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Abstract. Multi-agent system(MAS) is a blooming research area, which
exhibits a new paradigm for the design, modelling and implementation
of complex systems. A significant amount of effort has been made in es-
tablishing standards for agent communication and MAS platforms. How-
ever, communication is not the only difficulty faced by agent researchers.
Research is also directed towards the formal aspects of agents and declar-
ative approaches to model agents. This paper explores the bonding be-
tween high-level reasoning engines and low-level agent platforms in the
practical setting of using three formal agent reasoning implementations
together with an existing agent platform, OPAL, that supports the FIPA
standards. We focus our discussion in this paper on our approach to
provide declarative agent programming support in connection with the
OPAL platform, and show how declarative goals can be used to glue the
internal micro agents together to form the hierarchical architecture of
the platform.

1 Introduction

Multi-agent system(MAS) research is an important and rapidly growing area in
distributed systems and artificial intelligence. The agent notion has evolved from
a monolithic artifact of software to a new and exciting computing paradigm, and
it is now recognized that MAS, as a conceptual model, has the advantages of
high flexibility, modularity, scalability and robustness [16]. Proprietary MASs
have existed for years, but the lack of agent communication standards hindered
the convergence of individual research efforts and restricted further growth until
the emergence of the current set of standards, the FIPA1 specifications and the
JAS2 standards, which afford agents the ability to communicate with each other
without requiring them to gain inside knowledge of each other.

However, communication is not the only difficulty faced by agent researchers.
There exists a gap between the semantics of an agent and its practical imple-
mentation. For example, if an agent is specified to have a BDI3[19] architecture
1 FIPA, Foundation for Intelligent Physical Agents, has developed specifications sup-

porting interoperability among agents and agent-based applications[3].
2 The Java Agent Services (JAS) project defines a standard specification for an imple-

mentation of the FIPA Abstract Architecture within the Java Community Process
initiative[10].

3 BDI stands for Belief, Desire and Intention.



but is implemented with a conventional programming language, it is difficult
to verify whether the agent satisfies the specifications [1,18]. This problem has
been addressed by various research groups around the world, and the result is a
set of agent programming languages, e.g. 3APL, Agent-0, AgentSpeak. [7,15,17].
We are particularly interested in the 3APL language developed at Unversity of
Utrecht, which allows the programmer to design an agent in a declarative way,
by specifying the rules, goals, beliefs and capabilities of the agent. The declar-
ative nature of 3APL helps bridge the semantic gap, and allows flexibility in
agent development.

As the number of agent platforms grows, a gap remains inbetween these two
building blocks. That is, though an intelligent agent can be built in isolation, one
may find it difficult to migrate such an agent onto a platform which hosts other
types of agents that it needs to cooperate with. On the other hand, only few
agent platforms provide facilities to ease the development of complex agents,
or provide a unified approach for integrating such agents onto the platform
[16]. Many platforms that exist today only provide the basic services that are
required by the standard, such as agent management, directory service, and
naming service. [4] Agents on such platforms are developed primarily in some
arbitrary imperative programming language, such as Java, but the semantic gap
remains.

One of the few platforms that do attempt to treat this problem and provide
declarative support is the 3APL Platform developed at the University of Utrecht
[8], the same group that invented the 3APL language. But the 3APL Platform
has a few limitations. In particular, it has a closed architecture as opposed to
an open architecture: only 3APL agents can be hosted on the platform. Conse-
quently, the platform is subject to whatever drawbacks the language itself may
have.

This paper explores the bonding between high-level reasoning engines and
low-level agent platforms in the practical setting of using the 3APL language,
the OPAL platform[12], the ROK system and the ROK scripting language[11]
and the JPRS reasoning engines[11]. We focus our interest in this paper on
our approach to provide declarative agent programming support in the OPAL
platform, and show how declarative goals can be used to glue the internal micro
agents in OPAL to form the hierarchical architecture of the platform.

The theoretical extension discussed in this paper is accompanied by a prac-
tical implementation. The extended OPAL platform is now equipped with three
powerful high-level declarative agent language and reasoning engines, as well as
with a graphical IDE for constructing complex agents with a hierachical struc-
ture.



2 The 3APL Language

3APL4 is a programming language for implementing cognitive agents, and was
developed at the University of Utrecht, the Netherlands. The 3APL language
incorporates the classical elements of BDI logic and also embraces first-order
logic features. It provides programming constructs for implementing agent be-
liefs, declarative goals, basic capabilities, such as belief updates or motor actions,
and practical reasoning rules through which an agent’s goals can be updated or
revised [1]. In this section we give a very brief introduction to the main constructs
of the language; the formal syntax and the semantics of the 3APL language can
be found in Dastani et al. [1].

2.1 Beliefs

An agent’s beliefs are represented in 3APL as prolog-like well-formed-formulae
(wff). An example of using beliefs to represent information about the environ-
ment is an agent with the task of going to a lecture class at a certain time. The
agent will have beliefs such as class starts at(X) and NOT in class(self). If the
agent attends the class, the agent’s mental state and the state of the environment
change. The belief NOT in class(self) denotes that the agent believes he is not
attending a class, so this has to be updated to be in class(self). The beliefs NOT
in class(self) need to be removed from the belief-base(knowledge database) in
order to make sure the agent’s view of the world is consistent.

2.2 Actions

The most primitive action that an agent is capable of performing is called a basic
action, which is also referred to as a capability. In general, an agent uses basic
actions to manipulate its mental state and the environment. Before performing
a basic action, certain beliefs should hold and after the execution of the action
the beliefs of the agent will be updated. Basic actions are the only constructs in
3APL that can be used to update the beliefs of an agent.

An action can only be performed if certain beliefs hold. These are called the
pre-conditions of an action. Take for example an agent that wants to attend a
meeting, using the basic action AttendMeeting(Room1). Before this action can
be executed, there should be a meeting pending at room (Room1), and the agent
should also be at another location but not already engaged in a meeting. The
precondition of AttendingMeeting(Room1) is represented as:
{ meeting(Room1), position(Room2), NOT in a meeting(self) }

After performing the action, the post-condition will become true, and the
agent’s beliefs will be updated. For example, after the AttendingMeeting action
took place, the following beliefs will hold:
{ in a meeting(self), position(Room1) }
4 3APL stands for An Abstract Agent Programming Language, and is pronounced

“triple A P L”.



2.3 Goals

A 3APL agent has basic and composite goals. There are three different types
of basic goals: basic action, test goal, and the predicate goal. A test goal allows
the agent to evaluate its beliefs (a test goal checks whether a belief formula
is true of false). For example, a test goal for testing if the agent is carrying a
box looks like carrybox(self)? This type of goal is also used to bind values to
variables, like variable assignment in ordinary programming languages. When
a test goal is used with a variable as a parameter, the variable is instantiated
with a value from a belief formula in the belief-base. The third type of goal is a
predicate goal. It can be used as a label for a procedure call. The procedure itself
is defined by a practical reasoning rule (practical reasoning rules are introduced
in the next subsection). From these three types of basic goals, we can construct
composite goals by using the sequence operator, the conditional choice operator
and the ’while’ operator. A special type of goal that has been recently added is
JavaGoal. This type of goal enables the programmer to load an external Java
class and invoke method calls on it. Each method is assumed to return a list
(possibly empty) of well formed formulae.

2.4 Practical Reasoning Rules

Practical reasoning rules are at the heart of the way 3PAL agents operate. They
can be used to generate reactive behavior, to optimize the agent’s goals, or
to revise the agent’s goals to get rid of unreachable goals or blocked basic-
actions. They can also be used to define predicate goals (i.e. procedure calls). To
allow for the dynamic matching of rules, goal variables are used as place-holders.
Unification mechanisms are used when performing goal-matching.

3 Rule-driven Object-oriented Knowledgebase System

ROK, Rule-driven Object-oriented Knowledge base system, is a forward chain-
ing production rule system derived from JEOPS. JEOPS was developed by Car-
los Figueira Filho and Carlos Cordeiro [2]. ROK provides a library and API
written in Java, with a mechanism for embedding first-order, forward-chaining
production rules into Java applications. It was created to provide the declarative
expressiveness of production rules, which is useful for the development of large
or complex systems [11]. ROK production rules can be described as condition-
action patterns. Any Java object can be matched in a ROK rule, and any Java
expression can be used in the condition and action part of ROK rules. There
are two major modes of operation for a ROK system: native and interpreted.
In the native mode the programmer declares the rules using the provided Java
API. In the interpreted mode, users prepare the rules as a text script file to be
parsed and interpreted by the ROK interpreter. In the interpreted mode, the
programmer is freed from writing Java code and only has to write declarative
psuedo-Java scripts. But there is a performance trade-off: native mode is faster
in execution and is the optimal method of operation.



3.1 An Example ROK Program

Here we present a simple ROK program as an example. The rules in this program
say that ”If a salesman is selling a product the customer needs, for a price the
customer can afford, then the deal is made”. Supposing that Salesman, Customer
and Product are Java classes, previously defined by the programmer (or even by
third-parties), the rule should be stated as the following:

import example.Salesman;
import example.Customer;
import example.Product;
rule: trade {
declarations:
Salesman s;
Customer c;
Product p;

conditions:
c.needs(p);
s.owns(p);
s.priceAskedFor(p) <= c.getMoney();

actions:
s.sell(p);
c.buy(p);

}

In this example, if there is an object for each of the Salesman, Customer and
Product classes, and all the expressions in the condition part evaluate to be true,
then the action part of the rule will be executed. The formal syntax description
of ROK and more examples can be found in [11].

3.2 Internal Structure of ROK

The heart of the ROK system is the knowledge-base. It is composed primarily
of three main blocks: the object-base, the rule-base and the conflict set. The
object-base is the working memory, where the facts that the agent knows are
stored. The rules written by the programmer or compiled from rule scripts are
placed (installed) inside the rule-base. The rule-base is the place where all the
information about the rules is stored, such as their declarations, conditions,
actions, and several other items of control information. The RETE network [6]is
used to store the partial matches between rules and objects, and to increase the
performance of the matching process. Finally, the conflict set is the component
in which the rules that can be fired at a certain moment are stored, as well as
the objects that have been matched to the rule declarations.

The object-base is simply a collection of objects. It could be simply imple-
mented as a Java vector, but we decided to store the objects in a structure
from where we could retrieve the objects of a given class in a more efficient way.
Hence, the object base is implemented with a hashtable that maps fully-qualified



names of the classes to the set of objects belonging to that class. With that ar-
rangement, we can efficiently retrieve all objects that belong to a given class,
which is a necessary operation in the matching stage of the inference engine. The
object-base is also responsible for storing the inheritance relationships between
the class of the objects stored in it, so that when the inference engine asks for
all objects of some class, it will return both the direct instances of this class and
the instances of its subclasses (i.e., its indirect instances).

RETE is a classical algorithm used in production systems to minimize the
number of tests required in the matching process [6]. Partial matchings are stored
in a RETE, and they do not have to be re-tested. New objects that arrive in the
network are tested only where necessary.

The conflict set of the knowledge-base is the area where rules ready to be
fired are stored. The user has the ability of choosing the conflict resolution policy
to be used in the knowledge-base. In most of the cases, the user will not need to
use any complex policy, and the predefined classes will be sufficient. ROK has
some predefined classes that implement different policies for choosing which rule
is to be fired at any given moment. The predefined classes are the following:

1. DefaultConflictSet: The conflict set used when none is specified. Its conflict
resolution policy is not specified. In other words, any of the instantiations
can be returned, and it was implemented to be as efficient as possible.

2. LRUConflictSet: A conflict set that will choose the least recently used rule.
If there is more than one rule in the conflict set, it will choose one that was
fired before the remaining ones.

3. MRUConflictSet: A conflict set that will choose the most recently used rule.
If there is more than one rule in the conflict set, it will choose one that was
fired after the remaining ones.

4. NaturalConflictSet: A conflict set that will not allow a rule to be fired more
than once with the same objects. This conflict set requires a large amount
of memory to store the history of rule firing, so it must be used with care.
It also tends to get inefficient when the history grows.

5. OneShotConflictSet: A conflict set that will not allow a rule to be fired more
than once.

6. PriorityConflictSet: A conflict set that will give priorities to the rules. Rules
defined first in the rule base file will have higher priorities than rules defined
later.

3.3 The Reasoning

The current implementation of ROK enables the user to operate in two modes
on the knowledge-base: one-shot mode and continuous mode. When the user
calls the run() method on the knowledge-base, the inference engine is triggered
to operate. It will perform reasoning on the objects of its working memory un-
til the conflict set is empty. Then it will return the control (return from the
method call). Another possible method is to call runInLoop() method. This
method will block the current thread and perform reasoning of the knowledge-
base continuously, i.e. until the halt() method is called. In the continuous mode,



the reasoning will not stop when the conflict set is empty, but will be triggered
on every change of the knowledge-base state, i.e. on addition/removal of rules
or facts. To get information from the knowledge-base, the agent (user) can use
the objects() methods to retrieve all the objects of a given class that are stored
there. Another way of retrieving the information gathered during the execution
of the run() method is to store the information needed in the internal state of
some fact object.

4 The Java Procedural Reasoning System

JPRS, Java Procedural Reasoning System, is a Java library and API written for
performing goal-driven procedural reasoning. Its ancestors can be traced back to
the architecture of the PRS system proposed by Georgeff [5], as well as UMPRS
and JAM [9]. The notion of procedural reasoning is derived from the idea that
some of human knowledge can be best represented as a set of procedure/steps
performed in order to achieve a particular goal. A simple example of procedural
reasoning can be the planning of a trip from Dunedin to Beijing. The goal is
to start off from an apartment in Dunedin, and end up in Beijing International
Airport. One of the possible plans is: make a booking, then pay for a economic
class ticket from Dunedin to Beijing, take a shuttle to the Dunedin Airport,
transit at Sydney Airport, and finally get off the plane at Beijing Airport. An
alternative plan would be to take a taxi to Dunedin Airport, pay for a first class
direct flight, and then get off at Beijing Airport. We may decide to choose a plan
based on how much money or time we have, or the level of service we are seeking.
Those represent part of our knowledge about the external world, in other words,
our beliefs. Each JPRS agent is composed of four primary components: a world
model, a plan library, a plan executor, and a set of goals. The world model is a
database that represents the beliefs of the agent. In the previous example, the
agent may store information, such as a bank balance, travel departure date, etc.
The plan library is a collection of plans that the agent can use to achieve its
goals. The plan executor is the agent’s “brain” that reasons about what the agent
should do and when it should do it. An agent finishes its tasks when there are
no more goals to be achieved. JPRS uses a framework-like model for declaring
the plans and goals, which provides the specific conventions for declaring goals
and plans. The formal syntax and semantics of JPRS are available at [11].

5 Hierachical Agent Architecture Using Micro-Agents

Before we discuss how the reasoning engines are incorpoated into OPAL, it is
necessary to describe the system architecture. The notion of agency is used at all
abstraction levels in modelling OPAL agent systems. At the lowest abstraction
level micro agents, which are the closest agent entities to the machine platform,
are used. In order to be efficient at this fine-grained level, they do not have all of
the qualities often attributed to typical, more coarsely-grained agents. In contrast
to higher abstraction level agents, such as those based on FIPA specifications



[3], micro agents are more concerned with efficiency and thus do not have all of
the qualities and flexibility of FIPA-compliant agents. For instance, micro agents
employ a simpler form of agent communication (they communicate via method
calls) and are implemented by extending predefined Java classes and interfaces
[13].

There are two kinds of micro-agent: primitive and non-primitive. Primitive
agents use native services, in particular native micro-kernel libraries, and di-
rectly interact with the underlying virtual machine (in our case the Java Virtual
Machine). Non-primitive micro-agents, which are typically more sophisticated
and exist at a higher abstraction level, are composed only of micro-agents and
do not use any native services.

Because the smallest building block in OPAL is an agent, the system designer
can apply agent-oriented modelling approaches throughout the development pro-
cess. There are two basic constructs in the micro agent system, namely agents
and roles. Agents represent actors in a system that can play one or more roles.
A role represents a cohesive set of services that may be provided by some agent.
Agents that perform the same role are not restricted in the way that they provide
the services as prescribed by the role.

There is a special type of role called a group role. When an agent performs a
group role, it acts as the group owner and creates a group enviroment in which
other agents could register as group members. By registering with a group, an
agent is associated with the group owner and can collaborate with the owner
agent. For example, upon receiving a task to solve or a goal to achieve, the group
owner can choose to disseminate the goal to its group members and request the
members to achieve the goal. And alternatively, if a group member performs a
role that the owner, itself, doesn’t perform, the owner may still advertise itself
as an actor of the role. When the set of services of the role are subsequently
requested, it can request its group members to provide the services for him.
The group membership can be dynamically modified according to the needs of
individual agents. For example, if an agent is managing a group with too many
members, and the action for searching for the right member becomes a lengthy
operation, it may decide to get rid of some not frequently used group members.
Also, an agent may decide to deregister itself from a group because it is more
often needed in another agent group.

Although the group concept can be effectively used for organizing agents
into hierarchies, one is still faced with the problem of providing ways for the
agents to exchange information and cooperate at sementics level. One way for
micro agents to talk to each other and share their capability is to use role-
matching. When an agent needs other agents to perform certain services for it,
it will need to know what type of role provides such services and then will need to
recursively search through other agents and their groups for that role. If roles and
services could be specified declaratively, this approach would suffice for systems
in which agents would be requesting new services dynamically. But because
roles and services are such generic concepts, difficulties arise in defining formal
semantics specifying the services. And also, since OPAL is written in Java, a



complete high level language built on top of Java is needed to support specifying
services declaratively at runtime . In the current OPAL implementation, roles
and services are not declarative constructs. The role-matching approach would
only be suitable for systems in which all services are known before runtime. This
poses potential restrictions on the dynamism of the systems.

A second approach, which is the one we are currently taking, relies on using
declarative goals to aid in the cooperation among micro agents. The meaning of
a goal in OPAL is similar to the meaning of a goal in 3APL. It typically specifies
some post-conditions that represent the states after the goal has been achieved,
but doesn’t enforce how these post-conditions are to be realized. In other words,
a goal carries some declarative information of some state, but not the procedural
information on how to reach that state. Agents collaborate through goal exchang-
ing. For example, an agent may decide according to its own internal state, what
its next goal to be achieved is. And if the agent, itself, is not capable of achieving
the goal, or if it wants other agents to provide alternative solutions to achieve
the goal, it can send the goal to other agents. Goals in OPAL are self-descriptive,
other agents can evaluate the goals and try their own way of achieving the goal.
At the end it will inform the initiating agent whether it succeed in achieving
the goal or not. Similar to the role-matching approach, the goals can be recur-
sively passed down through the agent hierarchy, or even from the bottom-up.
The advantage of using goals instead of roles becomes evident when the system
designer can only describe the states of the system declaratively but doesn not
know exactly how the transitions between states take place. In contrast to a ser-
vice, a goal is a simpler concept and can be formally specified as pre-condition
and post-condition clauses, which makes the implementation easier. It allows
more dynamic interactions among agents. For example, if the semantics of the
pre and post-conditions of the declared goals is commonly understood among
agents, an agent can creating a new goal on the spot.

This hierachical structure of agents allows us to construct more complex
agents. And since the agents, even at the low-est level, are completely au-
tonomous, not only systems that operate in dynamic enviroments can be mod-
elled using this architecture, we can even model intrinsically dynamic systems
that are changing or evolving over time.

The hierarchical agent architecture is also highly modular and open. Since
micro agents communicate with each other through declarative goals, their inter-
nal structure or state is hidden from each other. This important feature allows
us to introduce new components into the platform easily. In the next section
we describe how we integrate the high level reasoning engines and programming
languages into OPAL.

6 Integrating 3APL, ROK and JPRS into OPAL

To integrate the three high level reasoning engines into OPAL, our idea is to
introduce them as special micro agent components. It means that apart from
having the original Java primitive micro agents, we also have three special kinds



of micro agents — 3APL micro agent, ROK micro agent, and JPRS micro agent.
The integrating process for the three components are the same in principle,
and only differ slightly in implementation. The 3APL micro agent class has a
3APL interpreter and a 3APL engine as its core. It inherits the role playing and
group behavior from the primitive micro agent class. The 3APL micro agent
loads its source from a prepared 3APL program script and compiles the source
using the interpreter. Recall that in Section 2.3, we mentioned a special kind of
goal in 3APL language called JavaGoal, which represents a simple Java method
invocation. In our implementation, we have modified the JavaGoal construct so
that when the 3APL program produces a JavaGoal, an OPAL goal is created to
wrap up the contents of the JavaGoal. The 3APL micro agent can then treat it
as a normal OPAL goal and decide whether it has the ability to solve this goal
using its local capability or not; and in the latter case, it can distribute this goal
to other micro agents for assistance. When external information arrives at the
3APL micro agent, whether it is a message or a goal, the 3APL micro agent will
insert the information into its belief-base, in the following format:

– if the arriving data is a message, the belief message(content) will be added
to the belief-base.

– if the arriving data is a goal(which represents a service request), the belief
goal(precondition, postcondition) will be added to the belief-base.

In both cases, the belief-base is treated as a knowledge-base for holding infor-
mation. It would be more straightforward to insert the incoming OPAL goal as
a 3APL goal instead of inserting it into the belief-base as a belief item. But the
problem is that there is a set of eight programming constructs for 3APL goals
(BactionGoal, PredGoal, TestGoal, SkipGoal, SequenceGoal, IfGoal, WhileGoal,
JavaGoal), and in order to do the goal transformation, one is faced with the prob-
lem of interpreting the content of the OPAL goal, and deciding which one of the
eight types of 3APL goal to transform to. By inserting the OPAL goal as a belief,
we leave the handling of the goal to the programmer. The programmer can write
rules coping with the belief change caused by receiving goals. This implemen-
tation restricts the dynamism and flexibility we gained from having declarative
OPAL goals, because the 3APL programmer needs to know what kind of OPAL
goal the program will receive in order to prepare sensible rules for it. But on the
other hand, even with 3APL goals, true dynamism is not possible. The 3APL
programmer can only specify the plan of achieving goals knowing what goals to
expect. In this sense, this implementation compromise is not too severe. Never-
theless, to provide better bridge of this existing semantic gap remains as a future
goal for OPAL development.

We take almost identical approaches for integrating ROK and JPRS micro
agents. Upon receiving messages or goals, the information is wrapped up as an
item of belief and inserted into the knowledge-base of ROK and JPRS agents,
respectingly.



7 Performance Comparison of the Three Reasoning
Engines

The absolute speeds of these reasoning engines are difficult to measure, because
implementation bias in the test programs is inevitable. And also in a multi-
agent environment, agents that are powered with these reasoning engines spend
their processing time not just on local computation, but also on communication.
Although precise quantitative figures are difficult to obtain, we believe some
computationally intensive test could still give us suggestive evidences on the
relative speed of the reasoning engines. We choose to implement mergesort tests
using all three engines, because mergesort is a standardized algorithm, which
helps to minimize the amount of implementation error or bias introduced.

The tests were run on an Acer machine with a Celeron 2.4 GHz processor and
240MB RAM. We wrote a 3APL program, a ROK program running in native
mode, a ROK program running in scripting mode, and a JPRS program, all
running mergesort on integer arrays containing random integers.

The average times each program took to sort the arrays are given in Table
1 and are plotted in Figure 1 and Figure 2. When the length of the array to be

Table 1. Mergesort Time (in ms.)

No. of int to sort 3APL ROK Native ROK Scripting JPRS

50 12078 361 110 40
100 28632 661 141 80
200 83040 801 200 350
300 178797 841 360 841
400 318919 1072 341 1773
500 519127 1312 390 3265
600 761235 1472 441 6319
1000 ... 3565 1402 3004
2000 ... 6920 2924 20250
3000 ... 10836 4737 68318
4000 ... 16854 9374 168853
5000 ... 21892 10495 314111

sorted became larger than 1000, the 3APL program took too long (longer than
15 minutes) to compute and thus the results are omitted.

We plotted the results of the 3APL program separately from the other results,
because the scale of the 3APL program’s execution time is too large for visual
comparison with the other reasoning engines. From Figure 2 we can see that
ROK in native mode is the fastest. It is about twice as fast as ROK in scripting
mode, and many times faster than JPRS, especially when the the array size
becomes greater than 1000. We also observed that both ROK and JPRS are
much faster than 3APL. This result is not surprising, because JPRS and ROK



are built closely to primitive Java, and the goal-plan matching algorithm is
not computationally expensive. On the other hand, 3APL has a more complex
internal structure. It uses a JIProlog engine internally to process prolog-like wffs,
and its first order logic features (variables) makes the reification process much
more complicated than ROK or JPRS. The slower speed of 3APL is a tradeoff
against its declarative expressiveness, and its first order logic features.

Fig. 1. 3APL Mergesort Program Runtime Plot

Fig. 2. ROK and JPRS Mergesort Program Runtime Plot

8 The Master MindTMGames

We developed a system for benchmarking, the Master MindTMGame[14], to ver-
ify the integration of the high level reasoning engines, and also to demonstrate



the two different approaches of agent development in OPAL – declarative and
procedural. In the game, the master mind holds a key of 4 pegs, each has one
of six colors. The code breaker tries to deduce the answer by making guesses at
it. master mind will mark each guess with a black or a white marker. A black
marker means one of your pegs is the correct colour and in the correct position.
A white marker tells you that one of the pegs in the guess is of a colour which
is in the solution, but not in the correct position. A full description of the Mas-
ter Mind game can be found in Nelson [14]. In our implementation, three high
level OPAL agents were developed. Each high level agent is composed of two
lower-level micro agents. One of them is in charge of FIPA-compliant messag-
ing services, and the other micro agent is the reasoning agent that implements
the game logic. The three reasoning micro agents were a 3APL micro agent,
a ROK micro agent, and a JPRS micro agent. The high level agents represent
code breakers and have a common goal of winning the game using as few guesses
as possible. They share information and cooperate through exchanging FIPA
messages. The real-world Master Mind game is not a multi-player game and
therefore adopting it and setting it into a multi-agent scenario is not naturally
suited for multi-agent system applications. But our purpose is to demonstrate
the usability of the extended OPAL platform by showing an example of how
one could use all the high-level components in OPAL. The reasoning power of
the high-level engines, albeit under-utilized, are still well-demonstrated in this
example system. Future work is expected to involve the development of more
sophisticated and complex multi-agent systems in OPAL, using the reasoning
engines and the declarative programming feature.

9 OPAL IDE

Recently, a graphical IDE has been added to OPAL. The IDE faciliates the
design, development and testing phases of agent software development, without
having to reboot the platform. Based on the concepts of micro agents and agent-
oriented software development, the IDE provides support for:

– creation of new micro-agents by simply dragging icons and plugging them
into the existing hierarchy (currently we support the graphical instantia-
tion of 3APL agents, ROK agents, primitive Java agents, OPAL agents and
primitive Java roles);

– grouping and regrouping of agents (we currently support moving, regrouping,
copying and deleting micro-agents in a drag-n-drop fashion).

The intuitive graphical operations on agents in the IDE are enabled by the
underlying more complex interactions with the platform. For example, when a
new micro-agent is created, we first determine the agent type and its creator
in the agent hierarchy, then we make an instance of the agent, and handle all
the necessary registration and association with other agents. Also we show such
associations to the developer in the GUI. A full scripting interface is implemented
for 3APL micro-agents. The user can load a source file, modify and compile the



source file, or create the source file on-the-fly in the text area provided. The IDE
is still in the prototyping phase and not yet released. To allow the IDE to support
dynamic scripting of general Java agents, we are currently evaluating different
approaches of either using our own scripting engine, or relying on customized
Java classloaders. This is the next phase of OPAL development. The screenshots
of the IDE are shown in Figure 3.

Fig. 3. OPAL Agent Composition Panel Screenshot

10 Conclusion

As discussed at the beginning of this paper, declarative agent programming
languages and techniques bridge the semantic gap that exists between agent
specification and practical implementation. We have presented our approach
of incorporating declarative agent programming support into the OPAL multi-
agent platform. In particular, we have described in detail how the agent-oriented
hierarchical architecture of OPAL can faciliate the easy integration of high-level
agent programming languages such as 3APL and ROK. The extended OPAL
platform allows developers to use the powerful features of declarative languages
in developing complex agent systems, while maintainingt-oriented architecture.
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