LISP Examples

© Nick Parlante, 1996.Free for non-commerical use.

1) Write afunction filter which takes alist and a predicate, and returns the list of the elements from
the origina list for which the predicate returns true. (There are actually LISP built-ins to do this
caled remove-if and remove-if-nott. Of course you may not use them for this problem!)

? (defun even(num (= (nmod num 2) 0))
? (filter "(6 4 3 5 2) # even)
(6 4 2)

2) Write afunction non-nil which takes alist and replaces each non-null element with 1 and each
null element with 0. Write it twice — once recursively and once using mapcar. Bonus problem:
write an expression that counts the number of non-null elementsin alist.

? (non-nil "(a nil (b) (nil) 2))
(10111

3) Assumeyou haveafunction (nuns start stop) whichreturnsalist of the numbersin the
range start..stop inclusive. Write a boolean function forall which takes a list and a predicate and
returns true if and only if the predicate returns true for every element in the list. So the predicate
must betrue for al the elementsin thelist. A predicate is a one-argument function that returns true
or false.

? (forall '(2 4 6 12) # even) ; Is every element a nunber?
T

? (forall "(1 2 (3) 4) #even)

NI L

? (forall "(nil nil nil nil) # null) ; Is every elenment null?

T

? (forall "(nil definitely-not nil) # null)

NI L

4) (One of Nick'sall timefavorite old CS107 final exam problems) Write afunction ( pri ne n)
which takes a positive integer and returns true if the number is prime. A number isprimeif it is not
divisible by any number intherange2. . (fl oor (sqrt n)). Sgrt takesthe squareroot, and
FI oor rounds down. Use the answer to f oral | function above which you may assume is
correct.

5) Write an expressionusing numns, filter, and pri ne which isthelist of prime numbersin
the range 1..100.

6) Write a function increasing-sum which takes a non-empty list of non-empty lists of numbers,
suchas' ((2 4 3) (6 2) (5 6 7 3)).Thefunction should return alist where the sublists
are arranged in increasing order by their sum.

?(increasing-sum' ((2 4 3) (6 2) (56 7 3)))
((62) (243 (567 3))



Most
The Most utility function is a general purpose utility. It takes a non-empty list and two argument
comparator function (as sort does) and returns the element in the list which was "most" according

to the comparator.

;. MOST

; Takes a non-enpty list and two argunment conparator function which

; returns T if its first argunent was "nore than" its second argunent.
; Returns the elenment in the Iist which was "nmpst" according to the

; conparator.

(defun nost (list conparator)

? (nost ' (3 46 7 -72 6 -8) # >)

46

? (most ' (3 46 7 -72 6 -8) # (lambda (x y) (> (* x x) (* y y))))
-72

7) Write a function increasing-max which takes the same sort of list as above, but orders by the
maximum number in each list. Y ou may usethe nost function.

? (increasing-max '((2 4 3) (6 2) (56 7 3)))
((243) (62) (567 3))



SOLUTIONS TO FUNCTION QUESTIONS

1. (defun filter(list predicate)
(if (null list) "()
(let (
(the-rest (filter (cdr list) predicate))

(if (funcall predicate (car list))
(cons (car list) the-rest)
t he-rest
)
)
)
)

2. (defun non-nil (list)
(if (null list)
()
(cons
(if (null (car list))
0

1)
(non-nil (cdr list)))))

(defun non-nil (list)
(mapcar #' (lanbda (el em
(if (null elem
0

)
list))
3.
(defun forall (list func)
(if (null 1ist)
T

(and (funcall func (car list))
(forall (cdr list) func))))

4.
(defun prime(n)
(and
(>n 1) ;; picky case so we don't say numbers <=1 are prine
(forall (nunms 2 (floor (sqrt n)))
# (lanbda (divisor) (not (= (nod n divisor) 0)))
))))

5. this expression yields all the prime nunbers in the range 1..100 YEAH
?(filter (nuns 1 100) # prinme)
(2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)

6.
(defun increasing-sun(list)
(sort list # (lambda (sublistl sublist?2)
(< (apply # + sublistl ) (apply # + sublist2)))))

7.
(defun increasing-max(list)
(sort list # (lambda (sublistl sublist?2)
(< (nost sublistl #' >) (npbst sublist2 # >))))



Power Set Example

Pro
Very expressive and terse language leads to quick expression of a complex agorithm.

Con
The code is so densg, it can't be read quickly.

;; Conputes the power-set of any set.
;; The power set of a set X, is the set of all possible
;; subsets of X. Sets are represented by lists, so this

takes a list and returns a list of lists.
;. ? (power-set '(1 2))
;o ((12) (1) (2) NL)
;. ? (power-set '(a b c))
. ((ABQ (AB (AQ (A (BQ (B (O NL)

| mpl enent ati on: recursively conpute the power set of the cdr.

For each of those sets, include two versions in the final power set-
;; one which includes the car and one which does not.
(defun power-set (set)

(if (null set) '(())

(let ((psetf Rest (power-set (cdr set))))
(append

;;add the car into the subsets
(mapcar #' (lanbda (subset) (cons (car set) subset)) psetf Rest)

;;take the subsets without adding the car
pset Of Rest

)



