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*Unedited Notes

1 Rank Minimization

The general rank minimization problem, which arises in a wide range of applications, is as follows:

min. rank(X) (1)
s.t. X ∈ C (2)

where C is a convex subset of Rm×n. Since this problem is generally hard to solve, we replace it with the
following intuitively sound optimization:

min. ||X||? (3)
s.t. X ∈ C (4)

where ||X||? =
∑

i σi(X) is the sum of singular values of X.
Even though the original rank-minimization problem is non-convex, the above heuristic optimization is
indeed convex. Also, we have the following theorem, which shows this is actually a good convex formulation:

Theorem 1 ||X||? is the convex envelope of rank(X) on {X ∈ Rm×n| ||X|| ≤ 1}.

The proof of this theorem can be found in [1].
As mentioned, the heuristic formulation is a convex problem, and hence can be solved in general. We also
show that for the special case where C is a set of linear constraints, we can turn this problem into an SDP.
The problem is equivalent to:

min. t (5)
s.t. ||X||? ≤ t (6)

X ∈ C (7)

But, we have the following lemma:

Lemma 2 For X ∈ Rm×n and t ∈ R, ||X||? ≤ t i� there exist matrices Y ∈ Rm×m and Z ∈ Rn×n such
that:

[
Y X

XT Z

]
≥ 0, tr(Y ) + tr(Z) ≤ 2t
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Hence, the last optimization is equivalent to:

min. tr(Y ) + tr(Z) (8)

s.t.
[

Y X
XT Z

]
≥ 0 (9)

X ∈ C (10)

which is an SDP (if C is a set of linear constraints) and hence can be solved e�ciently using any SDP solver.

2 Maximum Margin Matrix Factorization

Assume we have a matrix Y ∈ {±1}n×m some subset S of whose entries have been observed (and formed
YS). We would like to approximate the rest of the entries. To do so, we can �nd an approximation X of Y
using an optimization over the observed entries. One way to do so is to �nd a low-rank approximation X.
Notice that rank(X) ≤ k i� X can be written as UV T where U ∈ Rn×k and V ∈ Rm×k. Hence, looking for
low rank X corresponds to seeking low dimensionality factorization.
Another approach is looking for small norm factorization (through a penalty term), where norm of the
factorization is measured by ||U ||2Fro + ||V ||2Fro. We have the following lemma [2]:

Lemma 3

minX=UV T

1
2
(||U ||2Fro + ||V ||2Fro) = minX=UV T ||U ||Fro||V ||Fro = ||X||?

Hence, using the above approach and the above lemma, we can formulate two optimization variants:

1. Hard-margin matrix factorization

min. ||X||? (11)
s.t. YiaXia ≥ 1 ∀ ia ∈ S (12)

2. Soft-margin matrix factorization

min.||X||? + c
∑

ia∈S

max(0, 1− YiaXia)

Now, using lemma 2, we can write the soft-margin optimizations as follows:

min. 1
2
(tr(A) + tr(B)) + c

∑

ia∈S

ξia (13)

s.t.
[

A X
XT B

]
≥ 0 (14)

yiaXia ≥ 1− ξia ∀ ia ∈ S (15)
ξia ≥ 0 ∀ ia ∈ S (16)

The hard-margin optimization can also be written similarly (with slack variables equal to zero). This is an
SDP and hence can be solved e�ciently.
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