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Abstract 19 

Neurons undergo substantial morphological and functional changes during development to form 20 

precise synaptic connections and acquire specific physiological properties. What are the 21 

underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila 22 

olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 23 

transcriptomic clusters corresponding to 20 PN types and developed methods to match 24 

transcriptomic clusters representing the same PN type across development. We discovered that 25 

PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth 26 

and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity 27 

during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early 28 

developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, 29 

our work reveals principles of cellular diversity during brain development and provides a 30 

resource for future studies of neural development in PNs and other neuronal types. 31 

 32 

Introduction 33 

Cell-type diversity and connection specificity between neurons are the basis of information 34 

processing underlying all nervous system functions. The precise assembly of neural circuits 35 

involves multiple highly regulated steps. First, neurons are born from their progenitors and 36 

acquire unique fates through a combination of (1) intrinsic mechanisms, such as lineage, birth 37 

order, and birth timing; (2) extrinsic mechanisms, such as lateral inhibition and extracellular 38 

induction, and (3) developmental stochasticity in some cases (Jan & Jan, 1994; Johnston & 39 

Desplan, 2010; Kohwi & Doe, 2013; Holguera & Desplan, 2018; Li et al., 2018). During wiring, 40 

neurons extend their neurites to a coarse targeting region, elaborate their terminal structures, 41 

select pre- and post-synaptic partners, and finally form synaptic connections (Sanes & Yamagata, 42 
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2009; Jan & Jan, 2010; Kolodkin & Tessier-Lavigne, 2011; Luo, 2020; Sanes & Zipursky, 2020). 43 

Studies from the past few decades have uncovered many molecules and mechanisms that 44 

regulate each of these developmental processes. 45 

The development of Drosophila olfactory projection neurons (PNs) has been extensively 46 

studied (Jefferis et al., 2004; Hong & Luo, 2014). PNs are the second-order olfactory neurons 47 

that receive organized input from olfactory receptor neurons (ORNs) at ~50 stereotyped and 48 

individually identifiable glomeruli in the antennal lobe, and carry olfactory information to higher 49 

brain centers (Vosshall & Stocker, 2007; Wilson, 2013) (Figure 1A). Different types of PNs 50 

send their dendrites to a single glomerulus or multiple glomeruli (Marin et al., 2002; Lai et al., 51 

2008; Yu et al., 2010; Tanaka et al., 2012; Bates et al., 2020). PNs are derived from three 52 

separate neuroblast lineages—anterodorsal, lateral, and ventral lineages, corresponding to their 53 

cell bodies’ positions relative to the antennal lobe (Jefferis et al., 2001). PNs produced from the 54 

anterodorsal and lateral lineages (adPNs and lPNs) are cholinergic excitatory neurons. The fate 55 

of uniglomerular excitatory PN types, defined by their glomerular targets, is predetermined by 56 

their lineage and birth order (Jefferis et al., 2001; Marin et al., 2005; Yu et al., 2010; Lin et al., 57 

2012). PNs produced from the ventral lineage (vPNs), on the other hand, are GABAergic 58 

inhibitory neurons (Jefferis et al., 2007; Liang et al., 2013; Parnas et al., 2013). The connectivity 59 

and physiology of PNs have also been systematically studied (Bhandawat et al., 2007; Jeanne et 60 

al., 2018; Bates et al., 2020).  61 

Despite the fact that PNs are among the most well-characterized cell types in all nervous 62 

systems, their transcriptome-wide gene expression changes across different developmental stages 63 

with cell-type specificity are still unknown. This information can help us obtain a more complete 64 

picture of both known and unexplored pathways underlying neural development and function. 65 

Recently, the advent of single-cell RNA sequencing (scRNA-seq) has paved the way towards 66 

obtaining such data (Li et al., 2017; Kalish et al., 2018; Zhong et al., 2018; Li, 2020). Here, we 67 

profiled and analyzed the single-cell transcriptomes of most uniglomerular excitatory PNs. We 68 

identified the correspondence between two-thirds of transcriptomes and PN types at one stage 69 

and developed methods to reliably match transcriptomic clusters corresponding to the same types 70 

of PNs across different stages. We discovered that PN transcriptomes exhibit unique 71 

characteristics at different stages, including birth-order, neurite pruning, wiring specificity, and 72 

neuronal signaling. The identification of many differentially expressed genes among different PN 73 

types, such as transcription factors, cell-surface molecules, ion channels, and neurotransmitter 74 

receptors, provides a rich resource for further investigations of the development and function of 75 

the olfactory system.  76 

 77 

Results 78 

Single-cell transcriptomic profiling of Drosophila PNs at four developmental stages 79 

The development of PNs follows the coordinated steps as previously described (Hong & Luo, 80 

2014). 18 out of 40 types of adPNs are born embryonically and participate in the larval olfactory 81 

system. Then, during the larval stage, the rest of adPNs and all lPNs are born (Jefferis et al., 82 

2001; Marin et al., 2005; Yu et al., 2010; Lin et al., 2012). During early metamorphosis 83 

following puparium formation, embryonically born PNs first prune terminal branches of 84 

dendrites and axons, and then re-extend their dendrites into the future adult antennal lobe, and 85 

axons into the mushroom body and lateral horn following the neurites of larval-born PNs (Marin 86 
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et al., 2005). From 0 to 24 hours after puparium formation (APF), PNs extend their dendrites into 87 

the developing antennal lobe and occupy restricted regions. ORN axons begin to invade antennal 88 

lobe at ~24 hours APF. PN dendrites and ORN axons then match with their respective partners 89 

beginning at ~30 hours APF and establish discrete glomerular compartments at ~48 hours APF. 90 

Thereafter, they expand their terminal branches, build synaptic connections, and finally form 91 

mature adult olfactory circuits (Jefferis et al., 2004) (Figure 1B).  92 

To better understand the molecular mechanisms that control these dynamic 93 

developmental processes underlying neural circuit assembly, we performed scRNA-seq of PNs 94 

from 4 different developmental stages: 0–6 hours APF, 24–30 hours APF, 48–54 hours APF, and 95 

1–5 days adult (hereafter 0, 24, 48h APF and adult) (Figure 1C). We used GH146-GAL4 96 

(Stocker et al., 1997) to drive UAS-mCD8-GFP (Lee & Luo, 1999) expression in most PNs at 97 

24h, 48h, and adult, which labels ~90 of the estimated 150 PNs in each hemisphere, covering 98 

~40 of the 50 PN types. At 0h APF, GH146-GAL4 also labels cells in the optic lobes (Figure 99 

1—figure supplement 1A), which are inseparable from the central brain by dissection. 100 

Therefore, we used VT033006-GAL4 to label PNs at 0h APF (Figure 1C and Figure 1—figure 101 

supplement 1B) (Tirian & Dickson, 2017). VT033006-GAL4 labels most PNs from the 102 

anterodrosal and lateral lineage, but not PNs from the ventral lineage or anterior paired lateral 103 

(APL) neurons like GH146-GAL4. It is expressed in ~95 cells that innervate ~44 glomeruli 104 

which largely overlap with PNs labeled by GH146-GAL4 (Inada et al., 2017; Elkahlah et al., 105 

2020). In addition to PNs labeled by GH146-GAL4 and VT033006-GAL4 (we will refer to them 106 

as ‘most PNs’ hereafter), we have collected single-cell transcriptomic data using drivers that only 107 

label a small number of PN types for mapping the transcriptomic clusters to anatomically defined 108 

PN types. 109 

For scRNA-seq, fly brains with a unique set of PN types labeled using different drivers at 110 

each developmental stage were dissected and dissociated into single-cell suspensions. GFP+ cells 111 

were sorted into 384-well plates by fluorescence-activated cell sorting (FACS), and sequenced 112 

using SMART-seq2 (Picelli et al., 2014) (Figure 1D) to a depth of ~1 million reads per cell 113 

(Figure 1—figure supplement 1C). On average ~3000 genes were detected per cell (Figure 114 

1—figure supplement 1D), and after quality filtering (see Methods), we obtained ~3700 high 115 

quality PNs in addition to the previously sequenced ~1200 PNs (Li et al., 2017) , yielding ~4900 116 

PNs for analysis in this study (Figure 1E). All analyzed PNs express high levels of neuronal 117 

markers but not glial markers, confirming the specificity of sequenced cells (Figure 1—figure 118 

supplement 1E). Unbiased clustering using overdispersed genes from all PNs readily separates 119 

them into different groups according to their stage (Figure 1F), suggesting that gene expression 120 

changes across these four developmental stages represent a principal difference in their single-121 

cell transcriptomes. 122 

Decoding the glomerular identity of transcriptomic clusters by sequencing subsets of PNs 123 

at 24h APF 124 

PNs labeled by GH146-GAL4 at 24h APF form ~30 distinct transcriptomic clusters. We 125 

previously matched 6 of these transcriptomic clusters to specific anatomically and functionally 126 

defined PN types (Li et al., 2017) , hereafter referred to as “decoding transcriptomic identity.” 127 

Unlike ORNs, whose identities can be decoded using uniquely expressed olfactory receptors (Li 128 

et al., 2020a), PNs lack known type-specific markers. Instead, PN types are mostly specified by 129 

combinatorial expression of several genes (Li et al., 2017), making it more challenging to decode 130 

their transcriptomic identities. 131 
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To circumvent these challenges and decode the transcriptomic identities of more types of 132 

PNs, we took advantage of the extensive driver line collection in Drosophila (Luan et al., 2006; 133 

Jenett et al., 2012; Dionne et al., 2018). We searched for split-GAL4 lines that only labeled a 134 

small proportion of all PNs (Yoshi Aso, unpublished data). Using such drivers, we could 135 

sequence a few types of PNs at a time, plot those cells with most PNs, and then use differentially 136 

expressed markers among them to decode their identities one-by-one.  137 

split#28-GAL4 labeled two types of PNs—those that project their dendrites to the DC3 138 

and DA4l glomeruli in developing and adult animals (Figure 2A, B; note that PN types are 139 

named after the glomeruli they project their dendrites to). We sequenced those PNs (split#28+ 140 

PNs hereafter) at 24h APF. We chose this stage because this is when different PN types exhibit 141 

the highest transcriptome diversity as hinted by the number of clusters seen in Figure 1F (see 142 

following sections for more detailed analysis). To visualize sequenced split#28+ PNs, we 143 

performed dimensionality reduction using 561 genes identified from most 24h PNs 144 

using Iterative Clustering for Identifying Markers (ICIM), an unsupervised machine learning 145 

algorithm (Li et al., 2017), followed by embedding in the tSNE space. Split#28+ PNs (orange 146 

dots) fell into two distinct clusters and intermingled with GH146+ PNs (grey dots) (Figure 2C). 147 

One cluster mapped to previously decoded DC3 PNs (Li et al., 2017), and the other cluster 148 

expressed zfh2 (Figure 2—figure supplement 1A). We validated that this cluster indeed 149 

represents DA4l PNs by visualizing the expression of zfh2 in PNs utilizing an intersectional 150 

strategy by combining zfh2-GAL4, GH146-Flp, and UAS-FRT-STOP-FRT-mCD8-GFP 151 

(hereafter referred to as “intersecting with GH146-Flp”) (Figure 2—figure supplement 1B). 152 

split#7-GAL4 labeled 3 types of PNs in the adult stage (Figure 2—figure supplement 153 

2A). However, when we sequenced cells labeled by this GAL4 line at 24h APF and visualized 154 

them using tSNE, we found 8 distinct clusters (Figure 2F). We reasoned that this could be due to 155 

loss of driver expression in adult stage for some PN types. To test this hypothesis and reveal PNs 156 

that are labeled by this driver transiently during development, we used a permanent labeling 157 

strategy to label all cells that express split#7-GAL4 at any time of development (split#7+ PNs 158 

hereafter) by combining it with UAS-mCD8-GFP, Actin promoter-FRT-STOP-FRT-GAL4, and 159 

UAS-Flp. Using this strategy, we observed labeling of 8 types of PNs (Figure 2D), consistent 160 

with number of clusters we observed by sequencing. Among split#7+ PNs, 4 types belong to the 161 

adPN lineage (acj6+) and the other 4 types belong to the lPN lineage (vvl+) (Figure 2E). Only 1 162 

lPN type, DA1 (CG31676+), has previously been decoded (Figure 2—figure supplement 2B). 163 

We identified differentially expressed genes among split#7+ PNs and obtained existing GAL4 164 

lines mimicking their expression. By intersecting those GAL4 lines with GH146-Flp, we mapped 165 

all 7 previously unknown transcriptomic clusters to 7 PN types (Figure 2—figure supplement 2 166 

C–H; see legends for detailed description). 167 

In addition to screening through collections of existing driver lines, we also utilized 168 

scRNA-seq data to find drivers that label a subpopulation of PNs. One such marker was the gene 169 

knot (kn), which was expressed in 7 transcriptomic clusters among all GH146+ PNs (Figure 2—170 

figure supplement 3A). One of the kn+ clusters expressing trol has been previously mapped to 171 

VM2 PNs (Li et al., 2017). When kn-GAL4 was intersected with GH146-Flp, 6 types of adPNs 172 

(acj6+) and several vPNs (Lim1+) were labeled (Figure 2G, J). Among the 6 adPN types, VM7 173 

and VM5v PNs were also labeled by split#15-GAL4 (Figure 2H). Although it has been 174 

previously reported that GH146-GAL4 is not expressed in VM5v PNs (Yu et al., 2010), labeling 175 

of these PNs when GH146-Flp was intersected with either kn-GAL4 or split#15-GAL4 indicates 176 
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that GH146-Flp must be expressed in VM5v PNs at some point during development. Using 177 

split#15-GAL4, we were able to decode the two clusters to be either VM7 or VM5v PNs (Figure 178 

2—figure supplement 3B). Due to the lack of existing GAL4 drivers for differentially expressed 179 

genes between these two clusters, we could not further distinguish them so far; their identities 180 

can be decoded by creating new GAL4 drivers in future studies. Other than these two clusters, 181 

we were able to match transcriptomic clusters and glomerular types for the rest of kn+ adPNs 182 

one-to-one (Figure 2—figure supplement 3C–E). In addition to excitatory PNs, one kn+ vPN 183 

type innervated DA1 glomerulus (because DA1 glomerulus is innervated only by lPNs and vPNs, 184 

not adPNs). We found that DIP-beta was expressed in one kn+ vPN cluster but not in lPNs 185 

innervating DA1 glomerulus (Figure 2—figure supplement 3F, G). Intersecting DIP-beta-186 

GAL4 with GH146-Flp confirmed that DIP-beta+ vPN indeed targeted their dendrites to DA1 187 

glomerulus, illustrating the DIP-beta+ vPN cluster to be DA1 vPNs (Figure 2—figure 188 

supplement 3H). 189 

In summary, by sequencing a small number of known PN types at a time and analyzing 190 

the expression pattern of differentially expressed genes, we have now mapped a total of 21 191 

transcriptomic clusters corresponding to anatomically defined PN types at 24h APF (Figure 2K, 192 

L). Ultimately, we aimed to match the transcriptomes of the same PN types across development. 193 

As an intermediate step, we carried out global analysis of gene expression changes across 194 

development, which could help us reliably identify transcriptomic clusters representing different 195 

PN types at different developmental stages.  196 

Global gene expression dynamics across four developmental stages 197 

All sequenced PNs segregated into different clusters according to their developmental stages 198 

using unbiased, over-dispersed genes for clustering regardless of PN types (Figure 1F). Even 199 

when we used the genes identified by ICIM for clustering, which emphasizes the differences 200 

between different PN types (Li et al., 2017), we still observed that individual PNs were separated 201 

principally by developmental stages (Figure 3A). Together, these observations illustrate global 202 

transcriptome changes of PNs from pupa to adult. 203 

To understand what types of genes drive this separation, we searched for genes that were 204 

differentially expressed in different developmental stages (Figure 3B, C). We clustered the 205 

genes into different groups based on their expression pattern throughout development. Seven 206 

groups of genes showed clear developmental trends—five groups were down-regulated from 207 

pupa to adult and two groups were up-regulated (Figure 3D, E). Consistent with our previous 208 

knowledge, neural development-related genes, including those with functions in morphogenesis 209 

and cytoskeleton organization, were enriched in developing PNs (Figure C, D); genes related to 210 

synaptic transmission, ion transport, and behavior, on the other hand, were up-regulated in 211 

mature PNs (Figure C, E) (Li et al., 2017; Li et al., 2020b). 212 

Single-cell transcriptomes of PNs reveal dominant biological processes at different stages of 213 

development 214 

Because PN transcriptomes exhibited global development-dependent dynamics, we needed to 215 

find a method to reliably and consistently classify transcriptomic clusters representing different 216 

PN types at all stages. We first identified informative genes for clustering from each stage using 217 

ICIM and used them for further dimensionality reduction. However, using this method, we 218 

obtained different numbers of clusters at each stage (Figure 4A). Closer examination of each 219 

stage revealed unique biological features of PN development. 220 
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At 0h APF, PNs always formed two distinct clusters—a larger cluster consisting of both 221 

adPNs and lPNs, and a smaller one with only adPNs (Figure 4B, Figure 4—supplement 2A). 222 

As introduced earlier, although all lPNs and many adPNs are born during the larval stage, some 223 

adPNs are born during the embryonic stage. We hypothesized that the smaller cluster could 224 

represent embryonically born PNs, which undergo axon and dendrite pruning during early 225 

metamorphosis (Marin et al., 2005). Neurite pruning in Drosophila depends on cell autonomous 226 

action (Lee et al., 2000) of the steroid hormone ecdysone receptor (EcR) (Levine et al., 1995; 227 

Thummel, 1996; Schubiger et al., 1998; Lee et al., 2000). Upon binding of the steroid hormone 228 

ecdysone, EcR and its co-receptor Ultraspiracle (Usp) form a complex to activate a series of 229 

downstream targets, including a transcription factor called Sox14, which in turn promotes 230 

expression of the cytoskeletal regulator Mical and Cullin1 SCF E3 ligase (Figure 4C) (Lee et al., 231 

2000; Kirilly et al., 2009; Kirilly et al., 2011; Wong et al., 2013). To test our hypothesis, we 232 

examined the expression of genes which are known to participate in neurite pruning and genes 233 

that showed elevated expression in the mushroom body γ neurons during pruning (Alyagor et al., 234 

2018). We found that Sox14, Mical, Cullin1, and two sorting complexes required for transport 235 

(ESCRT) genes—shrb and Vps20, indeed showed higher expression levels in the smaller cluster 236 

(Figure 4D). We also confirmed our hypothesis by mapping two types of embryonically born 237 

PNs, DA4l and VA6 PNs, to this smaller cluster (Figure 4—figure supplement 2B; see 238 

mapping details in Figure 7). 239 

At 24h APF, we observed the highest number of clusters reflecting different PN types. 240 

Moreover, dimensionality reduction using the top 2000 overdispersed genes also showed more 241 

distinct clusters at this timepoint compared to the others (Figure 4—figure supplement 1). 242 

Quantifications of transcriptomic similarity among PNs at each stage indeed confirmed the 243 

highest diversity among PNs at 24h APF (Figure 4E–G). This is likely explained by the fact that 244 

at this stage, PNs refine their dendrites to specific regions and begin to prepare themselves as 245 

targets for their partner ORN axons. In addition, PN axons at the lateral horn begin to establish 246 

their characteristic branching patterns (Jefferis et al., 2004). All these processes require high 247 

level of molecular diversity among different PN types to ensure precise wiring, warranting more 248 

distinction between their transcriptomes at this stage.   249 

In contrast to the high transcriptomic diversity in 24h APF PNs, adult PNs only formed 250 

three clusters (Figure 4A bottom, indicated by dashed lines). The three clusters represent 251 

cholinergic excitatory PNs (marked by VAChT), and two Gad1+ GABAergic inhibitory cell 252 

types—vPNs and APL neurons (VGlut+), respectively (Figure 4H). This is likely because after 253 

wiring specificity is achieved, all excitatory PNs may perform similar functions, but distinct 254 

from inhibitory neuronal types. 255 

Thus, at different developmental stages, the differentially expressed genes we identified 256 

all revealed the most defining biological processes those neurons are undertaking. Our 257 

observations showed that PN transcriptomes reflect the pruning process of embryonically born 258 

PNs at 0h APF, PN type and wiring distinction at 24h APF, and neurotransmitter type in adults.  259 

Identifying PN types at all developmental stages 260 

With the exception of the 24h APF PNs, gene sets identified from each of the other stages could 261 

not resolve distinct clusters reflecting PN type diversity (Figure 4). Therefore, we tried to use 262 

the genes identified by ICIM from 24h APF PNs to cluster PNs of the other stages. We found 263 

that this gene set outperformed all other gene sets in separating different PN types at all 264 
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timepoints (Figure 5A). In fact, most gene sets found by different methods at 24h APF, 265 

including overdispersed genes, ICIM genes, as well as differentially expressed genes between 266 

different clusters, exceeded gene sets identified at other stages for clustering PNs according to 267 

their types (data not shown), further confirming that transcriptomes of 24h APF PNs carry the 268 

most information for distinguishing different PN types, even for other developmental stages.  269 

Following this observation, we decided to use differentially expressed genes between 24h 270 

PN clusters for PN-type identification for all stages. We applied meta-learned representations for 271 

single cell data (MARS) for identifying and annotating cell types (Brbic et al., 2020). MARS 272 

learns to project cells using deep neural networks in the latent low-dimensional space in which 273 

cells group according to their cell types. We used 24h APF, the stage with highest transcriptome 274 

diversity, as the starting annotated dataset to learn shared low-dimensional space for 48h APF, 275 

0h APF, and eventually the adult dataset. Using this approach, we found ~30 cell types in each 276 

stage (Figure 5B). Independently, we also validated MARS cluster annotations using two 277 

distinct methods: HDBSCAN clustering based on tSNEs or Leiden clustering based on 278 

neighborhood graphs (Figure 5—figure supplement 1) (Blondel et al., 2008; Levine et al., 2015; 279 

Traag et al., 2019). Clusters identified by HDBSCAN and Leiden largely agreed with MARS 280 

annotations, confirming the reliability of MARS. We compared cluster annotations by these three 281 

methods to known PN types at 24h APF (Figure 5—figure supplement 1C) and found that even 282 

at this stage, MARS performed better at segregating some closely related clusters representing 283 

multiple PN types (Figure 5—figure supplement 1D). At 0h APF and the adult stage, MARS 284 

identified more clusters compared to the other methods, demonstrating the robustness of MARS 285 

at identifying unique cell types. 286 

Matching the same PN types across four developmental stages 287 

We next sought to match transcriptomes of the same PN type across different developmental 288 

stages. We first tried to apply some batch correction methods, including Harmony, BBKNN, 289 

combat, and Scanorama, to our dataset to correct for the transcriptomic changes of PNs 290 

throughout development (Hie et al., 2019; Korsunsky et al., 2019; Polanski et al., 2020). For all 291 

batch methods attempted, we observed instances of (1) PNs of the same type at the same stage 292 

split into different clusters; (2) PNs of different types merge into the same cluster; (3) no 293 

distinguishable cluster formation for many PNs in stages other than 24h APF. Therefore, we 294 

needed to develop alternative approaches to reliably match transcriptomes of same PN types 295 

across different developmental stages.  To perform this task, we first used kn+ PNs as test case. 296 

We collected PNs labeled by kn-GAL4 from 24h APF, 48h APF, and adult brains for scRNA-seq 297 

(Figure 6A). Dimensionality reduction of these cells showed a consistent number of clusters 298 

across stages (Figure 6B). One exception is an extra vPN cluster observed at 48h APF and adult 299 

stages. This discrepancy with 24h APF data is likely caused by the lower number of vPNs 300 

sequenced at 24h APF.  301 

When kn+ PNs from all three stages were plotted together, all adPNs (acj6+ clusters on 302 

the upper side) formed relatively distinct clusters and did not intermingle with adPNs from the 303 

other timepoints (Figure 6C), reflecting substantial changes in the transcriptome of the same 304 

type of PNs across development. To match the same type of PNs, we took two independent 305 

approaches (Figure 6D). In the first approach, clusters were automatically matched based on 306 

their transcriptomic similarity. Briefly, we identified a set of genes that were differentially 307 

expressed in each cluster compared to all the rest at the same stage. Then, we calculated the 308 

percentage of genes shared between each pair of clusters across two stages (Jaccard similarity 309 
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index) (Figure 6E). If two clusters from two stages both had the highest similarity score with 310 

each other, we considered them to be matched. In the second approach, we used markers that 311 

were expressed in a consistent number of clusters at each stage. Those markers, or marker 312 

combinations, were used to manually match the same type of PNs (some example markers used 313 

are shown in Figure 6F). Using these two approaches, we were able to match the same types of 314 

PNs across three developmental stages, and the results from the two approaches consistently 315 

agreed with each other (Figure 6G). In addition, these data further validated an earlier 316 

conclusion (Figure 4) that as development proceeds from 24h APF and 48h APF to adults, the 317 

transcriptomic difference between identified PN types becomes smaller (Figure 6G; quantified 318 

in Figure 6—figure supplement 1).  319 

 We next applied the same approaches for matching kn+ PN types across 3 stages to 320 

match most PNs (sequenced using either GH146-GAL4 or VT033006-GAL4) across 4 stages 321 

(Figure 7A). In addition to marker gene expression, we also used subset of PNs we had 322 

sequenced from different stages to manually match PN types (Figure 7—figure supplements 323 

1A–D). For the manually matched PN types with known identity, we summarized markers and 324 

marker combinations we used in a dot plot, where both average expression as well as percentage 325 

of cells expressing each marker were shown (Figure 7—figure supplement 2). Using both 326 

manual and automatic approaches, we were able to match many PN types across 2 or more 327 

developmental stages (Figure 7B), which includes 18 PN types that we have decoded in Figure 328 

2 and 7 transcriptomic clusters with unknown identity. The majority of the PNs we matched were 329 

confirmed by both the automatic (transcriptomic similarity-based) and manual (marker-based) 330 

methods (Figure 7C and Figure 7—figure supplement 1E). 331 

PN types with adjacent birth order share more similar transcriptomes at early stages of 332 

development 333 

Previous works have shown that the PN glomerular types are prespecified by the neuroblast 334 

lineages and birth order within each lineage (Jefferis et al., 2001; Marin et al., 2005; Yu et al., 335 

2010; Lin et al., 2012) (Figure 8A). Having decoded the transcriptomic identities of different PN 336 

types at different timepoints, we can now ask the extent to which transcriptomic similarity is 337 

contributed by lineage and birth order, and whether these contributions persist through 338 

development. 339 

To address these questions, we performed hierarchical clustering on all excitatory PN 340 

clusters we identified from each timepoint. We plotted the dendrogram and the correlation 341 

between each pair of clusters (Figure 8—figure supplement 1). We observed some lineage-342 

related similarity between PN types at 0h APF: transcriptomes of PNs from the same lineage 343 

tended to be clustered together in the dendrogram and their correlations are higher, although the 344 

relationship was not absolute. Such similarity was gradually lost as development proceeded (as 345 

inferred by both the dendrogram as well as correlation between PNs from the same lineage). 346 

Interestingly, we noticed that some PNs with adjacent birth order appeared to be neighbors in the 347 

dendrogram at 0h and 24h APF. 348 

To further investigate the relationship between birth order of PNs and their transcriptomic 349 

similarity, we selected all decoded PNs from the anterodorsal lineage, ordered them according to 350 

their birth order, and computed their correlation (Figure 8B). 0h APF adPNs showed high 351 

correlation between their birth order and their transcriptomic similarity, as indicated by the high 352 

correlations in boxes just off the diagonal line. To test if the transcriptomic similarity of adPNs 353 
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indeed covaries with their birth order, we performed permutation tests, comparing the Spearman 354 

correlations between birth-order ranking and transcriptomic similarity ranking (Figure 8C, see 355 

Materials and Methods for details). The results confirmed that 0h and 24h APF PNs, but not 48h 356 

APF and adult PNs, exhibited high correlations between their birth orders and transcriptomic 357 

similarities. In addition, developmental trajectory analysis of adPNs born at the larval stage using 358 

Monocle 3 (Cao et al., 2019) also showed that the unbiased pseudo time recapitulated their birth 359 

order (Figure 8D). 360 

A previous study profiled the transcriptomes of PN neuroblasts at various larval stages 361 

and identified 63 genes with temporal gradients (Liu et al., 2015). Among those genes, the 362 

authors have validated that two RNA-binding proteins, Imp and Syp, regulate the fate of PNs 363 

born at different times. Therefore, we analyzed expression of these 63 genes at 0h APF to see if 364 

any of these genes with temporal gradients has persisted expression in postmitotic PNs. We 365 

found 15 out of the 63 genes (including Imp but not Syp) maintained some temporal gradient 366 

patterns according to their birth order at 0h APF (Figure 8E) but not at the later stages (data not 367 

shown). This result suggested that the expression of a subset of birth order-related genes in adPN 368 

neuroblast, including a cell-fate regulator, is maintained in postmitotic PNs till early pupal stage. 369 

In summary, our data demonstrated that PN types with adjacent birth order shared more 370 

similar transcriptomes, reflecting temporal gene expression dynamics of their progenitor. Such 371 

transcriptomic similarity was maintained at early pupal stages and was gradually lost as PNs 372 

mature. 373 

Differentially expressed genes in different PN types 374 

Hierarchical clustering on the principal components calculated using the entire gene matrix 375 

indicates that the similarities between different PN types are not fixed across development 376 

(Figure 8—figure supplement 1). This suggests that the differentially expressed genes in PNs 377 

differ across developmental stages. Identifying differentially expressed (DE) genes, especially 378 

among those that we have matched across multiple developmental stages (Figure 7), can allow 379 

us to investigate expression dynamics in different PN types and also reveal interesting molecules 380 

for future studies. 381 

We consider a gene to be differentially expressed if it has an adjusted p-value of less than 382 

0.01 by Mann-Whitney U test in at least one cluster compared to the rest of the clusters. Using 383 

this criterion, we found around 500 DE genes at 24h APF, 48h APF, and the adult stage (Figure 384 

9A). At 0h APF, many more DE genes were identified. The larger gene set at this stage is mostly 385 

contributed by the embryonically born PNs (1015 out of 1393 genes), which have 386 

transcriptomically distinct features because these neurons undergo axon and dendrite pruning 387 

(Figure 4A–D). We intersected the four lists of DE genes to find genes that are differentially 388 

expressed throughout development. This resulted in 103 genes, 52 of which were differentially 389 

expressed among the 12 PN types we matched across all four stages. Among the DE genes that 390 

are differentially expressed in all four stages, we observed an over-representation of transcription 391 

factors (TFs) and cell surface molecules (CSMs) compared to their genome-wide fractions 392 

(Figure 9B). Previous studies have shown that genes in these two categories play critical roles in 393 

PN wiring (Hong & Luo, 2014; Li et al., 2017). We therefore further explored the expression 394 

pattern of these genes (Figure 9C and Figure 9—figure supplements 1 and 2). 395 

While the majority of TFs are expressed in both lineages, expression of a small fraction 396 

of TFs is lineage-specific. For example, expression of acj6, kn, C15, and salr is limited to PNs 397 
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from the anterodorsal lineage, whereas vvl and unpg are only expressed in PNs from the lateral 398 

lineage (Figure 9C and Figure 9—figure supplement 1). Furthermore, whereas TFs are 399 

generally expressed in a binary fashion throughout development (Figure 9C and Figure 9—400 

figure supplement 1), many CSMs exhibit graded expression with complex temporal dynamics 401 

(Figure 9D and Figure 9—figure supplement 2). This is consistent with observations made 402 

from single-cell transcriptome studies in the developing Drosophila optic lobe (Kurmangaliyev 403 

et al., 2020; Ozel et al., 2020). Among the CSMs that are differentially expressed in any of the 4 404 

stages, we observed many molecules in protein families that have been implicated in wiring, 405 

including Beaten Path (Beat), Dpr, DIP, Dscam, Fasciclin (Fas), and Robo (Figure 9—figure 406 

supplement 2) (Kolodkin & Tessier-Lavigne, 2011; Sanes & Zipursky, 2020). Thus, this 407 

differentially expressed gene list may contain an enriched set of wiring-related molecules, some 408 

of which have been studied in the context of wiring. Therefore, our data can serve as a useful 409 

resource for future studies of wiring specificity. On the other hand, we note that some genes with 410 

differential expression pattern at the protein level, such as Ten-a and Ten-m (Hong et al., 2012), 411 

do not exhibit obvious differential expression at the mRNA level. This highlighted the existence 412 

of post-transcriptional regulation for some genes that are not captured by transcriptomic analysis. 413 

Genes involved in metabolism and neuronal signaling are differentially expressed among 414 

adult PNs 415 

Our analyses have shown that transcriptomic differences between different PN types diminish as 416 

development proceeds (Figure 4). However, different PN types in adults still exhibited 417 

differential gene expression (Figure 9). Such differential expression could be contributed by 418 

residual developmentally differentially expressed genes, by new categories of differentially 419 

expressed genes in mature PNs reflecting functional differences between different PN types, or a 420 

combination of both. To distinguish between these possibilities, we compared DE genes among 421 

different transcriptomic clusters of PNs at 24h APF and at the adult stage.  422 

 We found that more than a third of the DE genes were shared between these two stages 423 

(Figure 10A). Gene ontology analysis revealed that these shared genes were predominately 424 

related to neural development (Figure 10B, middle). These data suggested that some DE genes 425 

found among adult PN types were developmentally differentially expressed genes, some of 426 

which could play a role in the maintenance of adult nervous system structures.  427 

Interestingly, many gene ontology terms related to the physiological properties of PNs 428 

were observed among the adult-only DE genes (Figure 10B, bottom). In addition, we observed 429 

several ion-channels and neurotransmitter receptors in the list of CSMs with differential 430 

expression pattern (Figure 9—figure supplement 2). Indeed, several adult DE genes belong to 431 

the ion channels or transmembrane receptor (including neurotransmitter receptors and G-protein-432 

coupled receptors) gene groups (Figure 10C). These results demonstrated that PN types in adults 433 

acquire new categories of differentially expressed genes, and those genes might lead to 434 

differences in the physiological properties between different PN types. 435 

 436 

Discussion 437 

Deciphering single-cell transcriptomes for connectivity-defined neuronal types 438 

Traditionally, neurons are classified based on their morphology, physiology, connectivity, and 439 

signature molecular markers. More recently, scRNA-seq has allowed classification of cell types 440 
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based entirely on their transcriptomes. Many studies have illustrated that cell-type classification 441 

based on the single-cell transcriptomes largely agrees with classifications by some of the more 442 

traditional criteria (Zeng & Sanes, 2017). 443 

 For Drosophila olfactory PNs, the most prominent type-specific feature is their pre- and 444 

post-synaptic connections, which determines their olfactory response profiles and the higher 445 

order neurons they relay olfactory information to. Thus, different PN types are largely defined by 446 

the differences in their connectivity. We have previously observed that the transcriptomic 447 

identity of PNs corresponds well with their types during development, and for three identified 448 

PN types, transcriptomic differences peak during the circuit assembly stage (Li et al., 2017). 449 

Here, we generalized these findings across many more PN types by showing that transcriptomic 450 

differences are the highest around 24h APF, a stage when PNs are making wiring decisions and 451 

preparing cues for subsequent ORN–PN matching (Figure 4), and by demonstrating that 452 

clustering of PNs according to their types from all stages are best done using differentially 453 

expressed genes at 24h APF (Figure 5). Additionally, our data indicate that at certain stages, 454 

differences among those type-specific genes can be masked by other genes belonging to 455 

pathways of a more dominating biological process (such as neurite pruning at 0h APF for PNs). 456 

As a consequence, it may be challenging to identify genes carrying type-specific information at 457 

certain timepoints even when sophisticated algorithms are applied, which can lead to 458 

underestimation of cell type diversity. Our observation of peaked transcriptome diversity in 459 

developing projection neurons has also been observed in the Drosophila optic lobe recently 460 

(Ozel et al., 2020). Thus, in order to accurately classify single-cell transcriptomes, especially for 461 

connectivity-defined neuronal types such as fly olfactory PNs, it may be a general strategy to 462 

first obtain their single-cell transcriptomes during circuit assembly and then use this information 463 

to supervise cell-type classification in other developmental stages, including adults. 464 

Tracing the same cell type in different states 465 

Both cell types and their biological states can split single-cell transcriptomes into distinct clusters 466 

(Zeng & Sanes, 2017; Cembrowski & Menon, 2018; Tasic, 2018). We observed that the same 467 

PN types of different developmental stages—reflecting different states—indeed exhibit very 468 

distinct transcriptomic profiles (Figures 5, 6). To identify transcriptomic clusters corresponding 469 

to the same PN types across multiple timepoints, we developed and applied two complementary 470 

methods—one manual based on the marker gene expression, and one automatic based on the 471 

similarity between transcriptomic clusters. By applying both methods, we can confidently track 472 

the transcriptomes of the same cell type throughout development and study the unique molecular 473 

features of each stage. We note that two other methods for tracing transcriptomes of the same 474 

neuronal types across development—batch-correction to cluster same cell types across different 475 

stages, and training an artificial neural network to classify cell type—have been applied 476 

successfully in recent single-cell transcriptome studies of cells in the developing Drosophila 477 

optic lobe (Kurmangaliyev et al., 2020; Ozel et al., 2020). 478 

Together, those methods can be applied to other single-cell studies where diverse cell 479 

types and multiple states are involved. Those methods can be especially useful for tissues with 480 

high cellular diversity but lack unique markers for each cell type.  481 

Using single-cell RNAseq data to identify new candidate molecules for future studies 482 

In this study, we have obtained high-quality single-cell transcriptomes of most excitatory PNs 483 

from early pupal stage to adulthood (Figure 1). We have used combinations of markers and 484 
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drivers to decode the transcriptomic identity of 21 transcriptomic clusters at 24h APF (Figure 2), 485 

and matched clusters representing the same PN type across four developmental stages (Figure 7).  486 

Using this rich and well-annotated dataset, researchers can now explore different aspects 487 

of PN development and function to identify candidate molecules for future studies. For example, 488 

one can search for novel molecules involved in neurite pruning among the differentially 489 

expressed genes between the embryonically-born and larval-born PNs at 0h APF (Figure 4B–D). 490 

Developmentally enriched genes and genes that are differentially expressed among different PN 491 

types, on the other hand, can be good candidates for studies on neural development and wiring 492 

specificity (Figure 3 and Figure 9). Differentially expressed neuronal signaling genes in adult 493 

PNs can be used to explore differences in physiological properties and information processing 494 

(Figure 10). In addition, driver lines for specific types of PNs can be made using genes that 495 

show consistent expression pattern across different stages (Figure 7—figure supplement 2) to 496 

label and genetically manipulate specific PN types. Together with several recent in depth 497 

scRNAseq studies of cells in the visual and olfactory system across multiple stages (Jain et al., 498 

2020; Kurmangaliyev et al., 2020; McLaughlin et al., 2020; Ozel et al., 2020), these studies have 499 

established foundations of gene expression for Drosophila olfactory and visual systems and 500 

should catalyze new biological discoveries.  501 
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Methods and Materials 502 

Key Resource Table 503 

Reagent type 

(species) or 

resource 

Designation Source or 

reference 

Identifiers Additional 

information 

Genetic reagent (D. 

melanogaster) 

 

GH146-GAL4 

 

(Stocker et al., 

1997) 

RRID: 

BDSC_30026 

  

Genetic reagent (D. 

melanogaster) 

 

VT033006-GAL4 

 

(Tirian & 

Dickson, 2017) 

RRID: 

BDSC_73333 

 

Genetic reagent (D. 

melanogaster) 

 

Mz19-GAL4 (Jefferis et al., 

2004) 

RRID: 

BDSC_41573 

 

Genetic reagent (D. 

melanogaster) 

 

knot-GAL4 (Lee et al., 2018) RRID: BDSC_ 

67516 

 

Genetic reagent (D. 

melanogaster) 

split#28-GAL4 Yoshi Aso 

(unpublished) 

N/A SS01265 

Genetic reagent (D. 

melanogaster) 

split#7-GAL4 Yoshi Aso 

(unpublished) 

N/A SS01867 

Genetic reagent (D. 

melanogaster) 

split#15-GAL4 Yoshi Aso 

(unpublished) 

N/A SS01165 

Genetic reagent (D. 

melanogaster) 

GH146-Flp (Hong et al., 2009) N/A  

Genetic reagent (D. 

melanogaster) 

UAS-FRT-

STOP-FRT-

mCD8GFP 

(Hong et al., 2009) RRID: 

BDSC_30125 

 

Genetic reagent (D. 

melanogaster) 

zfh2-GAL4 (Lee et al., 2018) RRID: 

BDSC_86479 

 

Genetic reagent (D. 

melanogaster) 

Act-FRT-STOP-

FRT-GAL4 

(Pignoni & 

Zipursky, 1997) 

N/A  

Genetic reagent (D. 

melanogaster) 

UAS-Flp (Duffy et al., 

1998) 

N/A  

Genetic reagent (D. 

melanogaster) 

C15-p65AD (Xie et al., 2019) N/A  

Genetic reagent (D. 

melanogaster) 

C15-GAL4DBD This study N/A  
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Genetic reagent (D. 

melanogaster) 

danr-P65AD This study N/A  

Genetic reagent (D. 

melanogaster) 

VT033006-

GAL4DBD 
Yoshi Aso 

(unpublished) 

N/A  

Genetic reagent (D. 

melanogaster) 

DIP-zeta-GAL4 (Cosmanescu et 

al., 2018) 

RRID: 

BDSC_90317 

 

Genetic reagent (D. 

melanogaster) 

DIP-eta-GAL4 (Cosmanescu et 

al., 2018) 

RRID: 

BDSC_90318 

 

Genetic reagent (D. 

melanogaster) 

AstA-GAL4 (Deng et al., 2019) RRID: 

BDSC_84593 

 

Genetic reagent (D. 

melanogaster) 

DIP-beta-GAL4 (Carrillo et al., 

2015) 

RRID: 

BDSC_90316 

 

Genetic reagent (D. 

melanogaster) 

kn-GAL4DBD This study N/A  

Genetic reagent (D. 

melanogaster) 

elav-GAL4DBD (Luan et al., 2006) N/A  

Antibody Rat monoclonal 

anti-Ncad 

Developmental 

Studies Hybridoma 

Bank 

RRID: 

AB_528121 

(1:40 in 5% 

normal goat 

serum) 

Antibody Chicken 

polyclonal anti-

GFP 

Aves Labs RRID: 

AB_10000240 

(1:1000 in 5% 

normal goat 

serum) 

Software, algorithm ZEN Carl Zeiss RRID: 

SCR_013672 

 

Software, algorithm ImageJ National Institutes 

of Health 

RRID: 

SCR_003070 

 

Software, algorithm Illustrator Adobe RRID: 

SCR_010279 

 

Software, algorithm STAR 2.5.4 (Dobin et al., 

2013) 

RRID: 

SCR_015899 

https://github.co

m/alexdobin/ST

AR 

Software, algorithm HTseq 0.11.2 (Anders et al., 

2015) 

RRID: 

SCR_005514 

https://github.co

m/htseq/htseq 

Software, algorithm Scanpy (Wolf et al., 2018) RRID: 

SCR_018139 

https://scanpy.rea

dthedocs.io/en/st

able/ 

Software, algorithm Iterative 

Clustering for 

Identifying 

(Li et al., 2017) N/A https://github.co

m/felixhorns/Fly

PN  

https://scanpy.readthedocs.io/en/stable/
https://github.com/htseq/htseq
https://github.com/alexdobin/STAR
https://github.com/felixhorns/FlyPN
https://github.com/alexdobin/STAR
https://github.com/felixhorns/FlyPN
https://scanpy.readthedocs.io/en/stable/
https://github.com/felixhorns/FlyPN
https://github.com/alexdobin/STAR
https://scanpy.readthedocs.io/en/stable/
https://github.com/htseq/htseq
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Markers (ICIM) 

Recombinant DNA 

reagent 

pT-GEM(0) 

(plasmid) 

(Diao et al., 2015) RRID: 

Addgene_62891 

 

Recombinant DNA 

reagent 

pBS-KS-attB2-

SA(2)-T2A-

Gal4DBD-

Hsp70  

(plasmid) 

(Diao et al., 2015) RRID: 

Addgene_62904 

 

Recombinant DNA 

reagent 

pU6-BbsI-

chiRNA 

(plasmid) 

(Gratz et al., 2013) RRID: 

Addgene_45946 

 

Drosophila Stocks and genotypes 504 

Flies are maintained on standard cornmeal medium at 25 °C with 12-h light–dark cycle. The 505 

following lines were used in this study: GH146-GAL4 (Stocker et al., 1997), VT033006-GAL4 506 

(Tirian & Dickson, 2017), Mz19-GAL4 (Jefferis et al., 2004), knot-GAL4 (Lee et al., 2018), 507 

GH146-Flp, UAS-FRT-STOP-FRT-mCD8-GFP (Potter et al., 2010), zfh2-GAL4 (Lee et al., 508 

2018), Act-FRT-STOP-FRT-GAL4 (Pignoni & Zipursky, 1997), UAS-Flp (Duffy et al., 1998), 509 

C15-p65
AD 

(Xie et al., 2019), DIP-beta-GAL4, DIP-eta-GAL4, DIP-zeta-GAL4 (Carrillo et al., 510 

2015; Cosmanescu et al., 2018), AstA-GAL4 (Deng et al., 2019), and elav-GAL4
DBD

 (Luan et al., 511 

2006). VT033006-GAL4
DBD

, split-GAL4 line #7 (SS01867), #15 (SS01165), and #28 (SS01265) 512 

are unpublished reagents generously provided by Yoshi Aso (Janelia Research Campus). 513 

Generation of danr-p65
AD

, kn-GAL4
DBD

, and C15-GAL4
DBD 

514 

danr-p65
AD

 was generated using CRISPR mediated knock-in. ~2000 bp of genomic sequence 515 

flanking the targeted insertion site was amplified by Q5 hot-start high-fidelity DNA polymerase 516 

(New England Biolabs) and inserted into pCR-Blunt-TOPO vectors (Thermo Fisher). Using this 517 

vector, we generated homology directed repair (HDR) vector TOPO-danr-T2A-p65AD-P3-RFP 518 

by inserting T2A-p65(AD)::Zip+ and 3XP3-RFP-SV40 (cloned from pT-GEM(0) Addgene 519 

#62891) 45bp downstream of the start codon of danr. CRISPR guide RNA (gRNA) targeting a 520 

sequence inside danr (AACATCCGGATGAGCACGCG) were designed by the flyCRISPR 521 

Target Finder tool and cloned into a pU6-BbsI-chiRNA vector (Addgene #45946). The HDR and 522 

gRNA vectors were co-injected into nos-Cas9 (gift from Dr. Ben White) embryos. RFP+ 523 

progenies were selected and individually balanced. 524 

kn-GAL4
DBD

 was generated by co-injecting pBS-KS-attB2-SA(2)-T2A-GAL4DBD-Hsp70 525 

(Addgene #62904) and ΦC31 into the embryos of MI15480 (BL61064). All yellow
– 

progenies 526 

were individually balanced. 527 

C15-GAL4
DBD

 was generated using methods similar to danr-p65
AD

. But because C15 528 

have been shown to be involved in PN dendrite targeting (Li et al., 2017), instead of inserting 529 

driver elements into the coding region, the stop codon of C15 was replaced by T2A-530 

GAL4(DBD)::Zip+ to prevent disruption of the gene. 531 

Immunofluorescence  532 
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Fly brains were dissected and immunostained according to previously described methods (Wu & 533 

Luo, 2006). Primary antibodies used in this study included rat anti-Ncad (N-Ex #8; 1:40; 534 

Developmental Studies Hybridoma Bank), chicken anti-GFP (1:1000; Aves Labs). Secondary 535 

antibodies conjugated to Alexa Fluor 488/647 (Jackson ImmunoResearch) were used at 1:250. 5% 536 

normal goat serum in phosphate buffered saline was used for blocking and diluting antibodies. 537 

Confocal images were collected with a Zeiss LSM 780 and processed with ImageJ. 538 

Single-cell RNA sequencing procedure 539 

Single-cell RNA sequencing was performed following previously described protocol (Li et al., 540 

2017). Briefly, Drosophila brains with mCD8-GFP labeled cells using specific GAL4 drivers 541 

were dissected at appropriate timepoints (0–6h APF, 24–30h APF, 48–54h APF, and 1–5 day 542 

adults). Optic lobes were removed from brain during dissection for all timepoints except for 0-6h 543 

APF. Single-cell suspension were prepared and GFP positive cells were sorted using 544 

Fluorescence Activated Cell Sorting (FACS) into individual wells of 384-well plates containing 545 

lysis buffer using SH800 (Sony Biotechnology). Full-length poly(A)-tailed RNA was reverse-546 

transcribed and amplified by PCR following the SMART-seq2 protocol (Picelli et al., 2014). 547 

cDNA was digested using lambda exonuclease (New England Biolabs) and then amplified for 25 548 

cycles. Sequencing libraries were prepared from amplified cDNA, pooled, and quantified using 549 

BioAnalyser (Agilent). Sequencing was performed using the Novaseq 6000 Sequencing system 550 

(Illumina) with 100 paired-end reads and 2 x 8 bp index reads. 551 

QUANTIFICATION AND STATISTICAL ANALYSIS 552 

Unless otherwise specified, all data analysis was performed in Python using Scanpy (Wolf et al., 553 

2018), Numpy, Scipy, Pandas, scikit-learn, and custom single-cell RNA-seq modules (Li et al., 554 

2017; Brbic et al., 2020). Gene Ontology analysis were performed using Flymine (Lyne et al., 555 

2007). Sequencing reads and preprocessed sequence data are available in the NCBI Gene 556 

Expression Omnibus (GSE161228). Custom analysis code is available at 557 

https://github.com/Qijing-Xie/FlyPN_development. 558 

Sequence alignment and preprocessing 559 

Reads were aligned to the Drosophila melanogaster genome (r6.10) using STAR (2.5.4) (Dobin 560 

et al., 2013). Gene counts were produced using HTseq (0.11.2) with default settings except ‘‘-m 561 

intersection-strict’ (Anders et al., 2015). We removed low-quality cells having fewer than 562 

100,000 uniquely mapped reads. To normalize for differences in sequencing depth across 563 

individual cells, we rescaled gene counts to counts per million reads (CPM). All analyses were 564 

performed after converting gene counts to logarithmic space via the transformation 565 

Log2(CPM+1). We further filter out non-neuronal cells by selecting cells with high expression of 566 

canonical neuronal genes (elav, brp, Syt1, nSyb, CadN, and mCD8-GFP). We retained cells 567 

expressing at least 8 Log2(CPM+1) for least 2/6 markers. 568 

Dimensionality reduction and clustering 569 

To select variable genes for dimensionality reduction, we used previously described methods to 570 

search for either overdispersed genes (Satija et al., 2015) or ICIM genes (Li et al., 2017).  We 571 

then further reduced its dimensionality using tSNE to project the reduced gene expression matrix 572 

into a two-dimensional space (van der Maaten & Hinton, 2008). We observed that most of our 573 

recently sequenced cells using NovaSeq exhibited some small batch effect with PNs sequenced 574 

using NextSeq [PNs from (Li et al., 2017)]. To overcome this batch effect (in Figure 2, and 575 

https://github.com/Qijing-Xie/FlyPN_development
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Figure 7—figure supplement 2 A, C), we performed principal component analysis (PCA) on the 576 

ICIM matrix, applied Harmony to correct for batch effect on the principal components (PCs) 577 

(Korsunsky et al., 2019), and used tSNE to further project the Harmony-corrected PCs into a 578 

two-dimensional space. 579 

To cluster PNs in an unbiased manner, we applied the hierarchical density-based 580 

clustering algorithm, HDBSCAN, on the tSNE projection (McInnes et al., 2017). Parameters 581 

min_cluster_size and min_samples were adjusted to separate clusters representing different types 582 

of PNs. In addition, we also clustered cells using an independent, community-detection method 583 

called Leiden on the neighborhood graph computed based on the ICIM gene matrix (Blondel et 584 

al., 2008; Levine et al., 2015; McInnes et al., 2018). Both methods appeared to agree with each 585 

other for all datasets we examined (examples in Figure 5—figure supplement 1), and we 586 

assigned PN types in Figure 2 based on HDBSCAN clustering. 587 

Global level dynamic gene identification 588 

To identify dynamically expressed genes on the global level (Figure 3), we first identified the top 589 

150 most differentially expressed genes (Mann-Whitney U test) between every two stages and 590 

combined them to obtain a set of 474 dynamic genes. We calculated the median expression of 591 

each gene at each timepoint and normalized these median expression values by dividing them by 592 

the maximum value across time points. We then performed dimensionality reduction on the 593 

expression profiles of the genes using tSNE, and identified clusters using HDBSCAN on the 594 

projected coordinates. This resulted in identification of 8 sets of genes with distinct dynamic 595 

profiles, of which 2 sets are upregulated (Figure 3E), 4 sets are down regulated (Figure 3D), and 596 

2 sets without obvious trend from 0h APF to adult cells (data not shown). 597 

Transcriptomic similarity calculation 598 

To analyze the transcriptome differences of PNs in different stages (Figure 4E, F), we first 599 

isolated lPNs and adPNs to analyze cells from each lineage separately. Cell-level analysis was 600 

performed by calculating for each cell mean inverse Euclidean distance in the 2-dimensional 601 

UMAP space from all other cells within each stage using the 1215 genes identified by ICIM 602 

from most PNs of all stages (Figure 3A). Box plots show the distance distribution at each stage 603 

(Figure 4E and F, left). Cluster-level analysis was performed on the MARS clusters. We 604 

identified a set of differentially expressed genes for each cluster and calculated Pearson 605 

correlation on differentially expressed genes between all pairs of clusters. Bar plots represent 606 

mean values across all pairs and errors are 95% confidence intervals determined by 607 

bootstrapping with n=1,000 iterations (Figure 4E and F, right). 608 

PN type identification for most PNs 609 

We observed that the transcriptomes of different PN types are the most distinct at 24h APF and 610 

variable genes identified at this stage carry type-specific information (Figure 5). Therefore, we 611 

calculated the differentially expressed genes among 24h APF clusters and applied MARS to 612 

identify clusters in the space of those genes. MARS is able to reuse annotated single-cell datasets 613 

to learn shared low-dimensional space of both annotated and unannotated datasets in which cells 614 

are grouped according to their cell types. However, initially we did not have any annotated 615 

experiments, so we first applied MARS to annotate 24h APF clusters. We then used 24h APF 616 

clusters as annotated dataset and moved to annotate PNs at 48h APF. We then repeated the same 617 

procedure by gradually increasing our set of annotated datasets. In particular, we used 24h and 618 
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48h APF data to help in annotating 0h APF, and finally all three datasets (0h, 24h, 48h) for the 619 

adult PNs. We proceed in this order according to the expected difficulty to identify PN types at a 620 

particular stage (Figure 5). At each stage, we ran MARS multiple times with different random 621 

initializations and architecture parameters to increase our confidence in the discovered clusters, 622 

and combined annotations from these different runs. For each cluster, we additionally manually 623 

checked the expressions of known PN markers to confirm the annotations. 624 

Matching clusters representing the same PN type across development using marker 625 

expression 626 

For each cluster, we used Mann-Whitney U test to find genes that are highly expressed in that 627 

cluster compared to the rest. Then, among those genes, we searched for genes or 2-gene 628 

combinations which are uniquely expressed in 1 cluster. We check each gene or combination of 629 

genes at the other stages, and if they are also only expressed in 1 cluster and they are of the same 630 

lineage, we consider them to be the same types of PNs. Genes used to match clusters 631 

representing the same PN types at different timepoints are summarized in a dot-plot in Figure 632 

7—figure supplement 2. 633 

In addition, we used previously sequenced subset of PNs using Mz19-GAL4 and kn-GAL4 634 

to overlay with most PNs in combinations of those markers to confirm our matching. 635 

Matching clusters representing the same PN type across development using similarity 636 

calculation 637 

For each cluster, we found the set of differentially expressed genes in that cluster compared to all 638 

other clusters at the same stage. Next, we computed the similarity of the sets of identified 639 

differentially expressed genes between all pairs of clusters across subsequent stages. Specifically, 640 

we computed similarity scores between all pairs of clusters from (i) 0h and 24h APF, (ii) 24h and 641 

48h APF, and (iii) 48h and adult APF. The similarity of the sets of differentially expressed genes 642 

was computed as the Jaccard similarity index defined as the ratio of the cardinality of the 643 

intersection of two sets and the cardinality of the union of the sets. We excluded clusters 644 

representing vPNs and APLs for matching most PNs across 4 stages (Figure 7). For each cluster, 645 

we then identified its most similar cluster at the adjacent stage according to the Jaccard index. If 646 

the clusters between two stages coincide—meaning that two clusters from two stages have the 647 

highest similarity to each other, we consider the clusters to be matched. Empirically, we found 648 

this matching procedure to be stringent, resulting in high confidence matching pairs.  649 

Correlation between different PN types 650 

MARS clusters of excitatory PNs were used for analysis in Figure 8. We performed PCA on the 651 

entire matrix and calculated their correlation based on the PCs. Dendrograms shown in Figure 652 

8—figure supplement 1 are generated using distance calculated using Farthest Point Algorithm 653 

and organized so the distance between successive leaves is minimal. 654 

To observe the relationship between birth timing and their transcriptomic similarity, for 655 

each stage, we selected adPN clusters, performed PCA among all genes detected, calculated their 656 

correlation, and plotted the correlation matrices according to their birth order (Yu et al., 2010) 657 

(Figure 8B). For the two clusters representing either VM7 or VM5v PNs, we ordered them based 658 

on their correlation with decoded PN types whose birth order are adjacent to either of these two 659 

PN types. We are showing adPNs in the figure because we decoded much fewer transcriptomic 660 

clusters belonging to the lPN lineage, which is too few to carry out analysis shown in Figure 8 661 
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C–D with robust statistical backing. Nevertheless, we still observed higher correlation between 662 

lPN types with adjacent birth-order in 0h and 24h APF (data not shown). 663 

Spearman’s rank correlation calculation and permutation test 664 

For consistency, 8 adPN types that were decoded across 4 stages were selected for this analysis 665 

(Figure 8C). For each PN type X, the group of PNs that are born either earlier or later than X was 666 

selected depending on which direction contains more PN types (each group contains at least 5 667 

types of PNs). Then, we ranked the PN types according to their correlation with X and calculated 668 

the Spearman’s rank correlation of this ranking with the ranking based on their birth order. For 669 

each stage, we obtained the average correlation coefficients and plotted the result as a red dot on 670 

the x-axis for each timepoint. Higher value indicates higher correlation between birth order and 671 

order calculated based on their transcriptomic similarity. 672 

To determine if we can reject the null hypothesis that the adPN transcriptomic similarity 673 

do not covary with the ranks of the birth order, we performed permutation test. We randomly 674 

shuffled the birth order and performed the aforementioned correlation calculation for 5000 675 

iterations. The distribution of the simulated average correlations is shown in the histogram of 676 

Figure 8C. We obtained the p-value by dividing the number of times of the simulated correlation 677 

is greater than the observed correlation by the total number of iterations. 678 

Developmental trajectory analysis  679 

Pseudo-time analysis of 0h APF adPNs was performed using the monocle package in R (Trapnell 680 

et al., 2014; Qiu et al., 2017; Cao et al., 2019). We selected only adPNs born at larval stage 681 

because the embryonically born adPNs have a very distinct transcriptomes which skew clustering. 682 

We applied the dimensionality reduction method UMAP (Becht et al., 2018) on 561 24h ICIM 683 

genes to resolve distinct PN types. This dimensionally reduced dataset was then used as the basis 684 

for a developmental trajectory graph created by Monocle 3. We then selected the cluster 685 

representing DL1 PNs to be the root node of the trajectory and computed the pseudo-times based 686 

on distance from the root in accordance to the trajectory. 687 

Differential gene expression analysis 688 

We used adPN and lPN clusters to identify differentially expressed genes at each stage (Figure 689 

9). We performed Mann-Whitney U test on each cluster compared to the rest of the clusters at 690 

each developmental stage and applied Benjamini-Hochberg Procedure to adjust p-value. Genes 691 

with an adjusted p-value of less than 0.01 were kept for our analysis. 692 

To identify genes that are transcription factors (TFs), cell surface molecules (CSM), ion channels, 693 

and transmembrane receptors, we used curated lists. The TF list was from the FlyTF database 694 

(Pfreundt et al., 2010) and the CSM list was from (Kurusu et al., 2008). These lists were 695 

manually curated to remove spurious annotations and redundancies according to Flybase 696 

annotation. Lists of ion channels and transmembrane receptors were based on gene groups 697 

obtained from FlyBase. To avoid redundancy, ion channels that also belong to the 698 

transmembrane receptor gene group are not plotted as transmembrane receptors (Figure 9C, 699 

bottom). 700 
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Figure legends 1003 
 1004 

Figure 1. Overview of single-cell transcriptomic profiling of Drosophila olfactory projection 1005 

neurons (PNs).  1006 

(A) Schematic of the adult Drosophila olfactory system. Approximately 50 types of olfactory 1007 

receptor neurons (ORNs) form one-to-one synaptic connections with 50 types of excitatory PNs 1008 

at 50 glomeruli in the antennal lobe. Illustrated are two types each of ORNs (brown) and PNs 1009 

(green), as well as two glomeruli to which their axons and dendrites target. (B) Schematic of the 1010 

developmental process of the adult Drosophila olfactory system. The ~50 types of uniglomerular 1011 

excitatory PNs are from either anterodorsal (adPN) or lateral (lPN) neuroblast lineages. PNs with 1012 

cell body on the ventral side are inhibitory ventral PNs (vPNs). (C) Representative confocal 1013 

images of PNs from four different developmental stages, 0h APF, 24h APF, 48h APF, and adult. 1014 

APF: after puparium formation. Images are shown as maximum z-projections of confocal stacks. 1015 

Antenna lobe is outlined. Scale bars, 40 μm. (D) Workflow of the single-cell RNA sequencing 1016 

using plate-based SMART-seq2. FACS: fluorescence-activated cell sorting. (E) Summary of the 1017 

number of high-quality PNs sequenced at each timepoint and driver lines used. Most PNs refer to 1018 

PNs sequenced using either GH146-GAL4 or VT033006-GAL4. (F) Visualization of all 1019 

sequenced PNs from four different developmental stages using tSNE plot. Dimensionality 1020 

reduction was performed using the top 500 overdispersed genes identified from all sequenced 1021 

PNs.  1022 

 1023 

Figure 1—figure supplement 1. Technical characteristics of PN scRNA-seq.  1024 

(A) Representative confocal image and illustration of cells labeled by GH146-GAL4 at 0h APF. 1025 

Other than PNs and a pair of APL neurons in the central brain (arrowheads), many cells in the 1026 

optic lobes (*) are also labeled. (B) Representative confocal image and illustration of cells 1027 

labeled by VT033006-GAL4 at 0h APF. This driver labels excitatory PNs, but not cells in the 1028 

optic lobes or vPN or APL neurons. Scale bars, 40 μm. (C) Distribution of the number of 1029 

uniquely mapped reads per cell. (D) Distribution of the number of detected genes per cell. (E) 1030 

Heatmaps showing the expression of: mCD8-GFP, pan-neuronal makers (nSyb, elav, CadN, Syt1, 1031 

and brp), PN marker (Oaz), and glial markers (repo and alrm). Expression levels are indicated by 1032 

the color bar (CPM, transcript counts per million). 1033 
 1034 
Figure 2. Matching 15 transcriptomic clusters to specific PN types at 24h APF.  1035 

(A) Representative maximum z-projection of confocal stacks of split#28-GAL4 in adults. 1036 

Dendrites of split#28-GAL4+ PNs target the DC3 and DA4l glomeruli. (B) Diagram of split#28-1037 

GAL4+ PNs. (C) tSNE plot showing newly sequenced split#28-GAL4+ PNs, which form two 1038 

clusters that can be assigned to DC3 and DA4l PNs (see also Figure 2—figure supplement 1). (D) 1039 

Representative confocal images of split#7-GAL4 labeled PNs using permanent labeling strategy. 1040 

One anterior section and one posterior section of the antennal lobe are shown. Using permanent 1041 

labeling, we found that this driver is expressed in 8 PN types. Genotype: split#7-GAL4, UAS-Flp, 1042 

Actin promoter-FRT-STOP-FRT-GAL4, UAS-mCD8-GFP. (E) Diagram of split#7-GAL4+ PNs. 1043 

split#7-GAL4 labels 8 types of PNs. 4 from the adPN lineage (green letters) and 4 from the lPN 1044 

lineage (red letters). (F) tSNE plot of split#7-GAL4 PNs with GH146+ PNs (see Figure 2—1045 

figure supplement 2 for details on the decoding procedure). (G) Representative maximum z-1046 

projection of confocal stacks of kn+ PNs in the adult. kn-GAL4 was intersected with GH146-Flp 1047 

to restrict the expression of GAL4 in only PNs. (H) Representative confocal images of split#15-1048 
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GAL4 in adults, which labels 2 kn+ PN types. (I) Diagram showing that kn+ PNs include 6 types 1049 

of adPNs and two vPNs. (J) tSNE plot of kn-GAL4 PNs with GH146+ PNs (see Figure 2—1050 

figure supplement 3 for details on the decoding procedure). (K) Dot plot summarizing drivers 1051 

and marker genes we used to map 21 transcriptomic clusters to 20 PN types [14 adPNs, 5 lPNs—1052 

DA1 PNs form two clusters, one fru+ and one fru– (Li et al., 2017)—and 1 vPNs] and the 1053 

anterior paired lateral (APL) neurons at 24h APF. Gene expression level [log2(CPM+1)] is 1054 

shown by the dot color, and percentages of cells expressing a marker are shown by dot size. (L) 1055 

tSNE plot showing 24h APF PNs colored by PN types (GH146+ PNs with split#7+/ split#28 1056 

PNs to increase cell number in some less abundant PN types). Scale bars, 20 μm. Axes, D 1057 

(dorsal), L (lateral). In panel B, E, and I, orange glomeruli represent PN types of unknown 1058 

transcriptomic identity prior to this study. Green glomeruli represent PN types whose 1059 

transcriptomic identity were previously decoded. Note that the positions of cells on a tSNE plot 1060 

are dependent on the random initialization of the program as well as every cell present in the 1061 

dataset, therefore the position of GH146+ PNs clusters are different when we plot them with 1062 

different set of newly sequenced PNs (gray in panels C, F, and J). 1063 
 1064 
Figure 2—figure supplement 1. Validation of DA4l PN identity.  1065 

(A) Visualization of GH146+ and split#28-GAL4+ PNs using tSNE. Cells are colored according 1066 

to driver genotypes (left) or by the expression of zfh2 (right). (B) zfh2-GAL4, after intersecting 1067 

with GH146-Flp, labels DA4l PNs. Scale bars, 20 μm. Axes, D (dorsal), L (lateral). 1068 
 1069 
Figure 2—figure supplement 2. Decoding split#7+ PNs.  1070 

(A) Representative confocal images of split#7+ PNs. Without permanent labeling, this driver is 1071 

strongly expressed in 3 PN types in adults. Permanent labeling showed that it can label 8 adult 1072 

PN types (Figure 2D), suggesting that this driver is expressed in 8 PN types during development 1073 

and turned off in 5 of them in adult stage. (B) Visualization of GH146+ and split#7+ PNs 1074 

colored according to genotype (left), acj6 (middle), and CG31676 (right) expression. Previously, 1075 

we know among those split#7+ PNs, the cells with CG31676 expression are DA1 PNs (Li et al. 1076 

2017). (C) Among split#7+ adPN clusters (circled in green), only one cluster does not express 1077 

C15. Intersection between C15-p65
AD

 and the GAL4 DNA-binding domain (DBD) from split#7 1078 

(top) as well as intersection between C15-GAL4
DBD

 and the p65-activating domain (AD) from 1079 

split#7 (bottom) revealed that the C15 negative cluster represents DL1 PNs. (D) Among split#7+ 1080 

adPNs (circled in green), two clusters are danr–. One of those cluster represents DL1 PNs. 1081 

Intersection between danr-p65
AD

 and VT033006-GAL4
DBD

 (split-GAL4 with PN specific 1082 

expression) revealed the other danr– adPN is VA6 PNs. (E) One split#7+ cluster specifically 1083 

expresses DIP-zeta. Intersection between DIP-zeta-GAL4 and GH146-Flp revealed this cluster 1084 

represents VA2 PNs. As three out of four adPN clusters are assigned, we assigned the last 1085 

unassigned to be DA3 PNs. (F) Among split#7+ lPNs (circled in red), only one cluster is DIP-1086 

eta-. Intersection between DIP-eta-GAL4 and GH146-Flp revealed the identity of this cluster as 1087 

VA5 PNs. (G) The DIP-eta– cluster also specifically expresses AstA. Intersection between AstA-1088 

GAL4 and GH146-Flp labels VA5 PNs, further confirming its identity. (H) Among the last two 1089 

unmapped clusters, one is DIP-beta+. Intersection between DIP-beta-GAL4 and GH146-Flp 1090 

revealed the cluster negative for DIP-beta is DM2 PNs. And we assigned the remaining split#7+ 1091 

lPN cluster to be VC2 PNs. Scale bars, 20 μm. Axes, D (dorsal), L (lateral). 1092 

 1093 

Figure 2—figure supplement 3. Decoding the identity of kn+ PNs.  1094 
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(A) kn is expressed in 7 transcriptomic cluster in GH146+ PNs at 24h APF. (B) Visualization of 1095 

kn+ and split#15-GAL4+ PNs at 24h APF using tSNE. kn+ PNs (green) form 8 clusters, two of 1096 

them intermingled with split#15-GAL4+ PNs (purple). These 8 clusters are assigned to specific 1097 

PN types using information in the following panels. (C) Summary of marker genes used to 1098 

decode the identity of kn-GAL4+ PNs. trol+ cluster represents VM2 PNs (Li et al., 2007). (D) 1099 

Intersection between kn-GAL4
DBD

 and danr-p65
AD

 with GH146-Flp revealed that the cluster 1100 

positive for both kn and danr is VA1v PNs. (E) Intersection between C15-p65
AD

 and elav-1101 

GAL4
DBD

 revealed that the cluster positive for acj6 but negative for C15 is D PNs. (F) 1102 

Visualization of DIP-beta expression among GH146+ PNs. DA1 lPNs does not express DIP-1103 

beta. (G) Visualization of DIP-beta expression among kn+ PNs. One vPN cluster expresses 1104 

DIP-beta. (H) Representative confocal image of DIP-beta-GAL4 after intersecting with GH146-1105 

Flp. Innervation of the DA1 glomerulus indicated the DIP-beta+ vPN cluster is vPN (DA1). 1106 

Scale bars, 20 μm. Axes, D (dorsal), L (lateral). 1107 

 1108 

Figure 3. Global gene expression dynamics of PNs.  1109 

(A) Visualization of PNs from 4 different developmental stages: 0h APF, 24h APF, 48h APF, 1110 

and adult sequenced using either VT033006-GAL4 or GH146-GAL4. tSNE dimensionality 1111 

reduction was performed using 1216 genes identified by iterative clustering for identifying 1112 

markers (ICIM) among them. (B) Hierarchical heatmap showing the expression of the top 52 out 1113 

of 474 differentially expressed genes identified among PNs of different developmental stages. (C) 1114 

Examples of the expression of the dynamic genes. Cells are colored according to the expression 1115 

level of each gene. Akap200 (A kinase anchor protein 200, encodes a scaffolding protein that 1116 

contributes to the maintenance and regulation of cytoskeletal structure), cib (ciboulot, encodes an 1117 

actin binding protein), and fax (failed axon connections, a gene involved in axon development) 1118 

have the highest expression in early pupal stage and are downregulated gradually. Rdl (Resistant 1119 

to dieldrin, encodes a chloride channel), slo (slowpoke, encodes a subunit of calcium-activated 1120 

potassium channel), and CG8177 (Anion exchanger 2), are upregulated as PNs develop. (D, E) 1121 

Top 474 differentially expressed genes can be divided into 8 groups based on their dynamic 1122 

profiles—2 groups without obvious developmental trend (not shown), 5 groups of down-1123 

regulated genes (D), and 2 groups of up-regulated genes (E). Pink lines represent individual 1124 

genes and the black line shows mean expression of genes in each group. The highest expression 1125 

is normalized as 1 for all genes. The top 10 GO terms for up-regulated and down-regulated genes 1126 

are shown on right. 1127 

 1128 

Figure 4. PN transcriptomes show distinct features at different stages of development.  1129 

(A) Visualization of most PNs from 0h APF, 24h APF, 48h APF, and adults using tSNE based 1130 

on genes identified by ICIM at each stage. Adult clusters (circled) are identified using 1131 

HDBSCAN. (B) Clustering of 0h APF PNs using HDBSCAN identified two clusters. (C) Part of 1132 

the molecular pathways critical for neurite pruning in Drosophila. (D) Genes whose function 1133 

have been implicated in neurite pruning have higher expression in cluster 0: Sox14 (p-value: 1134 

5.01E-51), Mical (p-value: 1.49E-09), Cul1 (p-value: 8.15E-4), shrb (p-value: 6.37E-19) and 1135 

Vps20 (p-value: 1.23E-17) (Mann-Whitney U test). (E, F). PN transcriptomic similarity 1136 

calculated at the cell level (mean inverse Euclidean distance calculated using 1216 ICIM genes 1137 

identified from PNs of all 4 stages) and the cluster level (Pearson correlation calculated using 1138 

differentially expressed genes identified from 24h PN clusters) for adPNs (E) [0h APF: 587 cells, 1139 

cell-level similarity (mean ± standard deviation): 0.350 ± 0.036, 15 clusters, cluster-level 1140 
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similarity (mean ± standard deviation): 0.615 ± 0.160; 24h APF: 547 cells, cell-level similarity: 1141 

0.292 ± 0.041, 15 clusters, cluster-level similarity: 0.395 ± 0.189; 48h APF: 301 cells, cell-level 1142 

similarity: 0.377 ± 0.046, 13 clusters, cluster-level similarity: 0.484 ± 0.212; adult stage: 209 1143 

cells, cell-level similarity: 0.422 ± 0.058, 15 clusters, cluster-level similarity: 0.741 ± 0.129] and 1144 

lPNs (F) [0h APF: 484 cells, cell-level similarity: 0.402 ± 0.052, 10 clusters, cluster-level 1145 

similarity: 0.736 ± 0.129; 24h APF: 354 cells, cell-level similarity: 0.360 ± 0.056, 10 clusters, 1146 

cluster-level similarity: 0.474 ± 0.057; 48h APF: 296 cells, cell-level similarity: 0.385 ± 0.043, 1147 

10 clusters, cluster-level similarity: 0.570 ± 0.171; adult stage: 191 cells, cell-level similarity: 1148 

0.444 ± 0.057, 8 clusters, cluster-level similarity: 0.754 ± 0.141)]. (G) Schematic summary of 1149 

PN transcriptome similarity changes from early pupal stage to adulthood. PN diversity peaks 1150 

during circuit assembly around 24h APF and gradually diminishes as they develop into mature 1151 

neurons. (H) Expression of VAChT, Gad1, and VGlut in adult PNs. 1152 
 1153 

Figure 4—figure supplement 1. Visualization of most PNs at different stages using tSNE. 1154 

Dimensionality reduction was computed using top 2000 overdispersed genes found at each stage. 1155 

 1156 

Figure 4—figure supplement 2. Embryonically born and larval born PNs at 0h APF.  1157 

(A) The larger cluster at 0h APF consists of both adPNs (acj6+) and lPNs (vvl+) while the 1158 

smaller cluster contains only adPNs. (B) Two types of embryonically born PNs, DA4l and VA6 1159 

PNs, are both mapped to the smaller cluster (details in Figure 7). 1160 

 1161 

Figure 5. PN type identification by MARS.  1162 

(A) Dimensionality reduction of most PNs at 4 developmental stages by 561 ICIM genes found 1163 

at 24h APF. (B) PN types identified by MARS. Different MARS clusters are illustrated in 1164 

different colors. 1165 

 1166 

Figure 5—figure supplement 1. PN type identification using two other independent 1167 

methods.  1168 

(A) Dimensionality reduction by 24h ICIM genes followed by cluster identification using 1169 

HDBSCAN. Circled cells belong to two PN types but are assigned to the same cluster using 1170 

HDBSCAN. (B) Cluster identification by Leiden based on neighborhood graph computed on 24h 1171 

ICIM genes. Circled cells belong to two PN types but are assigned to the same cluster using 1172 

Leiden. (C) 24h APF PNs colored according to PN types validated in Figure 2. (D) PN types 1173 

identified using MARS (same as Figure 5B). Some PN types which are incorrectly annotated by 1174 

HDBSCAN or Leiden are correctly annotated as distinct clusters by MARS. 1175 
 1176 
Figure 6. Two complementary approaches to match transcriptomic clusters representing 1177 

same PN types at different developmental stages.  1178 

(A) scRNA-seq was performed for kn+ PNs from 3 different developmental stages: 24h APF, 1179 

48h APF, and adult. (B) tSNE plots showing kn+ PNs from three different stages, plotted 1180 

separately. Cells are clustered according to 24h ICIM genes. Cell numbers are indicated. (C) kn+ 1181 

PNs from three different stages plotted in the same tSNE plot. Cells are clustered according to 1182 

24h ICIM genes. (D) Two approaches were used for matching the same PN types at different 1183 

stages: 1) automatic prediction by calculating the transcriptomic similarity between clusters at 1184 

two stages 2) manual matching of clusters using specific markers or marker combinations. (E) 1185 

Jaccard similarity index of automatically matched transcriptomic clusters from different stages. 1186 

Clusters #7 (brown cells in panel G) in 24h and 48h APF do not match with any cluster in the 1187 
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adult stage; therefore, the similarity calculation is left as not applicable (NA). (F) Examples of 1188 

markers used to manually match transcriptomic clusters representing the same PN types across 1189 

different stages. (G) All kn+ PN types (6 adPNs and 3 vPNs) are matched from three different 1190 

stages. Two independent approaches (automatic and manual) produced similar results. 1191 
 1192 
Figure 6—figure supplement 1. kn+ adPN transcriptomes become more similar as 1193 

development proceeds.  1194 

(A) Bar plot of Euclidean distance between all pairs of kn+ cells using ICIM genes identified 1195 

among them. kn+ vPNs are excluded from this analysis.  24h APF: 98 cells, mean ± standard 1196 

deviation: 0.374 ± 0.066; 48h APF: 174 cells, mean ± standard deviation (std): 0.446 ± 0.912; 1197 

adult: 124 cells, mean ± std: 0.493 ± 0.085 (B) Bar plot of Pearson's correlation between all pairs 1198 

of kn+ adPN clusters. 24h APF: 6 clusters, mean ± std: 0.167 ± 0.141; 48h APF: 6 clusters, mean 1199 

± std: 0.424 ± 0.170; adult: 6 clusters, mean ± std: 0.506 ± 0.187. 1200 
 1201 
Figure 7. Matching transcriptomic cluster representing the same PN types across four 1202 

developmental stages. 1203 

 (A) Visualization of most PNs at 4 different developmental stages: 0h APF, 24h APF, 48h APF, 1204 

and adult. 561 ICIM genes at 24h APF PNs were used for dimensionality reduction. (B) 1205 

Visualization of the same types of PNs at all developmental stages. Clusters with the same color 1206 

represent same neuronal type. Light grey dots indicate cells that have neither been decoded nor 1207 

matched. (C) Summary of transcriptomic clusters mapped to known PN types at different 1208 

developmental stages. Solid red-lines indicate clusters we can unambiguously match using 1209 

marker combinations; dashed red-lines indicate PN types we can narrow down to less than 3 1210 

transcriptomic clusters. Solid green-lines indicate clusters that are two-way matched 1211 

automatically (two clusters from two stages are the most similar to each other); dashed green-1212 

lines indicates clusters that are one-way matched automatically (one cluster is the most similar 1213 

with the other but not the other way around). Circles with white “+” indicate PN types that have 1214 

been sequenced and confirmed at that stage using additional GAL4 lines (see Figure 7—figure 1215 

supplement 1). 1216 

 1217 

Figure 7—figure supplement 1. Supporting evidence for matching PN types across 1218 

developmental stages.  1219 

(A, C) Visualization of GH146+ PNs (grey) with Mz19+ PNs (green) at 48h APF (A) and at the 1220 

adult stage (C). PN type of Mz19+ PNs shown on left were decoded previously (Li et al. 2017). 1221 

(B, D) Visualization of kn+ PNs from cells sequenced using GH146-GAL4 (in grey) and cells 1222 

sequenced using kn-GAL4 (in blue) at 48h APF (A) and at the adult stage (C). Annotation of kn-1223 

GAL4+ cells was done in Figure 6. (E) Visualization of the same types of PNs matched 1224 

automatically (left) or manually (right) in tSNE space (same as Figure 7C). Transcriptomic 1225 

clusters representing the same PN types of different developmental stages are labeled in the same 1226 

color. Colors used to indicate PN types are identical to those in Figure 7B. 1227 

 1228 

Figure 7—figure supplement 2. Markers used for manually matching PNs. 1229 

Dot plot of markers used to match the same types of PNs across different stages. Size of the dot 1230 

represents percentage of cells expressing a given marker in a cluster at a given stage, and color of 1231 

the dot represents expression level. 1232 

 1233 
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Figure 8. PN types with adjacent birth order share more similar transcriptomes at early 1234 

pupal stages.  1235 

(A) Different PN types born from a common neuroblast follow a stereotyped sequence. The birth 1236 

order of PNs determines to which glomerulus their dendrites target. The birth order of adPNs are 1237 

shown on right. PN types with known transcriptomic identities at any of the four stages are 1238 

highlighted in red. (B) Correlation matrix of the transcriptomes of adPNs with known identities 1239 

(Pearson’s correlation). PN types are ordered according to their birth order. At 0h and 24h APF, 1240 

PN types with birth orders adjacent to each other exhibit the highest correlations in their 1241 

transcriptomes, as indicated by high correlations in boxes just off the diagonal line. (C) Results 1242 

of permutation test under the null hypothesis that the ranks of adPN transcriptomic similarity do 1243 

no covary with the ranks of birth order. Observed values is the average Spearman correlation of 1244 

8 adPN types decoded in all 4 stages (red dot). The distribution is the average Spearman 1245 

correlations obtained by randomly permutating the birth order for 5000 iterations (histogram). (D) 1246 

Developmental trajectory analysis showing an unbiased pseudo time of 0h APF adPNs 1247 

(embryonically born types excluded). The pseudo time roughly matches their birth order. (E) 1248 

Expression levels of 15 genes in adPNs with known identity at 0h APF. These genes have been 1249 

shown to exhibit temporal expression gradient in PN neuroblasts (Liu et al. 2015). The highest 1250 

expression is normalized as 1 for all genes. 1251 

 1252 

Figure 8—figure supplement 1. Hierarchical clustering of all excitatory PNs.  1253 

Hierarchical clustering of all excitatory PN clusters of 0h APF (A), 24h APF (B), 48h APF (C), 1254 

and adult (D). Correlation calculation and hierarchical clustering were based on the principal 1255 

components calculated using the entire gene matrix. adPNs are indicated by green bar and lPNs 1256 

are indicated by orange bar on the top and left side of each plot. Clusters that have been matched 1257 

to specific PN types are labeled. 1258 

 1259 

Figure 9. Differentially expressed genes between different PN types. 1260 

(A) Number of differentially expressed (DE) genes identified at each developmental stage among 1261 

all excitatory PN clusters or among the 12 PN types that are matched in all four stages. 103 and 1262 

52 genes are differentially expressed in all four stages among all excitatory PN types or among 1263 

the 12 PN types, respectively. (B) Percentage of transcription factors (TFs) or cell-surface 1264 

molecules (CSMs) from the list of genes that are differentially expressed among PNs in all four 1265 

stages compared to the genome-wide percentage. (C, D) Dot plot of the 17 TFs (C) and 23 CSMs 1266 

(D) that are differentially expressed in all four stages among the 12 PN types.  1267 

 1268 

Figure 9––figure supplement 1 1269 

Dot plot of 114 TFs that are differentially expressed in any of the four stages among the 12 PN 1270 

type matched across all stages. 1271 

 1272 

Figure 9––figure supplement 2 1273 

Dot plot of 228 CSMs that are differentially expressed in any of the four stages among the 12 PN 1274 

type matched across all stages. 1275 
 1276 
Figure 10. Differentially expressed genes among different PN types in the adult stage.  1277 

(A) Venn diagram of differentially DE genes at 24h APF (497 genes) and in adults (542 genes). 1278 

(B) Top 10 biological process terms of DE genes found in 24h APF PNs only (top), in both 24h 1279 

APF and adults PNs (middle), and in adult PNs only (bottom). GO terms associated with neural 1280 
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development are colored in orange, and GO terms associated with metabolism are colored in 1281 

blue. (C) Dot plot of adult DE genes that belong to the ‘ion channels’ (top) or ‘transmembrane 1282 

receptors’ (bottom) gene group from FlyBase. PN types are separated by lineage and decoded 1283 

PN types are labeled and ordered according to their birth order within each lineage. 1284 
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