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Accurate cell-type annotation from spatially resolved single cells is crucial to
understand functional spatial biology that is the basis of tissue organization.

However, current computational methods for annotating spatially resolved
single-cell data are typically based on techniques established for dissociated
single-cell technologies and thus do not take spatial organization into
account. Here we present STELLAR, ageometric deep learning method for
cell-type discovery and identification in spatially resolved single-cell datasets.
STELLAR automatically assigns cells to cell types present in the annotated
reference dataset and discovers novel cell types and cell states. STELLAR
transfers annotations across different dissection regions, different tissues and
different donors, and learns cell representations that capture higher-order
tissue structures. We successfully applied STELLAR to CODEX multiplexed
fluorescent microscopy data and multiplexed RNA imaging datasets. Within
the Human BioMolecular Atlas Program, STELLAR has annotated 2.6 million
spatially resolved single cells with dramatic time savings.

Development of spatial protein and RNA imaging technologies has
opened new opportunities for understanding location-dependent
properties of cellsand molecules'*. The power to capture spatial organ-
ization of cells within tissue plays an essential role in understanding
cellular function and in studying complex intercellular mechanisms.
Toincrease our knowledge of cellsin healthy and diseased tissues, large
tissue-mapping consortia efforts such as the Human BioMolecular
Atlas Program (HuBMAP)°>, Human Tumor Atlas Network (HTAN)® and
Human Cell Atlas (HCA)” have been generating comprehensive cell atlas
datasets. These consortia efforts necessitate computational methods
that can assist with robust characterizations of cells and guide our
understanding of functional spatial biology. While computational tools
for dissociated single-cell technologies have been used to characterize
cellsinspatial datasets**™', these tools ignore the spatial information
crucial for more accurate annotation of spatial datasets.

Recently, methods that take into account spatial organization
of cells have been developed for annotating spatial transcriptomics

data ™, However, these methods can not automatically assign cell-type
labels to cells and thus require human reannotation once clusters
are identified. While CELESTA tool has successfully avoided post hoc
cluster reannotation for multiplexed in situimages', it is reliant on the
previous human supervision provided in the form of the set of marker
genes of expected cell types, which is often challenging to define for
anew dataset. As new spatial datasets are being generated” %, there s
anecessity for computational methods that simultaneously leverage
molecular features and additional spatial context of cells while at the
same time minimize manual human annotation effort.

Here, we present STELLAR (SpaTial cEIL LeARning), a geometric
deep learning tool for cell-type discovery and identification in spa-
tially resolved single-cell datasets. Given annotated spatially resolved
single-cell dataset with cellslabeled according to their cell types (refer-
ence dataset), STELLAR learns spatial and molecular signatures that
define cell types. Using the reference dataset, STELLAR then trans-
fers the annotations to a completely unannotated spatially resolved
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single-cell dataset with unknown cell types. The reference and unan-
notated datasets can belong to different dissection regions, different
donors or different tissue types.

STELLAR has two unique properties. First, using graph convolu-
tional neural networks*>?’, STELLAR learns latent low-dimensional
cellrepresentations that jointly capture spatial and molecular simi-
larities of cells. In this way, cells that are spatially close together and
that have similar levels of gene or protein expression are embedded
close to each other. Indeed, we show that cell embeddings learned
by STELLAR reveal higher-order tissue structures. Second, in a new
completely unannotated dataset, STELLAR automatically assigns
cells to cell types included in the reference set and also identifies
cells with unique properties as belonging to a novel type that is not
partofthereference set. Thus, STELLAR has an ability to assign cells
toone of the cell types seenin the reference set, or discover a novel
cell type for previously uncharacterized cell types. From a practi-
cal standpoint this ability is essential for leveraging reference sets
generated in a disease-free state or in different tissues that may not
have all the cell types represented in the target tissue but that may
include most established cell types.

As aresult of these unique properties, STELLAR solves major
limitations with current annotation tools. STELLAR can be applied
to both multiplexed protein and multiplexed RNA imaging datasets.
In particular, we show the effectiveness of STELLAR on annotating
CODEX multiplexed fluorescent microscopy datasets and multiplexed
error-robust fluorescence in situ hybridization (MERFISH) spatial
transcriptomics datasets. Encouraged by the results, we used STELLAR
to annotate HuBMAP consortium data: so far STELLAR has annotated
2.6 million cells labeled with 54 protein markers from eight different
regions of the human intestine data and across eight different donors".
On these datasets, STELLAR has saved hundreds of hours of manual
work needed to assign cells to cell types.

Results

Overview of STELLAR

STELLARtakes as input (1) the reference dataset of annotated spatially
resolved single-cell dataset with cells assigned to cell types, and (2) a
completely unannotated spatially resolved single-cell dataset with cell
types that are unknown (Fig. 1). STELLAR then assigns unannotated
cells to cell types in the reference dataset, while for cells that do not
fitinto thereference cell types, itidentifies individual novel cell types
and assigns cells to them.

STELLAR learns low-dimensional cell representations (embed-
dings) that reflect molecular features of cells as well as their spatial
organization and neighborhood. The cell embeddings are learned
using graph convolutional neural networks (GCNs)**?*: neural net-
works that enable learning over arbitrary graph structures by encod-
ing the structure of the local graph neighborhood into a dense vector
embedding. In STELLAR, we construct a graph based on the spatial
proximity of cells and use molecular features of cells as node features
(Methods).

Given cell embeddings, STELLAR has two capabilities: (1) it
assigns cells in the unannotated dataset to one of the cell types
previously seen in the reference dataset, and (2), for cells that do
not fit the existing known/labeled cell types STELLAR identifies
novel cell types and assigns cells to them. STELLAR achieves this
using an objective function that consists of two main components
(Extended Data Fig. 1). In the first component, STELLAR gradually
learns to separate cell types from the reference set by controlling
intraclass variance of previously seen cell types using the adaptive
margin mechanism?. In the second component, STELLAR discovers
novel classes by generating auxiliary labels for the unannotated
data that are used to guide the training. The auxiliary labels are
generated based on the nearest neighbors of cellsin the embedding
space (Methods).

STELLAR identifies existing and discovers novel cell types
Todemonstrate STELLAR’s ability to assign cells to one of the cell types
seeninthereference set and discover anovel cell type, we applied STEL-
LAR to CODEX multiplexed imaging data'®. We used data from human
tonsil as thereference set (Fig.2a and Extended Data Fig. 2) and tissue
froma patient with Barrett’s esophagus (BE) as the unannotated target
tissue (Fig. 2b). Both imaging datasets underwent image processing
and single-cell segmentation. Cell-type labels were manually curated
and assigned by iterative unsupervised clustering of the single-cell
data, analyzing expressions of protein markers and validating cluster
accuracy with visualization in the tissue. Tonsils are often used for
testing antibody panels as they contain high numbers ofimmune cell
markers. The BE tissue also contains immune cells, but additionally
contains differentiated epithelial cells that tonsils do not. Indeed,
three subtypes of epithelial cells appear only in the BE dataset, while
B cells appear only in tonsil data. Moreover, the two datasets have dif-
ferent distributions of cell types. For example, smooth muscle cells are
major cluster in BE, but form the smallest group in the tonsil dataset
(Extended DataFig. 3).

Despite these differences, we found that STELLAR accurately
assigned cell types to 93% of cells in the BE data, discovering also
BE-specific subtypes of epithelial cells as a newly discovered cell type
and correctly differentiating between glandular epithelial and secre-
tory epithelial novel cell types (Fig. 2c). The novel cluster of paneth cells
was correctly recognized as a novel class by STELLAR but assigned to
glandular epithelial cells. The reason is that paneth cells are very rare
in the BE dataset and form the smallest class of only 0.6% of the total
cell number in the BE dataset. Mapping cell-type annotations back to
spatial coordinates, STELLAR predictions also show agreement with
ground-truth annotations and do not reflect issues recognizing cell
types in certain areas of the tissue (Fig. 2d). The disagreement with
ground-truth annotations mostly comes from mixing main cell types,
inparticular endothelial with stroma cells and endothelial with smooth
muscle cells (Supplementary Fig.1). These are all stromal cells and they
likely share Vimentin, while lacking CD45 or Cytokeratin. They are
also very often spatially located next to each other: endothelial cells
will often be next to smooth muscle cells and vice versa. Furthermore,
endothelial cells are elongated and the problem may be caused by
currentsegmentation software tools that cosegment them with other
cell-type markers causing STELLAR to assign them to other cell types.

Oneofthereasons we applied STELLAR to these two datasets was
also to test the flexibility of the algorithm when cells may be found
indifferent cellular environments. This isimportant for cross-tissue
applications, but also in cases of applying STELLAR across disease
states such as cancer where cells, normally restricted to one area,
invade other areas of the tissue. Since we observed a high accuracy
in cell-type label transfer, we asked whether labels that STELLAR
generates resultin unique cellular microenvironments or neighbor-
hoods. Thiswould mean that STELLAR is able to generalize even when
the same cell types are present in a different microenvironment. To
explore this, we used a method for cellular neighborhood analysis?
withthe ground-truth labels of the tonsil dataset and the STELLAR’s
predictions for the BE dataset. This method determines the composi-
tion of the nearest neighbors for each cell. Then these composition
vectors for each cell are clustered into similarly composed cellular
neighborhoods (Methods). This analysis revealed both shared and
unique multicellular neighborhoods (Fig. 2e and Extended Data
Fig. 4). For example, glandular epithelium and smooth muscle are
exclusively found within BE tissue, while B cell zone, T cell zone and
squamous epithelium/B cell neighborhoods are only found in the
tonsil dataset. Furthermore, many neighborhoods shared between
the datasets have little overlap in total percentage of cells indicat-
ing the structural distinctness of the two tissues. Thus, STELLAR
can generalize to different spatial organizations while accurately
transferring cell-type labels.
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Fig.1|STELLARis ageometric deep learning framework for annotating
spatially resolved single-cell datasets. Given a reference spatially resolved
single-cell dataset in which cells are annotated according to their cell types,
STELLAR assigns cells inan unannotated spatial single-cell dataset to cell types
includedin the reference dataset or discovers novel cell types as agroup of
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cells with unique properties not present in the reference dataset. STELLAR

uses agraph convolutional encoder to learn low-dimensional cell embeddings
that capture cell neighborhood as well as its molecular profile. Reference and
unannotated datasets can originate from different sources as STELLAR transfers
information across different tissues and different donors.

STELLAR outperforms other methods

Onthe BE dataset, we compared STELLAR to four other baselinesinclud-
ing XGBoost?, Support Vector Machine (SVM)%, Random Forest?,
AdaBoost”, as well as single-cell annotation baselines Seurat V4 (ref. *°)
and scNym”®'. We trained all baselines on the tonsil dataset, and evalu-
ated them on the BE dataset. STELLAR substantially outperformed
the best alternative method, achieving 61% higher accuracy (Fig. 2f
and SupplementaryFig.2). Single-cell baselines Seurat V4 and scNym
achieved lower performance than other baselines so we additionally
compared to another single-cell baseline scANVI*2. However, the per-
formance of scANVIwas even lower, so we created a leaky setting for
scANVIinwhich we used afraction of BE annotations for model training.
Insuchascenario, the performance of scANVIsubstantiallyimproved
to 0.76 indicating that the performance drops are caused by differ-
ences between tonsil and BE datasets (Supplementary Methods and
Extended Data Fig. 5a). Even when using BE annotations to annotate BE
dataset, scANVI still did not outperform STELLAR. STELLAR was also
thebest performing method when evaluating performance using other
evaluation metrics, such as F1-score, precision and recall (Extended
Data Fig. 5b-d). To directly measure performance on cell types that
areonly presentinthe reference dataset, thatis, shared between tonsil
and BE datasets, we removed novel cell types. In this scenario, we still
find that STELLAR outperformed other alternative methods by 6%
(Supplementary Fig. 3).

We further systematically tested robustness of STELLAR to: (1) dif-
ferent data normalization strategies, (2) artificially introduced noisy
annotations and (3) different number of withheld marker proteins.
First, we find that STELLAR achieves best performance onzscore nor-
malized CODEX data, which agrees with previous studies comparing
different combinations of normalization techniques and unsupervised
clustering® (Extended Data Fig. 6a). STELLAR outperforms alterna-
tive methods even with different normalization strategies including
when evaluated on unnormalized data, achieving 87% accuracy on
unnormalized data. We additionally evaluated the effect of the noisy
annotations on the performance. Specifically, we misannotated pro-
portion of cells by randomly assigning wrong annotations to cells in
the reference tonsil dataset. With 5% of wrong annotations, STELLAR
achieves only 0.7% lower performance compared to performance in

whichallannotations are correct (Extended Data Fig. 6b). This means
that STELLAR is robust even when a proportion of cells are misanno-
tated. Finally, STELLARis ran onthe shared subsets of the genes and/or
proteins between annotated reference dataset and unannotated target
dataset. STELLAR is able to accurately transfer cell-type labels even
when leaving out measured marker proteins (Extended Data Fig. 6c).
While not as critical for transcriptomic datasets, this may be important
for transferring cell-type labels in multiplexed imaging where there are
limited numbers of antibody markers that can be chosen and antibody
panels may not completely overlap.

Importance of capturing spatial organization of cells
Using graph convolutional neural networks, STELLAR leverages both
spatial organization of cells as well as their molecular expressions.
To directly measure the benefits of including spatial information, we
designed a baseline in which we used STELLAR’s objective function,
but we replaced graph convolutional encoder with a fully connected
neural (FCN) network layer disabling the usage of spatial information.
When comparing FCN baseline to STELLAR, we find that capturing spatial
organizations ofthe cells brings 11% improvement in cell-type annotation
task compared torelying solely on the molecular information (Fig. 2g).
We next sought to analyze the optimal graph structure for the task.
InSTELLAR, we construct the graph by considering as neighbors all the
cellswhose distanceis less than the preset threshold, which we initially
set to 50 pm. We systematically changed the value of the threshold
and analyzed the effect on the STELLAR performance on the CODEX
tonsil/BE dataset. We found that the optimal distance is 30-70 pm,
corresponding to approximately 5-30 average number of neighbors
per cell. This optimum may indicate the single-cell local environment
size thatis most conserved, rather thanbroader structures within the
tissue. Furthermore, even with a very low threshold of 10 pum where
each node has only 0.02 neighbors per cell resulting in a graph with
98% of isolated nodes, or with a very high threshold of 90 um where
each cell hasonaverage 50 neighbors, STELLAR performance does not
degrade compared to using only molecular information. Overall, this
analysisindicates that STELLARis robust toinput graph structure and
that substantial performance gains can be expected by ameaningfully
constructed spatial graph.
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Fig.2|STELLAR accurately identifies cell types from the reference set

and discovers novel cell types that have never been characterized in the
reference set. a, Uniform manifold approximation and projection (UMAP)
visualization of the healthy tonsil data used as the reference dataset. Colors
denote ground-truth cell types annotations used to train STELLAR. PDPN stands
for Podoplanin (PDPN) positive stromal cells. b,c, UMAP visualization of the BE
dataused as the test dataset. Three subtypes of epithelial cells are not found
inthe tonsil reference data. Colors denote ground-truth cell-type annotations
(b) and STELLAR predictions (c). d, CODEX image of BE in spatial coordinates
colored according to ground-truth annotations (left) and STELLAR predictions
(right). e, Different neighborhood composition between reference dataset from
tonsil tissue and target unnannotated dataset from BE. Neighborhoods are

Neighborhood threshold (um)

determined by cell composition enrichment in nearest neighbor vectors for each
cell (Methods). f, Accuracy of cell-type assignments in the BE dataset by STELLAR
compared to alternative approaches. Position of scatter plot points is computed
asamean accuracy score across five runs of each method. Error bars are from the
standard deviation (s.d.). g, Accuracy of cell-type assignments in BE dataset by
STELLAR and when modifying STELLAR to rely only on the molecular information
in cell-type assignment. Height of each bar is computed as amean accuracy
score across five runs of each method. Error bars are from s.d. h, The effect of
neighborhood threshold on the STELLAR’s performance. All cells with distance
less than the threshold are considered as neighbors. Position of scatter plot
pointsis computed as amean accuracy score across five runs of each method.
Error bars are froms.d.

STELLAR s applicable to spatial transcriptomics data

While existing methods are focused on either spatial proteomics or
transcriptomics data, inadditionto CODEX datasets we evaluated STEL-
LAR on a single-cell transcriptome-imaging dataset generated using
MERFISH. In particular, we applied STELLAR to a large-scale spatially
resolved cell atlas of the mouse primary motor cortex® consisting of 23
granular cell types from two mice. We used a dataset from one mouse
asthereference annotated dataset and evaluated performance onthe
dataset from another mouse. We then systematically removed anum-
ber of cell types from the reference set and evaluated how STELLAR’s
performance was affected when gradually increasing the number of
novel cell types. We measured accuracy separately on classes seenin

the reference set and classes withheld from the reference set (novel
classes). We find that STELLAR correctly assigned cell types to one of
theclassesinthereference setachieving 93% accuracy independently
of the number of withheld cell types (Extended Data Fig. 7).

STELLAR successfully annotates HuBMAP data

Acritical current bottleneck in analysis of the spatially resolved sin-
gle cells for consortia efforts is an accurate assignment of granular
cell-type labels across donors of the same tissue. For example, a
typical CODEX dataset with a 48-marker panel used to analyze four
tissues of the intestine requires at least 25 hours of work to cluster,
merge, recluster, subcluster and assign cell types based on average
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Fig.3 | STELLAR transfers granular cell-type labels across tissue regions and
donors from HUuBMAP data and identifies main structures of healthy human
intestine tissue. a, Cell-type maps with ground-truth and STELLAR predictions
made after training on CODEX multiplexed imaging of three different intestine
regions across the colon. This was tested five times across each of the three tissue
sections with all four tissue regions being used as training datasets. Scale bar,
100 pm. b-d, We used data from one donor as the reference set, and applied
STELLAR to annotate new, completely unannotated donor datasets. Thisisa
representative image from a total of 16 tissues that we transferred cell-type
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labels to. b, Fluorescentimages of 7 of 54 markers used in the CODEX multiplexed
imaging of healthy intestine from a different donor. Hoechst, blue; Vimentin,
green; CD3, white; aSMA, red; CD45, cyan; Cytokeratin, magenta and CD31,
yellow. Scale bar of the zoomed-outimage is100 um. ¢, STELLAR predictions of
cell types after training on data from a different donor mapped to CODEX spatial
coordinates. Scale bar, 100 pm. d, Average marker expression for cell types
predicted by STELLAR for intestinal samples. DC, dendritic cell; ICC, interstitial
cells of Cajal; TA, transit amplifying cell.

marker expressions and locations within CODEX images. As a part of
the HuBMAP consortium, we have generated CODEX imaging data
for tissues from eight donors for a total of 64 tissues from a healthy
intestine. Combined with single-cell transcriptomic and epigenomic
data, this molecularly detailed cell atlas contributes spatial organi-
zation of cell types as a reference map for understanding human
intestinal biology".

We first evaluated the performance of STELLAR on this more
granular data and used expert-annotated cell-type labels of images
of different regions of a healthy colon generated from a single donor.
We evaluated STELLAR in the leave-one-region-out setting where we
trained on three regions and predicted annotations on the fourth
region. STELLAR had highaccuracy in cell-type label transfers (Fig. 3a)
and had substantially higher performance (Fscore of 0.8) than tested
unsupervised clustering methods without manualintervention (Fscore
of 0.3 across different methods)*. This analysis showed STELLAR’s
ability to recognize fine-grained level cell types and encouraged us to
use STELLAR to annotate 2.6 millions of cells generated across eight
different donors.

STELLAR transfers information across donors

Encouraged by cross-region transfer results, we next used our
expert-annotated samples from a single donor as training data and
applied STELLAR to unannotated samples from two other donors.
These datasets vary from each other based on tissue harvesting time,
staining and imaging handler, and segmentation algorithms applied,
which may alter marker distribution. Despite the differences, we find
that the fluorescent CODEX data of new donors (Fig. 3b and Supple-
mentary Fig. 4) agree well with the cell-type map predicted by STELLAR
and also agree with the known distribution of main cell types in the
intestine (Fig. 3c and Extended Data Fig. 8). We additionally confirmed
the quality of STELLAR’s predictions by looking at average marker
expression profiles of predicted cell types for the samples from a
different donor (Fig. 3d). Protein marker distributions match expert
hand-annotated profiles in fine-grained cell types predicted by STEL-
LAR. For example, CD4 is expressed only in cell types annotated as
CD4'T cells, whereas CD8is expressed exclusivelyin CD8" T cells. This
additionally confirms that STELLAR predictions are reliable. We further
applied STELLAR tosix other donors, for atotal of eight donors, across
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Fig.4|STELLAR’s embeddings reveal higher-order tissue structures. a, To
analyze embedding space learned by STELLAR, we clustered the cellembeddings
using Louvain clustering. We then analyzed microenvironments of resultant
clusters by checking which cell types are enriched in each cluster. The resultant
clusters were manually annotated based on the cell-type enrichments showed
inb.b, Resultant clusters in STELLAR's embedding space reveal that the

embeddings capture main structures within the intestinal tissue. Heatmap shows
enrichment of cell types assigned by STELLAR within the structural clusters

as compared to tissue average percentages. ¢, Graphical display of the tissue
structures learned by STELLAR found for one of the regions of the colon. Main
structures such asimmune follicles were identified by STELLAR. IEL stands for
intraepithelial lymphocytes.

64 tissues and 2.6 million cells. STELLAR alleviated expert annotation
effort tremendously: human annotations of these images would require
approximately 320 hours of manual labor, while with STELLAR it took
the expert only 4 hours to annotate the images.

We further validated STELLAR on datasets generated from dif-
ferent donors, which were prepared and stained at different times
by different tissue handlers and were formulated into TMA (tissue
microarray) or large tissue blocks, had different fixations conditions,
used differentimage processing and cell segmentation algorithms, and
used different antibody panels and clones for antibodies. This repre-
sents a particularly difficult case for cell-type label transfer. We used
fresh frozen CODEX intestine HUBMAP dataset as a reference dataset
and applied STELLAR to a CODEX formalin-fixed, paraffin-embedded
colorectal cancer dataset®. We used the subset of antigens targeted
that overlapped even if the clone was different. While only a subset
of the marker set overlapped, we found that STELLAR outperformed
other methods by at least 22% (Supplementary Fig. 5).

STELLAR embeddings capture higher-order tissue structures

The classification of cell-cell interactions enabled by multiplexed imag-
ing of many cell types simultaneously unlocks the ability to identify and
discover multicellular structures. Characterization of multicellular
modules suchastertiary lymphoid structuresis critical tounderstand-
ing tissue function, its relationship with disease and how to design
effective therapeutics*. We hypothesized that the latent cell embed-
ding space learned by STELLAR could reveal biologically meaningful
information about the tissue organization. To explore this, we obtained
cell embeddings from STELLAR and then clustered these cells in the

STELLAR’s embedding space using the Louvain clustering™ (Fig. 4a).
We then evaluated the microenvironments represented by the result-
ing clusters by calculating the enrichment of cell types that neighbor
these cells within these clusters as compared to tissue averages. This
was also verified from looking at where the cell types with assigned
cluster labels fell within the tissue using fluorescence staining and
cell-type neighbors to confirm larger pathological structures. We found
that the clusters represent main multicellular structural features of the
intestine such as theimmune follicle structure, which was enriched for
CD4"T cells, B cells and dendritic cells, as well as secretory epithelial,
which was enriched for goblet cells, neuroendocrine cells and transit
amplifying cells (Fig. 4b,c). We also confirmed this works across tissue
sections taken at different sites of the colon with similar architectures
(Extended Data Fig. 9). Similarly, we find that high-level structural
information was detected also for the MERFISH data (Extended Data
Fig.10). These analyses revealed that the embedding space of STELLAR
provides amethod for identifying multicellular structures in tissues.

Discussion

STELLAR s an effective framework for annotating spatially resolved
proteinand RNA single-cell data and extracting spatial cell-interaction
information. Two properties make STELLAR a unique tool in the
single-celltoolbox: (1) the ability to learn low-dimensional cell embed-
dings that leverage spatial and molecularinformation across different
biological contexts, and (2) automatic identification of cell types from
the reference set and discovery of novel cell types not present in the
reference dataset. STELLAR learns a new cell embedding space that
leverages spatial and molecular features using graph convolutional
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neural networks. The cellembeddings learned by STELLAR canbe used
forany downstream analysis and provide a novel capability to identify
main multicellular structures in the tissue. Our results support that
incorporating spatial information directly leads toimproved cell-type
annotation performance.

STELLARisintended to be used for transferring annotations across
datasets, including datasets from different biological contexts, for
example, across dissection regions, donors or related tissues. While
doing so, STELLAR discovers expression patterns that define a novel
cell type or cellular state. Our tool has a great value in transferring
annotations across levels of granularity to anew biological context and
discovering novel biological states that have not been characterized
in previous experiments. The annotation transfer methodology in
STELLAR distinguishes it from previous spatial annotation tools that
rely on predefined marker genes that define cell types'.

At present, segmentation tools used largely rely on nuclear seg-
mentation, and those thatincorporate membrane-based segmentation
are far from perfect®**. Once segmentation masks and measurements
become morereliable in regards to shapes of cells, then morphologi-
calfeatures of cells could beincludedin STELLAR as feature vectorsin
additionto the marker expression. By including morphological features
of cells, further improvements in performance could be expected as
well as identification of unique cell states.

Development of STELLAR was motivated by a growing need to
leverage spatial and molecular information across different biological
contexts”. Multiplexed imaging technologies will drive future efforts
to understand both healthy and diseased tissue processes, enabled
by large consortia efforts that generate comprehensive datasets and
standardize computational methods’”. Novel insights will come from
therich, butstillunexplored and underused information about spatial
cell organization. We anticipate that STELLAR will alleviate future
annotation efforts of large-scale spatial cell atlases, identify main
multicellular structures in tissues and reveal how cells cooperatively
coordinate to enable tissues to function.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
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Methods
Overview of STELLAR
STELLARIlearnsspatial and molecular cell similarities that are transfer-
ableacross different biological contexts, such as different dissections
regions, donors or tissues. Across different contexts, STELLAR learns
to automatically assign cells to cell types seen in the annotated refer-
ence set, or forms novel cell types if cells have unique properties that
are not present in the reference dataset.

Specifically, STELLAR starts withan annotated reference cellgraph
Ga = %, &} with molecular features for all nodes x,, € R?, vy, € 13, and
an unannotated cell graph g, = {%,&,} with molecular features
x,, € RP,vy; € V. Here, v denotes the set of vertices and € denotes the
setof edgesinthegraph g. The nodesineachgraph correspondto cells
and cells are connected if they are spatially close. Node features cor-
respond to gene or protein expressions of cells where D denotes the
total number of measured genes or proteins. For the reference graph
we assume we are given avector of cellannotations y = {y; € {1, ..., Ka}}l.Z;
that assigns each cellto one of the K, cell types (or other annotations).
STELLARisranonthe shared subsets of the genes or proteins between
annotated reference dataset and unannotated target dataset.

Givenreferencegraph g,and unannotated graph g,, STELLAR first
applies the encoder function f; : R? — R9 that maps cells from both
graphsintoajointembedding space that captures spatialand molecu-
lar similarities between the cells. The cellembedding encoder function
fois parameterized by learnable parameters 6 of agraph convolutional
neural network (GCN)*. The encoder function f, generates
d-dimensional cell embeddings z; € R, vu; € 13 U 1;,. On top of the
encoder function, weadd asingle linear layer parameterized by aweight
matrix W : RP - RK+K, where K, corresponds to expected number of
novel cell types that need to be discovered. Next, a softmax layer is
added that assigns each cell to one of the K, + K, cell types.

Graph construction

Given spatial cell coordinates of each cell, STELLAR first calculates
Euclidean distancesd,;for each pair of cells (v, v;) from the sameregion,
and edge (v, v) isadded to the edge set ¢if d;; < T, where Tisa tunable
threshold. We select the value of 7= 50 pm and experiment with differ-
entthreshold valuesin Fig. 2h. Graph construction stepisindependent
of the subsequent method and can be changed as long as the con-
structed graph meaningfully reflects spatial similarities between cells.

STELLAR encoder
The STELLAR encoder contains one fully connected layer followed by
the nonlinear activation function:

@ _ (0)
hi" = p(WOR +b©), M

where h{“is the hidden state of node v;in kthlayer of the neural network
and k=0, 1. Wisaparameter matrix, bis bias vector and ¢ denotes non-
linear activation function. The hidden state h in layer O is set to node
features x,, that is, a gene or protein expression vector. The rectified
linear unit (ReLU) is used as the activation function ¢: ReLU(-) = max(0, -}

We thenuse agraph convolutional layer? to enable message pass-
ing among nearby cells:

@ _ 1/ Dp®d D (D)
h® = wPh® + 3 wh®, €)

JEN

where »videnotes neighborhood on node v;. The final embedding of
node ;is z; = h'®. Innonspatial STELLAR (Fig. 2f), we replace the graph
convolutional layer with another fully connected layer.

STELLAR initialization
We initialize novel cell types with unlabeled data that lie out of distri-
bution with respect to the labeled data. We first train a single-layer

neural network g, on labeled data with cross-entropy loss. We cluster
the unlabeled data using the Louvain algorithm® with default param-
eters in scanpy’® and then summarize the average entropy of each
cluster with the trained g,. We select K|, clusters with largest entropy
and assign pseudo-labels corresponding to novel cell types as cells in
the same cluster.

STELLAR objective function

The objective function in STELLAR assigns cells to cell types
from the reference set or discovers novel cell types. Inspired by ref.**,
the objective function consists of two main components: (1) acom-
ponent for discovering novel cell types, and (2) a component for
learning to recognize cell types from the reference set (Supplemen-
tary Fig.1).

Inthe component for novel cell-type discovery, we use an objec-
tive term that predicts pairwise similarities given cell embeddings
obtained using STELLAR encoder, that is, we predict whether two
cells are similar or not. For the reference graph, we use ground-truth
annotations to learn to predict similarity between two cells, that is
two cellsare similar if they belong to the same cell type. For the unan-
notated graph, pseudo-labels are generated based on the distances
between cells in the embedding space. In particular, for each cell
within the mini-batch, we identify the most similar nearest neighbor
cell and generate pseudo-labels for the given pair. In that way,
pseudo-labels are generated only for the pairs in which there is the
most confidence. To find nearest neighbors, cell embeddings h®
without ReLU are used to allow cells from the reference graph to be
selected as the neighbors of cells from the unannotated graph. For-
mally, the component for discovering cell types (DCT) minimizes the
following term:

1 ,
Lpcr = >, —log(o(WTzp),oW'z)),  (3)
N, + N, 2.7
2

(ZaUZy,23U2Y)

where W denotes a linear layer weight matrix, o denotes a softmax
function, N, and N, denote numbers of cells for annotated and unan-
notated graphs, respectively. 2, and 2, denote cell embeddings for
annotated and unannotated graphs, and 2’ and 2’ denote the set of
closest neighbors of 2,and z,used for generating pseudo-labels.

The second component for recognizing cell types learns to dis-
tinguish cell types from the reference graph using ground-truth cell
annotationsy. Standard cross-entropy classification loss was enhanced
withan adaptive margin mechanism that controls the learning speed of
celltypes fromthereference set compared to novel cell types. Formally,
STELLAR minimizes the following objective termto learntorecognize
celltypes (RCT) in the reference graph:

es( WyTi Z;+0)

1
Lper = A >, —log “)

T e — ot
a zez, et 4 5 e

k#y;

where sis temperature scaling parameter, aiis uncertainty and W, refers
tothe columnvector thatrelatesto classy, The uncertainty is estimated
asthe average confidence of unlabeled examples computed from the
output of the softmax function:

1

i=—

N > 1- max Pr(y = k|v;), (5)

U yev,

where kgoes over all reference and novel cell types. At the start of the
training uncertainty is large, leading to a larger margin and forcing
larger intraclass variance®. As training proceeds, the margin becomes
smaller and the objective boils down to standard cross-entropy.
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Additionally, we use maximum entropy regularization term to
avoid a trivial solution of assigning all cells to the same cell type. In
particular, the regularization termis the following:

1

R= NENL > D oWz log o (W'zy), (6)

U z,ezuz, k

where kgoes over all reference and novel cell types and g, denotes kth
cell-type value of the softmax output.

Finally, the objective function in STELLAR combines reference
cell-type recognition, novel cell-type discovery and regularization
components:

L = Lger + MLpct + MR, 7)

where n, and n, are regularization parameters.

Architecture and hyperparameters

Theencoder networkin STELLAR consists of one fully connected layer
with ReLU activation and a graph convolutional layer with a hidden
dimension of 128 inall layers. It uses the Adam optimizer with aninitial
learning rate of 107 and weight decay 0. The model is trained with a
batch size of 512 for 20 epochs. A cluster sampler*° first clusters input
graphsintosubgraphsand thenassigns the subgraphs to mini-batches.
The temperature scaling parameter sin equation (4) is set to 10. Regu-
larization parameters in equation (7), n, add n,, are set to 1 and 0.3,
respectively. These hyperparameters were used across all experiments.

Number of novel cell types

STELLAR is initialized with the expected number of novel cell types
asaninput parameter. As the number of novel cell typesis usually not
known, STELLAR can be initialized with a large number of novel cell
types and will automatically reduce the number by not assigning any
cellstounneeded classification heads.

Neighborhood identification analysis

Neighborhood analysis was performed as described previously®.
Briefly, awindow size of ten nearest neighbors for each cell was taken
across the tissue cell-type maps. These vectors were overclustered
to 20 clusters using k-means clustering algorithm. The clusters were
mappedback to the tissue and evaluated for cell-type enrichments to
determine overall structure and merged down into final structures.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The CODEX datasets presented in this study can be found in the online
repository Dryad at https://datadryad.org/stash/share/10QtxewOUn
h3iAdP-ELew-ctwuPTBz60y8uuyxqliZk. Specifically, the quantified
single-cell dataare provided (with cellsinrows and protein expression,
xy position and cell-type labels in columns). Additionally, we provide
datasets used to transfer from the tonsil to BE tissue (BE_Tonsil_dryad.
csv) and expert-annotated healthy human intestine (BOO4_training_
dryad.csv), which was used to test theaccuracy of STELLAR across the
four regions of the colon regions of this dataset and also for training
for transferring cell-type labels to unlabeled donors (BO056_unan-
notated_dryad.csv). MERFISH mouse cortex datasets are from Ref. %,

Code availability

STELLAR was written in Python v.3.8 using the PyTorch library. The
source codeisavailable on Github at https://github.com/snap-stanford/
stellar. The project website with links to data and code can be accessed
at http://snap.stanford.edu/stellar/.
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Extended DataFig.1|STELLAR overview. STELLAR is a unique methodin

its ability to simultaneously recognize cell types seen in the reference set and
discover novel cell types that have never been characterized in the reference
set. This is made possible by an objective function that consists of two main
components (Methods). First, STELLAR learns to gradually separate cell types

(2) Discover novel cell types
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from the reference set by controlling intra-class variance to allow the model

to simultaneously learn to discover novel cell types. Simultaneously, STELLAR
discovers novel classes by generating auxiliary labels (pseudo-labels) in the
unannotated graph that are used to guide the training. The auxiliary labels are
generated based on the nearest neighbors of each cell in the embedding space.
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Extended Data Fig. 2| CODEX image of reference dataset from human tonsil. Ground-truth labels of the tonsil CODEX multiplexed imaging dataset. Colors denote
different cell types.
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scANVI_leaky is evaluated does not present a fair comparison to STELLAR and
other baselines, itindicates that the performance of drop of scANVIis caused by
differences between tonsil and BE datasets. (b-d) Performance of STELLAR and
alternative baselines on the BE dataset evaluated as (b) mean macro F1-score,
(c) macro precision score, and (d) macro recall score across n=5 runs of each
method. Error bars are from standard deviation. XGB stands for XGBoost, SVM
for Support Vector Machine, RF for Random Forest, ADA for ADABoost, and
Seurat for Seurat V4.
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Extended Data Fig. 6 | Robustness of STELLAR evaluated on the Barrett’s annotations were randomly assigned to cells in the annotated reference tonsil
esophagus (BE) dataset. (a) Performance of STELLAR using different dataset. Performance was evaluated as an accuracy score across n=5runs.
normalization strategies. ‘Unnorm’ stands for raw (unnormalized) data. Individual data points are shown. (c) Performance of STELLAR when removing
Performance was evaluated as amean accuracy score across n=5runs of each different number of marker genes. In each run, different set of randomly selected
normalization strategy. Error bars are from standard deviation. (b) Performance marker genes was withheld from the reference tonsil dataset and BE datasets.
of STELLAR when misannotating proportion of randomly selected cells. In Performance was evaluated as amean accuracy score across n=5runs. Error bars
eachrun, cells were randomly selected and labels different than ground truth are from standard deviation.
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Extended DataFig. 7 | Performance of STELLAR on the MERFISH dataset
from mouse cortex. We applied STELLAR to alarge-scale mouse primary
motor cortex MERFISH dataset consisting of 23 granular cell types from two
mice [8]. (a) Annotation accuracy of STELLAR on the MERFISH mouse cortex
dataset with different numbers of withheld cell types. Position of scatter plot
points is computed as amean accuracy score across n=5 runs. Error bars are
from standard deviation. We randomly removed a number of cell types from
the reference set and evaluated STELLAR’s performance by gradually increasing
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visualization of MERFISH mouse cortex dataset from mouse used as the test set.
Cellsare colored according to (b) ground-truth annotations, and (c) STELLAR’s
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Extended Data Fig. 8 | STELLAR predictions on the dataset from healthy
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intestine. CODEX-imaged regions with cell types colored by prediction from different cell types. DC stands for dendritic cell, ICC stands for interstitial cells of

STELLAR using data from the healthy intestine of a different donor as the Cajal, TA stands for transit amplifying cell.

Nature Methods



Article https://doi.org/10.1038/s41592-022-01651-8

Fold Enrichment
2

Embedding Structure

Inner Follicle

Secretory Epithelial

- Transit Amplifying Zone
Early Secretory Epithelial
- Mature Epithelial

- CD8+ T Enriched IEL
Outer Follicle

Stroma

- Innervated Stroma
Smooth Muscle

Plasma Cell Enriched

- Innate Immune Enriched

Vasculature

Cell Type
CD7_lmmune
B
Lymphatic -
Macrophage -
Endothelial
Stroma -
&SSmoothMuscle -
ICC -
Nerve -
Neutrophil -
Plasma -
CD8T -
DC -
CDAT -
Neuroendocrine
TA
Goblet
Enterocyte

2

Enterocyte_CD57p
Enterocyte_ITLN1p

CL4reg0

b o gty L N

Embedding Structure

CD8+ T Enriched IEL
Early Secretory Epithelial
Innate Immune Enriched
Inner Follicle

Innervated Stroma
Mature Epithelial

Outer Follicle

Plasma Cell Enriched
Secretory Epithelial
Smooth Muscle

Stroma

Transit Amplifying Zone
Vasculature

Y
w

Extended Data Fig. 9 | Multicellular structures discovered bt STELLAR on data. (a) Heatmap of average cell-type composition in clustered embeddings.
CODEX healthy intestine data. Characterization of multicellular structures (b) Representative tissue image colored by embedding structure. IEL stands for
by clustering the embedding space from STELLAR on CODEX healthy intestine intraepithelial lymphocytes.
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Extended Data Fig.10 | Multicellular structures discovered bt STELLAR on
MERFISH mouse cortex data. Clustersin STELLAR's embedding space identify
multicellular structures in tissues in MERFISH data from mouse cortex. (a)
Heatmap of average cell-type compositionin STELLAR clustered embeddings.
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(b) Representative tissue image colored by overall structure. L, lateral; OPC,
oligodendrocyte precursor cell; PVM, perivascular macrophage; SMC, smooth
muscle cell; VLMC, vascular leptomeningeal cell.
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