, 134), or editing (95), is a common practice across numerous socio-technical systems; for example, the old400

Aardvark social search engine answered users’ queries by initially hiring their own employees to serve search results (134);401

similarly, today’s content moderation research enthusiastically advocates for the irreplaceable need for human oversight of AI402

predictions (133).403

Similar to existing literature, we advocate that interactive AI systems should not operate completely autonomously; human404

oversight should always be present. Our deployed system employs human oversight by vetting questions before they are posted405

to users online. We hire workers from Amazon Mechanical Turk (AMT) for such oversight.406

Workflow. Workers were chosen from Amazon Mechanical Turk; we chose workers who have completed at least 10,000 HITs407

and have a 97% approval rating. Workers are asked to analyze all questions generated by the AI agent before the questions are408

posted online. Workers are presented with the image, the post associated with the social network post, and the AI’s generated409

question. They are asked to identify questions that could be interpreted as offensive or socially inappropriate to ask. Identified410

questions are rejected and not posted to users online. Workers are asked not to reject questions for other reasons; for example,411

they are asked not to reject questions that make incorrect references to objects in the image or are that are irrelevant to the412

image, even if the question could not be answered from the image. We provided workers with 5 example questions we had413

identified as potentially offensive. We also provided 5 example questions that were irrelevant but not offensive.414

Analysis. During our deployment, workers identified 2.4% of all AI questions generated as potentially offensive or rude.415

Through a qualitative analysis, we uncovered that workers rejected questions that inappropriately refer to posters’ age, clothing416

choices, personal items, living conditions, or food preferences. For instance, questions such as "are they wearing a bib?" assumes417

that the person in the image is a child; the training datasets used to initialize our agent’s question generator contains many418

images of children being fed at home while most images on the social network do not. Similarly, questions assuming that people419

were in "costume": "why are they in costume?" are rejected to avoid referring to someone’s outfit as a costume. Some questions420

in the original dataset referred to people’s undergarments; questions generated with such references are also rejected. Workers421

rejected questions that could be construed as insulting people’s food or living preferences: "Is that edible?" and "is this desk422

messy?".423

We ensure that the rejected questions are incorporated into our evaluation metrics: questions rejected are counted as424

uninformative interactions. In other words, if our AI agent changes its behavior towards producing more rejected questions, it425

would decrease our response rate; this change would be reflected in our informative response rate metric. Therefore, the human426

vetting step decreases our informative response rate. If we had posted the rejected questions, some of those questions might427

have received responses and might have led to an increase in our recognition accuracy. However, as we advocated for earlier, we428

chose to trade off the possibility of learning something new in return for safer interactions facilitated by human oversight. We429

have added more information about the impact of this vetting step in the Supplementary materials section on human vetting.430

If we had posted the rejected questions, some of those questions might have received responses and might have led to an431

increase in our recognition accuracy. However, as we advocated for earlier, we chose to trade off the possibility of learning432

something new in return for safer interactions facilitated by human oversight.433

9. How are the questions edited by people different than those generated by agents?434

Procedure. To contextualize our agent’s ability to engage people on social media and garner responses, we report the435

modifications people make to their questions to make them more likely to receive a response.. We hired Amazon Mechanical436

Turk (AMT) workers to write questions for social media images. Workers were paid an equivalent wage of $12-$15 an hour.437

We sourced all our images from social media in the same procedure as our other experiments. Workers were able to generate438

questions and invoke our recognition model to see if it can already answer the question. They were instructed to write questions439

about the contents of the image that the recognition model answers incorrectly but could be correctly answered by a person.440

They were also encouraged to rephrase the question to increase the likelihood of a response from the person who originally441

posted the social media image.442

We did not set any maximum edit distance constraints for the annotators. The only constraint we imposed was to ensure443

that the original intent of the question was not altered. For example, a bad edit would change "Do you work here?" to "Is this444

where you work because I would love a setup like this?". Such an edit would change the original intention of the question (see445

Figure S5).446
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Q: What does the sign say?

A: sorry, I don’t understand

Q: What is the shape of the 
ceiling?
A: It’s a sloping roof. Thanks for 
asking.

(a) Positive interest signal

Personal information

Q: What is the cat doing?

A: I was actually looking at 
Mummy waving a bag of cat 
treats in front me to get a good 
photo :D it’s hard getting me to 
look at the camera because i’m 
a #diva.

Q: Is this a river?

A: It’s on the coast of 
#northernireland so I guess 
technically it’s the Atlantic 
Ocean!

Q: Is the bear in its natural 
habitat?
A: This pic has been clicked at 
the Chimelong Ocean Kingdom 
Zhuhai, China. To great extent 
the Zee Management has been 
successful in creating a near 
natural habitat

(h) Geographical information

(b) Negative interest signal (c) Fine grained expert categories

Q: What kind of bird is this?

A: White-winged swallow

Q: Is the horse running?

A: it’s a colt. It just goes :)

Q: Is this a modern kitchen?

A: no, is a classic kitchen :’)

(d) Attributes

Q: Is that a church?

A: :’) No It’s an office building 
from 1913 which became one of 
Many landmarks of Chicago’s 
architecture. Almost All hash 
rises and Skyscrapers Before 
1930 had steeples on top.

(e) Historical information

(g) Detailed information

Q: What is the food in the middle of the plate made of?

 A: I’m not sure which side dish you’re referring to, but on on the 
yellow side oven cooked pineapples - I broiled them in the oven for 
10 minutes to soften them. They are delicious cooked with meat, 
seafood or poultry. The other beige looking dish is bacon paste with 
homemade sauce-garlic, marinade sauce, red pepper, and other 
tasty ingredients.

Q:What is the food on the plate 
made of? 
A: octopus 🐙 with boiled 
potatoes, olive oil, Is Spanish 
dish

(f) New categories

Q: Is this a boat?

A: it’s a yacht

questions generated by our agent responses from people on social media

Fig. S3. A qualitative categorization of the variety of rich answers we receive. (a, b): Some responses carry along additional signal when our questions result in positive
or negative engagement. (c): Many responses result in rare classifications of fine grained categories that are difficult to attain without expert knowledge. (d, e): People
also provide object attributes and even historical information outside the context of the image. (f): Responses often contain new unseen categories. (g): People answer our
questions in many unspecified variations, making it difficult to parse long detailed annotations. (h): We receive geo-locations of where a particular image was taken.

14 of 32 Ranjay Krishna, Donsuk Lee, Li Fei-Fei∗, Michael Bernstein∗



https://www.instagram.com/p/Bg1H
0WDhlwC/
https://www.instagram.com/p/Bg10
CyXHGAj/
https://www.instagram.com/p/Bg1X
2wuHk9_/
https://www.instagram.com/p/Bg1zJ
b1FJ8A/
https://www.instagram.com/p/Bg1U
nRdAJJF/

Q: I love the colors in this, 
was it edited in any way or 
natural?
A: thank you so much, not 
edited at all, just nature 
doing its best work! 🌄😁
 

Q: that is very good looking, 
what is the name of the 
dish? 
A: it is a caribbean dish 
named << crab pie >>, very 
tasty!

Q: What type of bread is 
this? It looks like a 
sourdough with something in 
it.
A: yes, there are sun dried 
tomatoes and beet greens in 
it.

Q: this type of art is called 
what, i have seen it before? 
A: looks a bit steampunk I 
suppose, but created well 
before that term was thought 
of
 

             questions edited by hired workers response from people on social media

Fig. S4. We visualize a sample of questions edited by online annotators when instructed to modify questions to increase the likelihood of a response. We tasked workers
with writing questions that our recognition model could use to learn new visual concepts and also asked them to generate the questions in a manner most likely to receive a
response from social media. Here, we show some examples that people edited.
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Fig. S5. Instructions provided to workers for editing the questions generated by our agent.
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Results. Examples of questions edited by workers are shown in Figure S4. We collected a total of 19,302 human edited447

questions and posted them to social media as comments, similar to our other experiments. According to a two proportion448

z-test, questions edited by people received a response rate of 37.00%, which was significantly higher than our agent at 33.32%449

(z = 11.54, p < 0.001). Workers’ questions were also on average 11.58± 3.50 words; in contrast, our agent’s edited questions are450

6.81± 1.00 words, which is significantly shorter according to a paired t-test (t(19596) = 229, p < 0.001).451

Out of the 10K vocabulary words available to our agent, it produced questions using only 5414 unique words. Meanwhile,452

crowd workers used 8414 unique words in their questions, of which 7472 words were not even part of the readily available data453

used to train our interaction representation. This result indicates that 88% of words used by workers weren’t even present in454

standardized Computer Vision datasets like VQA v2.0 and Visual Genome v1.4, which was used to train our question decoder.455

This result highlights an imperative need for new large scale datasets that capture natural conversations between people around456

their visual content.457

To characterize the gap between our agent’s current abilities and human questions, we qualitatively analyzed a sample of the458

questions edited by paid crowd workers. First, people often complimented the picture before asking a question: “that is a very459

good looking dish, what is the name of the dish?”. Second, they followed up questions with guesses: “what type of bread is it?460

It looks like sourdough with something on it”. Third, they asked questions that would be impossible to answer about an image461

without having prior background knowledge “this type of art is called what, i have seen it before?”. The current instantiation462

of our agent does not yet apply these strategies (122, 135), because its underlying dataset was not created with the goal of463

replicating social media conversations, and were intended to be as dry and factual. Our agent’s rewards were configured such464

that they did not encourage the generation of meaningful or more human-like interactions; instead, they rewarded the initiation465

of interactions that elicit new information, regardless of how natural they appear.466

10. Test set construction467

The purpose of our experiments is to demonstrate the possibility of socially situated AI, i.e. agents that can learn how to468

interact with people in order to learn from those interactions. Unfortunately, our preliminary pilot experiments demonstrated469

that the categories of objects that people typically post pictures about on social media today focus on concepts that are very470

different from those found in popular computer vision datasets. Therefore, evaluating a model trained using social media data471

requires a new test set collected using social media. Therefore, to evaluate whether the data collected from human interactions472

are useful, we curated a test set.473

In most computer vision tasks, it is common practice to collect training and test sets from the same data distribution (19, 136).474

Following tradition, we collect our test set by deploying the initial agent to ask questions on the social network. The responses475

elicited are sent to Amazon Mechanical Turk annotators to verify, i.e. make sure the questions are grammatically valid and476

answerable by looking at the image. The questions that were verified by annotators were posted on social media. The responses477

to these questions were sent to another set of annotators, who extracted the answers to the questions. Using this workflow, we478

collected a test dataset of 80, 234K pairs of images, questions and answers. Since the initial agent’s response rate was 22%, we479

curated this test set of 80, 234K images with questions and answers by asking 367, 382 questions online for 2 months.480

Like most data curation processes, we witnessed a long tail distribution of concepts annotated by human users. Mechanical481

turk annotators extracted 9, 236 unique answers from the responses. Of those, we curated a test set containing just the top482

1000 most frequent answers. This test set contained 50,104 images with questions and answers. 418 of those categories are new483

categories unseen in existing test sets (Figured S6).484

11. How well does the computer vision model perform?485

Our aim is to demonstrate the possibility of learning through social interactions with people in social environments. As486

machines are deployed, a socially situated learning paradigm acknowledges that agents will eventually encounter unfamiliar487

scenarios and must learn new concepts. In comparison, machine learning models are trained using standard datasets and488

simulations and expected to work in real-world settings. In this section, we dive deeper into the importance of allowing agents489

to adapt and train through a socially situated process. We compare the vision model V, which was trained using data collected490

by our socially situated agent versus a standard model trained using data from existing computer vision datasets (28).491

Our experiments show that data from existing datasets result in models that show strong test set performance in their492

associated standard test set but perform worse from data collected in real world settings, such as social media. Similarly, we493

show that training data collected in order to adapt to an environment will result in better performance in that domain, even if494

the same improvements are not measured by standard test sets. These results, taken together, provide additional evidence to495

support enabling agents to socially adapt and improve their capabilities in the domains they are deployed in.496

Test datasets. We measure recognition performance on two datasets: the original VQA 2.0 dataset(28) and the test set497

collected from social media. There is a difference in the distribution of images and concepts between the two datasets, as498

our agent sources images from social media while the VQA 2.0 dataset’s images were curated from Flickr. We report the499

performance of our models on both datasets.500

Metrics. To measure recognition performance, we report accuracy in picking the correct answer out of a list of possible501

answers. For both datasets, there are 1000 possible answers (just like the VQA 2.0 dataset, we only evaluate on the top 1000502

answers found in our test dataset).503

Results on social media test dataset. Models trained from examples collected from interactions with people lead to a 21%504

increase in accuracy on our social media test dataset when compared against models trained on traditional benchmark datasets.505
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Fig. S6. Example new categories in the social media test set. Photos on social networks often reference animal and flower species and popular food items. Since these
categories are not present in popular computer vision benchmark datasets, correctly identifying these categories are improbable. Only by learning to ask questions to people
who potentially encountered these categories in the real world, will agents curate useful training data for a model to identify such categories.
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Evaluating on the social media test dataset represents utility of our socially situated learning on a real-world domain of images506

found on social media. Figure S7(a) visualizes performances of the two models on our social media test dataset. Training on all507

70K (100% of) training examples collected from interactions by our agent results in an accuracy of 39.44% while training on an508

equivalent number of labels in VQA 2.0 (15% of its volume) only achieves an accuracy of 17.45%. Additionally, we find that509

even when training on all 443K (100% of) labels in the VQA dataset, the model’s performance reaches 28.55%, which is still510

10.89% lower than what our method achieves with only a fraction of the data.511

Results on VQA 2.0 dataset. Evaluating on VQA 2.0 dataset further demonstrate the mismatch between real-world and512

traditional benchmark datasets. Figure S7(b) visualizes performances of the two models evaluated on the VQA 2.0 dataset.513

This is a much harder task for the model trained on social media images since the concepts and image encountered on social514

media are very different than those in VQA 2.0. We should expect models trained using social media data to perform poorly515

when compared against models trained using training data from the same distribution. As expected, when trained with the516

entire 443K (100% of) labels in VQA 2.0, the model achieves an accuracy of 75.70%, while training from the examples collected517

from interactions scores 37.23%. However, our model (at 100%) does achieve parity with VQA when VQA is trained on a518

smaller set (15%), and its derivative is still positive. This experiment demonstrates the importance of deploying agents to learn519

from social interactions with people in whichever domain they are deployed in.520

In summary, our agent manages to improve a vision model from its interactions with people on social media. We also find521

that the interactions leads to improvements in both traditional benchmarked datasets and shows better performance when the522

training examples are collected from interactions in the same distribution. Our experiments showcase the possibility of building523

agents to improve their performance by adapting to new domains and social situations by interacting with other people also524

present in those situations.525

12. Is the interaction reward required?526

In our experiments, we utilize two separate reward functions to help guide the agent towards achieving its two goals: (1) The527

interaction reward incentivizes the agent to initiate interactions that people want to respond to, and (2) the knowledge reward528

incentivizes the agent to ask questions its current recognition model is uncertain about. In this section, we dive deeper into529

how these two rewards interact using the ablation that trains using only the knowledge reward and ignores the interaction530

reward. This experiment measures the impact of the first goal on the second, i.e. if the agent didn’t consider which interactions531

people are interested in engaging with, how will it impact its recognition ability?532

Experimental setup. We launch both ablations of the agent on social media during the same 8 month deployment. One533

ablation only utilized the knowledge reward function while the second ablation, our main agent, utilizes both rewards. Each534

agent’s rewards and interaction policy are updated after every 10,000 interactions.535

Metrics. We measure progress towards the two goals using the same metrics as the rest of the paper: (1) informative response536

rate measures the percentage of interactions that are relevant to the image, answerable and receive an answer, and (2) accuracy537

measures the percentage of questions that the recognition model answers correctly in our social media test dataset.538

Results. We find that when our agent only uses the knowledge reward and doesn’t utilize the social interaction reward, its539

informative response rate drops over multiple interactions and its recognition accuracy increases at a slower rate. During the540

deployment, the agent that only uses the knowledge reward function initiated 274,893 interactions, out of which, 40,000 people541

responded with an answer. Its informative response rate dropped from the initial 22% to 12.3%. Its recognition accuracy542

improved from 18.13% to 31.4%. In comparison, our agent, using both rewards, initiated 236,106 interactions, out of which it543

receives responses from 70,000 people. Its informative response rate increases from 22% to 33.14% and recognition accuracy544

from 18.13% to 39.44%. These results over multiple interactions are visualized in Figure S8(b, c).545

Our results suggest that a pure computing approach, reminiscent of active learning (1), is not sufficient when deploying546

machine learning systems to people. In Figure S8(a), we qualitatively examine the the questions generated for the same image547

as the two agents train. When using only the knowledge reward, we find that the agent generates long, difficult-to-answer548

questions that are difficult for the recognition model. For example, “What is the thing the person is holding in their left hand?”549

require multiple reasoning steps: locating the person, finding their left hand, locating the object being held and then classifying550

the object. Consistent with prior work, we hypothesize that people on social media also prefer answering shorter questions,551

resulting in a drop in response rate (120).552

13. Was the interaction representation required?553

Language interactions impose a combinatorial search space for any conversational agent to navigate. In our experiments,554

we use recent advances in machine learning to learn an interaction representation (29, 31), identifying a lower-dimensional555

space where useful questions are likely to lie. We then use this interaction representation as a surrogate action space for the556

socially situated agent. We compare this approach against a more straight forward baseline that uses reinforcement learning to557

generate questions one token at a time (25, 40). This comparison studies whether using a lower dimensional surrogate space is558

necessary for learning from language interactions with people on social media.559

Experimental setup. We compare two versions of our agent. One that uses the interaction representation space and a560

baseline version that uses the entire vocabulary space as its action space and generates a sequence of tokens that we stitch561

together to form a question. Both versions use both the interaction and the knowledge rewards. We launch both versions562

on social media during the same 8 month deployment. Each agent’s rewards and interaction policy are updated after every563
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a bEvaluated on the social media test dataset Evaluated on a traditional VQA 2.0 dataset

Fig. S7. We train two recognition models: one with training examples collected by our agent from interactions with people on social media, and another with training data from
the large-scale traditional VQA 2.0 dataset. (a) We report the results of these two models when evaluated on the test dataset collected from social media. This evaluation
demonstrates that our agent is capable of learning visual concepts that lead to higher accuracy on real world images people upload online. (b) We also report the results of
these two models when evaluated on the standard VQA 2.0 benchmark dataset. This evaluation shows that even though there is a distribution shift, our model continues to
improve as it continues to interact with more people
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b c

How many animals are 
there in this photo?

Where is the child sitting?

Initial model After 10K responses After 50K responses

What is the animal on the 
right doing?

Is the child playing?

What emotion does the 
deer have?

Are these tools designed 
for someone right-handed 
or left-handed?

What breed is the animal 
on the right?

What is the child looking 
at?

a

Ours (with only knowledge 
reward):

Ours (with both knowledge + 
interaction rewards):

Would the deer eat this?

What is the thing the 
person is holding in their 
left hand?

How many animals are 
there in this photo?

Where is the child sitting?Ours (with only knowledge 
reward):

...

Ours (with both knowledge + 
interaction rewards):

Fig. S8. We perform an ablation experiment where we compare our agent, which utilizes both the interaction and the knowledge reward with a variant — an agent that only
uses the knowledge reward. This experiment demonstrates that a pure active learning objective is not sufficient when deploying machine learning systems that interact with
people. (a) We show examples of questions generated by our agent versus ones generated by the variant . The variant generates longer and harder questions that require
multiple reasoning steps. In the second image example, “What is the thing the person is holding in their left hand?” requires locating the person, their left hand, the relationship
holding, and identifying an object. Meanwhile, “Are these tools designed for someone left-handed or right-handed?” requires knowing commonsense knowledge about what
makes a tool left- or right-handed. Machine learning models today have difficulty answering such questions. Our experiment also indicates that people are less interested in
answering long questions that require multiple reasoning steps. (b) Both agents are deployed on social media and interact with over 200,000 each. We observe that the
variant’s response rate drops from 22% to 12.3%. When using both rewards, response rate increases from 22% to 33%. (c) We observe that using both rewards leads to
faster improvements in recognition accuracy. The variant improves at a slower rate as fewer people responds to it.
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10,000 interactions. To further strengthen the baseline, we add an extra language modeling reward (137), which incentivizes564

the generation of grammatically coherent questions, like the ones in existing datasets.565

Metrics. We measure progress towards the two goals using the same metrics as the rest of the paper: (1) informative response566

rate measures the percentage of interactions that are relevant to the image, answerable and receive an answer, and (2) accuracy567

measures the percentage of questions that the recognition model answers correctly in our social media test dataset.568

Results. Unfortunately, small updates to the policy’s weights modify the baseline agent’s behavior to generate meaningless569

sequences of tokens, causing responses rates to decrease, producing a vicious cycle where the agent cannot identify the small570

subset of actions that increase its reward. Its informative response rate quickly degenerates from an initial 22% to 6%, at571

which point, we decommissioned its deployment. In comparison, the agent that uses the interaction representation increases its572

informative response rate to 33% across interactions with 236,000 people (Figure S9(b)).573

The baseline did not improve its ability to recognize new visual concepts; in fact, it only received 20,000 responses, most574

of them at the beginning of the deployment. In comparison, the agent with the interaction representation received 70,000575

responses and improved accuracy on the test set from 18.13% to 39.44% (Figure S9(c)).576

Discussion. Our results suggest that a pure language based reinforcement learning approach is difficult to tune, especially577

when the underlying reward function is consistently changing in reaction to improvements of the underlying vision model. The578

baseline approach quickly begins producing meaningless behavior, a result also identified by others (138). While we constrain579

the action space by learning a representation from questions in existing datasets, such a dataset of interactions might not be580

present for other socially situated instantiations in other domains. The challenges associated with developing compact, holistic581

representations is still an ongoing research topic (139) and should also be explored in the context of socially situated learning.582

14. Would people respond differently to requests from another person instead of an AI agent?583

In this section, we compare people’s responses to our agent when it self-identifies as an automated agent versus when it584

doesn’t. Before posting any question, our agent self-identifies itself with the following description: “We are a computer science585

research project.” Our decision to self-identify is aimed to promote ethical transparency (see Section 15). However, the words586

or metaphors we use to self-identify can influence people’s expectations of our agent and therefore encourage either pro-587

or anti-social behavior (140). Recent work demonstrated that the words or metaphors projecting high or low competence588

and warmth have a causal impact on end-user evaluations and behaviors (140). To minimize the effect of such metaphors,589

our agent’s description was designed to minimize any interpretations of competence and warmth. For instance, we avoided590

descriptions that projected high competence (e.g. “We are an AI research project”), or high warmth (e.g. “We are a Computer591

Science project trying to learn about the world”). While a finer grained study of the impact of different descriptions is out of592

scope for our study, we do evaluate whether the presence of a description itself impacts the interactions.593

Experimental setup. We study the effects of self-identifying by comparing against a non-disclosing condition, in which our594

agent does not self-identify; i.e. our agent only posts the question and does not post the self-identifying description. However,595

to promote transparency, people are sent a private message summarizing the purpose of the study 48 hours after the interaction,596

regardless of whether they respond. People who respond to this condition do not know that they were interacting with an597

automated agent until after they receive the private message.598

Our agent interacted with a total of 3000 people without self-identifying. These 3000 interactions were uniformly spread out599

over the first 30K responses that the agent received. So, V 0 interacted with 1000 people without self-identifying. The next 1000600

interactions occurred using V and the last 1000 interactions were initiated by V . By testing across multiple training updates,601

we are able to compare the effects of self-disclosing as the agent becomes more socially capable.602

Results. We found no difference in people’s responses between the two conditions. Both self-disclosing and not disclosing603

conditions received similar informative response rates across all three training steps. A Welsh’s t-test concluded no statistical604

significance on informative response rate, regardless of whether our agent self-disclosed, across all three training steps:605

(t(46452) = −0.36, p < 0.71), (t(41814) = −0.63, p < 0.52), and (t(38103) = −0.61, p < 0.54).606

Discussion. These results suggest that people interact with our agent, not because it is an automated AI agent, but because607

they are wiling to respond even if another person were to post those particular questions. Future work should study how the608

descriptors attached to agents not only changes human expectations but whether it alters the types of responses and learning609

dynamics of socially situated learning.610

15. Ethical considerations611

As machines are deployed and learn to socially interact with people in existing social environments, it is important to reflect on612

the potential negative implications of computing research, and how they can be addressed. There are numerous sources of613

risk associated with experiments that involve human-AI interaction. Such risks can be exemplified when alloyed with biases614

inherited from pretrained machine learning models and datasets.(141) In this section, we lay out some of the risks to the615

population of people our experiments involved, the principles we followed, and how we mitigated the risks. We also discuss616

potential implications of socially situated AI research to the broader society at large.617

Which social media posts should agents interact with? Our agent interacted with a sizable population of people on a618

social network throughout its deployment. To avoid interacting with private content, we made certain that all our interactions619

were with publicly accessible posts; we only interacted with content that could be viewed with a publicly accessible URL. Also,620

we only interacted with public posts that contained one of the common hashtags that users of the platform apply to improve621
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How many animals are 
there in this photo?

Where is the child 
sitting?

Initial model After 10K responses After 20K responses

What is the animal on 
the right doing?

Who are the bananas 
looking?

What umbrella is 
upside blue?

Is the child playing? What is the child 
playing with?

Baseline:

Ours: What is the deer 
touching?

After 50K responses

What emotion does 
the deer have?

What is the child 
looking at?

a

Who was there?

Where did animals 
from there on top of 
sky?

How many animals are 
there in this photo?

Where is the child 
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Baseline:

Ours:

...

d

Fig. S9. We show changes in behavior, informative response rate, and recognition accuracy as agents interact with people and gather new visual knowledge. (a) Top row: the
agent using the interaction representation as an action space learns that people don’t like answering counting questions and moves on to asking about the “animal” and later
refers to the animal as a “deer”. Bottom row: this agent first learns whether a child is playing and later starts to ask about what the child is interacting with. In comparison, the
baseline approach quickly begins generating incoherent questions. (b) We plot informative response rate versus the number of interactions initiated. While the agent learns to
increase its response rate by 50%, the baseline method degenerates by 72%. In comparison, questions written by paid workers achieve a 37% response rate. (c) We visualize
visual accuracy versus the number of responses from people. Our agents learns recognize new concepts while the baseline is unable to improve.
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discoverability, clickthrough rate, and engagement. We advocate for future interactions with online media to follow similar622

guidelines: only interact with public content that people indicate as accepting of engagement.623

How should AI agents self-identify? We ensured that our agent introduced itself before asking a question by stating624

that “We are a computer science research project.” This message was also repeated on our agent’s profile biography, ensuring625

that people who encounter our profile were always aware of the purpose of the account and its interactions. To promote626

transparency, we sent people a private message summarizing the purpose of the study after every interaction, whether people627

responded or not (142). We also provided them with our email address, should they have any concerns or want to remove their628

data from our experiments (143). Finally, we also hired paid crowd workers to moderate the questions we wanted to post by629

verifying that our questions could not be construed as rude or malicious. We believe that any AI agents, whether in research or630

products, should self-identify before starting any human interaction. In cases where the self-identification interferes with the631

research study, we advocate studies to moderate the interaction, self-identify after the interaction, and provide people with the632

option of removing their data from the interaction. Furthermore, because of the potential for harm, we advocate the use of633

workers or the researchers themselves to vet content if feasible before it is posted during a research deployment.634

What are the risks for paid annotators? Paid workers from Amazon Mechanical Turk were critical for our experiments.635

They annotated social media images to create a test set for evaluation, annotated images to help filter out memes and cartoons,636

verified that questions we posted would not be interpreted as rude. Recent work has highlighted negative side effects caused637

by asking workers to annotate or moderate large volumes of data or annotating potentially abusive or harmful content (144).638

We mitigate these problems by paying our workers a fair wage of $12-$15 an hour, which is higher than the current average639

minimum wage of $7.25 in the United States of America (145). Additionally, we limited the number of interactions we initiate,640

and thus, the number of interaction moderation tasks to 3000 per day. Finally, since we source our images from a social media641

platform that polices its content, the images were less likely to contain abusive or harmful content.642

What are the risks associated with diverting people’s attention? Another risk worth considering is the ethical calculus643

behind diverting the attention hundreds of thousands of people to answer our questions. Throughout our deployments, we644

monitored how people reacted to our agent to justify its deployment. Aside from answering our questions, many responses645

contained gratitude or positive reactions (e.g. “:D” or “thank you for asking”) and positive valence emojis. In contrast, when646

we deployed existing reinforcement learning algorithms as our baseline, we noticed a decrease in response rate. We stopped647

the baseline model once response rate dropped from 22% to 6%. Future work developing human interaction should similarly648

measure whether how people are reacting, or if they are reacting voluntarily at all.649

What are the biases inherited from past datasets? Our interaction representation was trained using readily available650

data from previously collected Computer Vision datasets (27, 28). The questions contained in these datasets might be651

interpreted as inappropriate when posted to social media. For example, some questions ask about people’s emotional states652

(e.g. “is the woman happy?”), age (e.g. “how old is the boy?”), and assume occupation (e.g.“what is the construction worker653

holding?”). We removed any question that could be interpreted as malicious or subjective by manually inspecting every question654

in the dataset used to initialize our agent’s question generation components. Also, there are explicit assumptions of people’s655

genders and sexuality throughout the dataset. To avoid discrimination with regards to gender, occupation, and age (141), we656

replaced all explicit mentions of words such as “woman”, “boy”, “construction worker”, etc. with “person”. Even with our657

changes, there is still an inherit image content bias inherited from these datasets, which sourced its images using a set of 91658

object categories (146).659

What are the biases promoted by our data collection process? Our deployment is meant to demonstrate the possibility660

of social situated AI agents that can learn from interactions with people. Our instantiation of this possibility, through a social661

media deployment, is accompanied by a host of potential biases. Social media users represent a specific portion of society and662

these platforms promote the curation of concepts that are visually appealing but unrepresentative of concepts that people663

encounter in the real world (147). We induce further biases by polling images that contain a fixed number of hashtags, and664

utilize a filtering model to remove unwanted cartoons or memes. We also do not have any demographic information about665

the social media users we interact with and could be specifically receiving responses from a particularly active subgroup666

on social media. Our agent may have learned culture specific topics to ask questions about. There are numerous studies667

that have identified the negative effects of deploying AI systems that interact with demographics that were absent in their668

training (141, 148). Multi-year longitudinal studies need to evaluate how agent’s emergent behaviors might learn to favor669

interactions deemed acceptable by the majority, at the cost of marginalizing others.670

What are the privacy risks with collecting data through AI social interactions? Users are increasingly sharing671

their images on various social networks, including Facebook, Instagram, TikTok, and Flickr. Social networks can be one of672

the riskiest personal information leakage sources (149). Shared images can reveal sensitive information about people, their673

geolocations, interactivity and relationships, as well as their check-ins, activities, and food preferences (150–153). Companies674

can gather this information to train models that can infer user preference and send targeted ads (154, 155). Such invasive675

methods passively gather information: they extract private information from data that people have already posted online. But676

with a framework for socially situated AI, newer methods can be developed to actively elicit responses to reveal information677

that is unavailable online. As such, there is a need to develop new automated privacy management mechanisms to support678

users in protecting their privacy.679

In order to protect users against existing data privacy leaks, a handful of privacy management systems have already been680

proposed: iPrivacy (156) notifies users if the image they want to post contains objects that might reveal private information.681

Visual Privacy Advisor (157) classifies personal information in images into 68 attributes, which users can customize as alerts,682
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which inform them if their post contains one of those attributes. Warned by such alerts, users can decide not to post their image;683

alternatively, they can invoke automatic redaction methods to transform (158) or obfuscate private information (159, 160).684

When eliciting information through social interactions, we advocate that future interactive AI systems inform users of685

each data point that would be incorporated into a training dataset. Users should be provided with contact information or a686

procedure that allows them to withdraw their data from such a curation. In our deployment, we informed users that their687

answers would be utilized to improve our system’s visual recognition ability and provided them with contact information to688

remove their responses.689

How to release/license datasets collected using social interactions? Aside from informing users that their data would690

be added to a training dataset, privacy preservation processing is also required when the data custodians publicly release691

the data. Database release is critical to promote reproducibility in machine learning research. However, releasing a dataset692

collected through social interactions could exacerbate privacy-threatening annotations. A future research direction should693

explore methods to generate synthetic data that retains the statistical properties of the real data while reducing the risk of694

information disclosure (161). The recent success of using synthetic training data produced from a pre-trained generative model695

demonstrates the promise of replacing real datasets with synthetic ones created using generative models (162). This result696

suggests the possibility of training a private generative model on an unreleased socially collected dataset and performing697

experiments with the synthetic data produced by this said model. Experimental results, along with the synthetic dataset could698

be released to facilitate reproducibility while minimizing privacy leaks. We plan to explore such methods in order to safely699

release our current and future socially acquired datasets.700

What are the risks associated with malicious usage of our technology? Learning people’s interaction preferences701

could be used as a manipulation strategy to induce behavioral changes (18). We are, and should be, concerned, about malicious702

actors teaching such a agent how to manipulate people online, for example inducing emotional or affective shifts (163) or703

inducing anti-social behavior (164). A goal of modeling human interest can also itself be problematic: many social media704

platforms are transitioning from a focus on short term engagement metrics to longer-term ones, as they believe such metrics705

will lead to longer term community and platform health. We designed our agent toward creating enjoyable interactions706

online—largely identifying topics of interest to ask questions about, rather than manipulative forms of asking—and we believe707

that it is important that future work also be transparent about what goals it is optimizing and what rewards it responds to.708

What are the risks associated with a society where interpersonal communication is augmented with AI? With709

simple functions like email autocomplete to complex applications like Google Duplex, we are entering an era of AI-mediated710

communication where interpersonal communication is augmented and even generated by AI. Our work situates agents in a711

social environment, i.e. social network, which is predominantly occupied by people. Recent studies indicate that when people712

interact with a mixed set of AI- and human-written profiles, they mistrusted those whose profiles were labeled as or suspected713

to be written by AI (165). To improve trust in a social-technical system and promote pro-social behavior, policies should714

be enacted to enforce transparent self-identification of AI-agumentations and generation, creating a clear distinction when715

interacting with people versus machines.716

What are the risks associated with job displacement? AI systems displacing jobs is becoming increasingly a matter of717

concern as recent Machine Learning breakthroughs have attracted public attention (166, 167). This attention has also catalyzed718

the rise of conversational bots over the last few years (168). Our work, which promotes learning from human interaction, can be719

used to automate tasks, such as customer service, which have traditionally been regarded as hard to automate (143, 169–171).720

16. Limitations and further work721

These results suggest the potential for developing AI agents that can learn from social interactions with people while722

simultaneously modeling and supporting human interests. Our deployment is meant to serve as a prototype; as such, there723

exists numerous avenues for improvement. We lay out some critical limitations and opportunities for future work in this section.724

First, if our agent posts questions irrelevant to the image, people often answer an interpretation of the originally incorrect725

question. For example, we might ask, “What is the cat doing?”, to an image without a cat. Instead of ignoring the question,726

people reply by correcting the animal in the photo and then answer the question: “You mean the goat? It is trying to climb a727

tree.” Past literature explains that people prefer to suggest alternative framings and even modify the information requested728

to fit the context (172). We currently classify these responses as confused or irrelevant to the image; this is far too simple a729

model. Instead, accounting for such responses could not only provide additional signal about what topics people naturally730

gravitate towards, it would also help re-train the question generation model to produce more relevant questions.731

Second, people are more likely to respond when the reason behind asking a question is explained (18, 173). Providing a732

transparent (and honest) reason, along with the question can establish a social cadence with the person and lead to more733

natural interactions (174, 175). Our interactions are currently limited to one question and answer, so future work should734

explore the impact of longer dialogues sequences (176). Related, it is important to consider how agents can provide direct735

value to the people they interact with, establishing a mutually beneficial relationship.736

Third, Computer Vision has found it expensive to build fine-grained datasets where annotators with domain expertise need737

to be hired, and paid annotators often do not offer the expertise (177). Learning from interactions with people might mitigate738

this problem by modeling user interests and seeking to engage users with respect to their unique skills (128). For example,739

someone uploading pictures of a flower is likely to have seen that flower in the real world and so, more likely to know the names740

of the flora.741
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Fourth, any social media platform will bias people to post pictures of a specific aesthetic appeal.∗ As such, future work742

should also carefully consider the biases associated with specific media sources. We discuss these biases in Section 15.743

To reduce the combinatorially vast search space, we freeze the decoder’s parameters once it is initialized from existing744

datasets. Interactions with people are only used to re-trains the agent’s policy to choose better latent categories within the745

interaction representation. While this decision allows us to learn from sparse interactions and avoid searching over large action746

spaces, it comes at a cost: because the decoder weights are pretrained using readily available data, it never learns to generate747

questions on new topics. Future work should explore mechanisms to navigate the combinatorial space without requiring the748

agent to limit the scope of its interactions. This is particularly vital as agents learn new concepts; learning to ask followup749

questions is beyond the scope of our paper but should be explored in future work; followup questions will need to reference the750

new concepts elicited from past dialogue turns.751

While we deploy our agent on one social media platform, we also ran experiments on numerous other platforms. We chose752

our social media platform for its centralized focus on visual content. We found very rare < 10 total instances of users replying753

with negative or sarcastic comments. On some other platforms, however, we found the opposite to be true — 90% of responses754

were sarcastic, confirming the findings of a previously released conversational agent called Tay (178, 179) Unlike Tay, however,755

users do not initiate interactions; our agent chooses interesting images and questions and actively reaches out to users, reducing756

the likelihood of a planned attacked. However, it seems clear that future work should incorporate user trust when interfacing757

with people.758

Advances in dialogue generation have been attempting to curate natural language generation to be more “meaningful” or759

“natural” for human users(32, 180, 181). In contrast, our questions are neither designed to be meaningful, nor human-like. They760

are task-driven interactions that attempt to elicit useful information. As long as people respond to them, our evaluation metrics761

demonstrate the utility of those interactions. That being said, long-term interactions with people might need to evaluate how762

human-like an interaction is. Future work should expand upon our limited definition of what constitutes a social interaction to763

incorporate measures such as fluency, inquisitiveness, interestingness, and humanness (181).764

Our deployment explores the utility of social situated learning through the context of visual question answering (28). As765

already mentioned, natural language question answering generalizes many computer vision tasks: object detection (e.g., “What766

is in the image?”), fine-grained recognition (e.g. “What kind of flowers are in the vase?”), attribute classification (e.g., “What767

material is the table made of?”), knowledge base reasoning (e.g., “Is this a food vegetarian?”), and commonsense reasoning768

(e.g., “Was this taken in the winter?”). However, the results from our deployment are insufficient to suggest that similar769

techniques would transfer to non-computer vision tasks or to interactions beyond a single turn of question answering. For770

instance, robotic tasks might require interacting with people through motion; healthcare applications might require generating771

novel questions when encountering with rare medical conditions; next-generation multimedia and creativity tools could require772

simultaneous multi-modal interactions. Even though our socially situated AI framework generalizes to all these applications, our773

experiments explore only one specific computer vision instantiation. Future work could utilize the framework to contextualize774

new domains where socially situated learning could be beneficial and identify the domain-specific technical challenges in each775

domain.776

Recently, transfer learning has become the norm (182). The choice of which pre-training method and dataset achieves the777

most general features is still undecided. As such, our experiments pre-trained only using the standard ImageNet dataset (19).778

We did not pre-train the computer vision model on visual question answering datasets like VQA 2.0 (28) or Visual Genome (27).779

The purpose of our experiments was to showcase that models could learn from their interactions with people and not780

necessarily benchmark how much improvement is possible when starting with a pre-trained model. Future work should establish781

standardized benchmarks, pre-training data, and test sets for open-ended visual question answering and for socially situated782

learning more broadly.783

One of the largest limitations of our work—and for all machine learning solutions that interface with humans—is the784

subjective inconsistency of human behavior. Progress in machine learning relies on consistent evaluation metrics and training785

procedures. Introducing humans into the evaluation pipeline has only seen success in particular scenarios where psychophysics-786

inspired experimental design made it possible to extract consistent human behavior (183). To evaluate our deployment, we787

measured how often people provided our agent with new information. We attempted to remove biases in our evaluation by788

evaluating our agent slowly over multiple months. However, our reported values might not be consistent when restricted to789

specific demographics of users, especially to those people who do not engage in conversations with others on social networks.790

An ideal socially situated evaluation scheme should take a more holistic approach, measuring how agents interact with various791

demographics. Our future work plan is to develop benchmarks with consistent evaluation protocols, even if those protocols792

involve human interactions during training or testing.793
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