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1 Rank Minimization

The general rank minimization problem, which arises in a wide range of applications, is as follows:

min. rank(X) (1)
st. X el (2)

where C is a convex subset of R™*™. Since this problem is generally hard to solve, we replace it with the
following intuitively sound optimization:

min. || X|[. (3)
st. X el 4)

where || X||, = >, 0:(X) is the sum of singular values of X.

Even though the original rank-minimization problem is non-convex, the above heuristic optimization is
indeed convex. Also, we have the following theorem, which shows this is actually a good convex formulation:

Theorem 1 || X ||, is the convez envelope of rank(X) on {X € R™*"| || X|| < 1}.

The proof of this theorem can be found in [1].

As mentioned, the heuristic formulation is a convex problem, and hence can be solved in general. We also
show that for the special case where C is a set of linear constraints, we can turn this problem into an SDP.
The problem is equivalent to:

min. ¢ (5)
st || X« <t (6)
XecC (7)

But, we have the following lemma:

Lemma 2 For X € R™*" and t € R, ||X||x <t iff there exist matrices Y € R™*™ and Z € R™" such
that:

Y X
[ xT 7 ] >0, tr(Y) +tr(Z2) <2t



Hence, the last optimization is equivalent to:

min. tr(Y) +tr(2) (8)
Y X

s.t {XT Z}zo 9)

Xec (10)

which is an SDP (if C is a set of linear constraints) and hence can be solved efficiently using any SDP solver.

2 Maximum Margin Matrix Factorization

Assume we have a matrix Y € {£1}"*™ some subset S of whose entries have been observed (and formed

Ys). We would like to approximate the rest of the entries. To do so, we can find an approximation X of YV
using an optimization over the observed entries. One way to do so is to find a low-rank approximation X.
Notice that rank(X) < k iff X can be written as UV where U € R"** and V € R™**. Hence, looking for
low rank X corresponds to seeking low dimensionality factorization.

Another approach is looking for small norm factorization (through a penalty term), where norm of the
factorization is measured by ||U||%,., + ||V||%,,- We have the following lemma [2]:

Lemma 3

. 1 .
mZ”X:UVTi(HU”QFTO + HVH%TO) = man:UVTHUHFTOHVHF’I‘O = ||XH*
Hence, using the above approach and the above lemma, we can formulate two optimization variants:

1. Hard-margin matrix factorization

min. [|X[l, (11)
st. YiuXia>1 Viae S (12)

2. Soft-margin matrix factorization

min.|| X ||« + ¢ Z max(0,1 — Y;a Xiq)
ia€S

Now, using lemma 2, we can write the soft-margin optimizations as follows:

) 1
min. 5 (tr(4) +tr(B)) +¢ 3 € (13)
ia€S
A X
s.t. {XT B } >0 (14)
yiaXia Z 1- fm V 1a S S (15)
ia>0 Yia€ S (16)

The hard-margin optimization can also be written similarly (with slack variables equal to zero). This is an
SDP and hence can be solved efficiently.
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