Programming on Unix

© Nick Parlante, 1996.Free for non-commerical use.

Many people contributed to this handout as along-term project over the years. In particular, | got
help from Mike Cleron and Peter Chang.

Introduction

In writing C programsto run under Unix, there are several concepts and tools that turn out to be
quite useful. The most obvious difference, if you are coming from a PC or Macintosh
programming background, is that the tools are separate entities, not componentsin atightly
coupled environment like Think C or Borland C. The appendix at the end of the handout givesa
summary of UNIX and EMACS commands.

The most important toolsin this domain are the editor, the compiler, the linker, the make utility,
and the debugger. There are a variety of choices asfar as "which compiler" or "which editor"”, but
the choiceis usually one of persona preference. The choice of editor, however, isalmost a
religious issue. Emacs integrates well with the other tools, has anice graphical interface, and is
almost an operating system unto itself, so we will encourage its use.

Caveat

This handout is not meant to give a comprehensive discussion of any of the tools discussed, rather
it should be used as an introduction to getting started with the tools. If you find that you need more
information, al of the programs have extensive man pages and xi nf o entries, and gdb has some
on-line help for al of its commands. These man pageslist alot of bits of information, some of
which will appear to be quite attractive, but if you do not know or understand what an option does,
especially for the compiler, please do not use it just because it sounds nice.

Also, O'Reilly & Associates publishes a pretty good set of references for these basic tools, the
titles of which resemble "UNIX in a Nutshell”. These are not required or endorsed (for the
record), but may be useful if you get lost. Also, the L& IR people hold classesin Sweet Hall
covering "how to use UNIX machines’, etc. Seetheir page at http://consult.stanford.edu.

The Compilation Process

Before going into detail about the actual tools themselves, it is useful to review what happens
during the construction of an executable program. There are actually two phases in the process,
compilation and linking. The individual source files must first be compiled into object modules.
These object modules contain a system dependent, rel ocatable representation of the program as
described in the sourcefile. The individual object modules are then linked together to produce a
single executabl e file which the system loader can use when the program is actually invoked. (This
processisillustrated by the diagram on the next page.) These phases are often combined with the

gcc command, but it is quite useful to separate them when using make.

For example, the command:

gcc -0 prog main.c modulel.c module2.c
can be broken down into the four steps shown below:

gcc -c main.c

gcc -c modulel.c

gcc -c module2.c
gcc -0 prog main.o modulel.o module2.o0

C compiler

modulel.o

library functions

linker

Compiler/Linker

Although there are alot of different compilers out there we “ guarantee” that al of the problems can
be solved using the GNU C Compiler, gcc toitsfriends. Using gcc has several advantages, itis
pretty much ANSI compliant, available on avariety of different platforms and, more importantly
for you, it works pretty reliably. The current version of gcc installed on the L& IR machinesis
2.6, and directly compiles C, C++, and Objective-C.

Running gcc
Even though it is called acompiler, gcc isused as both acompiler and linker. The general form
for invokinggcc is:

gcc <option flags> <file list>

where<option flags> isalist of command flags that control how the compiler works, and
<file list>isalistof files, source or object, that gcc is being directed to process. It isnot,
however, commonly invoked directly from the command line, that is what makefiles are for. If
gcc isunableto process the files correctly it will print error messages on standard error. Some of
these error messages, however, will be caused by gcc trying to recover from a previous error so it
is best to try to tackle the errorsin order.

Command-line options

Like almost all UNIX programsgcc hasamyriad of options that control almost every aspect of its
actions. However, most of these options deal with system dependent features and do not concern
us. The most useful of these option flags for us are: -c, -o, -g, -Wall, -1, -L, and -I.

-C

-ofile

-Wall

Requests that gc c compile the specific source file directly into an object file without
going through the linking stage. Thisisimportant for compiling only those files that
have changed rather than the whole project.

The output from the compiler will be named file. If this option is not specified, the
default isto create afile'a. out ' if linking an executable or an object file with the
name of the original source file with the suffix, .c for C files, replaced with .0. This
ismost useful for creating an application with a specific name, rather than changing
the names of object files.

Directs the compiler to produce debugging information. We recommend that you
always compile your source with this option set.

Note — The debugging information generated is for gdb, and could possibly cause
problems withdbx. Thisis because there is typically more information stored for
gdb that dbx will barf on. Additionally, on some systems, some M PS based
machines for example, thisinformation cannot encode full symbol information and
some debugger features may be unavailable.

Give warnings about alot of syntactically correct but dubious constructs. Think of
this option as being away to do asimple form of style checking. Again, we highly
recommend that you compile your code with this option set.

Most of the time the constructs that are flagged are actually incorrect usages, but
there are occasionally instances where they are what you really want. Instead of
simply ignoring these warnings there are simple workarounds for almost all of the
warnings if you insist on doing things this way.

-ldir

-llib

-Ldir

This sort of contrived snippet isacommonly used construct in C to set and test a
variablein asfew linesas possible :

bool flag;
int x = 13;

if (Flag = IsPrime(x)) {
} else {

< Do Error Stuff >
}

The compiler will give awarning about a possibly unintended assignment. Thisis
because it is more common to have a boolean test in the i £ clause using the equality

operator == rather than to take advantage of the return value of the assignment
operator. This snippet could better be written as:

if ((Flag = IsPrime(x)) == 0) {
< Do Error Stuff >

} else {

}---

so that the test for the O value is made explicit. The code generated will be the same,
and it will make us and the compiler happy at the sametime.

Addsthedirectory dir tothelist of directories searched for include files. Thiswill
be important for any additional filesthat we give you. There are avariety of
standard directories that will be searched by the compiler by default, for standard
library and system header files, but since we do not have root access we cannot just
add our files to these locations.

There is no space between the option flag and the directory name.

Search the library named lib for unresolved names when linking. The actua name
of thefilewill beliblib.a, and must be found in either the default locations for
libraries or in adirectory added with the*-L’ flag.

The position of the‘-I’ flag in the option list isimportant because the linker will not
go back to previoudly examined libraries to look for unresolved names. For
example, if you are using alibrary that requires the math library it must appear
before the math library on the command line otherwise alink error will be reported.

Again, there is no space between the option flag and the library file name.
Addsthedirectory dir tothelist of directories searched for library files specified by

the*-I" flag. Here too, there is no space between the option flag and the library
directory name.

make

Asmany of you probably already know, typing the entire command line to compile a program
turns out to be a somewhat complicated and tedious affair. What the make utility doesisto allow
the programmer to write out a specification of al of the modules that go into creating an
application, and how these modules need to be assembled to create the program. The make facility
manages the execution of the necessary build commands (compiling, linking, loading etc.). In
doing S0, it aso recognizes that only those files which have been changed need be rebuilt. Thus a
properly constructed makef i | e can save agreat deal of compilation time. Some people are
“afraid” of make and its corresponding makef i | e, but in actuality creating armakefi |l e isa
pretty simple affair.

Running make

Invoking themak e program isreally smple, just type ‘nake’ at the shell prompt, or if you are an
emacs aficionado ‘M-x compil€’ will do basicaly the same thingl. Either of these commands will
cause mak e to look in the current directory for afilecaled ‘Makefi | e’ or ‘makefi | e’ for the
build instructions. If thereis a problem building one of the targets along the way the error
messages will appear on standard error or the emacs‘conpi | at i on’ buffer if you invoked
make from within emacs.

M akefile-cr aft

A makef i | e consists of a series of mak e variable definitions and dependency rules. A variablein
amakef i | e isaname defined to represent some string of text. This works much like macro
replacement in the C compiler’s pre-processor. Variables are most often used to represent alist of
directories to search, options for the compiler, and names of programsto run. A variableis
“declared” when it is set to avalue. For example, theline:

CC = gcc

will create avariable named 'CC, and set its value to be 'gcc.' The name of the variableis case
senditive, and traditionally mak e variable names arein al capita letters.

Whileit is possible to define your own variables there are some that are considered ‘ standard,” and
using them along with the default rules makes writing anmakef i | e much easier. For the purposes
of this class the important variables are: CC, CFLAGS, and LDFLAGS.

CC The name of the C compiler, thiswill default to cc in most versions of
mak e. Please make sure that you set thisto begcc sincecc isnot ANSI
compliant on the LalR SparcStations, and we will only be using ANSI Cin
thisclass.

CFLAGS A list of optionsto pass on to the C compiler for all of your sourcefiles.
Thisis commonly used to set the include path to include non-standard
directories or build debugging versions, the -1 and -g compiler flags.

1 ‘M-x" means hold the ‘meta’ key down while hitting the ‘x’ key. If your keyboard does not have a‘ metal
key then the ‘ESC’ will do the same thing. Hit the ‘ESC’ key and then the *x’ key. Do not hold down the
‘ESC’ key or elseit will put you into eval mode.

LDFLAGS A list of optionsto pass on to the linker. Thisis most commonly used to set
the library search path to non-standard directories and to include application
specific library files, the -L and -1 compiler flags.

Referencing the value of avariableis done by havinga*‘$ followed by the name of the variable
within parenthesis or curly braces. For example:

CFLAGS = -g -1/usr/class/cs107/include
$(CC) $(CFLAGS) -c binky.c

Thefirst line sets the value of the variable cFLAGS to turn on debugging information and add the
directory /usr/class/cs107/include to theinclude file search path. The second line uses the
value of the variable CC as the name of the compiler to use passing to it the compiler options set in
the previousline. If you use avariable that has not been previoudy set in the makefile, make will
use the empty definition, an empty string.

The second major component of makefiles are dependency/build rules. A ruletells how to make a
target based on changesto alist of certain files. The ordering of the rulesin the makef i | e does
not make any difference, except that the first rule is considered to be the default rule. The default
ruleistherulethat will be invoked when maeke is called without arguments, the usual way. If,
however, you know eaxctly which rule you want to invoke you can nameit directly with an
argument to mak e. For example, if my makefile had arulefor ‘cl ean,’ the command line 'make
cl ean' would invoke the actions listed after the cl ean label, more on actions | ater.

A rule generally consists of two lines, a dependency list and acommand list. Here is an example
rule:

binky.o : binky.c binky.h akbar.h
<tab>$(CC) $(CFLAGS) -c binky.c

Thefirgt line says that the object filebi nky. o must be rebuilt whenever bi nky. c, bi nky. h,
or akbar . h are changed. Thetarget bi nky. o issaid to depend on these three files. Basically, an
object file depends on its source file and any non-system files that it includes.

The second line? lists the commands that must be taken in order to rebuild bi nky. o, invoking the
C compiler with whatever compiler options have been previously set. These lines must be indented
with a<t ab> character, just using spaces will not work. Thisis a problem when using copy/paste
from some terminal programs. For “standard” compilations3, the second line can be omitted, and
mak e will use the default build rule for the source file based on its extension, .c for Cfiles. The
default build rule that mak e usesfor C fileslookslike this:

$(CC) $(CFLAGS) -c <source-file>

2 The second line can actually be more than one line if multiple commands need to be done for asingle
target. In this class, however, we will not be doing anything that requires multiple commands per target.
3 Most versions of make handle at least FORTRAN, C, and C++.

Hereisa"“complete” makefile for your reading pleasure.

CC = gcc
CFLAGS = -g -1/usr/class/cs107/include
LDFLAGS = -L/usr/class/cs107/1ib -lgraph

PROG = example

HDRS = binky.h akbar.h defs.h
SRCS = main.c binky.c akbar.c
OBJS = main.o binky.o akbar.o

$(PROG) : $(OBJECTS)
$(CC) -o $(PROG) $(LDFLAGS) $(OBJS)

clean :
rm -f core $(PROG) $(0BJS)

TAGS : $(SRCS) $(HDRS)
etags -t $(SRCS) $(HDRS)

main.o : binky.h akbar.h defs.h
binky.o : binky.h
akbar.o : akbar.h defs.h

This makefile includes two extratargets, in addition to building the executable: cl ean and TAGS.
These are commonly included in makefiles to make your life as a programmer alittle bit easier. The
cl ean target is used to remove al of the object files and the executable so that you can start the
build process from scratch?, you will need to do thisif you move to a system with adifferent
architecture from where your object libraries were originally compiled. The TAGSrule creates atag
filethat most Unix editors can use to search for symbol definitions®.

Compiling in Emacs

The Emacs editor provides support for the compile process. To compile your code from Emacs,
type 'M-x compile’. Y ou will be prompted for a compile command. If you have a makefile, just
type 'make’ and hit return. The makefile will be read and the appropriate commands executed.

The Emacs buffer will split at this point, and compile errors will be brought up in the newly created
buffer. In order to go to the line where a compile error occurred, place the cursor on the line which
contains the error message and hit ctrl-c ctrl-c. Thiswill jump the cursor to the linein your code
where the error occurred.

4 It also removes any ‘core’ files that you might have lying around, not that there should be any.
5 Use ‘M-x find-tag’ or ‘M-.” in emacs to search for a symbol within emacs. Use tags, they make your life a
lot easier.

The Debugger (gdb)

During the course of the quarter you may run into abug or two in your programs®. There are a
variety of different techniques for finding these “anomalies,” but a good debugger can make the job
alot easier and faster. We are recommending the GNU debugger, since it basically stomps on dbx
in every possible way and works nicely with the gcc compiler we recommend. Other nice
debugging environments include ups and CodeCent er , but these are not as universally availible
asgdb, and in the case of CodeCent er not as cheaply. While gdb does not have a flashy
graphical interface as do the others, it is a powerful tool that provides the knowledgeable
programmer with all of the information she could possibly want and then some.

This section does not come anywhere close to describing all of the features of gdb, but will,
rather, hit on the high points. Thereison-line help for gdb which can be seen by using the

‘hel p’ command from within gdb. If you want more information try xi nf o if you are logged
onto the console of amachine with an X display or use the info-browser mode from within emacs.

A debugger isinvaluable to a programmer because it eases the process of discovering and repairing
bugs at run-time. In most programs of any significant size, it isnot possible to determine all of the
bugsin aprogram at compile-time because of oversights and misconceptions about the problem
that the application is designed to solve.

The way debuggers allow you to find bugs is by alowing you to run your program on aline-by-
line basis, pausing the program at times or conditions that you specify and allowing you to
examine variables, registers, the run time stack and other facets of program state while paused.

Sometimes these bugs result in program crashes (a.k.a. "core dumps’, "register dumps’, etc.) that
bring your program to a halt with a message like " Segmentation Violation" or the like. If your
program has a severe bug that causes a program crash, the debugger will "catch” the signal sent by
the processor that indicates the error it found, and alow you to further examine the program. This
information can be quite valuable when trying to reason about what caused your program to die, al
segmentation faults sort of ook the same.

Starting the debugger

Aswith make there are two different ways of invoking gdb. To start the debugger from the shell
just type:

gdb <Target Name>

where<Target Name> iSthe name of the executable that you want to debug. If you do not specify
atarget then gdb will start without atarget and you will need to specify one later before you can do
anything useful.

As an dternative, from within emacs you can use the command ‘M x gdb’ which will then
prompt you for the name of the target file. Y ou cannot start an inferior gdb session from within
emacs without specifying atarget. The emracs window will then split between the gdb ‘window’
and a buffer containing the current source line.

6 We recommend that you have fewer.

Running the debugger

Once started, the debugger will load your application and its symbol table (which contains useful
information about varaible names, source code files, etc.). This symbol table is the map that the
debugger reads asit is running your program.

Warning:If you forget to specify the -g' flag (debugging info.) when compiling your source files,
this symbol table will be missing from your program and gdb (and you) will be "in the dark" as
your program runs.

The debugger is an interactive program. Once started, it will prompt you for commands. The most
common commandsin the debugger are: setting breakpoints, single stepping, continuing after a
breakpoint, and examining the values of variables.

Running the Program

run Reset the program, run (or rerun) from the beginning. Y ou
can supply command-line arguments to ‘run’ the same way
you can supply command-line arguments to your executable

from the shell.
step Run next line of source and return to debugger. If a
subroutine call is encountered, follow into that subroutine.
step count Run count lines of source.
next Similar to step, but doesn't step into subroutines.
finish Run until the current function/method returns.
return Make selected stack frame return to its caller.
junp address Continue program at specified line or address.

Asyou run your program, it will always be executing some line of code in some source file. When
you pause the program (using a "breakpoint"), the "current target file" is the source code filein
which the program was executing when you paused it. Likewise, the "current source line" isthe
line of code in which the program was executing when you paused it.

When atarget application isfirst selected (usually on startup) the current source fileis set to thefile
with themai n function in it, and the current source line is the first executable line of the this
function.

Breakpoints

Y ou can use breakpoints to pause your program at a certain point. Each breakpoint is assigned an
identifying number when you cregateit, and so that you can later refer to that breakpoint should you
need to manipulate it.

A breakpoint is set by using the command ‘break’ specifying the location of the code where you
want the program to be stopped. This location can be specified in avariety of different ways, file
name and line number or file name and function name’. If the file name argument is not specified

7 It isagood ideato specify linesthat are really code, comments and whitespace will not do the right thing.

thefileis assumed to be the current target file, and if no arguments are passed to ‘break’ then the
current source line will be the breakpoint. gdb provides the following commands to manipul ate
breakpoints:

i nfo break Printsalist of all breakpoints with numbers and status.

break |inenunber

break function

break met hod

break fil enane: function

break fil enamre:|inenunber Placeabreakpoint at the specified line within the specified
source file. You can also specify an if clause with any of
above.

break function if expressi onStop at the breakpoint, only if expressionistrue.
Expression isany valid C or Objective-C expression,
evaluated within current stack frame.

t br eak ar gunent s Place a one-time breakpoint.

di sabl e breaknum

enabl e br eaknum Disable/enable breakpoint identified by breaknum
del et e breaknum Delete the breakpoint identified by breaknum.
conmands breaknum Specify commands to be executed when breaknumis

reached. Thiscan be useful to fix code ™on-the-flyoin the
debugger without re-compiling.

cont Continue a program that has been stopped.

For example, the commands :

break binky.c:120
break akbar.c:DoGoofyStuff

set abreakpoint on line 120 of thefile binky.c and another on the first line of the function
DoGoofystuff which isfound in the file akbar.c. The second command could alternatively be
specified as:

break DoGoofyStuff

if there are no other instances of DoGoofyStuff in the program. If it is ambiguous what nameisto
be used then the debugger will prompt for more information.

gdb (and most other debuggers) provides mechanismsto determine the current state of the
program and how it got there. The things that we are usualy interested in are "where are we in the
program?' and "what are the values of the variables around us?'.

Examining the stack

To answer the question of "where are we in the program?’, we use the 'wher e' command to
examine the run-time stack. The run-time stack islike a"trail of breadcrumbs® in a program; each
time afunction call ismade, a"crumb isdropped” (an RT stack frame is pushed). When areturn
from afunction occurs, the corresponding RT stack frame is popped and discarded. These stack

10

frames contain valuable information about where the function was called in the source code (line #
and file name), what the parameters for the call were, etc.

gdb assigns numbersto stack frames counting from zero for the innermost (currently executing)
frame.

At any time gdb identifies one frame as the "selected" frame. Variable lookups are done with
respect to the selected frame. When the program being debugged stops (at a breakpoint), gdb
selects the innermost frame. The commands below can be used to select other frames by number
or address.

backtrace Show stack frames, useful to find the calling sequence that
produced a crash.
frame franmenunber Start examining the frame with framenumber. This does not

change the execution context, but allows to examine
variablesfor adifferent frame.

down Select and print stack frame called by this one.

up Select and print stack frame that called this one.
info args Show the argument variables of current stack frame.
info |l ocals Show thelocal variables of current stack frame.

Examining sour ce files
Another way to find our current location in the program and other useful information isto examine
the relevant source files. gdb provides the following commands:

Vi ew Message the Edit application to show the current source
lines. Commands like list, step, next, will highlight the
code in Edit.

unvi ew Turns off viewing in Edit.

[ist Iinenum Print ten lines centered around linenumin current source
file.

list function Print ten lines centered around beginning of function (or
method).

list Print ten more lines.

The'l i st’ command will show the source lines with the current source line centered in the range.
(Using gdb from withinemacs makes these command obsolete since it does all of the current
source stuff for you).

11

12

Examining data
It isalso useful to answer the question, "what are the values of the variables around us?' In order
to do so, we use the following commands to examine variables:

print expression Print value of expression. Expression isany valid C or
Objective-C expression, evaluated within current stack
frame.

set variabl e = expressi on Assignvalue of variableto expression. You can set any
variable in the current scope. Variables which begin with
*$ can be used as convenience variables in gdb.

di spl ay expressi on Print value of expression each time the program stops. This
can be useful to watch the change in avariable as you step
through code.

undi spl ay Cancels previous display requests.

br owse obj ect Browse an object. This messages Applnspector to view the

specified object. Applnspector alows you to see the values
of instance variables, follow pointers, see the chain of
inheritance, etc.

In gdb, there are two different ways of displaying the value of avariable: a snapshot of the
variable' s current value and a persistent display for the entire life of the variable. The ‘print’
command will print the current value of avariable, and the ‘display’ command will make the
debugger print the variables value on every step for aslong asthe variableis‘live.” The desired
variableis specified by using C syntax. For example :

print x.y[3]

will print the value of the fourth element of the array field named y of a structure variable named x.
The variables that are accessible are those of the currently selected function's activation frame, plus
all those whose scopeis global or static to the current target file. Both the *print’ and * display’
functions can be used to evaluate arbitrarily complicated expressions, even those containing,
function calls, but be warned that if afunction has side-effects avariety of unpleasant and
unexpected situations can arise.

Shortcuts

Finally, there are some things that make using gdb abit ssmpler. All of the commands have short-
cuts so that you don’'t have to type the whole command name every time you want to do something
simple. A command short-cut is specified by typing just enough of the command name so that it
unambiguously refers to acommand. For example, ‘¢’ unambiguously refersto ‘ continue’ but ‘w’
could refer to *whatis', ‘where’, or ‘watch’ so more letters would be needed.

Additionally, most commands can be repeated by just hitting the <return key> again. Thisisredly
useful for single stepping for arange while watching variables change. There are, however, afew
commands that won’t repeat thisway. For example, it would not make sense to repeatedly set a
breakpoint on the sameline if you accidentally hit the return key.

13

Miscellaneous
edi t node node Set editmode for gdb command line. Supported values for
mode are emacs, vi, dumb.

shel | command Execute the rest of the line as a shell command.

hi story Print command history.

Debugging Strategy

If your program has been crashing spectacularly, you can just run the program by using the ‘r un’
command? right after you start the debugger. The debugger will catch the signal and allow you to
examine the program (and hopefully find the cause and remedy).

More often the bug will be something more subtle. In these cases the “best” strategy is often to try
to isolate the source of the bug, using breakpoints and checking the values of the program’s
variables before setting the program in motion using "run”, "step”, or "continue". A common
technique for isolating bugs isto set a breakpoint at some point before the offending code and
sowly continuing toward the crash site examining the state of the program along the way.
Printing Your Source Files
There'sareally neat way to print out hardcopies of your source files. Use acommand called
"enscript”. Commonly, it's used at the UNIX command line as follows:

enscript -2GRpsweet5 binky.c lassie.c *.h

Where we want to print the two source files "binky.c" and "lassie.c", aswell as all of the header
filesto printer sweet5. Y ou can change these parameters to fit your needs.

8 If your application takes command line arguments include these on the same line as the ‘run’ command.

Appendix A: UNIXsJ/Emacswo Survival Guide

14

This handout summarizes many of the commands helpful for getting around on the Unix operating system
and the Emacs editor. AIR provides nice thick readers on both of these topics at the LAIR and on the 2nd
floor of Sweet Hall if you need more information.

Basic UNI X

Directory Commands

cd directory
pwd
Is

rmfile
mv old new
cp old new

mkdir name
rmdir name

Change directory. If directory is not specified, goes to home directory.
Show current directory (print working directory)
Show the contents of adirectory. Is -a will also show files whose
name beginswith adot. Is -1 showslots of miscellaneous info
about eachfile
Deeteafile
Rename afile from old to new (also works for moving things
between directories). If there was already afile named new, it's
previous contents are lost.
Creates a file named new containing the samething asold. If there
was already afile named new, it's previous contents are lost.
Create adirectory
Delete adirectory. The directory must be empty.

Shorthand Notations & Wildcards

~

~<user >
*

?

Current directory
Parent directory

Y our Home Directory
Home Directory of user

Any number of characters(not ") Ex: *.cisall filesendingin'.c
Any single character (not '.")

OUNIX* isaregistered trademark of AT&T
*UNIX** isaregistered trademark of AT& T
**UNIXT isaregistered trademark of AT&T

10GNU EMACS s provided for free by the FREE SOFTWARE FOUNDATION, which write software and givesit

t...

away because they think that's how software should be.

15

Miscellaneous Commands

cat file
mor e file
less file

W

ps
jobs

process&

%

% number

kill process-id
kill -9 process

grep exp files
wc file
script

Ipr file
Ipr -Pinky file

diff filelfile2
telnet hostname
webster word

Getting Help
man subject
man -k keyword

History
history
Il

| number
I'string
Awrong” right”™
P

Pipes
a>b
a>>b
a>&b
a<b
alb

Print the contents of file to standard output
Same as cat, but only apage at atime (useful for displaying)
Same as more, but with navigability (lessis more)

Find out who is on the system and what they are doing
List al your currently active processes
Show jobs that have been suspended

Runs a process in the background

Continue last job suspended (suspend a process with ~Z)
Continue a particular job

Kill aprocess

Kill a process with extreme prejudice

Look for an expression in a set of files
Count words, lines, and charactersin afile
Start saving everything that happensin afile. typeexit when done

Print file to the default printer
Print file to the printer named inky

Show the differences between two files

L og on to another machine

Looks up the given word in the dictionary. Works from most AIR
machines, but is not standard UNIX

Read the manual entry on a particular subject
Show all the manual listings for a particular keyword

Show the most recent commands executed

Re-execute the last command

Re-execute a particular command

Re-execute the last command beginning with string
Re-execute the last command, substituting right for wrong
Scroll backwards through previous commands

Redirect as standard output to the file b

Redirect as standard output to append to the file b
Redirect as error output to the file b

Redirect as standard input to read from thefile b
Redirect a's standard output to b's standard input

16

GNUEMACS

For the following "~Z" means hit the"z" key while holding down the "ctrl" key. "M-z" means hit the "z"
key while hitting the"META" or after hitting the "ESC" key.

Running Emacs

|eland>emacs <filename> run emacs (on aparticular file). Make sure you don't aready have an
emacs job running which you can just revive. Adding a'& ' after
the above command will run emacs in the background, freeing up

your shell)
Nz suspend emacs— revive with % command above
AXINC kill emacsfor good
XN load anew file into emacs
XNV load a new file into emacs and unload previousfile
S savethefile
~x-k kill abuffer

Moving About
~p previousline
b backward ~f forward
n next line
(Note: the standard arrow keys also usually work.)

a go to beginning of line

e gotoend of line

v scroll down a page

M-v scroll up apage

M-< go to beginning of document

XA go to beginning of page

M-> go to end of document

AX-] go to end of page

N redraw screen centered at line under the cursor
~X-0 move to other screen

~Xx-b switch to another buffer

Sear ching

ns search for aword

~r search for aword backwards from the cursor (both of these terminate with ~f)
M-% search-and-replace

Deletion

~d deletes letter under the cursor

K kill from the cursor all the way to the right

Ny yanks back all the last kills

using the k *y combination you can get a cut-paste effect to move text around

17

Regions
Emacs defines aregion as the space between the mark and thepoint. A mark isset with
A<gpc> (control-spacebar). The point is at the cursor position.

M-w copy theregion

i kill theregion

using *y will also yank back the last region killed or copied. Thisiswhat we used for "paste” back in the
bad old mainframe days before there was "paste”.

Screen Splitting

AX-2 split screen horizontally

"x-3 split screen vertically

~x-1 make active window the only screen
~x-0 make other window the only screen

M iscellaneous

M-$ check spelling of word at the cursor

g in most contexts, cancel, stop, go back to normal command

M-x goto-line<#> goesto the given line number

AX-U undo

M-x shell start a shell within emacs

Compiling

M-x compile compile code in active window. Easiest if you have a makefile set up.

ctrl-c ctrl-c do thiswith the cursor in the compile window, scrolls to the next compiler error. Y ay!

Getting Help
h emacs help
"ht run the emacs tutoriad

Emacs does command completion for you. Typing M-x <spc> will give you alist of emacs commands.
Thereis also aman page on emacs. Type 'man emacs in ashell.

