A polynomial lower bound on the adaptive complexity of submodular optimization

Wenzheng Li, Paul Liu, Jan Vondrák

Stanford University

STOC 2020
Part I: Monotone Submodular Optimization

Part II: Non-monotone Submodular Optimization
Our problem: $OPT := \max \{ f(S) : |S| \leq k \}$
where f is monotone ($S \subset T \Rightarrow f(S) \leq f(T)$)
and submodular ($S \subset T \Rightarrow f(S + e) - f(S) \geq f(T + e) - f(T)$).

Coverage function (example):
Given $A_1, A_2, \ldots, A_n \subseteq U$, $f(S) = |\bigcup_{i \in S} A_i|$.

f is monotone submodular.
The Greedy Algorithm [Nemhauser-Wolsey-Fisher ’78]

Pick elements one-by-one, maximizing the gain in $f(S)$, while maintaining $|S| \leq k$.

Theorem (Nemhauser-Wolsey-Fisher ’78)

\textsc{Greedy} finds a solution of value at least $(1 - 1/e)\text{OPT}$.
The Greedy Algorithm [Nemhauser-Wolsey-Fisher ’78]

Pick elements one-by-one, maximizing the gain in $f(S)$, while maintaining $|S| \leq k$.

$$S \xrightarrow{i, \text{maximizing } f(S + i) - f(S)}$$

Theorem (Nemhauser-Wolsey-Fisher ’78)

GREEDY finds a solution of value at least $(1 - 1/e)OPT$.

Optimality: [NW’78] No algorithm using a polynomial number of queries to f can do better than $(1 - 1/e)OPT$.
The Greedy Algorithm [Nemhauser-Wolsey-Fisher ’78]

Pick elements one-by-one, maximizing the gain in $f(S)$, while maintaining $|S| \leq k$.

Long chain of k sequentially dependent queries. Can we be more parallel?
Pick elements one-by-one, maximizing the gain in $f(S)$, while maintaining $|S| \leq k$.

Long chain of k sequentially dependent queries.
Can we be more parallel?

Yes!
Adaptive Complexity Model [Balkanski-Singer ’18]:

- “Rounds" of polynomially many parallel queries.
- Compute cost is the length of the longest sequentially dependent chain.
The Adaptive Complexity Model

Adaptive Complexity Model [Balkanski-Singer ’18]:

- “Rounds" of polynomially many parallel queries.
- Compute cost is the length of the longest sequentially dependent chain.

Theorem (Balkanski-Rubinstein-Singer ’18)

A \((1 − 1/e − \epsilon)\)-approximation to OPT can be achieved with \(O\left(\frac{1}{\epsilon^2} \log n\right)\) rounds of queries.

Theorem (Balkanski-Singer ’18)

\(\Omega\left(\frac{\log n}{\log \log n}\right)\) rounds of queries are necessary even for a \(\frac{1}{\log n}\)-approximation.
Lower bounds for adaptive complexity

Must the number of rounds blow up as we approach the approximation factor of \(1 - 1/e\)?
(Recall: \textsc{Greedy} achieves a clean \(1 - 1/e\).)
Must the number of rounds blow up as we approach the approximation factor of $1 - 1/e$? (Recall: GREEDY achieves a clean $1 - 1/e$.)

Yes!

Theorem (Our results, \log rounds)

For any $\epsilon > \frac{1}{\log n}$, $\Omega(1/\epsilon)$ rounds are necessary to achieve a $(1 - 1/e - \epsilon)$-approximation to OPT.

Theorem (Our results, $poly$ rounds)

For any $\epsilon > \frac{1}{n^c}$, $\Omega(1/\epsilon^{1/3})$ rounds are necessary to achieve a $(1 - 1/e - \epsilon)$-approximation to OPT.
Proof Ideas

- The **onion-layer** construction inspired by [Balkanski-Singer ’18].
- The **symmetry gap** construction [Vondrak ’09], originated in [Feige-Mirrokni-V. ’07].
- An improved hardness instances for $1 - 1/e$.
The onion layer

- f constructed from r layers X_1, X_2, \ldots, X_r, and a core layer X^\star.

- In the i-th round, no polynomial number of queries on f can determine $X_i + 2, \ldots, X_r, X^\star$.

- Given X_i, only polynomially many queries needed to determine X_{i+1}.

- X^\star contains a $(\frac{1}{e} - 1)$-hardness instance (thus stopping any algorithm’s progress).
The onion layer

- f constructed from r layers X_1, X_2, \ldots, X_r, and a core layer X^*.

In the i-th round, no polynomial number of queries on f can determine $X_{i+2}, \ldots, X_r, X^*$. Given X_i, only polynomially many queries needed to determine X_{i+1}.

X^* contains a $(1 - 1/e)$-hardness instance (thus stopping any algorithm's progress).
The onion layer

- The layers decrease *geometrically* in size (or slower).
The onion layer

- The layers decrease *geometrically* in size (or slower).
- In the i-th round, no poly. # of queries on f can determine $X_{i+2}, \ldots, X_r, X^*$.
The onion layer

- The layers decrease *geometrically* in size (or slower).
- In the i-th round, no poly. # of queries on f can determine $X_{i+2}, \ldots, X_r, X^*$.
- Given X_i, only polynomially many queries needed to determine X_{i+1}.
The onion layer

- The layers decrease *geometrically* in size (or slower).
- In the i-th round, no poly. # of queries on f can determine $X_{i+2}, \ldots, X_r, X^*$.
- Given X_i, only polynomially many queries needed to determine X_{i+1}.
- X^* contains a $(1 - 1/e)$-hardness instance (thus stopping any algorithm’s progress).
Onion layer construction

Let S be our query and $x_i = \frac{1}{k} \left| S \cap X_i \right| / \left| X_i \right|$ for layers $1, 2, \ldots, r$ and $x_0 = 0$.

Our function takes on the following form:

$$f(S) = 1 - (1 - g(S \cap X^*)) \prod_{i=0}^{r-1} (1 - h(x_i, x_{i+1}))$$

where $x_0 = 0$.

- $x_0 = 0$ allows the first layer to be determined.
Onion layer construction

Let S be our query and $x_i = \frac{1}{k} |S \cap X_i|/|X_i|$ for layers $1, 2, \ldots, r$ and $x_0 = 0$.

Our function takes on the following form:

$$f(S) = 1 - (1 - g(S \cap X^*)) \prod_{i=0}^{r-1} (1 - h(x_i, x_{i+1}))$$

where $x_0 = 0$.

- $x_0 = 0$ allows the first layer to be determined.
- $h(x_{k-1}, x_k)$ does not reveal anything about X_{k-1}, X_k unless we know either x_{k-1} or x_k.

Paul Liu
Lower bounds for adaptive submodular optimization
Onion layer construction

Let S be our query and $x_i = \frac{1}{k} |S \cap X_i|/|X_i|$ for layers $1, 2, \ldots, r$ and $x_0 = 0$.

Our function takes on the following form:

$$f(S) = 1 - (1 - g(S \cap X^*)) \prod_{i=0}^{r-1} (1 - h(x_i, x_{i+1}))$$

where $x_0 = 0$.

- $x_0 = 0$ allows the first layer to be determined.
- $h(x_{k-1}, x_k)$ does not reveal anything about X_{k-1}, X_k unless we know either x_{k-1} or x_k.
- $g(S \cap X^*)$ encodes a $(1 - 1/e + o(1))$-hard instance on X_k.

Onion layer construction

Let S be our query and $x_i = \frac{1}{k} |S \cap X_i|/|X_i|$ for layers $1, 2, \ldots, r$ and $x_0 = 0$.

Our function takes on the following form:

$$f(S) = 1 - (1 - g(S \cap X^*)) \prod_{i=0}^{r-1} (1 - h(x_i, x_{i+1}))$$ where $x_0 = 0$.

- $x_0 = 0$ allows the first layer to be determined.
- $h(x_{k-1}, x_k)$ does not reveal anything about X_{k-1}, X_k unless we know either x_{k-1} or x_k.
- $g(S \cap X^*)$ encodes a $(1 - 1/e + o(1))$-hard instance on X_k.

$$f(S) \approx g(S \cap X^*)$$ best we can do when all parts are “known".
What does h look like?

(Roughly),

$$h(x, y) = 1 - \frac{1}{2}(e^{-x} + e^{-y})$$

When $x_i \approx x_{i+1}$, $h(x_i, x_{i+1}) \approx 1 - e^{-x_i - x_{i+1}}$, and $f \approx 1 - (1 - g(S)) \exp(-\sum_i x_i)$ so none of the X_i can be distinguished. For random S, $x_i \approx x_{i+1}$ for all $i > 1$.
Analysis

\[h(x, y) = 1 - \frac{1}{2}(e^{-x} + e^{-y}). \]

Solutions where \(x_i = x_{i+1} \) are more profitable than those where \(x_i \neq x_{i+1} \);

\[\text{penalty} = \Theta((x_i - x_{i+1})^2). \]

\[\text{penalty} = \sum_{i=0}^{k-1} (x_{i+1} - x_i)^2 = \Theta \left(\frac{1}{k^3} \right) \]
Analysis

\[
h(x, y) = 1 - \frac{1}{2}(e^{-x} + e^{-y}).
\]

Solutions where \(x_i = x_{i+1}\) are more profitable than those where \(x_i \neq x_{i+1}\);
\[
\text{penalty} = \Theta((x_i - x_{i+1})^2).
\]

\[
\text{penalty} = \sum_{i=0}^{k-1} (x_{i+1} - x_i)^2 = \Theta \left(\frac{1}{k^3} \right)
\]

Since \(x_0 = 0\), the initial penalty makes the algorithm start below \(1 - 1/e\).
Given \(k - 1\) rounds, the optimal assignment of variables is \(x_i \approx O(i/k^2)\).
• Best approx. in k rounds is $1 - 1/e + o(1) - \Omega(1/k^3)$.

• $o(1)$ term from hardness instance on X^*. Previously [Vondrak ’09] achieved $o(1) = O\left(\frac{1}{\log(n)}\right)$.

• We need $o(1) = O\left(\frac{1}{\text{poly}(n)}\right)$ if $k = O(\text{poly}(n))$ (done via a new hardness instance using techniques from [Vondrak ’13].)
Part I: Monotone Submodular Optimization

Part II: Non-monotone Submodular Optimization
Switching gears - non-monotone optimization

Our problem: \(\text{OPT} := \max f(S) \) where \(f \) is *submodular*, *non-monotone*, and *unconstrained*.

- A random set \(R \) is known to get \(\text{OPT}/4 \) in expectation.

Theorem (Buchbinder-Feldman-Naor-Schwartz ’12)

A \(1/2 \)-approximation can be obtained by the **DOUBLEGREEDY** algorithm in the sequential model.

Optimality: [Feige-Mirrokni-V. ’07] *No algorithm can get better than a 1/2-approximation in a polynomial number of queries.*
Switching gears - non-monotone optimization

Our problem: \(\text{OPT} := \max f(S) \) where \(f \) is submodular, non-monotone, and unconstrained.
- A random set \(R \) is known to get \(\text{OPT}/4 \) in expectation.

Theorem (Buchbinder-Feldman-Naor-Schwartz '12)
A \(1/2 \)-approximation can be obtained by the DOUBLEGREEDY algorithm in the sequential model.

Optimality: [Feige-Mirrokni-V. '07] No algorithm can get better than a \(1/2 \)-approximation in a polynomial number of queries.

Theorem (Chen-Feldman-Karbasi '18, Ene-Nguyen-Vladu '18)
A \((1/2 - \epsilon) \)-approximation to \(\text{OPT} \) can be achieved with \(O(\frac{1}{\epsilon}) \) rounds of queries.
(Through a variant of the double greedy algorithm.)
Hardness for non-monotone maximization?

Recall, our lower bound in the monotone case:

- Started greater than ϵOPT away from $(1 - 1/e)\text{OPT}$.
- Never exceeded $(1 - 1/e + o(1))\text{OPT}$ even after all its rounds were completed.

Are there similar hardness results in the unconstrained case?
Recall, our lower bound in the monotone case:

- Started greater than ϵOPT away from $(1 - 1/e)OPT$.
- Never exceeded $(1 - 1/e + o(1))OPT$ even after all its rounds were completed.

Are there similar hardness results in the unconstrained case?

No!
Improved non-monotone maximization

Theorem (Our results)

Let R be a uniformly random subset. If $E[f(R)] \leq (1/2 - \delta)OPT$, then adaptive double greedy achieves value at least $(1/2 + \Omega(\delta^2))OPT$ in $O(1/\delta^2)$ rounds.

\implies Either a random set is already close to $OPT/2$, or the double greedy finds a solution much better than $OPT/2$.
Intuition and Analysis

Continuous double greedy (f is the multilinear extension of the objective)

$x(0), y(0) = 0, 1$
While $x(t) \neq y(t)$:

\[
\begin{align*}
\frac{dx}{dt} &= \frac{\nabla f(x)_+}{\nabla f(x)_+-\nabla f(y)_-} \\
\frac{dy}{dt} &= \frac{\nabla f(y)_-}{\nabla f(x)_+-\nabla f(y)_-}
\end{align*}
\]

Return $x = y$ as the solution (ignoring some edge cases).
Intuition and Analysis

Continuous double greedy (f is the multilinear extension of the objective)

\[x(0), y(0) = 0, 1 \]

While $x(t) \neq y(t)$:

\[
\frac{dx}{dt} = \frac{\nabla f(x)_+}{\nabla f(x)_+ - \nabla f(y)_-} \\
\frac{dy}{dt} = \frac{\nabla f(y)_-}{\nabla f(x)_+ - \nabla f(y)_-}
\]

Return $x = y$ as the solution (ignoring some edge cases).

Theorem (Ene-Nguyen-Vladu ’18)

The returned solution $DG = f(x)$ satisfies

\[
DG \geq \frac{OPT}{2} + \frac{1}{4} \int_0^1 \sum_i \frac{(\nabla_i f(x(t))_+ + \nabla_i f(y(t))_-)^2}{\nabla_i f(x(t))_+ - \nabla_i f(y(t))_-} \, dt.
\]
Theorem (Ene-Nguyen-Vladu ’18)

The returned solution $DG = f(x)$ satisfies

$$DG \geq \frac{OPT}{2} + \frac{1}{4} \int_0^1 \sum_i \frac{(\nabla f(x(t))_+ + \nabla f(y(t))_-)^2}{\nabla f(x(t))_+ - \nabla f(y(t))_-} dt.$$
Theorem (Ene-Nguyen-Vladu ’18)

The returned solution \(DG = f(x) \) satisfies

\[
DG \geq \frac{OPT}{2} + \frac{1}{4} \int_0^1 \sum_i \left(\frac{\nabla_i f(x(t))_+ + \nabla_i f(y(t))_-}{\nabla_i f(x(t))_+ - \nabla_i f(y(t))_-} \right)^2 dt.
\]

Lemma

Let \(R \) be a uniformly random subset.

\[
DG - f(R) = \frac{1}{2} \int_0^1 \sum_i |\nabla_i f(x)_+ + \nabla_i f(y)_-| dt.
\]

Judious applications of Cauchy-Schwartz gets our main result.
Open problems

- Does there exist a lower bound for non-monotone optimization?
- Can we improve the $1/\delta^2$ to $1/\delta$ for non-monotone?
- Can we extend the construction of the monotone case smoothly for all ϵ?