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Annotation of spatially resolved single-cell 
data with STELLAR

Maria Brbić    1,2,6, Kaidi Cao    1,6, John W. Hickey3,6, Yuqi Tan    3, 
Michael P. Snyder    4, Garry P. Nolan    3,5   and Jure Leskovec    1 

Accurate cell-type annotation from spatially resolved single cells is crucial to 
understand functional spatial biology that is the basis of tissue organization. 
However, current computational methods for annotating spatially resolved 
single-cell data are typically based on techniques established for dissociated 
single-cell technologies and thus do not take spatial organization into 
account. Here we present STELLAR, a geometric deep learning method for 
cell-type discovery and identification in spatially resolved single-cell datasets. 
STELLAR automatically assigns cells to cell types present in the annotated 
reference dataset and discovers novel cell types and cell states. STELLAR 
transfers annotations across different dissection regions, different tissues and 
different donors, and learns cell representations that capture higher-order 
tissue structures. We successfully applied STELLAR to CODEX multiplexed 
fluorescent microscopy data and multiplexed RNA imaging datasets. Within 
the Human BioMolecular Atlas Program, STELLAR has annotated 2.6 million 
spatially resolved single cells with dramatic time savings.

Development of spatial protein and RNA imaging technologies has 
opened new opportunities for understanding location-dependent 
properties of cells and molecules1–4. The power to capture spatial organ-
ization of cells within tissue plays an essential role in understanding 
cellular function and in studying complex intercellular mechanisms. 
To increase our knowledge of cells in healthy and diseased tissues, large 
tissue-mapping consortia efforts such as the Human BioMolecular 
Atlas Program (HuBMAP)5, Human Tumor Atlas Network (HTAN)6 and 
Human Cell Atlas (HCA)7 have been generating comprehensive cell atlas 
datasets. These consortia efforts necessitate computational methods 
that can assist with robust characterizations of cells and guide our 
understanding of functional spatial biology. While computational tools 
for dissociated single-cell technologies have been used to characterize 
cells in spatial datasets4,8–10, these tools ignore the spatial information 
crucial for more accurate annotation of spatial datasets.

Recently, methods that take into account spatial organization 
of cells have been developed for annotating spatial transcriptomics 

data11–15. However, these methods can not automatically assign cell-type 
labels to cells and thus require human reannotation once clusters 
are identified. While CELESTA tool has successfully avoided post hoc 
cluster reannotation for multiplexed in situ images16, it is reliant on the 
previous human supervision provided in the form of the set of marker 
genes of expected cell types, which is often challenging to define for 
a new dataset. As new spatial datasets are being generated17–21, there is 
a necessity for computational methods that simultaneously leverage 
molecular features and additional spatial context of cells while at the 
same time minimize manual human annotation effort.

Here, we present STELLAR (SpaTial cElL LeARning), a geometric 
deep learning tool for cell-type discovery and identification in spa-
tially resolved single-cell datasets. Given annotated spatially resolved 
single-cell dataset with cells labeled according to their cell types (refer-
ence dataset), STELLAR learns spatial and molecular signatures that 
define cell types. Using the reference dataset, STELLAR then trans-
fers the annotations to a completely unannotated spatially resolved 
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STELLAR identifies existing and discovers novel cell types
To demonstrate STELLAR’s ability to assign cells to one of the cell types 
seen in the reference set and discover a novel cell type, we applied STEL-
LAR to CODEX multiplexed imaging data10. We used data from human 
tonsil as the reference set (Fig. 2a and Extended Data Fig. 2) and tissue 
from a patient with Barrett’s esophagus (BE) as the unannotated target 
tissue (Fig. 2b). Both imaging datasets underwent image processing 
and single-cell segmentation. Cell-type labels were manually curated 
and assigned by iterative unsupervised clustering of the single-cell 
data, analyzing expressions of protein markers and validating cluster 
accuracy with visualization in the tissue. Tonsils are often used for 
testing antibody panels as they contain high numbers of immune cell 
markers. The BE tissue also contains immune cells, but additionally 
contains differentiated epithelial cells that tonsils do not. Indeed, 
three subtypes of epithelial cells appear only in the BE dataset, while 
B cells appear only in tonsil data. Moreover, the two datasets have dif-
ferent distributions of cell types. For example, smooth muscle cells are 
major cluster in BE, but form the smallest group in the tonsil dataset 
(Extended Data Fig. 3).

Despite these differences, we found that STELLAR accurately 
assigned cell types to 93% of cells in the BE data, discovering also 
BE-specific subtypes of epithelial cells as a newly discovered cell type 
and correctly differentiating between glandular epithelial and secre-
tory epithelial novel cell types (Fig. 2c). The novel cluster of paneth cells 
was correctly recognized as a novel class by STELLAR but assigned to 
glandular epithelial cells. The reason is that paneth cells are very rare 
in the BE dataset and form the smallest class of only 0.6% of the total 
cell number in the BE dataset. Mapping cell-type annotations back to 
spatial coordinates, STELLAR predictions also show agreement with 
ground-truth annotations and do not reflect issues recognizing cell 
types in certain areas of the tissue (Fig. 2d). The disagreement with 
ground-truth annotations mostly comes from mixing main cell types, 
in particular endothelial with stroma cells and endothelial with smooth 
muscle cells (Supplementary Fig. 1). These are all stromal cells and they 
likely share Vimentin, while lacking CD45 or Cytokeratin. They are 
also very often spatially located next to each other: endothelial cells 
will often be next to smooth muscle cells and vice versa. Furthermore, 
endothelial cells are elongated and the problem may be caused by 
current segmentation software tools that cosegment them with other 
cell-type markers causing STELLAR to assign them to other cell types.

One of the reasons we applied STELLAR to these two datasets was 
also to test the flexibility of the algorithm when cells may be found 
in different cellular environments. This is important for cross-tissue 
applications, but also in cases of applying STELLAR across disease 
states such as cancer where cells, normally restricted to one area, 
invade other areas of the tissue. Since we observed a high accuracy 
in cell-type label transfer, we asked whether labels that STELLAR 
generates result in unique cellular microenvironments or neighbor-
hoods. This would mean that STELLAR is able to generalize even when 
the same cell types are present in a different microenvironment. To 
explore this, we used a method for cellular neighborhood analysis25 
with the ground-truth labels of the tonsil dataset and the STELLAR’s 
predictions for the BE dataset. This method determines the composi-
tion of the nearest neighbors for each cell. Then these composition 
vectors for each cell are clustered into similarly composed cellular 
neighborhoods (Methods). This analysis revealed both shared and 
unique multicellular neighborhoods (Fig. 2e and Extended Data 
Fig. 4). For example, glandular epithelium and smooth muscle are 
exclusively found within BE tissue, while B cell zone, T cell zone and 
squamous epithelium/B cell neighborhoods are only found in the 
tonsil dataset. Furthermore, many neighborhoods shared between 
the datasets have little overlap in total percentage of cells indicat-
ing the structural distinctness of the two tissues. Thus, STELLAR 
can generalize to different spatial organizations while accurately 
transferring cell-type labels.

single-cell dataset with unknown cell types. The reference and unan-
notated datasets can belong to different dissection regions, different 
donors or different tissue types.

STELLAR has two unique properties. First, using graph convolu-
tional neural networks22,23, STELLAR learns latent low-dimensional 
cell representations that jointly capture spatial and molecular simi-
larities of cells. In this way, cells that are spatially close together and 
that have similar levels of gene or protein expression are embedded 
close to each other. Indeed, we show that cell embeddings learned 
by STELLAR reveal higher-order tissue structures. Second, in a new 
completely unannotated dataset, STELLAR automatically assigns 
cells to cell types included in the reference set and also identifies 
cells with unique properties as belonging to a novel type that is not 
part of the reference set. Thus, STELLAR has an ability to assign cells 
to one of the cell types seen in the reference set, or discover a novel 
cell type for previously uncharacterized cell types. From a practi-
cal standpoint this ability is essential for leveraging reference sets 
generated in a disease-free state or in different tissues that may not 
have all the cell types represented in the target tissue but that may 
include most established cell types.

As a result of these unique properties, STELLAR solves major 
limitations with current annotation tools. STELLAR can be applied 
to both multiplexed protein and multiplexed RNA imaging datasets. 
In particular, we show the effectiveness of STELLAR on annotating 
CODEX multiplexed fluorescent microscopy datasets and multiplexed 
error-robust fluorescence in situ hybridization (MERFISH) spatial 
transcriptomics datasets. Encouraged by the results, we used STELLAR 
to annotate HuBMAP consortium data: so far STELLAR has annotated 
2.6 million cells labeled with 54 protein markers from eight different 
regions of the human intestine data and across eight different donors17. 
On these datasets, STELLAR has saved hundreds of hours of manual 
work needed to assign cells to cell types.

Results
Overview of STELLAR
STELLAR takes as input (1) the reference dataset of annotated spatially 
resolved single-cell dataset with cells assigned to cell types, and (2) a 
completely unannotated spatially resolved single-cell dataset with cell 
types that are unknown (Fig. 1). STELLAR then assigns unannotated 
cells to cell types in the reference dataset, while for cells that do not 
fit into the reference cell types, it identifies individual novel cell types 
and assigns cells to them.

STELLAR learns low-dimensional cell representations (embed-
dings) that reflect molecular features of cells as well as their spatial 
organization and neighborhood. The cell embeddings are learned 
using graph convolutional neural networks (GCNs)22,23: neural net-
works that enable learning over arbitrary graph structures by encod-
ing the structure of the local graph neighborhood into a dense vector 
embedding. In STELLAR, we construct a graph based on the spatial 
proximity of cells and use molecular features of cells as node features 
(Methods).

Given cell embeddings, STELLAR has two capabilities: (1) it 
assigns cells in the unannotated dataset to one of the cell types 
previously seen in the reference dataset, and (2), for cells that do 
not fit the existing known/labeled cell types STELLAR identifies 
novel cell types and assigns cells to them. STELLAR achieves this 
using an objective function that consists of two main components 
(Extended Data Fig. 1). In the first component, STELLAR gradually 
learns to separate cell types from the reference set by controlling 
intraclass variance of previously seen cell types using the adaptive 
margin mechanism24. In the second component, STELLAR discovers 
novel classes by generating auxiliary labels for the unannotated 
data that are used to guide the training. The auxiliary labels are 
generated based on the nearest neighbors of cells in the embedding 
space (Methods).
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STELLAR outperforms other methods
On the BE dataset, we compared STELLAR to four other baselines includ-
ing XGBoost26, Support Vector Machine (SVM)27, Random Forest28, 
AdaBoost29, as well as single-cell annotation baselines Seurat V4 (ref. 30) 
and scNym31. We trained all baselines on the tonsil dataset, and evalu-
ated them on the BE dataset. STELLAR substantially outperformed 
the best alternative method, achieving 61% higher accuracy (Fig. 2f 
and Supplementary Fig. 2). Single-cell baselines Seurat V4 and scNym 
achieved lower performance than other baselines so we additionally 
compared to another single-cell baseline scANVI32. However, the per-
formance of scANVI was even lower, so we created a leaky setting for 
scANVI in which we used a fraction of BE annotations for model training. 
In such a scenario, the performance of scANVI substantially improved 
to 0.76 indicating that the performance drops are caused by differ-
ences between tonsil and BE datasets (Supplementary Methods and 
Extended Data Fig. 5a). Even when using BE annotations to annotate BE 
dataset, scANVI still did not outperform STELLAR. STELLAR was also 
the best performing method when evaluating performance using other 
evaluation metrics, such as F1-score, precision and recall (Extended 
Data Fig. 5b–d). To directly measure performance on cell types that 
are only present in the reference dataset, that is, shared between tonsil 
and BE datasets, we removed novel cell types. In this scenario, we still 
find that STELLAR outperformed other alternative methods by 6% 
(Supplementary Fig. 3).

We further systematically tested robustness of STELLAR to: (1) dif-
ferent data normalization strategies, (2) artificially introduced noisy 
annotations and (3) different number of withheld marker proteins. 
First, we find that STELLAR achieves best performance on z score nor-
malized CODEX data, which agrees with previous studies comparing 
different combinations of normalization techniques and unsupervised 
clustering33 (Extended Data Fig. 6a). STELLAR outperforms alterna-
tive methods even with different normalization strategies including 
when evaluated on unnormalized data, achieving 87% accuracy on 
unnormalized data. We additionally evaluated the effect of the noisy 
annotations on the performance. Specifically, we misannotated pro-
portion of cells by randomly assigning wrong annotations to cells in 
the reference tonsil dataset. With 5% of wrong annotations, STELLAR 
achieves only 0.7% lower performance compared to performance in 

which all annotations are correct (Extended Data Fig. 6b). This means 
that STELLAR is robust even when a proportion of cells are misanno-
tated. Finally, STELLAR is ran on the shared subsets of the genes and/or 
proteins between annotated reference dataset and unannotated target 
dataset. STELLAR is able to accurately transfer cell-type labels even 
when leaving out measured marker proteins (Extended Data Fig. 6c). 
While not as critical for transcriptomic datasets, this may be important 
for transferring cell-type labels in multiplexed imaging where there are 
limited numbers of antibody markers that can be chosen and antibody 
panels may not completely overlap.

Importance of capturing spatial organization of cells
Using graph convolutional neural networks, STELLAR leverages both 
spatial organization of cells as well as their molecular expressions. 
To directly measure the benefits of including spatial information, we 
designed a baseline in which we used STELLAR’s objective function, 
but we replaced graph convolutional encoder with a fully connected 
neural (FCN) network layer disabling the usage of spatial information. 
When comparing FCN baseline to STELLAR, we find that capturing spatial 
organizations of the cells brings 11% improvement in cell-type annotation 
task compared to relying solely on the molecular information (Fig. 2g).

We next sought to analyze the optimal graph structure for the task. 
In STELLAR, we construct the graph by considering as neighbors all the 
cells whose distance is less than the preset threshold, which we initially 
set to 50 μm. We systematically changed the value of the threshold 
and analyzed the effect on the STELLAR performance on the CODEX 
tonsil/BE dataset. We found that the optimal distance is 30–70 μm, 
corresponding to approximately 5–30 average number of neighbors 
per cell. This optimum may indicate the single-cell local environment 
size that is most conserved, rather than broader structures within the 
tissue. Furthermore, even with a very low threshold of 10 μm where 
each node has only 0.02 neighbors per cell resulting in a graph with 
98% of isolated nodes, or with a very high threshold of 90 μm where 
each cell has on average 50 neighbors, STELLAR performance does not 
degrade compared to using only molecular information. Overall, this 
analysis indicates that STELLAR is robust to input graph structure and 
that substantial performance gains can be expected by a meaningfully 
constructed spatial graph.
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Fig. 1 | STELLAR is a geometric deep learning framework for annotating 
spatially resolved single-cell datasets. Given a reference spatially resolved 
single-cell dataset in which cells are annotated according to their cell types, 
STELLAR assigns cells in an unannotated spatial single-cell dataset to cell types 
included in the reference dataset or discovers novel cell types as a group of 

cells with unique properties not present in the reference dataset. STELLAR 
uses a graph convolutional encoder to learn low-dimensional cell embeddings 
that capture cell neighborhood as well as its molecular profile. Reference and 
unannotated datasets can originate from different sources as STELLAR transfers 
information across different tissues and different donors.
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STELLAR is applicable to spatial transcriptomics data
While existing methods are focused on either spatial proteomics or 
transcriptomics data, in addition to CODEX datasets we evaluated STEL-
LAR on a single-cell transcriptome-imaging dataset generated using 
MERFISH. In particular, we applied STELLAR to a large-scale spatially 
resolved cell atlas of the mouse primary motor cortex8 consisting of 23 
granular cell types from two mice. We used a dataset from one mouse 
as the reference annotated dataset and evaluated performance on the 
dataset from another mouse. We then systematically removed a num-
ber of cell types from the reference set and evaluated how STELLAR’s 
performance was affected when gradually increasing the number of 
novel cell types. We measured accuracy separately on classes seen in 

the reference set and classes withheld from the reference set (novel 
classes). We find that STELLAR correctly assigned cell types to one of 
the classes in the reference set achieving 93% accuracy independently 
of the number of withheld cell types (Extended Data Fig. 7).

STELLAR successfully annotates HuBMAP data
A critical current bottleneck in analysis of the spatially resolved sin-
gle cells for consortia efforts is an accurate assignment of granular 
cell-type labels across donors of the same tissue. For example, a 
typical CODEX dataset with a 48-marker panel used to analyze four 
tissues of the intestine requires at least 25 hours of work to cluster, 
merge, recluster, subcluster and assign cell types based on average 
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Fig. 2 | STELLAR accurately identifies cell types from the reference set 
and discovers novel cell types that have never been characterized in the 
reference set. a, Uniform manifold approximation and projection (UMAP) 
visualization of the healthy tonsil data used as the reference dataset. Colors 
denote ground-truth cell types annotations used to train STELLAR. PDPN stands 
for Podoplanin (PDPN) positive stromal cells. b,c, UMAP visualization of the BE 
data used as the test dataset. Three subtypes of epithelial cells are not found 
in the tonsil reference data. Colors denote ground-truth cell-type annotations 
(b) and STELLAR predictions (c). d, CODEX image of BE in spatial coordinates 
colored according to ground-truth annotations (left) and STELLAR predictions 
(right). e, Different neighborhood composition between reference dataset from 
tonsil tissue and target unnannotated dataset from BE. Neighborhoods are 

determined by cell composition enrichment in nearest neighbor vectors for each 
cell (Methods). f, Accuracy of cell-type assignments in the BE dataset by STELLAR 
compared to alternative approaches. Position of scatter plot points is computed 
as a mean accuracy score across five runs of each method. Error bars are from the 
standard deviation (s.d.). g, Accuracy of cell-type assignments in BE dataset by 
STELLAR and when modifying STELLAR to rely only on the molecular information 
in cell-type assignment. Height of each bar is computed as a mean accuracy 
score across five runs of each method. Error bars are from s.d. h, The effect of 
neighborhood threshold on the STELLAR’s performance. All cells with distance 
less than the threshold are considered as neighbors. Position of scatter plot 
points is computed as a mean accuracy score across five runs of each method. 
Error bars are from s.d.
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marker expressions and locations within CODEX images. As a part of 
the HuBMAP consortium, we have generated CODEX imaging data 
for tissues from eight donors for a total of 64 tissues from a healthy 
intestine. Combined with single-cell transcriptomic and epigenomic 
data, this molecularly detailed cell atlas contributes spatial organi-
zation of cell types as a reference map for understanding human 
intestinal biology17.

We first evaluated the performance of STELLAR on this more 
granular data and used expert-annotated cell-type labels of images 
of different regions of a healthy colon generated from a single donor. 
We evaluated STELLAR in the leave-one-region-out setting where we 
trained on three regions and predicted annotations on the fourth 
region. STELLAR had high accuracy in cell-type label transfers (Fig. 3a) 
and had substantially higher performance (F score of 0.8) than tested 
unsupervised clustering methods without manual intervention (F score 
of 0.3 across different methods)33. This analysis showed STELLAR’s 
ability to recognize fine-grained level cell types and encouraged us to 
use STELLAR to annotate 2.6 millions of cells generated across eight 
different donors.

STELLAR transfers information across donors
Encouraged by cross-region transfer results, we next used our 
expert-annotated samples from a single donor as training data and 
applied STELLAR to unannotated samples from two other donors. 
These datasets vary from each other based on tissue harvesting time, 
staining and imaging handler, and segmentation algorithms applied, 
which may alter marker distribution. Despite the differences, we find 
that the fluorescent CODEX data of new donors (Fig. 3b and Supple-
mentary Fig. 4) agree well with the cell-type map predicted by STELLAR 
and also agree with the known distribution of main cell types in the 
intestine (Fig. 3c and Extended Data Fig. 8). We additionally confirmed 
the quality of STELLAR’s predictions by looking at average marker 
expression profiles of predicted cell types for the samples from a 
different donor (Fig. 3d). Protein marker distributions match expert 
hand-annotated profiles in fine-grained cell types predicted by STEL-
LAR. For example, CD4 is expressed only in cell types annotated as 
CD4+ T cells, whereas CD8 is expressed exclusively in CD8+ T cells. This 
additionally confirms that STELLAR predictions are reliable. We further 
applied STELLAR to six other donors, for a total of eight donors, across 
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Fig. 3 | STELLAR transfers granular cell-type labels across tissue regions and 
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intestine tissue. a, Cell-type maps with ground-truth and STELLAR predictions 
made after training on CODEX multiplexed imaging of three different intestine 
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64 tissues and 2.6 million cells. STELLAR alleviated expert annotation 
effort tremendously: human annotations of these images would require 
approximately 320 hours of manual labor, while with STELLAR it took 
the expert only 4 hours to annotate the images.

We further validated STELLAR on datasets generated from dif-
ferent donors, which were prepared and stained at different times 
by different tissue handlers and were formulated into TMA (tissue 
microarray) or large tissue blocks, had different fixations conditions, 
used different image processing and cell segmentation algorithms, and 
used different antibody panels and clones for antibodies. This repre-
sents a particularly difficult case for cell-type label transfer. We used 
fresh frozen CODEX intestine HuBMAP dataset as a reference dataset 
and applied STELLAR to a CODEX formalin-fixed, paraffin-embedded 
colorectal cancer dataset25. We used the subset of antigens targeted 
that overlapped even if the clone was different. While only a subset 
of the marker set overlapped, we found that STELLAR outperformed 
other methods by at least 22% (Supplementary Fig. 5).

STELLAR embeddings capture higher-order tissue structures
The classification of cell–cell interactions enabled by multiplexed imag-
ing of many cell types simultaneously unlocks the ability to identify and 
discover multicellular structures. Characterization of multicellular 
modules such as tertiary lymphoid structures is critical to understand-
ing tissue function, its relationship with disease and how to design 
effective therapeutics34. We hypothesized that the latent cell embed-
ding space learned by STELLAR could reveal biologically meaningful 
information about the tissue organization. To explore this, we obtained 
cell embeddings from STELLAR and then clustered these cells in the 

STELLAR’s embedding space using the Louvain clustering35 (Fig. 4a). 
We then evaluated the microenvironments represented by the result-
ing clusters by calculating the enrichment of cell types that neighbor 
these cells within these clusters as compared to tissue averages. This 
was also verified from looking at where the cell types with assigned 
cluster labels fell within the tissue using fluorescence staining and 
cell-type neighbors to confirm larger pathological structures. We found 
that the clusters represent main multicellular structural features of the 
intestine such as the immune follicle structure, which was enriched for 
CD4+ T cells, B cells and dendritic cells, as well as secretory epithelial, 
which was enriched for goblet cells, neuroendocrine cells and transit 
amplifying cells (Fig. 4b,c). We also confirmed this works across tissue 
sections taken at different sites of the colon with similar architectures 
(Extended Data Fig. 9). Similarly, we find that high-level structural 
information was detected also for the MERFISH data (Extended Data 
Fig. 10). These analyses revealed that the embedding space of STELLAR 
provides a method for identifying multicellular structures in tissues.

Discussion
STELLAR is an effective framework for annotating spatially resolved 
protein and RNA single-cell data and extracting spatial cell-interaction 
information. Two properties make STELLAR a unique tool in the 
single-cell toolbox: (1) the ability to learn low-dimensional cell embed-
dings that leverage spatial and molecular information across different 
biological contexts, and (2) automatic identification of cell types from 
the reference set and discovery of novel cell types not present in the 
reference dataset. STELLAR learns a new cell embedding space that 
leverages spatial and molecular features using graph convolutional 
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Fig. 4 | STELLAR’s embeddings reveal higher-order tissue structures. a, To 
analyze embedding space learned by STELLAR, we clustered the cell embeddings 
using Louvain clustering. We then analyzed microenvironments of resultant 
clusters by checking which cell types are enriched in each cluster. The resultant 
clusters were manually annotated based on the cell-type enrichments showed 
in b. b, Resultant clusters in STELLAR's embedding space reveal that the 

embeddings capture main structures within the intestinal tissue. Heatmap shows 
enrichment of cell types assigned by STELLAR within the structural clusters 
as compared to tissue average percentages. c, Graphical display of the tissue 
structures learned by STELLAR found for one of the regions of the colon. Main 
structures such as immune follicles were identified by STELLAR. IEL stands for 
intraepithelial lymphocytes.
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neural networks. The cell embeddings learned by STELLAR can be used 
for any downstream analysis and provide a novel capability to identify 
main multicellular structures in the tissue. Our results support that 
incorporating spatial information directly leads to improved cell-type 
annotation performance.

STELLAR is intended to be used for transferring annotations across 
datasets, including datasets from different biological contexts, for 
example, across dissection regions, donors or related tissues. While 
doing so, STELLAR discovers expression patterns that define a novel 
cell type or cellular state. Our tool has a great value in transferring 
annotations across levels of granularity to a new biological context and 
discovering novel biological states that have not been characterized 
in previous experiments. The annotation transfer methodology in 
STELLAR distinguishes it from previous spatial annotation tools that 
rely on predefined marker genes that define cell types16.

At present, segmentation tools used largely rely on nuclear seg-
mentation, and those that incorporate membrane-based segmentation 
are far from perfect36,37. Once segmentation masks and measurements 
become more reliable in regards to shapes of cells, then morphologi-
cal features of cells could be included in STELLAR as feature vectors in 
addition to the marker expression. By including morphological features 
of cells, further improvements in performance could be expected as 
well as identification of unique cell states.

Development of STELLAR was motivated by a growing need to 
leverage spatial and molecular information across different biological 
contexts17. Multiplexed imaging technologies will drive future efforts 
to understand both healthy and diseased tissue processes, enabled 
by large consortia efforts that generate comprehensive datasets and 
standardize computational methods5–7. Novel insights will come from 
the rich, but still unexplored and underused information about spatial 
cell organization. We anticipate that STELLAR will alleviate future 
annotation efforts of large-scale spatial cell atlases, identify main 
multicellular structures in tissues and reveal how cells cooperatively 
coordinate to enable tissues to function.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-022-01651-8.
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Methods
Overview of STELLAR
STELLAR learns spatial and molecular cell similarities that are transfer-
able across different biological contexts, such as different dissections 
regions, donors or tissues. Across different contexts, STELLAR learns 
to automatically assign cells to cell types seen in the annotated refer-
ence set, or forms novel cell types if cells have unique properties that 
are not present in the reference dataset.

Specifically, STELLAR starts with an annotated reference cell graph 
𝒢𝒢a = {𝒱𝒱a, ℰa} with molecular features for all nodes xvi ∈ ℝD, ∀vi ∈ 𝒱𝒱a, and 
an unannotated cell graph 𝒢𝒢u = {𝒱𝒱u, ℰu}  with molecular features 
xvi ∈ ℝD, ∀vi ∈ 𝒱𝒱u. Here, 𝒱𝒱 denotes the set of vertices and ℰ denotes the 
set of edges in the graph 𝒢𝒢. The nodes in each graph correspond to cells 
and cells are connected if they are spatially close. Node features cor-
respond to gene or protein expressions of cells where D denotes the 
total number of measured genes or proteins. For the reference graph 
we assume we are given a vector of cell annotations y = {yi ∈ {1, ...,Ka}}

|𝒱𝒱a |
i=1 

that assigns each cell to one of the Ka cell types (or other annotations). 
STELLAR is ran on the shared subsets of the genes or proteins between 
annotated reference dataset and unannotated target dataset.

Given reference graph 𝒢𝒢a and unannotated graph 𝒢𝒢u, STELLAR first 
applies the encoder function fθ ∶ ℝD → ℝd that maps cells from both 
graphs into a joint embedding space that captures spatial and molecu-
lar similarities between the cells. The cell embedding encoder function 
fθ is parameterized by learnable parameters θ of a graph convolutional 
neural network (GCN)22. The encoder function fθ generates 
d-dimensional cell embeddings zi ∈ ℝd, ∀vi ∈ 𝒱𝒱a ∪ 𝒱𝒱u . On top of the 
encoder function, we add a single linear layer parameterized by a weight 
matrix W ∶ ℝD → ℝKa+Kn, where Kn corresponds to expected number of 
novel cell types that need to be discovered. Next, a softmax layer is 
added that assigns each cell to one of the Ka + Kn cell types.

Graph construction
Given spatial cell coordinates of each cell, STELLAR first calculates 
Euclidean distances di,j for each pair of cells (vi,vj) from the same region, 
and edge (vi, vj) is added to the edge set ℰ if di,j < τ, where τ is a tunable 
threshold. We select the value of τ = 50 μm and experiment with differ-
ent threshold values in Fig. 2h. Graph construction step is independent 
of the subsequent method and can be changed as long as the con-
structed graph meaningfully reflects spatial similarities between cells.

STELLAR encoder
The STELLAR encoder contains one fully connected layer followed by 
the nonlinear activation function:

h(1)i = ϕ(W(0)h(0)i + b(0)), (1)

where h(k)i  is the hidden state of node vi in kth layer of the neural network 
and k = 0, 1. W is a parameter matrix, b is bias vector and ϕ denotes non-
linear activation function. The hidden state h(0)i  in layer 0 is set to node 
features xvi that is, a gene or protein expression vector. The rectified 
linear unit (ReLU) is used as the activation function ϕ: ReLU(⋅) = max(0, ⋅).

We then use a graph convolutional layer22 to enable message pass-
ing among nearby cells:

h(2)i = W(1)
0
h(1)i + ∑

j∈𝒩𝒩 i
W(1)
1
h(1)j , (2)

where 𝒩𝒩i denotes neighborhood on node vi. The final embedding of 
node vi is zi = h(2)i . In nonspatial STELLAR (Fig. 2f), we replace the graph 
convolutional layer with another fully connected layer.

STELLAR initialization
We initialize novel cell types with unlabeled data that lie out of distri-
bution with respect to the labeled data. We first train a single-layer 

neural network gψ on labeled data with cross-entropy loss. We cluster 
the unlabeled data using the Louvain algorithm35 with default param-
eters in scanpy38 and then summarize the average entropy of each 
cluster with the trained gψ. We select Kn clusters with largest entropy 
and assign pseudo-labels corresponding to novel cell types as cells in 
the same cluster.

STELLAR objective function
The objective function in STELLAR assigns cells to cell types  
from the reference set or discovers novel cell types. Inspired by ref. 24,  
the objective function consists of two main components: (1) a com-
ponent for discovering novel cell types, and (2) a component for 
learning to recognize cell types from the reference set (Supplemen-
tary Fig. 1).

In the component for novel cell-type discovery, we use an objec-
tive term that predicts pairwise similarities given cell embeddings 
obtained using STELLAR encoder, that is, we predict whether two 
cells are similar or not. For the reference graph, we use ground-truth 
annotations to learn to predict similarity between two cells, that is 
two cells are similar if they belong to the same cell type. For the unan-
notated graph, pseudo-labels are generated based on the distances 
between cells in the embedding space. In particular, for each cell 
within the mini-batch, we identify the most similar nearest neighbor 
cell and generate pseudo-labels for the given pair. In that way, 
pseudo-labels are generated only for the pairs in which there is the 
most confidence. To find nearest neighbors, cell embeddings h(1) 
without ReLU are used to allow cells from the reference graph to be 
selected as the neighbors of cells from the unannotated graph. For-
mally, the component for discovering cell types (DCT) minimizes the 
following term:

ℒDCT =
1

Na + Nu
∑

zi, z′ ∈

(𝒵𝒵a ∪ 𝒵𝒵u, 𝒵𝒵′
a ∪ 𝒵𝒵′

u)

− log⟨σ(WTzi),σ(WTz′i )⟩, (3)

where W denotes a linear layer weight matrix, σ denotes a softmax 
function, Na and Nu denote numbers of cells for annotated and unan-
notated graphs, respectively. 𝒵𝒵a and 𝒵𝒵u denote cell embeddings for 
annotated and unannotated graphs, and 𝒵𝒵′ and 𝒵𝒵′ denote the set of 
closest neighbors of 𝒵𝒵a and 𝒵𝒵u used for generating pseudo-labels.

The second component for recognizing cell types learns to dis-
tinguish cell types from the reference graph using ground-truth cell 
annotations y. Standard cross-entropy classification loss was enhanced 
with an adaptive margin mechanism that controls the learning speed of 
cell types from the reference set compared to novel cell types. Formally, 
STELLAR minimizes the following objective term to learn to recognize 
cell types (RCT) in the reference graph:

ℒRCT =
1
Na

∑
zi∈𝒵𝒵a

− log es(W
T
yi
zi+ū)

es(W
T
yi
zi+ū) + ∑

k≠yi
esW

T
kzi
, (4)

where s is temperature scaling parameter, ū is uncertainty and Wyi refers 
to the column vector that relates to class yi. The uncertainty is estimated 
as the average confidence of unlabeled examples computed from the 
output of the softmax function:

ū = 1
Nu

∑
vi∈𝒱𝒱u

1 −max
k
Pr(y = k|vi), (5)

where k goes over all reference and novel cell types. At the start of the 
training uncertainty is large, leading to a larger margin and forcing 
larger intraclass variance39. As training proceeds, the margin becomes 
smaller and the objective boils down to standard cross-entropy.
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Additionally, we use maximum entropy regularization term to 
avoid a trivial solution of assigning all cells to the same cell type. In 
particular, the regularization term is the following:

ℛ = 1
Na + Nu

∑
zi∈𝒵𝒵l∪𝒵𝒵u

∑
k
σk(WTzi) logσk(WTzi), (6)

where k goes over all reference and novel cell types and σk denotes kth 
cell-type value of the softmax output.

Finally, the objective function in STELLAR combines reference 
cell-type recognition, novel cell-type discovery and regularization 
components:

ℒ∗ = ℒRCT + η1ℒDCT + η2ℛ, (7)

where η1 and η2 are regularization parameters.

Architecture and hyperparameters
The encoder network in STELLAR consists of one fully connected layer 
with ReLU activation and a graph convolutional layer with a hidden 
dimension of 128 in all layers. It uses the Adam optimizer with an initial 
learning rate of 10−3 and weight decay 0. The model is trained with a 
batch size of 512 for 20 epochs. A cluster sampler40 first clusters input 
graphs into subgraphs and then assigns the subgraphs to mini-batches. 
The temperature scaling parameter s in equation (4) is set to 10. Regu-
larization parameters in equation (7), η1 add η2, are set to 1 and 0.3, 
respectively. These hyperparameters were used across all experiments.

Number of novel cell types
STELLAR is initialized with the expected number of novel cell types 
as an input parameter. As the number of novel cell types is usually not 
known, STELLAR can be initialized with a large number of novel cell 
types and will automatically reduce the number by not assigning any 
cells to unneeded classification heads.

Neighborhood identification analysis
Neighborhood analysis was performed as described previously25. 
Briefly, a window size of ten nearest neighbors for each cell was taken 
across the tissue cell-type maps. These vectors were overclustered 
to 20 clusters using k-means clustering algorithm. The clusters were 
mapped back to the tissue and evaluated for cell-type enrichments to 
determine overall structure and merged down into final structures.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The CODEX datasets presented in this study can be found in the online 
repository Dryad at https://datadryad.org/stash/share/1OQtxew0Un
h3iAdP-ELew-ctwuPTBz6Oy8uuyxqliZk. Specifically, the quantified 
single-cell data are provided (with cells in rows and protein expression, 
xy position and cell-type labels in columns). Additionally, we provide 
datasets used to transfer from the tonsil to BE tissue (BE_Tonsil_dryad.
csv) and expert-annotated healthy human intestine (B004_training_
dryad.csv), which was used to test the accuracy of STELLAR across the 
four regions of the colon regions of this dataset and also for training 
for transferring cell-type labels to unlabeled donors (B0056_unan-
notated_dryad.csv). MERFISH mouse cortex datasets are from Ref. 8.

Code availability
STELLAR was written in Python v.3.8 using the PyTorch library. The 
source code is available on Github at https://github.com/snap-stanford/
stellar. The project website with links to data and code can be accessed 
at http://snap.stanford.edu/stellar/.
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Extended Data Fig. 1 | STELLAR overview. STELLAR is a unique method in 
its ability to simultaneously recognize cell types seen in the reference set and 
discover novel cell types that have never been characterized in the reference 
set. This is made possible by an objective function that consists of two main 
components (Methods). First, STELLAR learns to gradually separate cell types 

from the reference set by controlling intra-class variance to allow the model 
to simultaneously learn to discover novel cell types. Simultaneously, STELLAR 
discovers novel classes by generating auxiliary labels (pseudo-labels) in the 
unannotated graph that are used to guide the training. The auxiliary labels are 
generated based on the nearest neighbors of each cell in the embedding space.
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C

Cell type

Extended Data Fig. 2 | CODEX image of reference dataset from human tonsil. Ground-truth labels of the tonsil CODEX multiplexed imaging dataset. Colors denote 
different cell types.
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Extended Data Fig. 3 | Cell-type distributions on tonsil and BE datasets. Cell-type distributions of ground-truth labels on (a) tonsil reference dataset and (b) 
Barrett’s esophagus dataset. PDPN stands for Podoplanin (PDPN) positive stromal cells.
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Extended Data Fig. 4 | Neighborhoods found in tonsil and Barrett’s esophagus (BE) dataset. (a) Neighborhood heatmap showing the neighborhoods found across 
both tissues and cell types enriched compared to tissue averages. (b) Neighborhood composition between BE and tonsil tissues. (c) Neighborhood types mapped back 
to tissue coordinates.
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Extended Data Fig. 5 | Comparison of STELLAR to baseline methods on the 
Barrett’s esophagus (BE) dataset. (a) Accuracy of STELLAR and scANVI on 
the BE dataset. Performance was evaluated as a mean score across n=5 runs of 
each method. Error bars are from standard deviation. scANVI stands for the 
setting evaluated in the same manner as STELLAR in which we train the model 
on tonsil dataset and evaluate on BE dataset. scANVI_leaky stands for the 
approach in which we use fraction of labels from BE dataset as the training data 
and use the rest of the BE dataset as the test set. Although the setting in which 

scANVI_leaky is evaluated does not present a fair comparison to STELLAR and 
other baselines, it indicates that the performance of drop of scANVI is caused by 
differences between tonsil and BE datasets. (b-d) Performance of STELLAR and 
alternative baselines on the BE dataset evaluated as (b) mean macro F1-score, 
(c) macro precision score, and (d) macro recall score across n=5 runs of each 
method. Error bars are from standard deviation. XGB stands for XGBoost, SVM 
for Support Vector Machine, RF for Random Forest, ADA for ADABoost, and 
Seurat for Seurat V4.
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Extended Data Fig. 6 | Robustness of STELLAR evaluated on the Barrett’s 
esophagus (BE) dataset. (a) Performance of STELLAR using different 
normalization strategies. ‘Unnorm’ stands for raw (unnormalized) data. 
Performance was evaluated as a mean accuracy score across n=5 runs of each 
normalization strategy. Error bars are from standard deviation. (b) Performance 
of STELLAR when misannotating proportion of randomly selected cells. In 
each run, cells were randomly selected and labels different than ground truth 

annotations were randomly assigned to cells in the annotated reference tonsil 
dataset. Performance was evaluated as an accuracy score across n=5 runs. 
Individual data points are shown. (c) Performance of STELLAR when removing 
different number of marker genes. In each run, different set of randomly selected 
marker genes was withheld from the reference tonsil dataset and BE datasets. 
Performance was evaluated as a mean accuracy score across n=5 runs. Error bars 
are from standard deviation.
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Extended Data Fig. 7 | Performance of STELLAR on the MERFISH dataset 
from mouse cortex. We applied STELLAR to a large-scale mouse primary 
motor cortex MERFISH dataset consisting of 23 granular cell types from two 
mice [8]. (a) Annotation accuracy of STELLAR on the MERFISH mouse cortex 
dataset with different numbers of withheld cell types. Position of scatter plot 
points is computed as a mean accuracy score across n=5 runs. Error bars are 
from standard deviation. We randomly removed a number of cell types from 
the reference set and evaluated STELLAR’s performance by gradually increasing 

the number of removed cell types. We measured accuracy separately on 
classes seen in the reference set and classes withheld from the reference set. 
Performance is evaluated on the reference cell types, novel cell types withheld 
from the reference set during training, and jointly on all cell types. (b, c) UMAP 
visualization of MERFISH mouse cortex dataset from mouse used as the test set. 
Cells are colored according to (b) ground-truth annotations, and (c) STELLAR’s 
predictions without any withheld cell types.
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Extended Data Fig. 8 | STELLAR predictions on the dataset from healthy 
intestine. CODEX-imaged regions with cell types colored by prediction from 
STELLAR using data from the healthy intestine of a different donor as the 

reference set. Data from both small intestine and colon are shown. Colors denote 
different cell types. DC stands for dendritic cell, ICC stands for interstitial cells of 
Cajal, TA stands for transit amplifying cell.
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Extended Data Fig. 9 | Multicellular structures discovered bt STELLAR on 
CODEX healthy intestine data. Characterization of multicellular structures 
by clustering the embedding space from STELLAR on CODEX healthy intestine 

data. (a) Heatmap of average cell-type composition in clustered embeddings. 
(b) Representative tissue image colored by embedding structure. IEL stands for 
intraepithelial lymphocytes.
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Extended Data Fig. 10 | Multicellular structures discovered bt STELLAR on 
MERFISH mouse cortex data. Clusters in STELLAR’s embedding space identify 
multicellular structures in tissues in MERFISH data from mouse cortex. (a) 
Heatmap of average cell-type composition in STELLAR clustered embeddings. 

(b) Representative tissue image colored by overall structure. L, lateral; OPC, 
oligodendrocyte precursor cell; PVM, perivascular macrophage; SMC, smooth 
muscle cell; VLMC, vascular leptomeningeal cell.
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