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Supporting Information Text12

1. Recovering conventional active learning from Social Situated AI13

Our socially situated learning generalizes different variants of conventional active learning methods.14

• For example, query membership synthesis active learning (1), the agent queries for a label for an input x ∈ X and15

receives a label y ∈ Y as a response. So, A = X, S = Y and the transition dynamics P (·|·, a = x) = V(x).16

• Similarly, we can recover pool-based active learning (1), where the agent queries for labels for an entire pool of data17

points {x1, x2, . . .} where xi ∈ X and receives a set of labels {y1, y2, . . .} where yi ∈ Y.18

• Finally, we can also recover the final type of active learning: stream-based active learning. In this scenario, the agent19

has access to a stream of incoming inputs x ∈ X decides whether or not to ask for a label y ∈ Y. So, S ∈ X × Y and20

A ∈ [0, 1], where a = 1 indicates that we will receive a label s = (x, y) and when a = 0, we will receive no label s = (x, ∅).21

These variants of active learning have been studied for tasks in computer vision and natural language processing, including22

topic classification (2, 3), object recognition (4), digit classification (5), and named entity recognition (6). Recently, methods23

have even proposed extending active learning methods that learn to generate questions: A is a set of possible natural language24

questions (7) and V is a visual question answering model. However, in all these methods, Rknowledge is the primary source of25

innovation, with methods that estimate V’s least confidence measurements (8–10), epistemic uncertainty (11–13), Bayesian26

uncertainty (14, 15), disagreement (5, 16), and core-set selection (17). In all active learning methods introduced so far, α is set27

to 0, encouraging interactions that maximize the acquisition function Rknowledge and making the assumption that an oracle28

will provide new information for any interaction, therefore, ignoring Rinteraction. In contrast, by extending the framework as a29

reinforcement learning problem that characterizes social interactions within the reward Rinteraction, we hope that this will lead30

to a generalization of active learning where interactions involve real humans.31

2. Protocols for interactive AI systems32

Informed consent procedures. Our research was approved (protocol #50287) by Stanford University’s Institutional Review33

Board (IRB) through an expedited non-medical review. Our IRB approves data collection from two online population pools:34

one from workers on Amazon Mechanical Turk and another from users worldwide on a social network.35

We poll images from a social network, generate questions about concepts in the image and ask social network users by36

posting the question on their posted image. The questions are programmatically generated and vetted by Amazon Mechanical37

Turk workers as not being problematic or offensive. Only questions that are approved by workers are posted online to users.38

Mechanical Turk workers are fully informed about the purpose of the study. They are told that we plan to generate questions39

would fit the social norms within the community and would be likely to receive an answer from an online social network user.40

Since our questions are automatically generated, workers are asked to identify questions that might be construed as offensive or41

rude to ask. They are informed that all questions that are vetted will be posted on social media. They are shown the image42

associated with the question but are not provided with links to the social network post or the poster’s account.43

Social network users are informed that we are asking a question about their image. All questions are preceded by the44

following introduction: "We are a computer science research project." The social network profile used to post the question also45

has the same message printed as its biography. Regardless of whether users respond, we debrief them of their participation46

by sending them a direct message on the social network after 48 hours of posting the question. We provide them with an47

email address in case they have further questions or reservations: “Thank you for responding to our question. Your answers48

will be used to improve an AI agent’s ability to recognize concepts in images. Your original image and answer will not49

be released publicly. If you wish that we do not use your response or have questions about the study, please email us at50

<EMAIL_ADDRESS> or reply to this message.”51

Data privacy. We collect worker IDs from Mechanical Turk workers (which are anonymized). We also collect usernames for52

social media participants, which are publicly available (however usernames, personal information, etc. will not be used for any53

experiments or stored). Data is transferred using secured folders on Stanford University’s AFS file system. Since our primary54

contribution is a framework and a proof-of-concept prototype, the data we collect will not be shared publicly. Participants are55

only be contacted by us if their posts are publicly accessible. We only collect publicly available data.56

3. Designing a socially situated agent for social media57

We argue that active learning efforts have myopically focused on only what the model requires, rather than what people58

want: what people are interested to label or identify, and the kinds of requests they are likely to respond to (18). Our socially59

situated AI framework outlines the various elements that need to be designed to deploy an agent in a social environment. The60

framework introduces socially situated learning as an iterative reinforcement learning problem with new rewards.61

In this section, we describe the various components that were involved in deploying an agent on social media to improve its62

visual intelligence. We start by choosing the interaction modality and environment. Next, we design the inputs X and outputs63

Y for the computer vision model V. Then, we formulate the state of the environment S. Next, we draw on recent advances in64

natural language process and machine learning to design the agent’s policy π, enabling it to explore the combinatorially vast65

space of interactions. Finally, we explain the parsing model, which extracts new concepts from user responses.66
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Application, environment, and mode of interaction. Modern computer vision systems rely on mountains of labeled67

training data, but generating labeled datasets remains challenging. In computer vision, for example, the ImageNet dataset (19)68

required fourteen million labels of basic human knowledge such as whether an image contains a chair. Unfortunately, this69

knowledge is both so simple that it is extremely tedious for humans to label, and also so tacit that it is often absent from the70

image’s metadata. Although many volunteer labeling efforts have been deployed to incentivize labeling vision data (20–22),71

these methods have seen limited success. This combination of tedious and tacit leaves images online missing useful metadata72

describing its contents, and is why we chose it as the application domain to study socially situated AI.73

Social networks are a popular platform for photo storage and sharing. Popular photo sharing platforms estimate that over74

46, 740 pictures are uploaded every single minute with billions of active users. Given the large number of interactions centered75

around visual data on social networks, we chose it as our environment E.76

Since most information is exchanged using the comment section on image posts, we chose natural language as our interaction77

modality A. To limit the scope of our experiments, we chose to design interactions by the agent to be a single question.78

Although one could extend our experiments to dialogues with multiple question-answering turns, we restricted our exploration79

to compare directly to active learning and existing data collection methods, where each piece of data is independently collected.80

The computer vision model to optimize. Since we were using images with question-answers to collect data, we chose81

visual question answering as the computer vision model V. It expects inputs (it, qt) ∈ X to be an image and corresponding82

natural language question (23). It expects the output to be a natural language answer anst ∈ Y. We use the popular stacked83

attention architecture for V , though other architectures can be used if desired. The original architecture expects an image and84

a question as input and classifies an answer amongst a fixed set of 1000 answers (â = m(i, q)). We modified the output of85

the original stacked attention model to generate an answer in natural language instead of just classifying within a fixed set86

of predefined categories. This allows our model to generate answers containing new concepts as it discovers them. Answer87

generation uses using a 2-layer LSTM with pretrained word embeddings from GloVe (24). So, as we learn about more concepts,88

we can use the pretrained GloVe embeddings to learn to answer questions about new concepts.89

The knowledge reward. To ensure that our agent asks questions to learn new visual concepts, we design the knowledge90

reward. Drawing on active learning’s uncertainty acquisition functions, we choose the knowledge reward to be V’s uncertainty91

in answering a question, Rknowledge : (i, q)→ [0, 1]. Intuitively, this encourages the agent to generate questions that V doesn’t92

currently know how to answer. Typically, in the active learning literature, uncertainty is measured using entropy over all93

possible answers (8, 9). However, since we have an open vocabulary set of answers, measuring entropy is intractable because the94

normalization term requires measuring the probability of generating every possible answer. Instead, we approximate entropy95

by using beam search to generate the top 60 answers and measure entropy using these top 60 answers. We find that 60 is96

an empirically sufficient number of candidate answers to consider as the probability mass is concentrated within these top97

answers. We further normalize our approximate entropy measure to lie in the range [0, 1]. Our work is agnostic to any specific98

measurement of uncertainty and future work can explore other measurements.99

The knowledge reward tracks the constantly shifting space of informative interactions as V learns. As our agent interactions100

with people, V uses the answers extracted from people’s responses as training data. This re-training process updates which101

questions can now be answered. So, using V’s uncertainty as a reward updates our agent to generate questions that result in102

informative responses.103

The interaction reward. As the agent interacts with people online, it updates its policy to generate more socially acceptable104

interactions, which results in more responses. This goal is modeled using the interaction reward, S : (i, q) → [0, 1], to105

approximate which interactions result in a response containing the answer. Responses that contain an answer are used a106

positive (+1), and all other responses or lack thereof are used as negative (0) examples to train the function. The image107

and question are encoded into agent’s policy πθ(·) and a two-layer LSTM question encoder encψ(·); their representations are108

concatenated and used to regress onto a score using a learned linear transformation. The function is trained using a standard109

the mean squared error loss.110

Language reward for the baseline agent. Since the baseline agent doesn’t restrict its action space to the interaction111

representation, it can generate interactions using any sequence of words stitched together. Initially, the rewards learned are112

noisy, guiding the baseline to generate grammatically incorrect or incoherent questions. Existing state of the art dialogue113

generation agents have used a language modeling reward to encourage grammatically coherent generation (25, 26). We use114

the same reward to showcase that even with such a reward, there are no guarantees that the agent will be capable of quickly115

recovering useful questions when learning is restricted to a few thousand human interactions. We pre-train an LSTM language116

generation model on the questions about visual data (27, 28). The reward for a question is calculated as the inverse of the117

language model’s perplexity. Intuitively, this reward encourages the generation of questions that grammatically resemble118

those found in available datasets. Our experiments indicate that when this reward’s relative weight is set too high, the agent119

ignores the other rewards and doesn’t deviate from its initialized behavior; similarly, when it is set too low, the agent quickly120

degenerates to producing nonsensical questions.121

State of the environment. The formalization describes each environment state as containing st = (it, anst), where122

it is a new image uploaded to the social network and anst is the human answer to the agent’s previous question qt−1.123

However, practically, we batch interactions to speed up training and average out the effects of any specific noisy interaction.124

So, practically, each state contains N ′ new images and N responses from the questions generated in the previous state:125

st = ({it1, . . . , itN′}, {anst1, . . . , anstN}). N ′ is > N since we generate more questions than we receive responses. We126

filter new images {it1, . . . , itN′} to avoid asking questions about images that contain memes, cartoon, or ads (Section 6).127
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{anst1, . . . , anstN} is parsed (Section 7) to extract training data for Rinteraction and V. The updated rewards are then used to128

train the agent’s policy. We set N = 10K, i.e. the rewards and policies are updated every 10,000 informative responses received.129

Searching the space of possible interactions. The space of possible language interactions is combinatorially vast—the130

agent must learn to select the optimal set of tokens (words) to stitch together to form the optimal question. To decouple131

the agent’s need to concurrently learn what interactions to initiate with how to generate those interactions, we utilize recent132

advances from machine learning. Specifically, we learn an lower dimensional interaction representation where questions about133

visual contents are likely to lie (see Figure S1). We use the interaction representation as a surrogate action space, which reduces134

the space of all possible interactions to a tractable search space. An agent’s policy maps images encountered on social media to135

the interaction representation, z ∼ πθ(i). A decoder projects from the interaction representation to produce natural language136

questions q ∼ decφ(z). Once the policy is initialized, the agent is deployed on social media to learn from social interactions137

with people.138

Learning the interaction representation. Given the readily available Computer Vision datasets containing pairs of images
and associated questions (27, 28), (i, q), the default approach to learning the interaction representation is to train a variational
image-to-question generation model (29). This optimization maximizes the evidence lower bound (ELBO) or equivalently
minimizes the following loss:

Loss(θ, φ) = − E
z∼πθ(i)

[decφ(q|z)] +DKL[πθ(z|i)||p(z)] [1]

where πθ(·) is the policy parameterized by θ and expects image i and generates an interaction representation z. Similarly,139

decφ(q|z) is the decoder parameterized by parameters φ and maps z to produce the question q. p(z) is a uniform prior140

distribution. The first term maximizes the maximum likelihood estimation, or minimizes the reconstruction loss, of generating141

the associated question for a given image. The second term minimizes the Kullback-Leibler (KL) divergence of the categorical142

latent variables z with p(z). Intuitively, minimizing KL-divergence with a uniform distribution is the same as maximizing143

the entropy of the predictions between the latent categories, encouraging the model to pick different categories for different144

questions.145

This objective, as with many variational objectives, suffers from posterior collapse (30). Posterior collapse over z causes the146

decoder to produce near-deterministic outputs with little interesting variation since the latent categories are uninformative147

and ignored. Consequently, the decoder generates safe, overly general questions instead of learning the overall variance of all148

possible questions. Intuitively, this problem occurs because an image-to-question translation is a one-to-many mapping, i.e. a149

single image can create many questions. The model essentially learns to ignore all but one question. For example, it learns that150

asking “what color is the sky?” is a valid question for many images and resorts to asking that general question instead of151

focusing on other parts of the image.152

To overcome posterior collapse in the interaction representation, we add a variational autoencoder objective that enforces153

that the interaction representation encodes and the decoder decodes a wide variety of questions for a given image. This new154

objective requires a new neural network module, encψ(·), which learns to encode questions into z and is parameterized by ψ.155

This new question encoder is utilized to train the policy, the decoder.156

Our new optimization loss is defined as:

Loss(θ, φ, ψ) = DKL[encψ(z|q)||p(z)]− E
z∼encψ(q)

[decφ(q|z)] +DKL[πθ(z|i)||encψ(z|q)] [2]

This optimization, specifically, the first and second terms, produces a one-to-one mapping from the input question to the157

output question by conditioning on a z, relieving the collapse and allowing the representation to learn to encode a wide variety158

of questions. The question encoder, encψ(·), is used to train the question decoder instead of using the policy πθ(·). The third159

term uses the question encoder to train the policy, πθ(·). This term holds the weights of the question encoder constant and160

trains the policy to match the question encoder’s outputs with a KL-divergence loss. This objective allows us to use the161

interaction representation as a surrogate action space that is lower dimensional than the complete space of possible interactions162

but is still expressive enough to represent a host of possible interactions.163

We train encψ(·) and decφ(·) first and then finetune all three modules together. After which, we no longer need encψ(·) as164

πθ(·) has already learned to pick image-relevant questions — and only use πθ(·) and decφ(·) to generate questions from images.165

When deployed on social media, we hold the decoder’s weights constant and only update the policy to encode better latent166

interaction representations. Since we are utilizing the representation as a surrogate action space for reinforcement learning, we167

would ideally design the space to be large enough to represent the large variation of human-human interactions and small168

enough to learn without requiring hundreds of millions of interactions.169

An obvious approach to try is designing the representation as a continuous d-dimensional space, constrained to lie within170

a multivariate Gaussian (30). However, we found it difficult to prevent the reinforcement learning updates from producing171

previously unseen continuous interaction representations. During training, the decoder sees values of z sampled from encψ(z|q)172

but never sees values sampled from πθ(z|i), which is used during the deployment. In practice, we found that πθ(z|i) changes173

sufficiently between reinforcement learning updates and leads to the generation of nonsensical questions. To overcome this174

challenge, we draw on recent work in dialogue systems, which suggest that discrete latent spaces (31) lead to more diverse175

language decoding (32) and are more consistent (33).176

Therefore, we design the representation as pseudo-discrete using the Gumbel-Softmax relaxation (34). Specifically, the177

interaction representation is designed as m dimensions, each of which is a k-way classification. The interaction policy produces178
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m classi�cations, which are then embedded and utilized by the decoder to generate a question. This discretization leads to an179

action space of m � k while being able to represent km questions. We �nd that by limiting the space to a �nite discrete space,180

we reduce the likelihood of generating out of distribution questions.181

The decoder that generates question from the interaction representation. The decoder maps the m latent k-way182

categorizations in the interaction representation into a natural language question. We choose m = 10 and k = 50 . First, it183

embeds them latent variables, denoted as zj 8j 2 [1; m], into an embedding space: ej = E j (zj ), where E j is the embedding184

function for the j th latent variable. Since we have m latent embeddings ej 8j 2 [1; m], we need to decide how to utilize them in185

the decoding process.186

Prior work has traditionally used a simple Long Short Term Memory (LSTM) network ( 35) to generate sequences, such as
questions (29, 36). These approaches usually concatenate the latent embeddings into a single representation that can be used
as the initial hidden representation for the LSTM. Today it is more popular to use an attention variant of the LSTM decoder
such that at every time step, it uses its current hidden state to attend over the all the latent variables ( 37). This attention
mechanism can be summarized by the following equations:

� jt = sof tmax (hT
t Wa ej ) 8j 2 [1; m]; ct =

mX

j =1

� jt ej ; ĥt = tanh (Wb

�
ct

ht

�
) [3]

where ht is the hidden representation generated by the LSTM at time step t, and Wa and Wb are linear layers with learned187

weights. � jt is the attention weight over on the j th latent variable at time step t. ĥt is the hidden representation sent to the188

next LSTM cell to generate the next word. Intuitively, this attention mechanism can be thought of as allowing the LSTM more189

capability by asking it to learn to focus on di�erent latent variables at every time step instead of memorizing all the variables190

at the beginning and never being able to reference them mid-generation. We initialize the �rst hidden representation for the191

LSTM as h0 =
P M

m =1 em , which is often called a summation attention (33).192

Our experiments are agnostic to any particular decoder model and recent successes in Transformer based sequence models193

might be a worthy exploration for future work (38).194

Parsing responses from people. We need a response model that parses people's free form responses to our questions on195

social media. Our agent continuously polls to check if any of posted questions received a response. It continuously monitors196

posts for up to 48 hours. The likelihood of receiving a response after 48 hours drops signi�cantly, so we categorize such posts197

as a negative interactions.198

For the posts that do receive responses, those responses can include additional information beyond just the answer to199

the question (see Section 7). All responses are, therefore, parsed using a response model that extracts the answer from the200

freeform text response. The response model produces three outputs: (1) a binary �ag indicating whether the the question was201

answered or whether the person was confused about the question, and (2) the start, and the (3) end indices of the response202

that contains the answer: b; start; end = R(response) where b = 1 indicates that the person answered the question and203

a = response[start : end] represents the extracted answer.204

Our response model uses the Bidirectional Encoder Representations for Transformers (BERT-small) ( 39) model's pretrained205

contextual embeddings and �ne-tunes them for our task using a dataset of 50;628 responses we collected from social media206

interactions (see Section 7). We tokenize each response and feed it to BERT, which outputs a representation per token. We207

pass these representations through a single fully connected layer that accumulates the �nal representations and attends over all208

the tokens to output a distribution over start and end spans. The accumulated representation also produces a single score209

b 2 [0; 1] with another linear layer and sigmoid activation. Since BERT performs subword tokenization, we align predicted start210

and end indices to their corresponding word tokens. While the response model is not a core contribution of this work, having a211

performant response model is crucial to the functioning of our agent (See Section 7 for more detailed analysis of the response212

model training and evaluation).213

If the response model generatesb > 0:5, then we infer that it has identi�ed a response that contains an answer. With214

the answer, we generate a new training data point for the recognition model (i; q; a), consisting of the image, our agent's215

generated question, and the response model's extracted answer. This training data is used to update the recognition model.216

Each interaction generated, (i; q), is also sent to the social reward function, where it serves as a positive example ifb > 0:5 or217

as a negative example ifb < 0:5 or if the person never responds.218

Updating the policy using interactions with people. With all our components in place, our agent can utilize its policy
to generate interactions and learn from people's responses. The interaction policy generates a question,q given an image i :

z � � � (i ) q � dec� (z): [4]

The question is posted as a comment on the post associated with the imagei .219

Once the agent receives responses fromN = 10;000 people, the responses are parsed by the response model and used to
generate training data ff (i 0 ; q0 ; ans0); : : : ; (i N � 1 ; qN � 1 ; ansN � 1)g for V. We batch the data into training batches of N to
average out the gradients in a training step to avoid signi�cant changes caused by a single noisy interaction. The reward
functions are re-trained with the new data. Finally, the reward functions are used to train the interaction policy using proximal
policy gradients (40) to maximize:

� � = arg max
�

Ez � � � ( i ) ;q � dec � ( z ) [
NX

n =0

R(i n ; qn )] [5]
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Fig. S1. The space of possible interactions is combinatorially vast and intractable for standard reinforcement learning agents to navigate, limiting their ability to learn from
interactions with others. We use recent advances in machine learning to identify a lower dimensional interaction representation of real human-human interactions and uses it as
a tractable surrogate action space. We visualize a t-SNE projection of the representation space of natural language questions about images. Green dots represent valid
questions while gray dots represent nonsensical interactions. A standard sequence-to-sequence approach (visualized using the gray path) generates increasingly meaningless
questions while restricting the agent's actions to the interaction space produces increasingly re�ned questions.
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