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Abstract

Neurons undergo substantial morphological and functional changes during development to form
precise synaptic connections and acquire specific physiological properties. What are the
underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila
olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21
transcriptomic clusters corresponding to 20 PN types and developed methods to match
transcriptomic clusters representing the same PN type across development. We discovered that
PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth
and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity
during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early
developmental stages, PN types with adjacent birth order share similar transcriptomes. Together,
our work reveals principles of cellular diversity during brain development and provides a
resource for future studies of neural development in PNs and other neuronal types.

Introduction

Cell-type diversity and connection specificity between neurons are the basis of information
processing underlying all nervous system functions. The precise assembly of neural circuits
involves multiple highly regulated steps. First, neurons are born from their progenitors and
acquire unique fates through a combination of (1) intrinsic mechanisms, such as lineage, birth
order, and birth timing; (2) extrinsic mechanisms, such as lateral inhibition and extracellular
induction, and (3) developmental stochasticity in some cases (Jan & Jan, 1994; Johnston &
Desplan, 2010; Kohwi & Doe, 2013; Holguera & Desplan, 2018; Li et al., 2018). During wiring,
neurons extend their neurites to a coarse targeting region, elaborate their terminal structures,
select pre- and post-synaptic partners, and finally form synaptic connections (Sanes & Yamagata,
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2009; Jan & Jan, 2010; Kolodkin & Tessier-Lavigne, 2011; Luo, 2020; Sanes & Zipursky, 2020).
Studies from the past few decades have uncovered many molecules and mechanisms that
regulate each of these developmental processes.

The development of Drosophila olfactory projection neurons (PNs) has been extensively
studied (Jefferis et al., 2004; Hong & Luo, 2014). PNs are the second-order olfactory neurons
that receive organized input from olfactory receptor neurons (ORNSs) at ~50 stereotyped and
individually identifiable glomeruli in the antennal lobe, and carry olfactory information to higher
brain centers (Vosshall & Stocker, 2007; Wilson, 2013) (Figure 1A). Different types of PNs
send their dendrites to a single glomerulus or multiple glomeruli (Marin et al., 2002; Lai et al.,
2008; Yu et al.,, 2010; Tanaka et al., 2012; Bates et al., 2020). PNs are derived from three
separate neuroblast lineages—anterodorsal, lateral, and ventral lineages, corresponding to their
cell bodies’ positions relative to the antennal lobe (Jefferis et al., 2001). PNs produced from the
anterodorsal and lateral lineages (adPNs and IPNs) are cholinergic excitatory neurons. The fate
of uniglomerular excitatory PN types, defined by their glomerular targets, is predetermined by
their lineage and birth order (Jefferis et al., 2001; Marin et al., 2005; Yu et al., 2010; Lin et al.,
2012). PNs produced from the ventral lineage (VPNs), on the other hand, are GABAergic
inhibitory neurons (Jefferis et al., 2007; Liang et al., 2013; Parnas et al., 2013). The connectivity
and physiology of PNs have also been systematically studied (Bhandawat et al., 2007; Jeanne et
al., 2018; Bates et al., 2020).

Despite the fact that PNs are among the most well-characterized cell types in all nervous
systems, their transcriptome-wide gene expression changes across different developmental stages
with cell-type specificity are still unknown. This information can help us obtain a more complete
picture of both known and unexplored pathways underlying neural development and function.
Recently, the advent of single-cell RNA sequencing (SCRNA-seq) has paved the way towards
obtaining such data (Li et al., 2017; Kalish et al., 2018; Zhong et al., 2018; Li, 2020). Here, we
profiled and analyzed the single-cell transcriptomes of most uniglomerular excitatory PNs. We
identified the correspondence between two-thirds of transcriptomes and PN types at one stage
and developed methods to reliably match transcriptomic clusters corresponding to the same types
of PNs across different stages. We discovered that PN transcriptomes exhibit unique
characteristics at different stages, including birth-order, neurite pruning, wiring specificity, and
neuronal signaling. The identification of many differentially expressed genes among different PN
types, such as transcription factors, cell-surface molecules, ion channels, and neurotransmitter
receptors, provides a rich resource for further investigations of the development and function of
the olfactory system.

Results
Single-cell transcriptomic profiling of Drosophila PNs at four developmental stages

The development of PNs follows the coordinated steps as previously described (Hong & Luo,
2014). 18 out of 40 types of adPNs are born embryonically and participate in the larval olfactory
system. Then, during the larval stage, the rest of adPNs and all IPNs are born (Jefferis et al.,
2001; Marin et al., 2005; Yu et al., 2010; Lin et al.,, 2012). During early metamorphosis
following puparium formation, embryonically born PNs first prune terminal branches of
dendrites and axons, and then re-extend their dendrites into the future adult antennal lobe, and
axons into the mushroom body and lateral horn following the neurites of larval-born PNs (Marin
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et al., 2005). From 0 to 24 hours after puparium formation (APF), PNs extend their dendrites into
the developing antennal lobe and occupy restricted regions. ORN axons begin to invade antennal
lobe at ~24 hours APF. PN dendrites and ORN axons then match with their respective partners
beginning at ~30 hours APF and establish discrete glomerular compartments at ~48 hours APF.
Thereafter, they expand their terminal branches, build synaptic connections, and finally form
mature adult olfactory circuits (Jefferis et al., 2004) (Figure 1B).

To better understand the molecular mechanisms that control these dynamic
developmental processes underlying neural circuit assembly, we performed scRNA-seq of PNs
from 4 different developmental stages: 0—6 hours APF, 24-30 hours APF, 48-54 hours APF, and
1-5 days adult (hereafter 0, 24, 48h APF and adult) (Figure 1C). We used GH146-GAL4
(Stocker et al., 1997) to drive UAS-mCD8-GFP (Lee & Luo, 1999) expression in most PNs at
24h, 48h, and adult, which labels ~90 of the estimated 150 PNs in each hemisphere, covering
~40 of the 50 PN types. At Oh APF, GH146-GAL4 also labels cells in the optic lobes (Figure
1—figure supplement 1A), which are inseparable from the central brain by dissection.
Therefore, we used VT033006-GAL4 to label PNs at Oh APF (Figure 1C and Figure 1—figure
supplement 1B) (Tirian & Dickson, 2017). VT033006-GAL4 labels most PNs from the
anterodrosal and lateral lineage, but not PNs from the ventral lineage or anterior paired lateral
(APL) neurons like GH146-GAL4. It is expressed in ~95 cells that innervate ~44 glomeruli
which largely overlap with PNs labeled by GH146-GAL4 (Inada et al., 2017; Elkahlah et al.,
2020). In addition to PNs labeled by GH146-GAL4 and VT033006-GAL4 (we will refer to them
as ‘most PNs’ hereafter), we have collected single-cell transcriptomic data using drivers that only
label a small number of PN types for mapping the transcriptomic clusters to anatomically defined
PN types.

For scRNA-seq, fly brains with a unique set of PN types labeled using different drivers at
each developmental stage were dissected and dissociated into single-cell suspensions. GFP+ cells
were sorted into 384-well plates by fluorescence-activated cell sorting (FACS), and sequenced
using SMART-seqg2 (Picelli et al., 2014) (Figure 1D) to a depth of ~1 million reads per cell
(Figure 1—figure supplement 1C). On average ~3000 genes were detected per cell (Figure
1—figure supplement 1D), and after quality filtering (see Methods), we obtained ~3700 high
quality PNs in addition to the previously sequenced ~1200 PNs (Li et al., 2017) , yielding ~4900
PNs for analysis in this study (Figure 1E). All analyzed PNs express high levels of neuronal
markers but not glial markers, confirming the specificity of sequenced cells (Figure 1—figure
supplement 1E). Unbiased clustering using overdispersed genes from all PNs readily separates
them into different groups according to their stage (Figure 1F), suggesting that gene expression
changes across these four developmental stages represent a principal difference in their single-
cell transcriptomes.

Decoding the glomerular identity of transcriptomic clusters by sequencing subsets of PNs
at 24h APF

PNs labeled by GH146-GAL4 at 24h APF form ~30 distinct transcriptomic clusters. We
previously matched 6 of these transcriptomic clusters to specific anatomically and functionally
defined PN types (Li et al., 2017) , hereafter referred to as “decoding transcriptomic identity.”
Unlike ORNSs, whose identities can be decoded using uniquely expressed olfactory receptors (Li
et al., 2020a), PNs lack known type-specific markers. Instead, PN types are mostly specified by
combinatorial expression of several genes (Li et al., 2017), making it more challenging to decode
their transcriptomic identities.
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To circumvent these challenges and decode the transcriptomic identities of more types of
PNs, we took advantage of the extensive driver line collection in Drosophila (Luan et al., 2006;
Jenett et al., 2012; Dionne et al., 2018). We searched for split-GAL4 lines that only labeled a
small proportion of all PNs (Yoshi Aso, unpublished data). Using such drivers, we could
sequence a few types of PNs at a time, plot those cells with most PNs, and then use differentially
expressed markers among them to decode their identities one-by-one.

split#28-GAL4 labeled two types of PNs—those that project their dendrites to the DC3
and DAA4I glomeruli in developing and adult animals (Figure 2A, B; note that PN types are
named after the glomeruli they project their dendrites to). We sequenced those PNs (split#28+
PNs hereafter) at 24h APF. We chose this stage because this is when different PN types exhibit
the highest transcriptome diversity as hinted by the number of clusters seen in Figure 1F (see
following sections for more detailed analysis). To visualize sequenced split#28+ PNs, we
performed dimensionality reduction using 561 genes identified from most 24h PNs
using lterative Clustering for ldentifying Markers (ICIM), an unsupervised machine learning
algorithm (Li et al., 2017), followed by embedding in the tSNE space. Split#28+ PNs (orange
dots) fell into two distinct clusters and intermingled with GH146+ PNs (grey dots) (Figure 2C).
One cluster mapped to previously decoded DC3 PNs (Li et al., 2017), and the other cluster
expressed zfh2 (Figure 2—figure supplement 1A). We validated that this cluster indeed
represents DA4l PNs by visualizing the expression of zfh2 in PNs utilizing an intersectional
strategy by combining zfh2-GAL4, GH146-Flp, and UAS-FRT-STOP-FRT-mCD8-GFP
(hereafter referred to as “intersecting with GH146-Flp”) (Figure 2—figure supplement 1B).

split#7-GAL4 labeled 3 types of PNs in the adult stage (Figure 2—figure supplement
2A). However, when we sequenced cells labeled by this GAL4 line at 24h APF and visualized
them using tSNE, we found 8 distinct clusters (Figure 2F). We reasoned that this could be due to
loss of driver expression in adult stage for some PN types. To test this hypothesis and reveal PNs
that are labeled by this driver transiently during development, we used a permanent labeling
strategy to label all cells that express split#7-GAL4 at any time of development (split#7+ PNs
hereafter) by combining it with UAS-mCD8-GFP, Actin promoter-FRT-STOP-FRT-GAL4, and
UAS-FIp. Using this strategy, we observed labeling of 8 types of PNs (Figure 2D), consistent
with number of clusters we observed by sequencing. Among split#7+ PNs, 4 types belong to the
adPN lineage (acj6+) and the other 4 types belong to the IPN lineage (vvl+) (Figure 2E). Only 1
IPN type, DA1 (CG31676+), has previously been decoded (Figure 2—figure supplement 2B).
We identified differentially expressed genes among split#7+ PNs and obtained existing GAL4
lines mimicking their expression. By intersecting those GAL4 lines with GH146-FIp, we mapped
all 7 previously unknown transcriptomic clusters to 7 PN types (Figure 2—figure supplement 2
C—H; see legends for detailed description).

In addition to screening through collections of existing driver lines, we also utilized
scRNA-seq data to find drivers that label a subpopulation of PNs. One such marker was the gene
knot (kn), which was expressed in 7 transcriptomic clusters among all GH146+ PNs (Figure 2—
figure supplement 3A). One of the kn+ clusters expressing trol has been previously mapped to
VM2 PNs (Li et al., 2017). When kn-GAL4 was intersected with GH146-FIp, 6 types of adPNs
(acj6+) and several vPNs (Lim1+) were labeled (Figure 2G, J). Among the 6 adPN types, VM7
and VM5v PNs were also labeled by split#15-GAL4 (Figure 2H). Although it has been
previously reported that GH146-GAL4 is not expressed in VM5v PNs (Yu et al., 2010), labeling
of these PNs when GH146-Flp was intersected with either kn-GAL4 or split#15-GAL4 indicates
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that GH146-FIp must be expressed in VM5v PNs at some point during development. Using
split#15-GAL4, we were able to decode the two clusters to be either VM7 or VM5v PNs (Figure
2—figure supplement 3B). Due to the lack of existing GAL4 drivers for differentially expressed
genes between these two clusters, we could not further distinguish them so far; their identities
can be decoded by creating new GAL4 drivers in future studies. Other than these two clusters,
we were able to match transcriptomic clusters and glomerular types for the rest of kn+ adPNs
one-to-one (Figure 2—figure supplement 3C-E). In addition to excitatory PNs, one kn+ vPN
type innervated DAL glomerulus (because DAL glomerulus is innervated only by IPNs and vPNs,
not adPNs). We found that DIP-beta was expressed in one kn+ vPN cluster but not in IPNs
innervating DAL glomerulus (Figure 2—figure supplement 3F, G). Intersecting DIP-beta-
GAL4 with GH146-Flp confirmed that DIP-beta+ vPN indeed targeted their dendrites to DAL
glomerulus, illustrating the DIP-beta+ VPN cluster to be DAl vPNs (Figure 2—figure
supplement 3H).

In summary, by sequencing a small number of known PN types at a time and analyzing
the expression pattern of differentially expressed genes, we have now mapped a total of 21
transcriptomic clusters corresponding to anatomically defined PN types at 24h APF (Figure 2K,
L). Ultimately, we aimed to match the transcriptomes of the same PN types across development.
As an intermediate step, we carried out global analysis of gene expression changes across
development, which could help us reliably identify transcriptomic clusters representing different
PN types at different developmental stages.

Global gene expression dynamics across four developmental stages

All sequenced PNs segregated into different clusters according to their developmental stages
using unbiased, over-dispersed genes for clustering regardless of PN types (Figure 1F). Even
when we used the genes identified by ICIM for clustering, which emphasizes the differences
between different PN types (Li et al., 2017), we still observed that individual PNs were separated
principally by developmental stages (Figure 3A). Together, these observations illustrate global
transcriptome changes of PNs from pupa to adult.

To understand what types of genes drive this separation, we searched for genes that were
differentially expressed in different developmental stages (Figure 3B, C). We clustered the
genes into different groups based on their expression pattern throughout development. Seven
groups of genes showed clear developmental trends—five groups were down-regulated from
pupa to adult and two groups were up-regulated (Figure 3D, E). Consistent with our previous
knowledge, neural development-related genes, including those with functions in morphogenesis
and cytoskeleton organization, were enriched in developing PNs (Figure C, D); genes related to
synaptic transmission, ion transport, and behavior, on the other hand, were up-regulated in
mature PNs (Figure C, E) (Li etal., 2017; Li et al., 2020b).

Single-cell transcriptomes of PNs reveal dominant biological processes at different stages of
development

Because PN transcriptomes exhibited global development-dependent dynamics, we needed to
find a method to reliably and consistently classify transcriptomic clusters representing different
PN types at all stages. We first identified informative genes for clustering from each stage using
ICIM and used them for further dimensionality reduction. However, using this method, we
obtained different numbers of clusters at each stage (Figure 4A). Closer examination of each
stage revealed unique biological features of PN development.
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At Oh APF, PNs always formed two distinct clusters—a larger cluster consisting of both
adPNs and IPNs, and a smaller one with only adPNs (Figure 4B, Figure 4—supplement 2A).
As introduced earlier, although all IPNs and many adPNs are born during the larval stage, some
adPNs are born during the embryonic stage. We hypothesized that the smaller cluster could
represent embryonically born PNs, which undergo axon and dendrite pruning during early
metamorphosis (Marin et al., 2005). Neurite pruning in Drosophila depends on cell autonomous
action (Lee et al., 2000) of the steroid hormone ecdysone receptor (EcR) (Levine et al., 1995;
Thummel, 1996; Schubiger et al., 1998; Lee et al., 2000). Upon binding of the steroid hormone
ecdysone, EcR and its co-receptor Ultraspiracle (Usp) form a complex to activate a series of
downstream targets, including a transcription factor called Sox14, which in turn promotes
expression of the cytoskeletal regulator Mical and Cullinl SCF E3 ligase (Figure 4C) (Lee et al.,
2000; Kirilly et al., 2009; Kirilly et al., 2011; Wong et al., 2013). To test our hypothesis, we
examined the expression of genes which are known to participate in neurite pruning and genes
that showed elevated expression in the mushroom body y neurons during pruning (Alyagor et al.,
2018). We found that Sox14, Mical, Cullinl, and two sorting complexes required for transport
(ESCRT) genes—shrb and Vps20, indeed showed higher expression levels in the smaller cluster
(Figure 4D). We also confirmed our hypothesis by mapping two types of embryonically born
PNs, DA4l and VA6 PNs, to this smaller cluster (Figure 4—figure supplement 2B; see
mapping details in Figure 7).

At 24h APF, we observed the highest number of clusters reflecting different PN types.
Moreover, dimensionality reduction using the top 2000 overdispersed genes also showed more
distinct clusters at this timepoint compared to the others (Figure 4—figure supplement 1).
Quantifications of transcriptomic similarity among PNs at each stage indeed confirmed the
highest diversity among PNs at 24h APF (Figure 4E-G). This is likely explained by the fact that
at this stage, PNs refine their dendrites to specific regions and begin to prepare themselves as
targets for their partner ORN axons. In addition, PN axons at the lateral horn begin to establish
their characteristic branching patterns (Jefferis et al., 2004). All these processes require high
level of molecular diversity among different PN types to ensure precise wiring, warranting more
distinction between their transcriptomes at this stage.

In contrast to the high transcriptomic diversity in 24h APF PNs, adult PNs only formed
three clusters (Figure 4A bottom, indicated by dashed lines). The three clusters represent
cholinergic excitatory PNs (marked by VAChT), and two Gadl+ GABAergic inhibitory cell
types—VPNs and APL neurons (VGlut+), respectively (Figure 4H). This is likely because after
wiring specificity is achieved, all excitatory PNs may perform similar functions, but distinct
from inhibitory neuronal types.

Thus, at different developmental stages, the differentially expressed genes we identified
all revealed the most defining biological processes those neurons are undertaking. Our
observations showed that PN transcriptomes reflect the pruning process of embryonically born
PNs at Oh APF, PN type and wiring distinction at 24h APF, and neurotransmitter type in adults.

Identifying PN types at all developmental stages

With the exception of the 24h APF PNs, gene sets identified from each of the other stages could
not resolve distinct clusters reflecting PN type diversity (Figure 4). Therefore, we tried to use
the genes identified by ICIM from 24h APF PNs to cluster PNs of the other stages. We found
that this gene set outperformed all other gene sets in separating different PN types at all
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timepoints (Figure 5A). In fact, most gene sets found by different methods at 24h APF,
including overdispersed genes, ICIM genes, as well as differentially expressed genes between
different clusters, exceeded gene sets identified at other stages for clustering PNs according to
their types (data not shown), further confirming that transcriptomes of 24h APF PNs carry the
most information for distinguishing different PN types, even for other developmental stages.

Following this observation, we decided to use differentially expressed genes between 24h
PN clusters for PN-type identification for all stages. We applied meta-learned representations for
single cell data (MARS) for identifying and annotating cell types (Brbic et al., 2020). MARS
learns to project cells using deep neural networks in the latent low-dimensional space in which
cells group according to their cell types. We used 24h APF, the stage with highest transcriptome
diversity, as the starting annotated dataset to learn shared low-dimensional space for 48h APF,
Oh APF, and eventually the adult dataset. Using this approach, we found ~30 cell types in each
stage (Figure 5B). Independently, we also validated MARS cluster annotations using two
distinct methods: HDBSCAN clustering based on tSNEs or Leiden clustering based on
neighborhood graphs (Figure 5—figure supplement 1) (Blondel et al., 2008; Levine et al., 2015;
Traag et al., 2019). Clusters identified by HDBSCAN and Leiden largely agreed with MARS
annotations, confirming the reliability of MARS. We compared cluster annotations by these three
methods to known PN types at 24h APF (Figure 5—figure supplement 1C) and found that even
at this stage, MARS performed better at segregating some closely related clusters representing
multiple PN types (Figure 5—figure supplement 1D). At Oh APF and the adult stage, MARS
identified more clusters compared to the other methods, demonstrating the robustness of MARS
at identifying unique cell types.

Matching the same PN types across four developmental stages

We next sought to match transcriptomes of the same PN type across different developmental
stages. We first tried to apply some batch correction methods, including Harmony, BBKNN,
combat, and Scanorama, to our dataset to correct for the transcriptomic changes of PNs
throughout development (Hie et al., 2019; Korsunsky et al., 2019; Polanski et al., 2020). For all
batch methods attempted, we observed instances of (1) PNs of the same type at the same stage
split into different clusters; (2) PNs of different types merge into the same cluster; (3) no
distinguishable cluster formation for many PNs in stages other than 24h APF. Therefore, we
needed to develop alternative approaches to reliably match transcriptomes of same PN types
across different developmental stages. To perform this task, we first used kn+ PNs as test case.
We collected PNs labeled by kn-GAL4 from 24h APF, 48h APF, and adult brains for ScRNA-seq
(Figure 6A). Dimensionality reduction of these cells showed a consistent number of clusters
across stages (Figure 6B). One exception is an extra VPN cluster observed at 48h APF and adult
stages. This discrepancy with 24h APF data is likely caused by the lower number of vPNs
sequenced at 24h APF.

When kn+ PNs from all three stages were plotted together, all adPNs (acj6+ clusters on
the upper side) formed relatively distinct clusters and did not intermingle with adPNs from the
other timepoints (Figure 6C), reflecting substantial changes in the transcriptome of the same
type of PNs across development. To match the same type of PNs, we took two independent
approaches (Figure 6D). In the first approach, clusters were automatically matched based on
their transcriptomic similarity. Briefly, we identified a set of genes that were differentially
expressed in each cluster compared to all the rest at the same stage. Then, we calculated the
percentage of genes shared between each pair of clusters across two stages (Jaccard similarity
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index) (Figure 6E). If two clusters from two stages both had the highest similarity score with
each other, we considered them to be matched. In the second approach, we used markers that
were expressed in a consistent number of clusters at each stage. Those markers, or marker
combinations, were used to manually match the same type of PNs (some example markers used
are shown in Figure 6F). Using these two approaches, we were able to match the same types of
PNs across three developmental stages, and the results from the two approaches consistently
agreed with each other (Figure 6G). In addition, these data further validated an earlier
conclusion (Figure 4) that as development proceeds from 24h APF and 48h APF to adults, the
transcriptomic difference between identified PN types becomes smaller (Figure 6G; quantified
in Figure 6—figure supplement 1).

We next applied the same approaches for matching kn+ PN types across 3 stages to
match most PNs (sequenced using either GH146-GAL4 or VT033006-GAL4) across 4 stages
(Figure 7A). In addition to marker gene expression, we also used subset of PNs we had
sequenced from different stages to manually match PN types (Figure 7—figure supplements
1A-D). For the manually matched PN types with known identity, we summarized markers and
marker combinations we used in a dot plot, where both average expression as well as percentage
of cells expressing each marker were shown (Figure 7—figure supplement 2). Using both
manual and automatic approaches, we were able to match many PN types across 2 or more
developmental stages (Figure 7B), which includes 18 PN types that we have decoded in Figure
2 and 7 transcriptomic clusters with unknown identity. The majority of the PNs we matched were
confirmed by both the automatic (transcriptomic similarity-based) and manual (marker-based)
methods (Figure 7C and Figure 7—figure supplement 1E).

PN types with adjacent birth order share more similar transcriptomes at early stages of
development

Previous works have shown that the PN glomerular types are prespecified by the neuroblast
lineages and birth order within each lineage (Jefferis et al., 2001; Marin et al., 2005; Yu et al.,
2010; Lin et al., 2012) (Figure 8A). Having decoded the transcriptomic identities of different PN
types at different timepoints, we can now ask the extent to which transcriptomic similarity is
contributed by lineage and birth order, and whether these contributions persist through
development.

To address these questions, we performed hierarchical clustering on all excitatory PN
clusters we identified from each timepoint. We plotted the dendrogram and the correlation
between each pair of clusters (Figure 8—figure supplement 1). We observed some lineage-
related similarity between PN types at Oh APF: transcriptomes of PNs from the same lineage
tended to be clustered together in the dendrogram and their correlations are higher, although the
relationship was not absolute. Such similarity was gradually lost as development proceeded (as
inferred by both the dendrogram as well as correlation between PNs from the same lineage).
Interestingly, we noticed that some PNs with adjacent birth order appeared to be neighbors in the
dendrogram at Oh and 24h APF.

To further investigate the relationship between birth order of PNs and their transcriptomic
similarity, we selected all decoded PNs from the anterodorsal lineage, ordered them according to
their birth order, and computed their correlation (Figure 8B). Oh APF adPNs showed high
correlation between their birth order and their transcriptomic similarity, as indicated by the high
correlations in boxes just off the diagonal line. To test if the transcriptomic similarity of adPNs
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indeed covaries with their birth order, we performed permutation tests, comparing the Spearman
correlations between birth-order ranking and transcriptomic similarity ranking (Figure 8C, see
Materials and Methods for details). The results confirmed that Oh and 24h APF PNs, but not 48h
APF and adult PNs, exhibited high correlations between their birth orders and transcriptomic
similarities. In addition, developmental trajectory analysis of adPNs born at the larval stage using
Monocle 3 (Cao et al., 2019) also showed that the unbiased pseudo time recapitulated their birth
order (Figure 8D).

A previous study profiled the transcriptomes of PN neuroblasts at various larval stages
and identified 63 genes with temporal gradients (Liu et al., 2015). Among those genes, the
authors have validated that two RNA-binding proteins, Imp and Syp, regulate the fate of PNs
born at different times. Therefore, we analyzed expression of these 63 genes at Oh APF to see if
any of these genes with temporal gradients has persisted expression in postmitotic PNs. We
found 15 out of the 63 genes (including Imp but not Syp) maintained some temporal gradient
patterns according to their birth order at Oh APF (Figure 8E) but not at the later stages (data not
shown). This result suggested that the expression of a subset of birth order-related genes in adPN
neuroblast, including a cell-fate regulator, is maintained in postmitotic PNs till early pupal stage.

In summary, our data demonstrated that PN types with adjacent birth order shared more
similar transcriptomes, reflecting temporal gene expression dynamics of their progenitor. Such
transcriptomic similarity was maintained at early pupal stages and was gradually lost as PNs
mature.

Differentially expressed genes in different PN types

Hierarchical clustering on the principal components calculated using the entire gene matrix
indicates that the similarities between different PN types are not fixed across development
(Figure 8—figure supplement 1). This suggests that the differentially expressed genes in PNs
differ across developmental stages. Identifying differentially expressed (DE) genes, especially
among those that we have matched across multiple developmental stages (Figure 7), can allow
us to investigate expression dynamics in different PN types and also reveal interesting molecules
for future studies.

We consider a gene to be differentially expressed if it has an adjusted p-value of less than
0.01 by Mann-Whitney U test in at least one cluster compared to the rest of the clusters. Using
this criterion, we found around 500 DE genes at 24h APF, 48h APF, and the adult stage (Figure
9A). At Oh APF, many more DE genes were identified. The larger gene set at this stage is mostly
contributed by the embryonically born PNs (1015 out of 1393 genes), which have
transcriptomically distinct features because these neurons undergo axon and dendrite pruning
(Figure 4A-D). We intersected the four lists of DE genes to find genes that are differentially
expressed throughout development. This resulted in 103 genes, 52 of which were differentially
expressed among the 12 PN types we matched across all four stages. Among the DE genes that
are differentially expressed in all four stages, we observed an over-representation of transcription
factors (TFs) and cell surface molecules (CSMs) compared to their genome-wide fractions
(Figure 9B). Previous studies have shown that genes in these two categories play critical roles in
PN wiring (Hong & Luo, 2014; Li et al., 2017). We therefore further explored the expression
pattern of these genes (Figure 9C and Figure 9—figure supplements 1 and 2).

While the majority of TFs are expressed in both lineages, expression of a small fraction
of TFs is lineage-specific. For example, expression of acj6, kn, C15, and salr is limited to PNs
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from the anterodorsal lineage, whereas vvl and unpg are only expressed in PNs from the lateral
lineage (Figure 9C and Figure 9—figure supplement 1). Furthermore, whereas TFs are
generally expressed in a binary fashion throughout development (Figure 9C and Figure 9—
figure supplement 1), many CSMs exhibit graded expression with complex temporal dynamics
(Figure 9D and Figure 9—figure supplement 2). This is consistent with observations made
from single-cell transcriptome studies in the developing Drosophila optic lobe (Kurmangaliyev
et al., 2020; Ozel et al., 2020). Among the CSMs that are differentially expressed in any of the 4
stages, we observed many molecules in protein families that have been implicated in wiring,
including Beaten Path (Beat), Dpr, DIP, Dscam, Fasciclin (Fas), and Robo (Figure 9—figure
supplement 2) (Kolodkin & Tessier-Lavigne, 2011; Sanes & Zipursky, 2020). Thus, this
differentially expressed gene list may contain an enriched set of wiring-related molecules, some
of which have been studied in the context of wiring. Therefore, our data can serve as a useful
resource for future studies of wiring specificity. On the other hand, we note that some genes with
differential expression pattern at the protein level, such as Ten-a and Ten-m (Hong et al., 2012),
do not exhibit obvious differential expression at the mRNA level. This highlighted the existence
of post-transcriptional regulation for some genes that are not captured by transcriptomic analysis.

Genes involved in metabolism and neuronal signaling are differentially expressed among
adult PNs

Our analyses have shown that transcriptomic differences between different PN types diminish as
development proceeds (Figure 4). However, different PN types in adults still exhibited
differential gene expression (Figure 9). Such differential expression could be contributed by
residual developmentally differentially expressed genes, by new categories of differentially
expressed genes in mature PNs reflecting functional differences between different PN types, or a
combination of both. To distinguish between these possibilities, we compared DE genes among
different transcriptomic clusters of PNs at 24h APF and at the adult stage.

We found that more than a third of the DE genes were shared between these two stages
(Figure 10A). Gene ontology analysis revealed that these shared genes were predominately
related to neural development (Figure 10B, middle). These data suggested that some DE genes
found among adult PN types were developmentally differentially expressed genes, some of
which could play a role in the maintenance of adult nervous system structures.

Interestingly, many gene ontology terms related to the physiological properties of PNs
were observed among the adult-only DE genes (Figure 10B, bottom). In addition, we observed
several ion-channels and neurotransmitter receptors in the list of CSMs with differential
expression pattern (Figure 9—figure supplement 2). Indeed, several adult DE genes belong to
the ion channels or transmembrane receptor (including neurotransmitter receptors and G-protein-
coupled receptors) gene groups (Figure 10C). These results demonstrated that PN types in adults
acquire new categories of differentially expressed genes, and those genes might lead to
differences in the physiological properties between different PN types.

Discussion
Deciphering single-cell transcriptomes for connectivity-defined neuronal types

Traditionally, neurons are classified based on their morphology, physiology, connectivity, and
signature molecular markers. More recently, scRNA-seq has allowed classification of cell types
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based entirely on their transcriptomes. Many studies have illustrated that cell-type classification
based on the single-cell transcriptomes largely agrees with classifications by some of the more
traditional criteria (Zeng & Sanes, 2017).

For Drosophila olfactory PNs, the most prominent type-specific feature is their pre- and
post-synaptic connections, which determines their olfactory response profiles and the higher
order neurons they relay olfactory information to. Thus, different PN types are largely defined by
the differences in their connectivity. We have previously observed that the transcriptomic
identity of PNs corresponds well with their types during development, and for three identified
PN types, transcriptomic differences peak during the circuit assembly stage (Li et al., 2017).
Here, we generalized these findings across many more PN types by showing that transcriptomic
differences are the highest around 24h APF, a stage when PNs are making wiring decisions and
preparing cues for subsequent ORN-PN matching (Figure 4), and by demonstrating that
clustering of PNs according to their types from all stages are best done using differentially
expressed genes at 24h APF (Figure 5). Additionally, our data indicate that at certain stages,
differences among those type-specific genes can be masked by other genes belonging to
pathways of a more dominating biological process (such as neurite pruning at Oh APF for PNs).
As a consequence, it may be challenging to identify genes carrying type-specific information at
certain timepoints even when sophisticated algorithms are applied, which can lead to
underestimation of cell type diversity. Our observation of peaked transcriptome diversity in
developing projection neurons has also been observed in the Drosophila optic lobe recently
(Ozel et al., 2020). Thus, in order to accurately classify single-cell transcriptomes, especially for
connectivity-defined neuronal types such as fly olfactory PNs, it may be a general strategy to
first obtain their single-cell transcriptomes during circuit assembly and then use this information
to supervise cell-type classification in other developmental stages, including adults.

Tracing the same cell type in different states

Both cell types and their biological states can split single-cell transcriptomes into distinct clusters
(Zeng & Sanes, 2017; Cembrowski & Menon, 2018; Tasic, 2018). We observed that the same
PN types of different developmental stages—reflecting different states—indeed exhibit very
distinct transcriptomic profiles (Figures 5, 6). To identify transcriptomic clusters corresponding
to the same PN types across multiple timepoints, we developed and applied two complementary
methods—one manual based on the marker gene expression, and one automatic based on the
similarity between transcriptomic clusters. By applying both methods, we can confidently track
the transcriptomes of the same cell type throughout development and study the unique molecular
features of each stage. We note that two other methods for tracing transcriptomes of the same
neuronal types across development—batch-correction to cluster same cell types across different
stages, and training an artificial neural network to classify cell type—have been applied
successfully in recent single-cell transcriptome studies of cells in the developing Drosophila
optic lobe (Kurmangaliyev et al., 2020; Ozel et al., 2020).

Together, those methods can be applied to other single-cell studies where diverse cell
types and multiple states are involved. Those methods can be especially useful for tissues with
high cellular diversity but lack unique markers for each cell type.

Using single-cell RNAseq data to identify new candidate molecules for future studies

In this study, we have obtained high-quality single-cell transcriptomes of most excitatory PNs
from early pupal stage to adulthood (Figure 1). We have used combinations of markers and
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drivers to decode the transcriptomic identity of 21 transcriptomic clusters at 24h APF (Figure 2),
and matched clusters representing the same PN type across four developmental stages (Figure 7).

Using this rich and well-annotated dataset, researchers can now explore different aspects
of PN development and function to identify candidate molecules for future studies. For example,
one can search for novel molecules involved in neurite pruning among the differentially
expressed genes between the embryonically-born and larval-born PNs at Oh APF (Figure 4B-D).
Developmentally enriched genes and genes that are differentially expressed among different PN
types, on the other hand, can be good candidates for studies on neural development and wiring
specificity (Figure 3 and Figure 9). Differentially expressed neuronal signaling genes in adult
PNs can be used to explore differences in physiological properties and information processing
(Figure 10). In addition, driver lines for specific types of PNs can be made using genes that
show consistent expression pattern across different stages (Figure 7—figure supplement 2) to
label and genetically manipulate specific PN types. Together with several recent in depth
scRNAseq studies of cells in the visual and olfactory system across multiple stages (Jain et al.,
2020; Kurmangaliyev et al., 2020; McLaughlin et al., 2020; Ozel et al., 2020), these studies have
established foundations of gene expression for Drosophila olfactory and visual systems and
should catalyze new biological discoveries.

12
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Methods and Materials

Key Resource Table

Reagent type Designation Source or Identifiers Additional
(species) or reference information
resource
Genetic reagent (D. GH146-GAL4 (Stocker et al., RRID:
melanogaster) 1997) BDSC_30026
Genetic reagent (D. VT033006-GAL4 | (Tirian & RRID:
melanogaster) Dickson, 2017) BDSC_73333
Genetic reagent (D. Mz19-GAL4 (Jefferis et al., RRID:
melanogaster) 2004) BDSC_41573
Genetic reagent (D. knot-GAL4 (Lee et al., 2018) RRID: BDSC _
melanogaster) 67516
Genetic reagent (D. split#28-GAL4 Yoshi Aso N/A SS01265
melanogaster) (unpublished)
Genetic reagent (D. split#7-GAL4 Yoshi Aso N/A $S01867
melanogaster) (unpublished)
Genetic reagent (D. split#15-GAL4 Yoshi Aso N/A SS01165
melanogaster) (unpublished)
Genetic reagent (D. GH146-FIp (Hong et al., 2009) | N/A
melanogaster)
Genetic reagent (D. UAS-FRT- (Hong et al., 2009) | RRID:
melanogaster) STOP-FRT- BDSC_30125
mCD8GFP
Genetic reagent (D. zfh2-GAL4 (Lee etal., 2018) RRID:
melanogaster) BDSC_86479
Genetic reagent (D. Act-FRT-STOP- (Pignoni & N/A
melanogaster) FRT-GAL4 Zipursky, 1997)
Genetic reagent (D. UAS-FIp (Duffy et al., N/A
melanogaster) 1998)
Genetic reagent (D. C15-p65"° (Xie et al., 2019) N/A
melanogaster)
Genetic reagent (D. C15-GAL4P®P This study N/A

melanogaster)
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Genetic reagent (D. danr-P65"P This study N/A
melanogaster)
Genetic reagent (D. VT033006- Yoshi Aso N/A
melanogaster) GAL4PEP (unpublished)
Genetic reagent (D. DIP-zeta-GAL4 (Cosmanescu et RRID:
melanogaster) al., 2018) BDSC_90317
Genetic reagent (D. DIP-eta-GAL4 (Cosmanescu et RRID:
melanogaster) al., 2018) BDSC_90318
Genetic reagent (D. AstA-GAL4 (Deng etal., 2019) [ RRID:
melanogaster) BDSC_84593
Genetic reagent (D. DIP-beta-GAL4 (Carrillo et al., RRID:
melanogaster) 2015) BDSC_90316
Genetic reagent (D. kn-GAL4PBP This study N/A
melanogaster)
Genetic reagent (D. elav-GAL4P®P (Luan etal., 2006) | N/A
melanogaster)
Antibody Rat monoclonal Developmental RRID: (1:40in 5%
anti-Ncad Studies Hybridoma | AB_ 528121 normal goat
Bank serum)
Antibody Chicken Aves Labs RRID: (1:1000 in 5%
polyclonal anti- AB_ 10000240 normal goat
GFP serum)
Software, algorithm ZEN Carl Zeiss RRID:
SCR_013672
Software, algorithm ImageJ National Institutes RRID:
of Health SCR_003070
Software, algorithm Ilustrator Adobe RRID:
SCR_010279
Software, algorithm STAR 254 (Dobin et al., RRID: https://github.co
2013) SCR_015899 m/alexdobin/ST
AR
Software, algorithm HTseq 0.11.2 (Anders et al., RRID: https://github.co
2015) SCR_005514 m/htseg/htseq
Software, algorithm Scanpy (Wolf et al., 2018) RRID: https://scanpy.rea
SCR_018139 dthedocs.io/en/st
able/
Software, algorithm Iterative (Lietal., 2017) N/A https://github.co
Clustering for m/felixhorns/Fly
Identifying PN
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Markers (ICIM)
Recombinant DNA pT-GEM(0) (Diao et al., 2015) RRID:
reagent (plasmid) Addgene 62891
Recombinant DNA pBS-KS-attB2- (Diao et al., 2015) RRID:
reagent SA(2)-T2A- Addgene_62904
Gal4DBD-
Hsp70
(plasmid)
Recombinant DNA pU6-Bbsl- (Gratz et al., 2013) RRID:
reagent chiRNA Addgene_45946
(plasmid)

Drosophila Stocks and genotypes

Flies are maintained on standard cornmeal medium at 25 °C with 12-h light-dark cycle. The
following lines were used in this study: GH146-GAL4 (Stocker et al., 1997), VT033006-GAL4
(Tirian & Dickson, 2017), Mz19-GAL4 (Jefferis et al., 2004), knot-GAL4 (Lee et al., 2018),
GH146-Flp, UAS-FRT-STOP-FRT-mCD8-GFP (Potter et al., 2010), zfh2-GAL4 (Lee et al.,
2018), Act-FRT-STOP-FRT-GAL4 (Pignoni & Zipursky, 1997), UAS-Flp (Duffy et al., 1998),
C15-p65°° (Xie et al., 2019), DIP-beta-GAL4, DIP-eta-GAL4, DIP-zeta-GAL4 (Carrillo et al.,
2015; Cosmanescu et al., 2018), AstA-GAL4 (Deng et al., 2019), and elav-GAL4P®P (Luan et al.,
2006). VT033006-GAL4"®P, split-GAL4 line #7 (SS01867), #15 (SS01165), and #28 (SS01265)
are unpublished reagents generously provided by Yoshi Aso (Janelia Research Campus).

Generation of danr-p65°°, kn-GAL4"®° and C15-GAL4PEP

danr-p65°° was generated using CRISPR mediated knock-in. ~2000 bp of genomic sequence

flanking the targeted insertion site was amplified by Q5 hot-start high-fidelity DNA polymerase
(New England Biolabs) and inserted into pCR-Blunt-TOPO vectors (Thermo Fisher). Using this
vector, we generated homology directed repair (HDR) vector TOPO-danr-T2A-p65AD-P3-RFP
by inserting T2A-p65(AD)::Zip+ and 3XP3-RFP-SV40 (cloned from pT-GEM(0) Addgene
#62891) 45bp downstream of the start codon of danr. CRISPR guide RNA (gRNA) targeting a
sequence inside danr (AACATCCGGATGAGCACGCG) were designed by the flyCRISPR
Target Finder tool and cloned into a pU6-Bbsl-chiRNA vector (Addgene #45946). The HDR and
gRNA vectors were co-injected into nos-Cas9 (gift from Dr. Ben White) embryos. RFP+
progenies were selected and individually balanced.

kn-GAL4P®P was generated by co-injecting pBS-KS-attB2-SA(2)-T2A-GAL4DBD-Hsp70
(Addgene #62904) and ®C31 into the embryos of MI115480 (BL61064). All yellow™ progenies
were individually balanced.

C15-GAL4"®P was generated using methods similar to danr-p65"°. But because C15
have been shown to be involved in PN dendrite targeting (Li et al., 2017), instead of inserting
driver elements into the coding region, the stop codon of C15 was replaced by T2A-
GAL4(DBD)::Zip+ to prevent disruption of the gene.

Immunofluorescence
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533  Fly brains were dissected and immunostained according to previously described methods (Wu &
534  Luo, 2006). Primary antibodies used in this study included rat anti-Ncad (N-Ex #8; 1:40;
535 Developmental Studies Hybridoma Bank), chicken anti-GFP (1:1000; Aves Labs). Secondary
536 antibodies conjugated to Alexa Fluor 488/647 (Jackson ImmunoResearch) were used at 1:250. 5%
537  normal goat serum in phosphate buffered saline was used for blocking and diluting antibodies.
538  Confocal images were collected with a Zeiss LSM 780 and processed with ImageJ.

539  Single-cell RNA sequencing procedure

540  Single-cell RNA sequencing was performed following previously described protocol (Li et al.,
541  2017). Briefly, Drosophila brains with mCD8-GFP labeled cells using specific GAL4 drivers
542  were dissected at appropriate timepoints (0-6h APF, 24-30h APF, 48-54h APF, and 1-5 day
543  adults). Optic lobes were removed from brain during dissection for all timepoints except for 0-6h
544  APF. Single-cell suspension were prepared and GFP positive cells were sorted using
545  Fluorescence Activated Cell Sorting (FACS) into individual wells of 384-well plates containing
546  lysis buffer using SH800 (Sony Biotechnology). Full-length poly(A)-tailed RNA was reverse-
547  transcribed and amplified by PCR following the SMART-seq2 protocol (Picelli et al., 2014).
548 cDNA was digested using lambda exonuclease (New England Biolabs) and then amplified for 25
549  cycles. Sequencing libraries were prepared from amplified cDNA, pooled, and quantified using
550 BioAnalyser (Agilent). Sequencing was performed using the Novaseq 6000 Sequencing system
551  (Illumina) with 100 paired-end reads and 2 x 8 bp index reads.

552  QUANTIFICATION AND STATISTICAL ANALYSIS

553  Unless otherwise specified, all data analysis was performed in Python using Scanpy (Wolf et al.,
554  2018), Numpy, Scipy, Pandas, scikit-learn, and custom single-cell RNA-seq modules (Li et al.,
555  2017; Brbic et al., 2020). Gene Ontology analysis were performed using Flymine (Lyne et al.,
556  2007). Sequencing reads and preprocessed sequence data are available in the NCBI Gene
557  Expression Omnibus (GSE161228). Custom analysis code is available at
558  https://github.com/Qijing-Xie/FIyPN _development.

559  Sequence alignment and preprocessing

560  Reads were aligned to the Drosophila melanogaster genome (r6.10) using STAR (2.5.4) (Dobin
561 etal., 2013). Gene counts were produced using HTseq (0.11.2) with default settings except “‘-m
562 intersection-strict” (Anders et al., 2015). We removed low-quality cells having fewer than
563 100,000 uniquely mapped reads. To normalize for differences in sequencing depth across
564 individual cells, we rescaled gene counts to counts per million reads (CPM). All analyses were
565 performed after converting gene counts to logarithmic space via the transformation
566  Log(CPM+1). We further filter out non-neuronal cells by selecting cells with high expression of
567  canonical neuronal genes (elav, brp, Sytl, nSyb, CadN, and mCD8-GFP). We retained cells
568  expressing at least 8 Log,(CPM+1) for least 2/6 markers.

569  Dimensionality reduction and clustering

570  To select variable genes for dimensionality reduction, we used previously described methods to
571  search for either overdispersed genes (Satija et al., 2015) or ICIM genes (Li et al., 2017). We
572  then further reduced its dimensionality using tSNE to project the reduced gene expression matrix
573 into a two-dimensional space (van der Maaten & Hinton, 2008). We observed that most of our
574  recently sequenced cells using NovaSeq exhibited some small batch effect with PNs sequenced
575  using NextSeq [PNs from (Li et al., 2017)]. To overcome this batch effect (in Figure 2, and
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Figure 7—figure supplement 2 A, C), we performed principal component analysis (PCA) on the
ICIM matrix, applied Harmony to correct for batch effect on the principal components (PCs)
(Korsunsky et al., 2019), and used tSNE to further project the Harmony-corrected PCs into a
two-dimensional space.

To cluster PNs in an unbiased manner, we applied the hierarchical density-based
clustering algorithm, HDBSCAN, on the tSNE projection (Mclnnes et al., 2017). Parameters
min_cluster_size and min_samples were adjusted to separate clusters representing different types
of PNs. In addition, we also clustered cells using an independent, community-detection method
called Leiden on the neighborhood graph computed based on the ICIM gene matrix (Blondel et
al., 2008; Levine et al., 2015; Mclnnes et al., 2018). Both methods appeared to agree with each
other for all datasets we examined (examples in Figure 5—figure supplement 1), and we
assigned PN types in Figure 2 based on HDBSCAN clustering.

Global level dynamic gene identification

To identify dynamically expressed genes on the global level (Figure 3), we first identified the top
150 most differentially expressed genes (Mann-Whitney U test) between every two stages and
combined them to obtain a set of 474 dynamic genes. We calculated the median expression of
each gene at each timepoint and normalized these median expression values by dividing them by
the maximum value across time points. We then performed dimensionality reduction on the
expression profiles of the genes using tSNE, and identified clusters using HDBSCAN on the
projected coordinates. This resulted in identification of 8 sets of genes with distinct dynamic
profiles, of which 2 sets are upregulated (Figure 3E), 4 sets are down regulated (Figure 3D), and
2 sets without obvious trend from Oh APF to adult cells (data not shown).

Transcriptomic similarity calculation

To analyze the transcriptome differences of PNs in different stages (Figure 4E, F), we first
isolated IPNs and adPNs to analyze cells from each lineage separately. Cell-level analysis was
performed by calculating for each cell mean inverse Euclidean distance in the 2-dimensional
UMAP space from all other cells within each stage using the 1215 genes identified by ICIM
from most PNs of all stages (Figure 3A). Box plots show the distance distribution at each stage
(Figure 4E and F, left). Cluster-level analysis was performed on the MARS clusters. We
identified a set of differentially expressed genes for each cluster and calculated Pearson
correlation on differentially expressed genes between all pairs of clusters. Bar plots represent
mean values across all pairs and errors are 95% confidence intervals determined by
bootstrapping with n=1,000 iterations (Figure 4E and F, right).

PN type identification for most PNs

We observed that the transcriptomes of different PN types are the most distinct at 24h APF and
variable genes identified at this stage carry type-specific information (Figure 5). Therefore, we
calculated the differentially expressed genes among 24h APF clusters and applied MARS to
identify clusters in the space of those genes. MARS is able to reuse annotated single-cell datasets
to learn shared low-dimensional space of both annotated and unannotated datasets in which cells
are grouped according to their cell types. However, initially we did not have any annotated
experiments, so we first applied MARS to annotate 24h APF clusters. We then used 24h APF
clusters as annotated dataset and moved to annotate PNs at 48h APF. We then repeated the same
procedure by gradually increasing our set of annotated datasets. In particular, we used 24h and
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48h APF data to help in annotating Oh APF, and finally all three datasets (Oh, 24h, 48h) for the
adult PNs. We proceed in this order according to the expected difficulty to identify PN types at a
particular stage (Figure 5). At each stage, we ran MARS multiple times with different random
initializations and architecture parameters to increase our confidence in the discovered clusters,
and combined annotations from these different runs. For each cluster, we additionally manually
checked the expressions of known PN markers to confirm the annotations.

Matching clusters representing the same PN type across development using marker
expression

For each cluster, we used Mann-Whitney U test to find genes that are highly expressed in that
cluster compared to the rest. Then, among those genes, we searched for genes or 2-gene
combinations which are uniquely expressed in 1 cluster. We check each gene or combination of
genes at the other stages, and if they are also only expressed in 1 cluster and they are of the same
lineage, we consider them to be the same types of PNs. Genes used to match clusters
representing the same PN types at different timepoints are summarized in a dot-plot in Figure
7—figure supplement 2.

In addition, we used previously sequenced subset of PNs using Mz19-GAL4 and kn-GAL4
to overlay with most PNs in combinations of those markers to confirm our matching.

Matching clusters representing the same PN type across development using similarity
calculation

For each cluster, we found the set of differentially expressed genes in that cluster compared to all
other clusters at the same stage. Next, we computed the similarity of the sets of identified
differentially expressed genes between all pairs of clusters across subsequent stages. Specifically,
we computed similarity scores between all pairs of clusters from (i) Oh and 24h APF, (ii) 24h and
48h APF, and (iii) 48h and adult APF. The similarity of the sets of differentially expressed genes
was computed as the Jaccard similarity index defined as the ratio of the cardinality of the
intersection of two sets and the cardinality of the union of the sets. We excluded clusters
representing VPNs and APLs for matching most PNs across 4 stages (Figure 7). For each cluster,
we then identified its most similar cluster at the adjacent stage according to the Jaccard index. If
the clusters between two stages coincide—meaning that two clusters from two stages have the
highest similarity to each other, we consider the clusters to be matched. Empirically, we found
this matching procedure to be stringent, resulting in high confidence matching pairs.

Correlation between different PN types

MARS clusters of excitatory PNs were used for analysis in Figure 8. We performed PCA on the
entire matrix and calculated their correlation based on the PCs. Dendrograms shown in Figure
8—figure supplement 1 are generated using distance calculated using Farthest Point Algorithm
and organized so the distance between successive leaves is minimal.

To observe the relationship between birth timing and their transcriptomic similarity, for
each stage, we selected adPN clusters, performed PCA among all genes detected, calculated their
correlation, and plotted the correlation matrices according to their birth order (Yu et al., 2010)
(Figure 8B). For the two clusters representing either VM7 or VM5v PNs, we ordered them based
on their correlation with decoded PN types whose birth order are adjacent to either of these two
PN types. We are showing adPNs in the figure because we decoded much fewer transcriptomic
clusters belonging to the IPN lineage, which is too few to carry out analysis shown in Figure 8
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C-D with robust statistical backing. Nevertheless, we still observed higher correlation between
IPN types with adjacent birth-order in Oh and 24h APF (data not shown).

Spearman’s rank correlation calculation and permutation test

For consistency, 8 adPN types that were decoded across 4 stages were selected for this analysis
(Figure 8C). For each PN type X, the group of PNs that are born either earlier or later than X was
selected depending on which direction contains more PN types (each group contains at least 5
types of PNs). Then, we ranked the PN types according to their correlation with X and calculated
the Spearman’s rank correlation of this ranking with the ranking based on their birth order. For
each stage, we obtained the average correlation coefficients and plotted the result as a red dot on
the x-axis for each timepoint. Higher value indicates higher correlation between birth order and
order calculated based on their transcriptomic similarity.

To determine if we can reject the null hypothesis that the adPN transcriptomic similarity
do not covary with the ranks of the birth order, we performed permutation test. We randomly
shuffled the birth order and performed the aforementioned correlation calculation for 5000
iterations. The distribution of the simulated average correlations is shown in the histogram of
Figure 8C. We obtained the p-value by dividing the number of times of the simulated correlation
is greater than the observed correlation by the total number of iterations.

Developmental trajectory analysis

Pseudo-time analysis of Oh APF adPNs was performed using the monocle package in R (Trapnell
et al., 2014; Qiu et al., 2017; Cao et al., 2019). We selected only adPNs born at larval stage
because the embryonically born adPNs have a very distinct transcriptomes which skew clustering.
We applied the dimensionality reduction method UMAP (Becht et al., 2018) on 561 24h ICIM
genes to resolve distinct PN types. This dimensionally reduced dataset was then used as the basis
for a developmental trajectory graph created by Monocle 3. We then selected the cluster
representing DL1 PNs to be the root node of the trajectory and computed the pseudo-times based
on distance from the root in accordance to the trajectory.

Differential gene expression analysis

We used adPN and IPN clusters to identify differentially expressed genes at each stage (Figure
9). We performed Mann-Whitney U test on each cluster compared to the rest of the clusters at
each developmental stage and applied Benjamini-Hochberg Procedure to adjust p-value. Genes
with an adjusted p-value of less than 0.01 were kept for our analysis.

To identify genes that are transcription factors (TFs), cell surface molecules (CSM), ion channels,
and transmembrane receptors, we used curated lists. The TF list was from the FIyTF database
(Pfreundt et al., 2010) and the CSM list was from (Kurusu et al., 2008). These lists were
manually curated to remove spurious annotations and redundancies according to Flybase
annotation. Lists of ion channels and transmembrane receptors were based on gene groups
obtained from FlyBase. To avoid redundancy, ion channels that also belong to the
transmembrane receptor gene group are not plotted as transmembrane receptors (Figure 9C,
bottom).
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Figure legends

Figure 1. Overview of single-cell transcriptomic profiling of Drosophila olfactory projection
neurons (PNs).

(A) Schematic of the adult Drosophila olfactory system. Approximately 50 types of olfactory
receptor neurons (ORNS) form one-to-one synaptic connections with 50 types of excitatory PNs
at 50 glomeruli in the antennal lobe. Illustrated are two types each of ORNs (brown) and PNs
(green), as well as two glomeruli to which their axons and dendrites target. (B) Schematic of the
developmental process of the adult Drosophila olfactory system. The ~50 types of uniglomerular
excitatory PNs are from either anterodorsal (adPN) or lateral (IPN) neuroblast lineages. PNs with
cell body on the ventral side are inhibitory ventral PNs (vVPNs). (C) Representative confocal
images of PNs from four different developmental stages, Oh APF, 24h APF, 48h APF, and adult.
APF: after puparium formation. Images are shown as maximum z-projections of confocal stacks.
Antenna lobe is outlined. Scale bars, 40 um. (D) Workflow of the single-cell RNA sequencing
using plate-based SMART-seq2. FACS: fluorescence-activated cell sorting. (E) Summary of the
number of high-quality PNs sequenced at each timepoint and driver lines used. Most PNs refer to
PNs sequenced using either GH146-GAL4 or VT033006-GAL4. (F) Visualization of all
sequenced PNs from four different developmental stages using tSNE plot. Dimensionality
reduction was performed using the top 500 overdispersed genes identified from all sequenced
PNs.

Figure 1—figure supplement 1. Technical characteristics of PN scRNA-seq.

(A) Representative confocal image and illustration of cells labeled by GH146-GAL4 at Oh APF.
Other than PNs and a pair of APL neurons in the central brain (arrowheads), many cells in the
optic lobes (*) are also labeled. (B) Representative confocal image and illustration of cells
labeled by VT033006-GAL4 at Oh APF. This driver labels excitatory PNs, but not cells in the
optic lobes or vPN or APL neurons. Scale bars, 40 um. (C) Distribution of the number of
uniquely mapped reads per cell. (D) Distribution of the number of detected genes per cell. (E)
Heatmaps showing the expression of: mCD8-GFP, pan-neuronal makers (nSyb, elav, CadN, Syt1,
and brp), PN marker (Oaz), and glial markers (repo and alrm). Expression levels are indicated by
the color bar (CPM, transcript counts per million).

Figure 2. Matching 15 transcriptomic clusters to specific PN types at 24h APF.

(A) Representative maximum z-projection of confocal stacks of split#28-GAL4 in adults.
Dendrites of split#28-GAL4+ PNs target the DC3 and DA4I glomeruli. (B) Diagram of split#28-
GAL4+ PNs. (C) tSNE plot showing newly sequenced split#28-GAL4+ PNs, which form two
clusters that can be assigned to DC3 and DA4I PNs (see also Figure 2—figure supplement 1). (D)
Representative confocal images of split#7-GAL4 labeled PNs using permanent labeling strategy.
One anterior section and one posterior section of the antennal lobe are shown. Using permanent
labeling, we found that this driver is expressed in 8 PN types. Genotype: split#7-GAL4, UAS-FIp,
Actin promoter-FRT-STOP-FRT-GAL4, UAS-mCD8-GFP. (E) Diagram of split#7-GAL4+ PNs.
split#7-GAL4 labels 8 types of PNs. 4 from the adPN lineage (green letters) and 4 from the IPN
lineage (red letters). (F) tSNE plot of split#7-GAL4 PNs with GH146+ PNs (see Figure 2—
figure supplement 2 for details on the decoding procedure). (G) Representative maximum z-
projection of confocal stacks of kn+ PNs in the adult. kn-GAL4 was intersected with GH146-FIp
to restrict the expression of GAL4 in only PNs. (H) Representative confocal images of split#15-
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GAL4 in adults, which labels 2 kn+ PN types. (1) Diagram showing that kn+ PNs include 6 types
of adPNs and two vPNs. (J) tSNE plot of kn-GAL4 PNs with GH146+ PNs (see Figure 2—
figure supplement 3 for details on the decoding procedure). (K) Dot plot summarizing drivers
and marker genes we used to map 21 transcriptomic clusters to 20 PN types [14 adPNs, 5 IPNs—
DA1 PNs form two clusters, one fru+ and one fru— (Li et al., 2017)—and 1 vPNs] and the
anterior paired lateral (APL) neurons at 24h APF. Gene expression level [log,(CPM+1)] is
shown by the dot color, and percentages of cells expressing a marker are shown by dot size. (L)
tSNE plot showing 24h APF PNs colored by PN types (GH146+ PNs with split#7+/ split#28
PNs to increase cell number in some less abundant PN types). Scale bars, 20 um. Axes, D
(dorsal), L (lateral). In panel B, E, and I, orange glomeruli represent PN types of unknown
transcriptomic identity prior to this study. Green glomeruli represent PN types whose
transcriptomic identity were previously decoded. Note that the positions of cells on a tSNE plot
are dependent on the random initialization of the program as well as every cell present in the
dataset, therefore the position of GH146+ PNs clusters are different when we plot them with
different set of newly sequenced PNs (gray in panels C, F, and J).

Figure 2—figure supplement 1. Validation of DA4l PN identity.

(A) Visualization of GH146+ and split#28-GAL4+ PNs using tSNE. Cells are colored according
to driver genotypes (left) or by the expression of zfh2 (right). (B) zfh2-GAL4, after intersecting
with GH146-FIp, labels DA4l PNs. Scale bars, 20 um. Axes, D (dorsal), L (lateral).

Figure 2—figure supplement 2. Decoding split#7+ PNs.

(A) Representative confocal images of split#7+ PNs. Without permanent labeling, this driver is
strongly expressed in 3 PN types in adults. Permanent labeling showed that it can label 8 adult
PN types (Figure 2D), suggesting that this driver is expressed in 8 PN types during development
and turned off in 5 of them in adult stage. (B) Visualization of GH146+ and split#7+ PNs
colored according to genotype (left), acj6 (middle), and CG31676 (right) expression. Previously,
we know among those split#7+ PNs, the cells with CG31676 expression are DAL PNs (Li et al.
2017). (C) Among split#7+ adPN clusters (circled in green), only one cluster does not express
C15. Intersection between C15-p65*° and the GAL4 DNA-binding domain (DBD) from split#7
(top) as well as intersection between C15-GAL4PEP and the p65-activating domain (AD) from
split#7 (bottom) revealed that the C15 negative cluster represents DL1 PNs. (D) Among split#7+
adPNs (circled in green), two clusters are danr— One of those cluster represents DL1 PNs.
Intersection between danr-p65°° and VT033006-GAL4”®P (split-GAL4 with PN specific
expression) revealed the other danr— adPN is VA6 PNs. (E) One split#7+ cluster specifically
expresses DIP-zeta. Intersection between DIP-zeta-GAL4 and GH146-Flp revealed this cluster
represents VA2 PNs. As three out of four adPN clusters are assigned, we assigned the last
unassigned to be DA3 PNs. (F) Among split#7+ IPNs (circled in red), only one cluster is DIP-
eta-. Intersection between DIP-eta-GAL4 and GH146-FIp revealed the identity of this cluster as
VA5 PNs. (G) The DIP-eta— cluster also specifically expresses AstA. Intersection between AstA-
GAL4 and GH146-FlIp labels VA5 PNs, further confirming its identity. (H) Among the last two
unmapped clusters, one is DIP-beta+. Intersection between DIP-beta-GAL4 and GH146-Flp
revealed the cluster negative for DIP-beta is DM2 PNs. And we assigned the remaining split#7+
IPN cluster to be VC2 PNs. Scale bars, 20 um. Axes, D (dorsal), L (lateral).

Figure 2—figure supplement 3. Decoding the identity of kn+ PNs.
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(A) kn is expressed in 7 transcriptomic cluster in GH146+ PNs at 24h APF. (B) Visualization of
kn+ and split#15-GAL4+ PNs at 24h APF using tSNE. kn+ PNs (green) form 8 clusters, two of
them intermingled with split#15-GAL4+ PNs (purple). These 8 clusters are assigned to specific
PN types using information in the following panels. (C) Summary of marker genes used to
decode the identity of kn-GAL4+ PNs. trol+ cluster represents VM2 PNs (Li et al., 2007). (D)
Intersection between kn-GAL4"®" and danr-p65*° with GH146-Flp revealed that the cluster
positive for both kn and danr is VAlv PNs. (E) Intersection between C15-p65°° and elav-
GAL4"®P revealed that the cluster positive for acj6 but negative for C15 is D PNs. (F)
Visualization of DIP-beta expression among GH146+ PNs. DAL IPNs does not express DIP-
beta. (G) Visualization of DIP-beta expression among kn+ PNs. One VPN cluster expresses
DIP-beta. (H) Representative confocal image of DIP-beta-GAL4 after intersecting with GH146-
Flp. Innervation of the DA1 glomerulus indicated the DIP-beta+ VPN cluster is VPN (DAL).
Scale bars, 20 um. Axes, D (dorsal), L (lateral).

Figure 3. Global gene expression dynamics of PNSs.

(A) Visualization of PNs from 4 different developmental stages: Oh APF, 24h APF, 48h APF,
and adult sequenced using either VT033006-GAL4 or GH146-GAL4. tSNE dimensionality
reduction was performed using 1216 genes identified by iterative clustering for identifying
markers (ICIM) among them. (B) Hierarchical heatmap showing the expression of the top 52 out
of 474 differentially expressed genes identified among PNs of different developmental stages. (C)
Examples of the expression of the dynamic genes. Cells are colored according to the expression
level of each gene. Akap200 (A kinase anchor protein 200, encodes a scaffolding protein that
contributes to the maintenance and regulation of cytoskeletal structure), cib (ciboulot, encodes an
actin binding protein), and fax (failed axon connections, a gene involved in axon development)
have the highest expression in early pupal stage and are downregulated gradually. Rdl (Resistant
to dieldrin, encodes a chloride channel), slo (slowpoke, encodes a subunit of calcium-activated
potassium channel), and CG8177 (Anion exchanger 2), are upregulated as PNs develop. (D, E)
Top 474 differentially expressed genes can be divided into 8 groups based on their dynamic
profiles—2 groups without obvious developmental trend (not shown), 5 groups of down-
regulated genes (D), and 2 groups of up-regulated genes (E). Pink lines represent individual
genes and the black line shows mean expression of genes in each group. The highest expression
is normalized as 1 for all genes. The top 10 GO terms for up-regulated and down-regulated genes
are shown on right.

Figure 4. PN transcriptomes show distinct features at different stages of development.

(A) Visualization of most PNs from Oh APF, 24h APF, 48h APF, and adults using tSNE based
on genes identified by ICIM at each stage. Adult clusters (circled) are identified using
HDBSCAN. (B) Clustering of Oh APF PNs using HDBSCAN identified two clusters. (C) Part of
the molecular pathways critical for neurite pruning in Drosophila. (D) Genes whose function
have been implicated in neurite pruning have higher expression in cluster 0: Sox14 (p-value:
5.01E-51), Mical (p-value: 1.49E-09), Cull (p-value: 8.15E-4), shrb (p-value: 6.37E-19) and
Vps20 (p-value: 1.23E-17) (Mann-Whitney U test). (E, F). PN transcriptomic similarity
calculated at the cell level (mean inverse Euclidean distance calculated using 1216 ICIM genes
identified from PNs of all 4 stages) and the cluster level (Pearson correlation calculated using
differentially expressed genes identified from 24h PN clusters) for adPNs (E) [Oh APF: 587 cells,
cell-level similarity (mean + standard deviation): 0.350 £ 0.036, 15 clusters, cluster-level
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similarity (mean * standard deviation): 0.615 = 0.160; 24h APF: 547 cells, cell-level similarity:
0.292 + 0.041, 15 clusters, cluster-level similarity: 0.395 + 0.189; 48h APF: 301 cells, cell-level
similarity: 0.377 + 0.046, 13 clusters, cluster-level similarity: 0.484 = 0.212; adult stage: 209
cells, cell-level similarity: 0.422 + 0.058, 15 clusters, cluster-level similarity: 0.741 + 0.129] and
IPNs (F) [Oh APF: 484 cells, cell-level similarity: 0.402 = 0.052, 10 clusters, cluster-level
similarity: 0.736 = 0.129; 24h APF: 354 cells, cell-level similarity: 0.360 + 0.056, 10 clusters,
cluster-level similarity: 0.474 £+ 0.057; 48h APF: 296 cells, cell-level similarity: 0.385 + 0.043,
10 clusters, cluster-level similarity: 0.570 + 0.171; adult stage: 191 cells, cell-level similarity:
0.444 + 0.057, 8 clusters, cluster-level similarity: 0.754 = 0.141)]. (G) Schematic summary of
PN transcriptome similarity changes from early pupal stage to adulthood. PN diversity peaks
during circuit assembly around 24h APF and gradually diminishes as they develop into mature
neurons. (H) Expression of VAChT, Gadl, and VGlut in adult PNs.

Figure 4—figure supplement 1. Visualization of most PNs at different stages using tSNE.
Dimensionality reduction was computed using top 2000 overdispersed genes found at each stage.

Figure 4—figure supplement 2. Embryonically born and larval born PNs at Oh APF.

(A) The larger cluster at Oh APF consists of both adPNs (acj6+) and IPNs (vvl+) while the
smaller cluster contains only adPNSs. (B) Two types of embryonically born PNs, DA4l and VA6
PNs, are both mapped to the smaller cluster (details in Figure 7).

Figure 5. PN type identification by MARS.

(A) Dimensionality reduction of most PNs at 4 developmental stages by 561 ICIM genes found
at 24h APF. (B) PN types identified by MARS. Different MARS clusters are illustrated in
different colors.

Figure 5—figure supplement 1. PN type identification using two other independent
methods.

(A) Dimensionality reduction by 24h ICIM genes followed by cluster identification using
HDBSCAN. Circled cells belong to two PN types but are assigned to the same cluster using
HDBSCAN. (B) Cluster identification by Leiden based on neighborhood graph computed on 24h
ICIM genes. Circled cells belong to two PN types but are assigned to the same cluster using
Leiden. (C) 24h APF PNs colored according to PN types validated in Figure 2. (D) PN types
identified using MARS (same as Figure 5B). Some PN types which are incorrectly annotated by
HDBSCAN or Leiden are correctly annotated as distinct clusters by MARS.

Figure 6. Two complementary approaches to match transcriptomic clusters representing
same PN types at different developmental stages.

(A) scRNA-seq was performed for kn+ PNs from 3 different developmental stages: 24h APF,
48h APF, and adult. (B) tSNE plots showing kn+ PNs from three different stages, plotted
separately. Cells are clustered according to 24h ICIM genes. Cell numbers are indicated. (C) kn+
PNs from three different stages plotted in the same tSNE plot. Cells are clustered according to
24h ICIM genes. (D) Two approaches were used for matching the same PN types at different
stages: 1) automatic prediction by calculating the transcriptomic similarity between clusters at
two stages 2) manual matching of clusters using specific markers or marker combinations. (E)
Jaccard similarity index of automatically matched transcriptomic clusters from different stages.
Clusters #7 (brown cells in panel G) in 24h and 48h APF do not match with any cluster in the
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adult stage; therefore, the similarity calculation is left as not applicable (NA). (F) Examples of
markers used to manually match transcriptomic clusters representing the same PN types across
different stages. (G) All kn+ PN types (6 adPNs and 3 vPNs) are matched from three different
stages. Two independent approaches (automatic and manual) produced similar results.

Figure 6—figure supplement 1. kn+ adPN transcriptomes become more similar as
development proceeds.

(A) Bar plot of Euclidean distance between all pairs of kn+ cells using ICIM genes identified
among them. kn+ VvPNs are excluded from this analysis. 24h APF: 98 cells, mean + standard
deviation: 0.374 = 0.066; 48h APF: 174 cells, mean + standard deviation (std): 0.446 + 0.912;
adult: 124 cells, mean + std: 0.493 + 0.085 (B) Bar plot of Pearson's correlation between all pairs
of kn+ adPN clusters. 24h APF: 6 clusters, mean = std: 0.167 + 0.141; 48h APF: 6 clusters, mean
+ std: 0.424 + 0.170; adult: 6 clusters, mean * std: 0.506 + 0.187.

Figure 7. Matching transcriptomic cluster representing the same PN types across four
developmental stages.

(A) Visualization of most PNs at 4 different developmental stages: Oh APF, 24h APF, 48h APF,
and adult. 561 ICIM genes at 24h APF PNs were used for dimensionality reduction. (B)
Visualization of the same types of PNs at all developmental stages. Clusters with the same color
represent same neuronal type. Light grey dots indicate cells that have neither been decoded nor
matched. (C) Summary of transcriptomic clusters mapped to known PN types at different
developmental stages. Solid red-lines indicate clusters we can unambiguously match using
marker combinations; dashed red-lines indicate PN types we can narrow down to less than 3
transcriptomic clusters. Solid green-lines indicate clusters that are two-way matched
automatically (two clusters from two stages are the most similar to each other); dashed green-
lines indicates clusters that are one-way matched automatically (one cluster is the most similar
with the other but not the other way around). Circles with white “+” indicate PN types that have
been sequenced and confirmed at that stage using additional GAL4 lines (see Figure 7—figure
supplement 1).

Figure 7—figure supplement 1. Supporting evidence for matching PN types across
developmental stages.

(A, C) Visualization of GH146+ PNs (grey) with Mz19+ PNs (green) at 48h APF (A) and at the
adult stage (C). PN type of Mz19+ PNs shown on left were decoded previously (Li et al. 2017).
(B, D) Visualization of kn+ PNs from cells sequenced using GH146-GAL4 (in grey) and cells
sequenced using kn-GAL4 (in blue) at 48h APF (A) and at the adult stage (C). Annotation of kn-
GAL4+ cells was done in Figure 6. (E) Visualization of the same types of PNs matched
automatically (left) or manually (right) in tSNE space (same as Figure 7C). Transcriptomic
clusters representing the same PN types of different developmental stages are labeled in the same
color. Colors used to indicate PN types are identical to those in Figure 7B.

Figure 7—figure supplement 2. Markers used for manually matching PNs.

Dot plot of markers used to match the same types of PNs across different stages. Size of the dot
represents percentage of cells expressing a given marker in a cluster at a given stage, and color of
the dot represents expression level.
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Figure 8. PN types with adjacent birth order share more similar transcriptomes at early
pupal stages.

(A) Different PN types born from a common neuroblast follow a stereotyped sequence. The birth
order of PNs determines to which glomerulus their dendrites target. The birth order of adPNs are
shown on right. PN types with known transcriptomic identities at any of the four stages are
highlighted in red. (B) Correlation matrix of the transcriptomes of adPNs with known identities
(Pearson’s correlation). PN types are ordered according to their birth order. At Oh and 24h APF,
PN types with birth orders adjacent to each other exhibit the highest correlations in their
transcriptomes, as indicated by high correlations in boxes just off the diagonal line. (C) Results
of permutation test under the null hypothesis that the ranks of adPN transcriptomic similarity do
no covary with the ranks of birth order. Observed values is the average Spearman correlation of
8 adPN types decoded in all 4 stages (red dot). The distribution is the average Spearman
correlations obtained by randomly permutating the birth order for 5000 iterations (histogram). (D)
Developmental trajectory analysis showing an unbiased pseudo time of Oh APF adPNs
(embryonically born types excluded). The pseudo time roughly matches their birth order. (E)
Expression levels of 15 genes in adPNs with known identity at Oh APF. These genes have been
shown to exhibit temporal expression gradient in PN neuroblasts (Liu et al. 2015). The highest
expression is normalized as 1 for all genes.

Figure 8—figure supplement 1. Hierarchical clustering of all excitatory PNs.

Hierarchical clustering of all excitatory PN clusters of Oh APF (A), 24h APF (B), 48h APF (C),
and adult (D). Correlation calculation and hierarchical clustering were based on the principal
components calculated using the entire gene matrix. adPNs are indicated by green bar and IPNs
are indicated by orange bar on the top and left side of each plot. Clusters that have been matched
to specific PN types are labeled.

Figure 9. Differentially expressed genes between different PN types.

(A) Number of differentially expressed (DE) genes identified at each developmental stage among
all excitatory PN clusters or among the 12 PN types that are matched in all four stages. 103 and
52 genes are differentially expressed in all four stages among all excitatory PN types or among
the 12 PN types, respectively. (B) Percentage of transcription factors (TFs) or cell-surface
molecules (CSMs) from the list of genes that are differentially expressed among PNs in all four
stages compared to the genome-wide percentage. (C, D) Dot plot of the 17 TFs (C) and 23 CSMs
(D) that are differentially expressed in all four stages among the 12 PN types.

Figure 9—figure supplement 1
Dot plot of 114 TFs that are differentially expressed in any of the four stages among the 12 PN
type matched across all stages.

Figure 9—figure supplement 2
Dot plot of 228 CSMs that are differentially expressed in any of the four stages among the 12 PN
type matched across all stages.

Figure 10. Differentially expressed genes among different PN types in the adult stage.

(A) Venn diagram of differentially DE genes at 24h APF (497 genes) and in adults (542 genes).
(B) Top 10 biological process terms of DE genes found in 24h APF PNs only (top), in both 24h
APF and adults PNs (middle), and in adult PNs only (bottom). GO terms associated with neural
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development are colored in orange, and GO terms associated with metabolism are colored in
blue. (C) Dot plot of adult DE genes that belong to the ‘ion channels’ (top) or ‘transmembrane
receptors’ (bottom) gene group from FlyBase. PN types are separated by lineage and decoded
PN types are labeled and ordered according to their birth order within each lineage.
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Figure 9

percentage of TFs and CSMs in
common DE genes across stages
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