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Fig. 1. A mobile robot manipulating a door handle during one of
our experiments.

Abstract— Humans are capable of manipulating objects solely
based on the sense of touch. To study this capability in robots,
we focus on touch based object localization. At each stage of
exploration our goal is to estimate a Bayesian posterior based
on measurements obtained thus far. The state space for object
localization is six dimensional: three parameters for position and
three for orientation of the object. When initial uncertainty is
high (0.5m and 360 degrees), precise estimation of the posterior
is computationally expensive. We propose an efficient technique
that estimates the posterior in real time. The approach - termed
Scaling Series - is based on importance sampling. It performs
the estimation using a series of successive refinements, gradually
scaling the precision from low to high. Our approach can be
applied to a wide range of manipulation tasks. We demonstrate
its portability on two applications: (1) picking up a box and (2)
operating a door handle.

I. INTRODUCTION

In order to carry out manipulation tasks in real world
environments, robots need to perceive objects around them
based on sensory information. Although the use of vision
for robotic perception has received the most attention in the
literature [1], humans rely heavily on the sense of touch for
manipulation tasks [2]. To study this capability in robots,
we consider touch based object localization. We propose an
efficient approach, capable of performing the estimation in real
time. Our approach enables robots to carry out manipulation
tasks autonomously as we demonstrate on two real life appli-
cations: manipulating a box and operating a door handle.

Efficient tactile perception algorithms have been proposed in
the past. For example in [3], the authors proposed an efficient

method for object identification and localization from tactile
data based on interpretation trees. These approaches are very
useful in situations where the goal is to estimate a single
hypothesis of the state. However, in many situations it can be
desirable to estimate the probability distribution over all states.
For example this information can enable robots to make better
sensing decisions during the exploration process. Probability
distributions are typically estimated via Bayesian techniques.
These techniques are widely used in mobile robotics [4],
motion capture [5], and speech recognition [6]. Recently
several approaches applied Bayesian techniques to touch based
perception [7]–[9]. The closest prior art to the problem we are
approaching in this paper is [9], where authors have advocated
the use of particle filters for object localization using a force
controlled robot. The localization was restricted to 3 degrees
of freedom (DOF), due to computational costs.

In this paper we consider object localization in 6 DOF using
touch based exploration. At each stage of exploration, our goal
is to estimate a Bayesian posterior based on the measurements
obtained thus far. At the final stage of exploration, enough
measurements have been obtained to fully constrain the prob-
lem, and thus the posterior becomes unimodal. However,
during earlier stages of exploration the problem is under-
constrained and possible solutions can form entire regions
of space of non-zero dimensionality. Estimating this type of
posterior in 6DOF precisely is computationally expensive.
We propose an efficient approach - termed Scaling Series -
capable of estimating the resulting posterior. The approach
is based on importance sampling. It estimates the posterior
using a series of successive refinements, gradually scaling
the precision from low to high. In unimodal cases, precise
estimation is possible in real time (1 second). In under-
constrained cases, the approach allows a tradeoff between
running time and precision, so that coarse estimates can be
obtained very quickly.

Our approach is easily applicable to any object represented
as a polygonal mesh. We demonstrate its portability on two
real life applications. In the first, we localize and manipulate
a box. In the second, we localize a door handle, so as to turn
the handle and open the door. An earlier version of this paper
appeared in [10].

II. BACKGROUND

Consider a simple example of having measurements from
5 different sides of a rectangular box (see Fig. 2). Let us
assume that each measurement contains contact position and



Fig. 2. To estimate position and orientation of a box we take 5 measurements
from different sides.

surface normal. How to best estimate position and orientation
of the box from these measurements? A simple approach
would be to take averages of normals on opposing sides, then
fit orthogonal basis to the resulting normals, then perform best
fit of corresponding box faces. This approach will work for a
box with 6 sides, but will not generalize to arbitrary polygonal
meshes of complex objects or if the dataset is incomplete.

Bayesian approach provides the means of parameter esti-
mation for arbitrary objects and datasets. The measurements
are considered as being caused by the world with certain
probability, called the measurement model p(Y |X,m). Here
Y is a measurement consisting of the contact position Yp =
(xp, yp, zp) and the surface normal Yn = (nx, ny, nz), X is
the position and orientation (x, y, z, α, β, γ) of the object and
m is the model of the object (i.e. polygonal mesh). Given a
set of measurements, D, the goal is to find the probability
distribution of possible states given the measurements and
the model. In other words find the posterior distribution
p(X|D,m). In the rest of this paper, we will drop the model m
from equations for the sake of brevity, although conditioning
on the model will be always assumed. It is common to assume
that the dependence between measurements D = {Y (j)} is
based solely on the state X , and that the prior probabilities of
state and measurements are uniform. Under these assumptions
it can be shown that the posterior is proportionate to the
product of measurement likelihoods:

p(X|D) = η
∏

j

p(Y (j)|X) (1)

Here η denotes the normalizing constant. One common
Bayesian method is importance sampling, where weights are
computed according to equation 1 for a number of points
(particles) sampled from the state space. The posterior is then
represented by these weighted points. See [11] for an overview
of importance sampling and other Monte Carlo methods.

III. MEASUREMENT MODEL

We represent objects by a polygonal mesh consisting of
faces {fi}. Based on this object model we compute the
likelihood of a measurement as follows. For each face, fi,
we compute the likelihood of the measurement being caused
by that face (and a given state X). We assume that the face
most likely to cause the measurement was the one that caused

it. For convenience, let us introduce correspondence variables
{ci}. We will assume that ci = 1 when face fi has caused the
measurement, and ci = 0 otherwise. When conditioning, we
will write ci as a shorthand for ci = 1. Thus our measurement
model is defined by

p(Y |X) = λ max
i
{p(Y |X, ci)}, (2)

where λ is the normalizing factor given by

λ =
1∫

maxi{p(Y |X, ci)}dY
.

Since we do not impose any limitations on the measurement
space, λ is independent of the state X . In practice we never
need to compute numeric value of this factor as it is taken
care of during normalization step.

Recall that each measurement, Y , consists of two parts:
contact position, Yp, and surface normal, Yn. When computing
how likely a measurement to be caused by a face fi, we
consider the two parts of the measurement to be independent.
We use state parameters X to transform the measurement into
the coordinate system of the object and denote transformed
measurement components Y X

p and Y X
n respectively. Thus

equation 2 becomes:

p(Y |X) = λ max
i
{p(Y X

p |ci) p(Y X
n |ci)}

Further, we assume the noise of each measurement compo-
nent to be Gaussian, with variance err2

p for contact position
and err2

n for surface normal. Thus, the likelihoods can be
computed as follows:

p(Y X
p |ci) =

1√
2π errp

exp {−1
2

d(Y X
p , fi)2

err2
p

}

p(Y X
n |ci) =

1√
2π errn

exp {−1
2
||Y X

n − normal(fi)||2
err2

n

}

Here d(Y X
p , f) is the shortest Euclidean distance from Y X

p to
face fi, and normal(fi) is the normal vector of face fi.

IV. POSTERIOR ESTIMATION

As we explore an object, more and more measurements
arrive and the shape of the posterior changes. See figure
3 for an example of posterior evolution. At early stages,
few measurements have been obtained and the problem has
not been fully constrained. Thus there are infinitely many
possible solutions to the localization problem and the resulting
posterior has regions of high likelihood that have non-zero
dimensionality. Even though early stages of exploration do
not provide sufficient data to fully localize the object, it is
useful to estimate the posterior, because this information can
be used to make decisions on where to sense next.

Sampling and gridding techniques have been widely used
for estimation in multi-modal scenarios. For example in [9],
the authors used a particle filtering technique for a similar
box localization problem. The main drawback of sampling
techniques is that the number of particles required for precise



(a) 1 measurement (b) 2 measurements (c) 3 measurements
Fig. 3. During exploration the shape of the posterior evolves as additional measurements arrive. The particles in this figure approximate high likelihood
regions of the evolving posterior.

estimation explodes exponentially with the space dimension-
ality. Large numbers of particles lead to computation times
that are unacceptable. On the other hand the problem with
using fewer particles is that uniform sampling is extremely
unlikely to produce any samples near the actual solution,
resulting in high error of estimation. For example, suppose
we are performing localization in 40 cm x 40 cm x 40 cm x
360 degrees x 360 degrees x 360 degrees space, with desired
deviation of 1mm and 1 degree respectively. If we consider
the 6-D sphere around the solution with radius of 1 desired
deviation, the volume of this sphere is 3× 1015 times smaller
than the volume of the state space. If we utilize 1,000 particles,
we are very unlikely to sample one within desired deviation
of the solution.

A. Representing Regions of Space with Particles

Traditionally each particle is seen as a single point in state
space, but let us consider what happens if instead each particle
represents a region of the space. We will call such particles
broad to distinguish them from single point particles. For a
parameter δ, we will call the 6-D sphere with radius δ around a
broad particle a δ-sphere. We will think of each broad particle
as representing the entire region within its δ-sphere. If δ is
large, it is clearly easy to cover the state space with even a
small number of broad particles. For example, if δ is larger
than the diameter of the state space, one broad particle would
suffice.

Now that our particles are regions of space, we need to
understand how to apply the measurement model to compute
particle likelihood weights. To parameterize the measurement
model relative to δ, we simply update the measurement error
based on δ. We set:

(errp, errn)← (δ, rδ), (3)

where r is the ratio between actual position and normal
measurement errors.

The above equations amount to “pretending” that measure-
ment noise is inflated to be δ. Artificially inflating measure-
ment noise is not an uncommon practice, see for example [4].
This technique allows for particles to survive better by making
the likelihood weights less discriminative.

B. Scaling Series Approach

Broad particles help us cover the state space with a
small number of particles, but the estimates obtained in this

manner will be very imprecise as we artificially inflate the
measurement noise. Therefore we run a series of successive
estimations, reducing the value of δ from one step of the
series to the next. The intuition behind this approach is that
the first run in the series finds regions of high likelihood at
a very coarse resolution. The next run focuses on the smaller
subspace found by the previous run and performs estimation at
a finer resolution (i.e. reduced δ). In this manner, we can keep
reducing δ until it corresponds to the actual noise variance.
Thus, the last run will approximate the true posterior.

Reduction in the value of δ during the series progression
gradually changes the measurement model from less discrim-
inative initially to more discriminative towards the end of the
series. This technique is a variant of annealing, which has
been used in other settings for Monte Carlo methods. See for
example [5], where the authors applied an annealing particle
filter to articulated motion capture from vision data.

C. Algorithm Details

The algorithm consists of a series of importance samplers.
We start by running an importance sampler with a large value
of δ (i.e. radius of initial state space V ). Based on the entire
dataset D, the importance sampler produces a set of particles
concentrated in the region of high likelihood. This region,
denoted V1, is the union of δ-spheres around the particle set.
Since V1 is smaller than the original state space, we can cover
it with smaller particles. Thus we reduce the value of δ and
run a second importance sampler, but this time restrict our
attention to V1. The second importance sampler produces a
new subspace, V2, that represents the region of high likelihood
for this setting of δ. We repeat the process until we reach the
desired value for δ, corresponding to desired precision. Refer
to Alg. 1 for a complete listing of the algorithm.

In line 2, the scaling factor zoom is set so that the volume
of δ-sphere is halved during scaling. We also take care to
maintain a healthy density of particles in each iterative state
subspace Vt. This is controlled by the desired number of
particles per δ-sphere, M .

During each run of the importance sampler, the importance
weights are taken to be the likelihood of measurements,
p(X|D), computed as described in section III and parame-
terized by δ in accordance with equation 3. Line 7 performs a
weighted resample of the particle set to remove particles with
relatively low weights (see [12] for a listing of a weighted
resampling algorithm). At each iteration t we focus on state



Scaling Series(V0,M,D, δdesired)
1: δ ← radius(V0)
2: zoom← 1/ n

√
2

3: T ← log2(V ol(V0)/V ol(Sδdesired
))

4: for t = 1 to T do
5: {Xi} ← Uniform Sample From Subspace(Vt−1,M )
6: Importance Sampler({Xi},D)
7: perform a weighted resample on {Xi}
8: Vt ← Union Delta Spheres({Xi}, δ)
9: δ ← zoom· δ

10: end for

Alg. 1: Scaling Series

subspace Vt, which is the union of δ-spheres centered around
the current particle set {Xi}. Thus, we need an algorithm for
sampling uniformly from Vt before each importance sampler
run. One of the simplest methods to generate uniform samples
from Vt is based on rejection sampling (Alg. 2).

Uniform Sample From Subspace(V,M )
1: // space V is represented as union of spheres {Si}
2: X ← {}
3: for i = 1 to |{Si}| do
4: for j = 1 to M do
5: sample point x from Si

6: reject x if it is in union of S1 . . . Si−1

7: otherwise add x to X
8: end for
9: end for

Alg. 2: Uniform Sampling from Subspace

We can view the first T − 1 steps of the series as con-
structing an informed proposal distribution for the final run
of importance sampling. The constructed proposal distribution
is focused on the region of high likelihood of the posterior,
which allows efficient estimation. One simple way to ensure
that the estimate converges to the true posterior is to add
some number of samples from V0−VT (and adjust importance
weights accordingly) for the final step. This forces the proposal
distribution to be non-zero everywhere in the state space,
which is a sufficient condition for convergence [11]. It can
also be shown that the estimates obtained in this manner are
unbiased.

V. EXPERIMENTAL RESULTS

We utilized polygonal models of objects. These models
were constructed by hand from measurements taken with a
ruler. Each model also included optimal grasping points deter-
mined by a human. Once localization is performed, grasping
configuration is derived from the estimated parameters. We
implemented our localization techniques in Java on 1.2GHz
laptop computer. We then applied our approach to two different
problems: picking up a box and turning a door handle.

A. Application 1: Locating and picking up a box

We applied our approach to the task of localizing, grasping
and picking up a rectangular box (see Fig. 4). The manipulator

used was a 6 DOF PUMA robot, equipped with a 6D JR3
force/torque sensor. Its end-effector included a gripper and
robotic finger configuration. To simplify contact point estima-
tion, touch sensing was performed with the robotic finger that
had a spherical end.

For the over-constrained scenario, a simple active sensing
procedure (specific to the box) probed 5 different sides of the
box recording contact position and surface normal for each
data point. Care was taken to make sure the box did not move
during sensing as it would introduce considerable noise into
measurements.

The model of the box was constructed by hand from
measurements taken with a ruler. Two grasp points were
manually defined on the model. Each grasp point consisted
of 3 points: one for each side of the gripper and one for the
wrist position. Thus each grasp point fully defined position and
orientation of the gripper. After localization, the grasp point
with the highest Z-coordinate was selected (Z-coordinates
increase vertically upwards). The gripper orientation, position
and approach vector were derived from the selected grasp point
and estimated parameters. Note the precise fit required for
grasping in Fig. 4(b).

The localization was performed in a 40cm x 40cm x
40cm area with unrestricted orientation (i.e. 360 x 360 x
360 degrees). Desired precision was set to 1 mm for position
and 2 degrees for orientation. Sensing procedure took 30
seconds. Localization was performed in less than 1 second.
We performed 30 trials on the real robot. In our experiments,
localization, grasping and manipulation had 100% success
ratio on completed datasets. The active sensing strategy had
a 70% success ratio. Failures during sensing were due to
hardware issues and motion of the object.

We also performed 1,000 simulated trials, where ground
truth was easily available for evaluation of localization success
and precision. In 99.8% of simulated trials our approach
found the solution successfully and had an average running
time of about 1 second. Since the object to be localized
was symmetric, we added symmetry compensation to rule
out symmetric solutions. This allowed for easy automatic
identification of correct localization results. Average precision
of localization was 2.1mm over the 1000 simulated trials.

We note that our experiments were performed on a relatively
simple object, consisting of only 6 faces. For more complex
meshes, measurement likelihood evaluation will be linear in
the number of faces. However, it is possible to implement
efficiency improvements that only consider a subset of faces
during measurement likelihood evaluation.

We also performed experiments for under-constrained sce-
narios. In this case the datasets consisted of 2 - 3 mea-
surements from different sides of the box. For real robot
experiments, we took subsets of measurements from our com-
pleted real robot trials. We verified that the estimated region
included the true state of the object, as it was estimated from
complete datasets. We also examined the estimated region
visually to make sure it corresponded to the correct solution
region in each under-constrained scenario (Fig. 5). In addition,
we performed 100 simulated trials where ground truth was



(a) sensing (b) grasping (c) manipulating
Fig. 4. The stages of our box manipulation experiment. (a) Sensing the box with a robotic finger. (b) Grasping the box. The position and orientation of the
box were estimated from the data obtained during sensing stage. The grasping configuration is defined as part of the box model. Note the precise fit required
to perform the grasp. (c) Manipulating the box.

(a) 11mm precision (b) 1mm precision
Fig. 5. Examples of under-constrained solution estimation for datasets consisting of 2 measurements (includes symmetry compensation). (a) With δ setting
of 11mm, 4,000 particles were generated by Scaling Series (b) With δ setting of 1mm 29,000 particles were generated.

available. The true state was included in resulting solution set
in all 100 trials.

Since the number of solutions is infinite, high precision
settings result in large numbers of particles. For example for a
dataset consisting of two measurements, Scaling Series gener-
ated 4,000 particles for δ setting of 11mm and 29,000 particles
for δ setting of 1mm. The running time increases with the
number of particles generated. Operations with a few thousand
particles take a few seconds, but 29,000 particles take 40-50
seconds to process. Thus it is possible to trade off precision of
estimation for running time. As more measurements arrive, the
solution region shrinks and higher precision can be achieved
with fewer particles.

B. Application 2: Manipulating door handles for building
navigation

In a second application, we carried out experiments with
door handle manipulation as part of the STanford AI Robot
(STAIR) project. The goal of the STAIR project is to build a
robot capable of performing a broad range of tasks in home
and office environments. Over the long term, the envisioned
tasks include fetching a book from an office, showing guests
around a research lab, tidying up after a party, and using tools
to assemble a bookshelf. In order to carry out these tasks,
the robot needs to navigate in home and office environments,
which means being able to open doors. We do this by
accurately localizing, and then manipulating, the door handle.

Once the robot navigates to the area in front of a door (using
its laser sensors for approximate localization), we use tactile

feedback to accurately estimate the position and orientation
of the door handle. We performed experiments on a 5 DOF
Harmonic Arm 6M manipulator, which has about 1mm end-
effector positioning precision. (See Fig. 6(a).) The height
of the handle as well as 2 orientation angles were fixed,
which reduced the localization task to a 3 DOF problem. Our
algorithm used a 2D model of the door that was constructed
by hand using ruler measurements. Specifically, we took door
handle depth measurements every 1cm along its length in
a horizontal plane through the center of the handle. This
gave a 2D model consisting of line segments (see Fig. 6(b)).
The grasping point was defined near the tip of the door
handle. The sensing used in this experiment gave only position
measurements, and did not include surface normals.

For each experimental trial, the robot took 6 measurements
in a 30 degree span (at 0◦, 6◦, . . . , 30◦). Each data point thus
consisted of range to the contact point and an orientation angle.
The sensing procedure took between 1 and 2 minutes. Using
these six measurements, our algorithm was able to localize the
door handle in a fraction of a second. In these experiments,
we restricted the dimensions of the state space (to 6cm x
6cm x 30 degrees) because of the limited operational range of
the manipulator. Out of 100 independent trials, our algorithm
successfully completed the sensing in 98 trials. In all of these
98 trials, our algorithm then successfully localized, grasped,
and turned the door handle, and opened the door. The two
failures during sensing were caused by a hardware glitch in
communication with the robot.



(a) (b)
Fig. 6. (a) A 5 DOF Harmonic Arm 6M manipulator performing one of our door handle grasping experiments. (b) The 2D model of a door handle
was constructed from depth measurements made with a ruler every 1cm along the length of the handle. The squares represent data points from one of our
experiments.

VI. CONCLUSIONS

We have considered object localization from data obtained
via tactile exploration. Bayesian posterior estimation for ob-
jects in 6DOF has been known to be computationally ex-
pensive [9]. We have proposed an efficient approach, termed
Scaling Series, that approximates the posterior by samples. It
performs the estimation by successively refining the high like-
lihood region and scaling granularity of estimation from low
to high. Our approach does not utilize any special properties of
the manipulated objects and can be easily applied to any object
represented as a polygonal mesh. We have demonstrated its
portability by applying it to two different tasks: manipulating
a box and operating a door handle.

For over-constrained cases the posterior is unimodal. In
these cases our approach performs the estimation in real
time (about 1 second). For under-constrained cases, running
time depends on the precision desired and the size of the
high likelihood region. However, it is possible to trade off
precision of estimation for running time. Coarse estimates can
be obtained quickly when few measurements are available. As
more measurements arrive, the high likelihood region shrinks
and so more precise estimates can be obtained in a timely
fashion.

The presented approach will apply equally well to other
types of range data, e.g. data obtained with laser range finders.
Also, similarly to [3] our approach can be extended to perform
object identification from a set of known objects.

A number of aspects of the presented approach can be
improved upon in future work. The running time of the
algorithm depends linearly on the complexity of objects (i.e.
number of faces in the mesh model). However, it is possible
to implement efficiency improvements that only consider a
small subset of faces during each measurement evaluation.
Our approach rests on the assumption that the object does not
move during exploration. Removing this assumption would
expand the applicability of the approach, although better
hardware is likely to be required. Additional enhancements
will be required if the object to be localized is placed into a
cluttered environment, where the correspondence problem of
measurements to objects has to be solved.
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