Invertibility Conditions for Floating-Point Formulas


Automated reasoning procedures are essential for a number of applications that involve bit-exact floating-point computations. This paper presents conditions that characterize when a variable in a floating-point constraint has a solution, which we call invertibility conditions. We describe a novel workflow that combines human interaction and a syntax-guided synthesis (SyGuS) solver that was used for discovering these conditions. We verify our conditions for several floating-point formats. One implication of this result is that a fragment of floating-point arithmetic admits compact quantifier elimination. We implement our invertibility conditions in a prototype extension of our solver CVC4, showing their usefulness for solving quantified constraints over floating-points.

Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II