1 Spectral Methods

1. Find an approximation to best cut in \(G \)
2. Time takes to compute Fiedler vector “exactly” or “approximately”.

- If the graph is really large, can we find approximation to the best cut near by or for a given size? We would like to inherent some of the provably good properties (theorems) or some of the robustness properties of the global methods:
 (1) do what we did with Cheeger’s inequality
 (2) with a vector that’s good locally.

- Two senses which you might be local:
 (1) find a good cluster near you
 (2) do all computations locally, i.e. depend on size of set/cut returned

- How to get a vector that is good locally:
 (1) Truncate: random walks from localized start node
 (2) Approximate: PageRank computation with local seed vector
 (3) heat kernels

Recall Cheeger’s inequality:

Theorem 1.

\[
2 h_G \geq \lambda_G \geq \frac{\alpha_G^2}{2} \geq \frac{h_G^2}{2}
\]

where \(\alpha_G \) is the conductance of the best set along the sweep cut.

Fact: There is a strong relationship between \(h_G(\phi_G) \) and rate of convergence of a random walk

Two directions:

(1) Let \(S \) be the best cut. \(S \) is the set of nodes such that \(\phi_S = \min_{S' \subset G} \phi_{S'} \)

(2) The probability that the random walk will go to a vertex in \(S \) is \(\phi_s \). It needs to run \(\sim \frac{1}{4\phi_S} \) steps to get 1/4 mass out of \(S \)

Partial Converse: (proof can be found in Chung’s “Four proofs…” paper)

(1) If \(\phi_S \) is big then every random walk converges “fast”.

\[1\]
(2) If the random walk does not converge fast, then by looking at probability distribution, you can get a good cut.

Theorem 2. Let W be the lazy random walk matrix, then

$$|W^t(u, s) - \pi(s)| \leq \sqrt{\frac{\text{vol}(S)}{d_u}} (1 - \beta_t/8)^t$$

where β_t is the conductance value found in the best sweep cut found in first t steps.

Theorem 3 ("Cheeger-like").

$$2h_G \geq \lambda_G \geq \frac{\beta_G^2}{8} \geq \frac{h_G^2}{8}$$

where β_G is the min cheeger ratio

Notes: this is algorithmic time - time to compute $p_0, p_1, \ldots, p_t = W^tp_0$. Truncated random walk: if $(p_t)_i \leq \xi$, set $(p_t)_i = 0$.

PageRank PageRank is a way to order vertices of large graph. Recall the W matrix. Then with probability α, the random walk jumps to a new node on G, and with $1 - \alpha$ it follows W:

$$p = \alpha (\frac{1}{n}, \ldots, \frac{1}{n}) + (1 - \alpha)Wp$$

Personalized PageRank Say we are at a starting node s. Let $v = \chi_s$ be the teleporting vector. Then $p = \alpha \chi_s + (1 - \alpha)Wp$, which gives $p = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^t W^t \chi_s$.

Recall, $\alpha(S) = \{(u, v), u \in S, v \notin S\}$ is the edge boundary and $\delta(S) = \{v, v \in S, (u, v) \in E, u \notin S\}$ is the vertex boundary and $f : V \rightarrow \mathbb{R}$ satisfies the Dirichlet boundary conditions if $f(v) = 0 \ \forall v \in \delta(S)$.

Point: Laplacian on G also acts on function on G satisfying Dirichlet boundary condition and the same as Laplacian restricted to S.

Definition

$$h_S = \min_{S \subseteq T} h(T)$$

the local expansion coefficient.

Theorem 4. Using the personalized PageRank vector,

$$h_S \geq \lambda_S \geq \frac{\gamma_S}{8 \log(\cdots)}$$

where γ_S is the best sweep cut value.

Point Much of the machinery underlying global spectral methods can be made local

- global computation, local cut
- algorithm running time local
2 Flow based graph partitioning

- using network flow ideas to reveal bottlenecks in graph.
- $G = (V, E)$ s is source, t is sink.
- **Goal**: route as much flow as possible.
- max flow = min cut (duality)

Def *Multicommodity flow problem*: Given $k \geq 1$, (s_i, t_i, D_i), goal is to simultaneously route D_i units of flow from s_i to $t_i \forall i$ while respecting capacity constraints.
- Max throughput flow: max amount of flow summed over all commodities.
- Max concurrent flow: max fraction of demand D_i that can be route by flow...

$$\max f \text{ s.t. } fD_i \text{ units of flow go from } s_i \text{ to } t_i.$$

- \begin{align*}
\min \text{ cut } = \rho &= \min_{U \subseteq V} \frac{C(U, \bar{U})}{D(U, \bar{U})} \quad \text{where} \\
C(U, \bar{U}) &= \sum_{e \in (U, \bar{U})} C(e) \\
D(U, \bar{U}) &= \sum_{i: s_i \in U, t_i \in \bar{U}} D_i
\end{align*}

- UMFP: all demands are uniform → expansion
- PMFP: $\pi: V \rightarrow R^+$. Demands are $\pi(v_i)\pi(v_j)$. E.g. if $\pi(v) = \deg(v) \rightarrow$ conductance.

Fact 1 max-flow/min-cut gap $\leq O(\log k)$ (comes from metric embedding)

Fact 2 If certain conditions are satisfied, then gap=0. Look at dual polytope. Optimal solution – integral or not.

Fact 3 Worst case (over input graph) gap $\Omega(\log k)$.

Proof. on expanders. Structure of proof like that seen earlier.

2.1 Algorithmic Applications

UMFP: $D(U, \bar{U}) = |U||\bar{U}|$.

\begin{align*}
\min \text{ cut: } \rho &= \min_{U \subseteq V} \frac{C(U, \bar{U})}{|U||\bar{U}|} \\
&= \min_{U \subseteq V} \frac{E(U, \bar{U})}{|U||\bar{U}|} \text{ if all capacities } = 1.
\end{align*}

So sparsest cut \sim best expansion.
• “poly-time” – can solve “balanced” cut problem and use it for divide and conquer.
• best running time $O(n^2)$

Aside A local improvement algorithm:

• Goal: Given a partition, find a strictly better partition.
• METIS – post process with a flow based improvement heuristic.
• Vanilla spectral: post process with improvement method.
• Local improvement at one step online iterative algorithm.

Theorem: $A \subseteq V$ s.t. $\pi(A) \leq \pi(\bar{A})$. $S = \text{Improve}(A)$ [partition flow algorithm].

1. if $C \subseteq A$, then $Q(S) \leq Q(C)$ [where $Q(S) = |\partial S|/\text{vol}(S)$]
2. if C is such that

$$\frac{\pi(A \cap C)}{\pi(C)} \geq \frac{\pi(A)}{\pi(V)} + \epsilon \frac{\pi(\bar{A})}{\pi(V)},$$

i.e. C is ϵ more correlated with A than random, then $Q(S) \leq Q(C)/\epsilon$ i.e. bound on nearby cuts.

• Spectral: relaxation to vector space $O(\log n)$, graph partition.
• Flow: relaxation to l_1 (that’s an LP) $O(\log n)$, graph partitioning algorithm.