

1 **Temporal evolution of single-cell transcriptomes of *Drosophila*** 2 **olfactory projection neurons**

4 Qijing Xie^{1,2}, Maria Brbic³, Felix Horns^{4,5}, Sai Saroja Kolluru⁴, Robert C. Jones⁴, Jiefu Li¹, Anay
5 R. Reddy¹, Anthony Xie¹, Sayeh Kohani¹, Zhuoran Li¹, Colleen N. McLaughlin¹, Tongchao Li¹,
6 Chuanyun Xu¹, David Vacek¹, David J. Luginbuhl¹, Jure Leskovec³, Stephen R. Quake^{4,6,7*},
7 Liqun Luo^{1*}, Hongjie Li¹

8
9 ¹Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford,
10 United States

11 ²Neurosciences Graduate Program, Stanford University, Stanford, United States

12 ³Department of Computer Science, Stanford University, Stanford, United States

13 ⁴Department of Bioengineering, Stanford University, Stanford, United States

14 ⁵Biophysics Graduate Program, Stanford University, Stanford, United States

15 ⁶Department of Applied Physics, Stanford University, Stanford, United States

16 ⁷Chan Zuckerberg Biohub, Stanford, United States

17 *For correspondence: steve@quake-lab.org, lluo@stanford.edu

19 **Abstract**

20 Neurons undergo substantial morphological and functional changes during development to form
21 precise synaptic connections and acquire specific physiological properties. What are the
22 underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of *Drosophila*
23 olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21
24 transcriptomic clusters corresponding to 20 PN types and developed methods to match
25 transcriptomic clusters representing the same PN type across development. We discovered that
26 PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth
27 and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity
28 during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early
29 developmental stages, PN types with adjacent birth order share similar transcriptomes. Together,
30 our work reveals principles of cellular diversity during brain development and provides a
31 resource for future studies of neural development in PNs and other neuronal types.

32 **Introduction**

33 Cell-type diversity and connection specificity between neurons are the basis of information
34 processing underlying all nervous system functions. The precise assembly of neural circuits
35 involves multiple highly regulated steps. First, neurons are born from their progenitors and
36 acquire unique fates through a combination of (1) intrinsic mechanisms, such as lineage, birth
37 order, and birth timing; (2) extrinsic mechanisms, such as lateral inhibition and extracellular
38 induction, and (3) developmental stochasticity in some cases (Jan & Jan, 1994; Johnston &
39 Desplan, 2010; Kohwi & Doe, 2013; Holguera & Desplan, 2018; Li et al., 2018). During wiring,
40 neurons extend their neurites to a coarse targeting region, elaborate their terminal structures,
41 select pre- and post-synaptic partners, and finally form synaptic connections (Sanes & Yamagata,
42

43 2009; Jan & Jan, 2010; Kolodkin & Tessier-Lavigne, 2011; Luo, 2020; Sanes & Zipursky, 2020).
44 Studies from the past few decades have uncovered many molecules and mechanisms that
45 regulate each of these developmental processes.

46 The development of *Drosophila* olfactory projection neurons (PNs) has been extensively
47 studied (Jefferis et al., 2004; Hong & Luo, 2014). PNs are the second-order olfactory neurons
48 that receive organized input from olfactory receptor neurons (ORNs) at ~50 stereotyped and
49 individually identifiable glomeruli in the antennal lobe, and carry olfactory information to higher
50 brain centers (Vosshall & Stocker, 2007; Wilson, 2013) (**Figure 1A**). Different types of PNs
51 send their dendrites to a single glomerulus or multiple glomeruli (Marin et al., 2002; Lai et al.,
52 2008; Yu et al., 2010; Tanaka et al., 2012; Bates et al., 2020). PNs are derived from three
53 separate neuroblast lineages—anterodorsal, lateral, and ventral lineages, corresponding to their
54 cell bodies' positions relative to the antennal lobe (Jefferis et al., 2001). PNs produced from the
55 anterodorsal and lateral lineages (adPNs and IPNs) are cholinergic excitatory neurons. The fate
56 of uniglomerular excitatory PN types, defined by their glomerular targets, is predetermined by
57 their lineage and birth order (Jefferis et al., 2001; Marin et al., 2005; Yu et al., 2010; Lin et al.,
58 2012). PNs produced from the ventral lineage (vPNs), on the other hand, are GABAergic
59 inhibitory neurons (Jefferis et al., 2007; Liang et al., 2013; Parnas et al., 2013). The connectivity
60 and physiology of PNs have also been systematically studied (Bhandawat et al., 2007; Jeanne et
61 al., 2018; Bates et al., 2020).

62 Despite the fact that PNs are among the most well-characterized cell types in all nervous
63 systems, their transcriptome-wide gene expression changes across different developmental stages
64 with cell-type specificity are still unknown. This information can help us obtain a more complete
65 picture of both known and unexplored pathways underlying neural development and function.
66 Recently, the advent of single-cell RNA sequencing (scRNA-seq) has paved the way towards
67 obtaining such data (Li et al., 2017; Kalish et al., 2018; Zhong et al., 2018; Li, 2020). Here, we
68 profiled and analyzed the single-cell transcriptomes of most uniglomerular excitatory PNs. We
69 identified the correspondence between two-thirds of transcriptomes and PN types at one stage
70 and developed methods to reliably match transcriptomic clusters corresponding to the same types
71 of PNs across different stages. We discovered that PN transcriptomes exhibit unique
72 characteristics at different stages, including birth-order, neurite pruning, wiring specificity, and
73 neuronal signaling. The identification of many differentially expressed genes among different PN
74 types, such as transcription factors, cell-surface molecules, ion channels, and neurotransmitter
75 receptors, provides a rich resource for further investigations of the development and function of
76 the olfactory system.

77

78 **Results**

79 **Single-cell transcriptomic profiling of *Drosophila* PNs at four developmental stages**

80 The development of PNs follows the coordinated steps as previously described (Hong & Luo,
81 2014). 18 out of 40 types of adPNs are born embryonically and participate in the larval olfactory
82 system. Then, during the larval stage, the rest of adPNs and all IPNs are born (Jefferis et al.,
83 2001; Marin et al., 2005; Yu et al., 2010; Lin et al., 2012). During early metamorphosis
84 following puparium formation, embryonically born PNs first prune terminal branches of
85 dendrites and axons, and then re-extend their dendrites into the future adult antennal lobe, and
86 axons into the mushroom body and lateral horn following the neurites of larval-born PNs (Marin

87 et al., 2005). From 0 to 24 hours after puparium formation (APF), PNs extend their dendrites into
 88 the developing antennal lobe and occupy restricted regions. ORN axons begin to invade antennal
 89 lobe at ~24 hours APF. PN dendrites and ORN axons then match with their respective partners
 90 beginning at ~30 hours APF and establish discrete glomerular compartments at ~48 hours APF.
 91 Thereafter, they expand their terminal branches, build synaptic connections, and finally form
 92 mature adult olfactory circuits (Jefferis et al., 2004) (**Figure 1B**).

93 To better understand the molecular mechanisms that control these dynamic
 94 developmental processes underlying neural circuit assembly, we performed scRNA-seq of PNs
 95 from 4 different developmental stages: 0–6 hours APF, 24–30 hours APF, 48–54 hours APF, and
 96 1–5 days adult (hereafter 0, 24, 48h APF and adult) (**Figure 1C**). We used *GH146-GAL4*
 97 (Stocker et al., 1997) to drive *UAS-mCD8-GFP* (Lee & Luo, 1999) expression in most PNs at
 98 24h, 48h, and adult, which labels ~90 of the estimated 150 PNs in each hemisphere, covering
 99 ~40 of the 50 PN types. At 0h APF, *GH146-GAL4* also labels cells in the optic lobes (**Figure**
 100 **1—figure supplement 1A**), which are inseparable from the central brain by dissection.
 101 Therefore, we used *VT033006-GAL4* to label PNs at 0h APF (**Figure 1C** and **Figure 1—figure**
 102 **supplement 1B**) (Tirian & Dickson, 2017). *VT033006-GAL4* labels most PNs from the
 103 anterodorsal and lateral lineage, but not PNs from the ventral lineage or anterior paired lateral
 104 (APL) neurons like *GH146-GAL4*. It is expressed in ~95 cells that innervate ~44 glomeruli
 105 which largely overlap with PNs labeled by *GH146-GAL4* (Inada et al., 2017; Elkahlah et al.,
 106 2020). In addition to PNs labeled by *GH146-GAL4* and *VT033006-GAL4* (we will refer to them
 107 as ‘most PNs’ hereafter), we have collected single-cell transcriptomic data using drivers that only
 108 label a small number of PN types for mapping the transcriptomic clusters to anatomically defined
 109 PN types.

110 For scRNA-seq, fly brains with a unique set of PN types labeled using different drivers at
 111 each developmental stage were dissected and dissociated into single-cell suspensions. GFP+ cells
 112 were sorted into 384-well plates by fluorescence-activated cell sorting (FACS), and sequenced
 113 using SMART-seq2 (Picelli et al., 2014) (**Figure 1D**) to a depth of ~1 million reads per cell
 114 (**Figure 1—figure supplement 1C**). On average ~3000 genes were detected per cell (**Figure**
 115 **1—figure supplement 1D**), and after quality filtering (see Methods), we obtained ~3700 high
 116 quality PNs in addition to the previously sequenced ~1200 PNs (Li et al., 2017), yielding ~4900
 117 PNs for analysis in this study (**Figure 1E**). All analyzed PNs express high levels of neuronal
 118 markers but not glial markers, confirming the specificity of sequenced cells (**Figure 1—figure**
 119 **supplement 1E**). Unbiased clustering using overdispersed genes from all PNs readily separates
 120 them into different groups according to their stage (**Figure 1F**), suggesting that gene expression
 121 changes across these four developmental stages represent a principal difference in their single-
 122 cell transcriptomes.

123 **Decoding the glomerular identity of transcriptomic clusters by sequencing subsets of PNs** 124 **at 24h APF**

125 PNs labeled by *GH146-GAL4* at 24h APF form ~30 distinct transcriptomic clusters. We
 126 previously matched 6 of these transcriptomic clusters to specific anatomically and functionally
 127 defined PN types (Li et al., 2017), hereafter referred to as “decoding transcriptomic identity.”
 128 Unlike ORNs, whose identities can be decoded using uniquely expressed olfactory receptors (Li
 129 et al., 2020a), PNs lack known type-specific markers. Instead, PN types are mostly specified by
 130 combinatorial expression of several genes (Li et al., 2017), making it more challenging to decode
 131 their transcriptomic identities.

132 To circumvent these challenges and decode the transcriptomic identities of more types of
 133 PNs, we took advantage of the extensive driver line collection in *Drosophila* (Luan et al., 2006;
 134 Jenett et al., 2012; Dionne et al., 2018). We searched for split-GAL4 lines that only labeled a
 135 small proportion of all PNs (Yoshi Aso, unpublished data). Using such drivers, we could
 136 sequence a few types of PNs at a time, plot those cells with most PNs, and then use differentially
 137 expressed markers among them to decode their identities one-by-one.

138 *split#28-GAL4* labeled two types of PNs—those that project their dendrites to the DC3
 139 and DA41 glomeruli in developing and adult animals (**Figure 2A, B**; note that PN types are
 140 named after the glomeruli they project their dendrites to). We sequenced those PNs (*split#28+*
 141 PNs hereafter) at 24h APF. We chose this stage because this is when different PN types exhibit
 142 the highest transcriptome diversity as hinted by the number of clusters seen in Figure 1F (see
 143 following sections for more detailed analysis). To visualize sequenced *split#28+* PNs, we
 144 performed dimensionality reduction using 561 genes identified from most 24h PNs
 145 using Iterative Clustering for Identifying Markers (ICIM), an unsupervised machine learning
 146 algorithm (Li et al., 2017), followed by embedding in the tSNE space. *Split#28+* PNs (orange
 147 dots) fell into two distinct clusters and intermingled with *GH146+* PNs (grey dots) (**Figure 2C**).
 148 One cluster mapped to previously decoded DC3 PNs (Li et al., 2017), and the other cluster
 149 expressed *zfh2* (**Figure 2—figure supplement 1A**). We validated that this cluster indeed
 150 represents DA41 PNs by visualizing the expression of *zfh2* in PNs utilizing an intersectional
 151 strategy by combining *zfh2-GAL4*, *GH146-Flp*, and *UAS-FRT-STOP-FRT-mCD8-GFP*
 152 (hereafter referred to as “intersecting with *GH146-Flp*”) (**Figure 2—figure supplement 1B**).

153 *split#7-GAL4* labeled 3 types of PNs in the adult stage (**Figure 2—figure supplement**
 154 **2A**). However, when we sequenced cells labeled by this GAL4 line at 24h APF and visualized
 155 them using tSNE, we found 8 distinct clusters (**Figure 2F**). We reasoned that this could be due to
 156 loss of driver expression in adult stage for some PN types. To test this hypothesis and reveal PNs
 157 that are labeled by this driver transiently during development, we used a permanent labeling
 158 strategy to label all cells that express *split#7-GAL4* at any time of development (*split#7+* PNs
 159 hereafter) by combining it with *UAS-mCD8-GFP*, *Actin promoter-FRT-STOP-FRT-GAL4*, and
 160 *UAS-Flp*. Using this strategy, we observed labeling of 8 types of PNs (**Figure 2D**), consistent
 161 with number of clusters we observed by sequencing. Among *split#7+* PNs, 4 types belong to the
 162 adPN lineage (*acj6+*) and the other 4 types belong to the IPN lineage (*vvl+*) (**Figure 2E**). Only 1
 163 IPN type, DA1 (*CG31676+*), has previously been decoded (**Figure 2—figure supplement 2B**).
 164 We identified differentially expressed genes among *split#7+* PNs and obtained existing GAL4
 165 lines mimicking their expression. By intersecting those GAL4 lines with *GH146-Flp*, we mapped
 166 all 7 previously unknown transcriptomic clusters to 7 PN types (**Figure 2—figure supplement 2**
 167 **C–H**; see legends for detailed description).

168 In addition to screening through collections of existing driver lines, we also utilized
 169 scRNA-seq data to find drivers that label a subpopulation of PNs. One such marker was the gene
 170 *knot* (*kn*), which was expressed in 7 transcriptomic clusters among all *GH146+* PNs (**Figure 2—**
 171 **figure supplement 3A**). One of the *kn+* clusters expressing *tro* has been previously mapped to
 172 VM2 PNs (Li et al., 2017). When *kn-GAL4* was intersected with *GH146-Flp*, 6 types of adPNs
 173 (*acj6+*) and several vPNs (*Lim1+*) were labeled (**Figure 2G, J**). Among the 6 adPN types, VM7
 174 and VM5v PNs were also labeled by *split#15-GAL4* (**Figure 2H**). Although it has been
 175 previously reported that *GH146-GAL4* is not expressed in VM5v PNs (Yu et al., 2010), labeling
 176 of these PNs when *GH146-Flp* was intersected with either *kn-GAL4* or *split#15-GAL4* indicates

177 that *GH146-Flp* must be expressed in VM5v PNs at some point during development. Using
 178 *split#15-GAL4*, we were able to decode the two clusters to be either VM7 or VM5v PNs (**Figure**
 179 **2—figure supplement 3B**). Due to the lack of existing GAL4 drivers for differentially expressed
 180 genes between these two clusters, we could not further distinguish them so far; their identities
 181 can be decoded by creating new GAL4 drivers in future studies. Other than these two clusters,
 182 we were able to match transcriptomic clusters and glomerular types for the rest of *kn+* adPNs
 183 one-to-one (**Figure 2—figure supplement 3C–E**). In addition to excitatory PNs, one *kn+* vPN
 184 type innervated DA1 glomerulus (because DA1 glomerulus is innervated only by IPNs and vPNs,
 185 not adPNs). We found that *DIP-beta* was expressed in one *kn+* vPN cluster but not in IPNs
 186 innervating DA1 glomerulus (**Figure 2—figure supplement 3F, G**). Intersecting *DIP-beta-GAL4* with
 187 *GH146-Flp* confirmed that *DIP-beta+* vPN indeed targeted their dendrites to DA1
 188 glomerulus, illustrating the *DIP-beta+* vPN cluster to be DA1 vPNs (**Figure 2—figure**
 189 **supplement 3H**).

190 In summary, by sequencing a small number of known PN types at a time and analyzing
 191 the expression pattern of differentially expressed genes, we have now mapped a total of 21
 192 transcriptomic clusters corresponding to anatomically defined PN types at 24h APF (**Figure 2K,**
 193 **L**). Ultimately, we aimed to match the transcriptomes of the same PN types across development.
 194 As an intermediate step, we carried out global analysis of gene expression changes across
 195 development, which could help us reliably identify transcriptomic clusters representing different
 196 PN types at different developmental stages.

197 **Global gene expression dynamics across four developmental stages**

198 All sequenced PNs segregated into different clusters according to their developmental stages
 199 using unbiased, over-dispersed genes for clustering regardless of PN types (**Figure 1F**). Even
 200 when we used the genes identified by ICIM for clustering, which emphasizes the differences
 201 between different PN types (Li et al., 2017), we still observed that individual PNs were separated
 202 principally by developmental stages (**Figure 3A**). Together, these observations illustrate global
 203 transcriptome changes of PNs from pupa to adult.

204 To understand what types of genes drive this separation, we searched for genes that were
 205 differentially expressed in different developmental stages (**Figure 3B, C**). We clustered the
 206 genes into different groups based on their expression pattern throughout development. Seven
 207 groups of genes showed clear developmental trends—five groups were down-regulated from
 208 pupa to adult and two groups were up-regulated (**Figure 3D, E**). Consistent with our previous
 209 knowledge, neural development-related genes, including those with functions in morphogenesis
 210 and cytoskeleton organization, were enriched in developing PNs (**Figure C, D**); genes related to
 211 synaptic transmission, ion transport, and behavior, on the other hand, were up-regulated in
 212 mature PNs (**Figure C, E**) (Li et al., 2017; Li et al., 2020b).

213 **Single-cell transcriptomes of PNs reveal dominant biological processes at different stages of** 214 **development**

215 Because PN transcriptomes exhibited global development-dependent dynamics, we needed to
 216 find a method to reliably and consistently classify transcriptomic clusters representing different
 217 PN types at all stages. We first identified informative genes for clustering from each stage using
 218 ICIM and used them for further dimensionality reduction. However, using this method, we
 219 obtained different numbers of clusters at each stage (**Figure 4A**). Closer examination of each
 220 stage revealed unique biological features of PN development.

221 At 0h APF, PNs always formed two distinct clusters—a larger cluster consisting of both
 222 adPNs and IPNs, and a smaller one with only adPNs (**Figure 4B, Figure 4—figure supplement 2A**).
 223 As introduced earlier, although all IPNs and many adPNs are born during the larval stage, some
 224 adPNs are born during the embryonic stage. We hypothesized that the smaller cluster could
 225 represent embryonically born PNs, which undergo axon and dendrite pruning during early
 226 metamorphosis (Marin et al., 2005). Neurite pruning in *Drosophila* depends on cell autonomous
 227 action (Lee et al., 2000) of the steroid hormone ecdysone receptor (EcR) (Levine et al., 1995;
 228 Thummel, 1996; Schubiger et al., 1998; Lee et al., 2000). Upon binding of the steroid hormone
 229 ecdysone, EcR and its co-receptor Ultraspireacle (Usp) form a complex to activate a series of
 230 downstream targets, including a transcription factor called Sox14, which in turn promotes
 231 expression of the cytoskeletal regulator Mical and Cullin1 SCF E3 ligase (**Figure 4C**) (Lee et al.,
 232 2000; Kirilly et al., 2009; Kirilly et al., 2011; Wong et al., 2013). To test our hypothesis, we
 233 examined the expression of genes which are known to participate in neurite pruning and genes
 234 that showed elevated expression in the mushroom body γ neurons during pruning (Alyagor et al.,
 235 2018). We found that *Sox14*, *Mical*, *Cullin1*, and two sorting complexes required for transport
 236 (ESCRT) genes—*shrb* and *Vps20*, indeed showed higher expression levels in the smaller cluster
 237 (**Figure 4D**). We also confirmed our hypothesis by mapping two types of embryonically born
 238 PNs, DA41 and VA6 PNs, to this smaller cluster (**Figure 4—figure supplement 2B**; see
 239 mapping details in Figure 7).

240 At 24h APF, we observed the highest number of clusters reflecting different PN types.
 241 Moreover, dimensionality reduction using the top 2000 overdispersed genes also showed more
 242 distinct clusters at this timepoint compared to the others (**Figure 4—figure supplement 1**).
 243 Quantifications of transcriptomic similarity among PNs at each stage indeed confirmed the
 244 highest diversity among PNs at 24h APF (**Figure 4E–G**). This is likely explained by the fact that
 245 at this stage, PNs refine their dendrites to specific regions and begin to prepare themselves as
 246 targets for their partner ORN axons. In addition, PN axons at the lateral horn begin to establish
 247 their characteristic branching patterns (Jefferis et al., 2004). All these processes require high
 248 level of molecular diversity among different PN types to ensure precise wiring, warranting more
 249 distinction between their transcriptomes at this stage.

250 In contrast to the high transcriptomic diversity in 24h APF PNs, adult PNs only formed
 251 three clusters (**Figure 4A** bottom, indicated by dashed lines). The three clusters represent
 252 cholinergic excitatory PNs (marked by *VACHT*), and two *Gad1*⁺ GABAergic inhibitory cell
 253 types—vPNs and APL neurons (*VGlut*⁺), respectively (**Figure 4H**). This is likely because after
 254 wiring specificity is achieved, all excitatory PNs may perform similar functions, but distinct
 255 from inhibitory neuronal types.

256 Thus, at different developmental stages, the differentially expressed genes we identified
 257 all revealed the most defining biological processes those neurons are undertaking. Our
 258 observations showed that PN transcriptomes reflect the pruning process of embryonically born
 259 PNs at 0h APF, PN type and wiring distinction at 24h APF, and neurotransmitter type in adults.

260 **Identifying PN types at all developmental stages**

261 With the exception of the 24h APF PNs, gene sets identified from each of the other stages could
 262 not resolve distinct clusters reflecting PN type diversity (**Figure 4**). Therefore, we tried to use
 263 the genes identified by ICIM from 24h APF PNs to cluster PNs of the other stages. We found
 264 that this gene set outperformed all other gene sets in separating different PN types at all

265 timepoints (**Figure 5A**). In fact, most gene sets found by different methods at 24h APF,
 266 including overdispersed genes, ICIM genes, as well as differentially expressed genes between
 267 different clusters, exceeded gene sets identified at other stages for clustering PNs according to
 268 their types (data not shown), further confirming that transcriptomes of 24h APF PNs carry the
 269 most information for distinguishing different PN types, even for other developmental stages.

270 Following this observation, we decided to use differentially expressed genes between 24h
 271 PN clusters for PN-type identification for all stages. We applied meta-learned representations for
 272 single cell data (MARS) for identifying and annotating cell types (Brbic et al., 2020). MARS
 273 learns to project cells using deep neural networks in the latent low-dimensional space in which
 274 cells group according to their cell types. We used 24h APF, the stage with highest transcriptome
 275 diversity, as the starting annotated dataset to learn shared low-dimensional space for 48h APF,
 276 0h APF, and eventually the adult dataset. Using this approach, we found ~30 cell types in each
 277 stage (**Figure 5B**). Independently, we also validated MARS cluster annotations using two
 278 distinct methods: HDBSCAN clustering based on tSNEs or Leiden clustering based on
 279 neighborhood graphs (**Figure 5—figure supplement 1**) (Blondel et al., 2008; Levine et al., 2015;
 280 Traag et al., 2019). Clusters identified by HDBSCAN and Leiden largely agreed with MARS
 281 annotations, confirming the reliability of MARS. We compared cluster annotations by these three
 282 methods to known PN types at 24h APF (**Figure 5—figure supplement 1C**) and found that even
 283 at this stage, MARS performed better at segregating some closely related clusters representing
 284 multiple PN types (**Figure 5—figure supplement 1D**). At 0h APF and the adult stage, MARS
 285 identified more clusters compared to the other methods, demonstrating the robustness of MARS
 286 at identifying unique cell types.

287 Matching the same PN types across four developmental stages

288 We next sought to match transcriptomes of the same PN type across different developmental
 289 stages. We first tried to apply some batch correction methods, including Harmony, BBKNN,
 290 combat, and Scanorama, to our dataset to correct for the transcriptomic changes of PNs
 291 throughout development (Hie et al., 2019; Korsunsky et al., 2019; Polanski et al., 2020). For all
 292 batch methods attempted, we observed instances of (1) PNs of the same type at the same stage
 293 split into different clusters; (2) PNs of different types merge into the same cluster; (3) no
 294 distinguishable cluster formation for many PNs in stages other than 24h APF. Therefore, we
 295 needed to develop alternative approaches to reliably match transcriptomes of same PN types
 296 across different developmental stages. To perform this task, we first used *kn*+ PNs as test case.
 297 We collected PNs labeled by *kn-GAL4* from 24h APF, 48h APF, and adult brains for scRNA-seq
 298 (**Figure 6A**). Dimensionality reduction of these cells showed a consistent number of clusters
 299 across stages (**Figure 6B**). One exception is an extra vPN cluster observed at 48h APF and adult
 300 stages. This discrepancy with 24h APF data is likely caused by the lower number of vPNs
 301 sequenced at 24h APF.

302 When *kn*+ PNs from all three stages were plotted together, all adPNs (*acj6*+ clusters on
 303 the upper side) formed relatively distinct clusters and did not intermingle with adPNs from the
 304 other timepoints (**Figure 6C**), reflecting substantial changes in the transcriptome of the same
 305 type of PNs across development. To match the same type of PNs, we took two independent
 306 approaches (**Figure 6D**). In the first approach, clusters were automatically matched based on
 307 their transcriptomic similarity. Briefly, we identified a set of genes that were differentially
 308 expressed in each cluster compared to all the rest at the same stage. Then, we calculated the
 309 percentage of genes shared between each pair of clusters across two stages (Jaccard similarity

310 index) (**Figure 6E**). If two clusters from two stages both had the highest similarity score with
 311 each other, we considered them to be matched. In the second approach, we used markers that
 312 were expressed in a consistent number of clusters at each stage. Those markers, or marker
 313 combinations, were used to manually match the same type of PNs (some example markers used
 314 are shown in **Figure 6F**). Using these two approaches, we were able to match the same types of
 315 PNs across three developmental stages, and the results from the two approaches consistently
 316 agreed with each other (**Figure 6G**). In addition, these data further validated an earlier
 317 conclusion (**Figure 4**) that as development proceeds from 24h APF and 48h APF to adults, the
 318 transcriptomic difference between identified PN types becomes smaller (**Figure 6G**; quantified
 319 in **Figure 6—figure supplement 1**).

320 We next applied the same approaches for matching $kn+$ PN types across 3 stages to
 321 match most PNs (sequenced using either *GH146-GAL4* or *VT033006-GAL4*) across 4 stages
 322 (**Figure 7A**). In addition to marker gene expression, we also used subset of PNs we had
 323 sequenced from different stages to manually match PN types (**Figure 7—figure supplements**
 324 **1A–D**). For the manually matched PN types with known identity, we summarized markers and
 325 marker combinations we used in a dot plot, where both average expression as well as percentage
 326 of cells expressing each marker were shown (**Figure 7—figure supplement 2**). Using both
 327 manual and automatic approaches, we were able to match many PN types across 2 or more
 328 developmental stages (**Figure 7B**), which includes 18 PN types that we have decoded in **Figure**
 329 **2** and 7 transcriptomic clusters with unknown identity. The majority of the PNs we matched were
 330 confirmed by both the automatic (transcriptomic similarity-based) and manual (marker-based)
 331 methods (**Figure 7C** and **Figure 7—figure supplement 1E**).

332 **PN types with adjacent birth order share more similar transcriptomes at early stages of**
 333 **development**

334 Previous works have shown that the PN glomerular types are prespecified by the neuroblast
 335 lineages and birth order within each lineage (Jefferis et al., 2001; Marin et al., 2005; Yu et al.,
 336 2010; Lin et al., 2012) (**Figure 8A**). Having decoded the transcriptomic identities of different PN
 337 types at different timepoints, we can now ask the extent to which transcriptomic similarity is
 338 contributed by lineage and birth order, and whether these contributions persist through
 339 development.

340 To address these questions, we performed hierarchical clustering on all excitatory PN
 341 clusters we identified from each timepoint. We plotted the dendrogram and the correlation
 342 between each pair of clusters (**Figure 8—figure supplement 1**). We observed some lineage-
 343 related similarity between PN types at 0h APF: transcriptomes of PNs from the same lineage
 344 tended to be clustered together in the dendrogram and their correlations are higher, although the
 345 relationship was not absolute. Such similarity was gradually lost as development proceeded (as
 346 inferred by both the dendrogram as well as correlation between PNs from the same lineage).
 347 Interestingly, we noticed that some PNs with adjacent birth order appeared to be neighbors in the
 348 dendrogram at 0h and 24h APF.

349 To further investigate the relationship between birth order of PNs and their transcriptomic
 350 similarity, we selected all decoded PNs from the anterodorsal lineage, ordered them according to
 351 their birth order, and computed their correlation (**Figure 8B**). 0h APF adPNs showed high
 352 correlation between their birth order and their transcriptomic similarity, as indicated by the high
 353 correlations in boxes just off the diagonal line. To test if the transcriptomic similarity of adPNs

354 indeed covaries with their birth order, we performed permutation tests, comparing the Spearman
 355 correlations between birth-order ranking and transcriptomic similarity ranking (**Figure 8C**, see
 356 Materials and Methods for details). The results confirmed that 0h and 24h APF PNs, but not 48h
 357 APF and adult PNs, exhibited high correlations between their birth orders and transcriptomic
 358 similarities. In addition, developmental trajectory analysis of adPNS born at the larval stage using
 359 Monocle 3 (Cao et al., 2019) also showed that the unbiased pseudo time recapitulated their birth
 360 order (**Figure 8D**).

361 A previous study profiled the transcriptomes of PN neuroblasts at various larval stages
 362 and identified 63 genes with temporal gradients (Liu et al., 2015). Among those genes, the
 363 authors have validated that two RNA-binding proteins, Imp and Syp, regulate the fate of PNs
 364 born at different times. Therefore, we analyzed expression of these 63 genes at 0h APF to see if
 365 any of these genes with temporal gradients has persisted expression in postmitotic PNs. We
 366 found 15 out of the 63 genes (including *Imp* but not *Syp*) maintained some temporal gradient
 367 patterns according to their birth order at 0h APF (**Figure 8E**) but not at the later stages (data not
 368 shown). This result suggested that the expression of a subset of birth order-related genes in adPN
 369 neuroblast, including a cell-fate regulator, is maintained in postmitotic PNs till early pupal stage.

370 In summary, our data demonstrated that PN types with adjacent birth order shared more
 371 similar transcriptomes, reflecting temporal gene expression dynamics of their progenitor. Such
 372 transcriptomic similarity was maintained at early pupal stages and was gradually lost as PNs
 373 matured.

374 Differentially expressed genes in different PN types

375 Hierarchical clustering on the principal components calculated using the entire gene matrix
 376 indicates that the similarities between different PN types are not fixed across development
 377 (**Figure 8—figure supplement 1**). This suggests that the differentially expressed genes in PNs
 378 differ across developmental stages. Identifying differentially expressed (DE) genes, especially
 379 among those that we have matched across multiple developmental stages (**Figure 7**), can allow
 380 us to investigate expression dynamics in different PN types and also reveal interesting molecules
 381 for future studies.

382 We consider a gene to be differentially expressed if it has an adjusted p-value of less than
 383 0.01 by Mann-Whitney U test in at least one cluster compared to the rest of the clusters. Using
 384 this criterion, we found around 500 DE genes at 24h APF, 48h APF, and the adult stage (**Figure**
 385 **9A**). At 0h APF, many more DE genes were identified. The larger gene set at this stage is mostly
 386 contributed by the embryonically born PNs (1015 out of 1393 genes), which have
 387 transcriptomically distinct features because these neurons undergo axon and dendrite pruning
 388 (**Figure 4A–D**). We intersected the four lists of DE genes to find genes that are differentially
 389 expressed throughout development. This resulted in 103 genes, 52 of which were differentially
 390 expressed among the 12 PN types we matched across all four stages. Among the DE genes that
 391 are differentially expressed in all four stages, we observed an over-representation of transcription
 392 factors (TFs) and cell surface molecules (CSMs) compared to their genome-wide fractions
 393 (**Figure 9B**). Previous studies have shown that genes in these two categories play critical roles in
 394 PN wiring (Hong & Luo, 2014; Li et al., 2017). We therefore further explored the expression
 395 pattern of these genes (**Figure 9C** and **Figure 9—figure supplements 1 and 2**).

396 While the majority of TFs are expressed in both lineages, expression of a small fraction
 397 of TFs is lineage-specific. For example, expression of *acj6*, *kn*, *C15*, and *salr* is limited to PNs

398 from the anterodorsal lineage, whereas *vvl* and *unpg* are only expressed in PNs from the lateral
 399 lineage (**Figure 9C** and **Figure 9—figure supplement 1**). Furthermore, whereas TFs are
 400 generally expressed in a binary fashion throughout development (**Figure 9C** and **Figure 9—**
 401 **figure supplement 1**), many CSMs exhibit graded expression with complex temporal dynamics
 402 (**Figure 9D** and **Figure 9—figure supplement 2**). This is consistent with observations made
 403 from single-cell transcriptome studies in the developing *Drosophila* optic lobe (Kurmangaliyev
 404 et al., 2020; Ozel et al., 2020). Among the CSMs that are differentially expressed in any of the 4
 405 stages, we observed many molecules in protein families that have been implicated in wiring,
 406 including Beaten Path (Beat), Dpr, DIP, Dscam, Fasciclin (Fas), and Robo (**Figure 9—figure**
 407 **supplement 2**) (Kolodkin & Tessier-Lavigne, 2011; Sanes & Zipursky, 2020). Thus, this
 408 differentially expressed gene list may contain an enriched set of wiring-related molecules, some
 409 of which have been studied in the context of wiring. Therefore, our data can serve as a useful
 410 resource for future studies of wiring specificity. On the other hand, we note that some genes with
 411 differential expression pattern at the protein level, such as Ten-a and Ten-m (Hong et al., 2012),
 412 do not exhibit obvious differential expression at the mRNA level. This highlighted the existence
 413 of post-transcriptional regulation for some genes that are not captured by transcriptomic analysis.

414 **Genes involved in metabolism and neuronal signaling are differentially expressed among**
 415 **adult PNs**

416 Our analyses have shown that transcriptomic differences between different PN types diminish as
 417 development proceeds (**Figure 4**). However, different PN types in adults still exhibited
 418 differential gene expression (**Figure 9**). Such differential expression could be contributed by
 419 residual developmentally differentially expressed genes, by new categories of differentially
 420 expressed genes in mature PNs reflecting functional differences between different PN types, or a
 421 combination of both. To distinguish between these possibilities, we compared DE genes among
 422 different transcriptomic clusters of PNs at 24h APF and at the adult stage.

423 We found that more than a third of the DE genes were shared between these two stages
 424 (**Figure 10A**). Gene ontology analysis revealed that these shared genes were predominately
 425 related to neural development (**Figure 10B**, middle). These data suggested that some DE genes
 426 found among adult PN types were developmentally differentially expressed genes, some of
 427 which could play a role in the maintenance of adult nervous system structures.

428 Interestingly, many gene ontology terms related to the physiological properties of PNs
 429 were observed among the adult-only DE genes (**Figure 10B**, bottom). In addition, we observed
 430 several ion-channels and neurotransmitter receptors in the list of CSMs with differential
 431 expression pattern (**Figure 9—figure supplement 2**). Indeed, several adult DE genes belong to
 432 the ion channels or transmembrane receptor (including neurotransmitter receptors and G-protein-
 433 coupled receptors) gene groups (**Figure 10C**). These results demonstrated that PN types in adults
 434 acquire new categories of differentially expressed genes, and those genes might lead to
 435 differences in the physiological properties between different PN types.

436

437 **Discussion**

438 **Deciphering single-cell transcriptomes for connectivity-defined neuronal types**

439 Traditionally, neurons are classified based on their morphology, physiology, connectivity, and
 440 signature molecular markers. More recently, scRNA-seq has allowed classification of cell types

441 based entirely on their transcriptomes. Many studies have illustrated that cell-type classification
 442 based on the single-cell transcriptomes largely agrees with classifications by some of the more
 443 traditional criteria (Zeng & Sanes, 2017).

444 For *Drosophila* olfactory PNs, the most prominent type-specific feature is their pre- and
 445 post-synaptic connections, which determines their olfactory response profiles and the higher
 446 order neurons they relay olfactory information to. Thus, different PN types are largely defined by
 447 the differences in their connectivity. We have previously observed that the transcriptomic
 448 identity of PNs corresponds well with their types during development, and for three identified
 449 PN types, transcriptomic differences peak during the circuit assembly stage (Li et al., 2017).
 450 Here, we generalized these findings across many more PN types by showing that transcriptomic
 451 differences are the highest around 24h APF, a stage when PNs are making wiring decisions and
 452 preparing cues for subsequent ORN–PN matching (Figure 4), and by demonstrating that
 453 clustering of PNs according to their types from all stages are best done using differentially
 454 expressed genes at 24h APF (Figure 5). Additionally, our data indicate that at certain stages,
 455 differences among those type-specific genes can be masked by other genes belonging to
 456 pathways of a more dominating biological process (such as neurite pruning at 0h APF for PNs).
 457 As a consequence, it may be challenging to identify genes carrying type-specific information at
 458 certain timepoints even when sophisticated algorithms are applied, which can lead to
 459 underestimation of cell type diversity. Our observation of peaked transcriptome diversity in
 460 developing projection neurons has also been observed in the *Drosophila* optic lobe recently
 461 (Ozel et al., 2020). Thus, in order to accurately classify single-cell transcriptomes, especially for
 462 connectivity-defined neuronal types such as fly olfactory PNs, it may be a general strategy to
 463 first obtain their single-cell transcriptomes during circuit assembly and then use this information
 464 to supervise cell-type classification in other developmental stages, including adults.

465 **Tracing the same cell type in different states**

466 Both cell types and their biological states can split single-cell transcriptomes into distinct clusters
 467 (Zeng & Sanes, 2017; Cembrowski & Menon, 2018; Tasic, 2018). We observed that the same
 468 PN types of different developmental stages—reflecting different states—indeed exhibit very
 469 distinct transcriptomic profiles (Figures 5, 6). To identify transcriptomic clusters corresponding
 470 to the same PN types across multiple timepoints, we developed and applied two complementary
 471 methods—one manual based on the marker gene expression, and one automatic based on the
 472 similarity between transcriptomic clusters. By applying both methods, we can confidently track
 473 the transcriptomes of the same cell type throughout development and study the unique molecular
 474 features of each stage. We note that two other methods for tracing transcriptomes of the same
 475 neuronal types across development—batch-correction to cluster same cell types across different
 476 stages, and training an artificial neural network to classify cell type—have been applied
 477 successfully in recent single-cell transcriptome studies of cells in the developing *Drosophila*
 478 optic lobe (Kurmangaliyev et al., 2020; Ozel et al., 2020).

479 Together, those methods can be applied to other single-cell studies where diverse cell
 480 types and multiple states are involved. Those methods can be especially useful for tissues with
 481 high cellular diversity but lack unique markers for each cell type.

482 **Using single-cell RNAseq data to identify new candidate molecules for future studies**

483 In this study, we have obtained high-quality single-cell transcriptomes of most excitatory PNs
 484 from early pupal stage to adulthood (Figure 1). We have used combinations of markers and

485 drivers to decode the transcriptomic identity of 21 transcriptomic clusters at 24h APF (**Figure 2**),
486 and matched clusters representing the same PN type across four developmental stages (**Figure 7**).

487 Using this rich and well-annotated dataset, researchers can now explore different aspects
488 of PN development and function to identify candidate molecules for future studies. For example,
489 one can search for novel molecules involved in neurite pruning among the differentially
490 expressed genes between the embryonically-born and larval-born PNs at 0h APF (**Figure 4B–D**).
491 Developmentally enriched genes and genes that are differentially expressed among different PN
492 types, on the other hand, can be good candidates for studies on neural development and wiring
493 specificity (**Figure 3** and **Figure 9**). Differentially expressed neuronal signaling genes in adult
494 PNs can be used to explore differences in physiological properties and information processing
495 (**Figure 10**). In addition, driver lines for specific types of PNs can be made using genes that
496 show consistent expression pattern across different stages (**Figure 7—figure supplement 2**) to
497 label and genetically manipulate specific PN types. Together with several recent in depth
498 scRNASeq studies of cells in the visual and olfactory system across multiple stages (Jain et al.,
499 2020; Kurmangaliyev et al., 2020; McLaughlin et al., 2020; Ozel et al., 2020), these studies have
500 established foundations of gene expression for *Drosophila* olfactory and visual systems and
501 should catalyze new biological discoveries.

502 **Methods and Materials**503 **Key Resource Table**

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (<i>D. melanogaster</i>)	<i>GH146-GAL4</i>	(Stocker et al., 1997)	RRID: BDSC_30026	
Genetic reagent (<i>D. melanogaster</i>)	<i>VT033006-GAL4</i>	(Tirian & Dickson, 2017)	RRID: BDSC_73333	
Genetic reagent (<i>D. melanogaster</i>)	<i>Mz19-GAL4</i>	(Jefferis et al., 2004)	RRID: BDSC_41573	
Genetic reagent (<i>D. melanogaster</i>)	<i>knot-GAL4</i>	(Lee et al., 2018)	RRID: BDSC_67516	
Genetic reagent (<i>D. melanogaster</i>)	<i>split#28-GAL4</i>	Yoshi Aso (unpublished)	N/A	SS01265
Genetic reagent (<i>D. melanogaster</i>)	<i>split#7-GAL4</i>	Yoshi Aso (unpublished)	N/A	SS01867
Genetic reagent (<i>D. melanogaster</i>)	<i>split#15-GAL4</i>	Yoshi Aso (unpublished)	N/A	SS01165
Genetic reagent (<i>D. melanogaster</i>)	<i>GH146-Flp</i>	(Hong et al., 2009)	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>UAS-FRT-STOP-FRT-mCD8GFP</i>	(Hong et al., 2009)	RRID: BDSC_30125	
Genetic reagent (<i>D. melanogaster</i>)	<i>zfh2-GAL4</i>	(Lee et al., 2018)	RRID: BDSC_86479	
Genetic reagent (<i>D. melanogaster</i>)	<i>Act-FRT-STOP-FRT-GAL4</i>	(Pignoni & Zipursky, 1997)	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>UAS-Flp</i>	(Duffy et al., 1998)	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>C15-p65^{AD}</i>	(Xie et al., 2019)	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>C15-GAL4^{DBD}</i>	This study	N/A	

Genetic reagent (<i>D. melanogaster</i>)	<i>danr-P65^{AD}</i>	This study	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>VT033006-GAL4^{DBD}</i>	Yoshi Aso (unpublished)	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>DIP-zeta-GAL4</i>	(Cosmanescu et al., 2018)	RRID: BDSC_90317	
Genetic reagent (<i>D. melanogaster</i>)	<i>DIP-eta-GAL4</i>	(Cosmanescu et al., 2018)	RRID: BDSC_90318	
Genetic reagent (<i>D. melanogaster</i>)	<i>AstA-GAL4</i>	(Deng et al., 2019)	RRID: BDSC_84593	
Genetic reagent (<i>D. melanogaster</i>)	<i>DIP-beta-GAL4</i>	(Carrillo et al., 2015)	RRID: BDSC_90316	
Genetic reagent (<i>D. melanogaster</i>)	<i>kn-GAL4^{DBD}</i>	This study	N/A	
Genetic reagent (<i>D. melanogaster</i>)	<i>elav-GAL4^{DBD}</i>	(Luan et al., 2006)	N/A	
Antibody	Rat monoclonal anti-Ncad	Developmental Studies Hybridoma Bank	RRID: AB_528121	(1:40 in 5% normal goat serum)
Antibody	Chicken polyclonal anti-GFP	Aves Labs	RRID: AB_10000240	(1:1000 in 5% normal goat serum)
Software, algorithm	ZEN	Carl Zeiss	RRID: SCR_013672	
Software, algorithm	ImageJ	National Institutes of Health	RRID: SCR_003070	
Software, algorithm	Illustrator	Adobe	RRID: SCR_010279	
Software, algorithm	STAR 2.5.4	(Dobin et al., 2013)	RRID: SCR_015899	https://github.com/alexdobin/STAR
Software, algorithm	HTseq 0.11.2	(Anders et al., 2015)	RRID: SCR_005514	https://github.com/htseq/htseq
Software, algorithm	Scanpy	(Wolf et al., 2018)	RRID: SCR_018139	https://scanpy.readthedocs.io/en/stable/
Software, algorithm	Iterative Clustering for Identifying	(Li et al., 2017)	N/A	https://github.com/felixhorns/FlyPN

	Markers (ICIM)			
Recombinant DNA reagent	<i>pT-GEM(0)</i> (plasmid)	(Diao et al., 2015)	RRID: Addgene_62891	
Recombinant DNA reagent	<i>pBS-KS-attB2-SA(2)-T2A-Gal4DBD-Hsp70</i> (plasmid)	(Diao et al., 2015)	RRID: Addgene_62904	
Recombinant DNA reagent	<i>pU6-BbsI-chiRNA</i> (plasmid)	(Gratz et al., 2013)	RRID: Addgene_45946	

504 ***Drosophila* Stocks and genotypes**

505 Flies are maintained on standard cornmeal medium at 25 °C with 12-h light–dark cycle. The
 506 following lines were used in this study: *GH146-GAL4* (Stocker et al., 1997), *VT033006-GAL4*
 507 (Tirian & Dickson, 2017), *Mz19-GAL4* (Jefferis et al., 2004), *knot-GAL4* (Lee et al., 2018),
 508 *GH146-Flp*, *UAS-FRT-STOP-FRT-mCD8-GFP* (Potter et al., 2010), *zfh2-GAL4* (Lee et al.,
 509 2018), *Act-FRT-STOP-FRT-GAL4* (Pignoni & Zipursky, 1997), *UAS-Flp* (Duffy et al., 1998),
 510 *C15-p65^{AD}* (Xie et al., 2019), *DIP-beta-GAL4*, *DIP-eta-GAL4*, *DIP-zeta-GAL4* (Carrillo et al.,
 511 2015; Cosmanescu et al., 2018), *AstA-GAL4* (Deng et al., 2019), and *elav-GAL4^{DBD}* (Luan et al.,
 512 2006). *VT033006-GAL4^{DBD}*, split-GAL4 line #7 (SS01867), #15 (SS01165), and #28 (SS01265)
 513 are unpublished reagents generously provided by Yoshi Aso (Janelia Research Campus).

514 **Generation of *danr-p65^{AD}*, *kn-GAL4^{DBD}*, and *C15-GAL4^{DBD}***

515 *danr-p65^{AD}* was generated using CRISPR mediated knock-in. ~2000 bp of genomic sequence
 516 flanking the targeted insertion site was amplified by Q5 hot-start high-fidelity DNA polymerase
 517 (New England Biolabs) and inserted into *pCR-Blunt-TOPO* vectors (Thermo Fisher). Using this
 518 vector, we generated homology directed repair (HDR) vector *TOPO-danr-T2A-p65AD-P3-RFP*
 519 by inserting *T2A-p65(AD)::Zip+* and *3XP3-RFP-SV40* (cloned from *pT-GEM(0)* Addgene
 520 #62891) 45bp downstream of the start codon of *danr*. CRISPR guide RNA (gRNA) targeting a
 521 sequence inside *danr* (AACATCCGGATGAGCACCG) were designed by the flyCRISPR
 522 Target Finder tool and cloned into a *pU6-BbsI-chiRNA* vector (Addgene #45946). The HDR and
 523 gRNA vectors were co-injected into *nos-Cas9* (gift from Dr. Ben White) embryos. RFP+
 524 progenies were selected and individually balanced.

525 *kn-GAL4^{DBD}* was generated by co-injecting *pBS-KS-attB2-SA(2)-T2A-GAL4DBD-Hsp70*
 526 (Addgene #62904) and *ΦC31* into the embryos of *MI15480* (BL61064). All *yellow*[−] progenies
 527 were individually balanced.

528 *C15-GAL4^{DBD}* was generated using methods similar to *danr-p65^{AD}*. But because C15
 529 have been shown to be involved in PN dendrite targeting (Li et al., 2017), instead of inserting
 530 driver elements into the coding region, the stop codon of *C15* was replaced by *T2A-GAL4(DBD)::Zip+* to prevent disruption of the gene.

532 **Immunofluorescence**

533 Fly brains were dissected and immunostained according to previously described methods (Wu &
 534 Luo, 2006). Primary antibodies used in this study included rat anti-Ncad (N-Ex #8; 1:40;
 535 Developmental Studies Hybridoma Bank), chicken anti-GFP (1:1000; Aves Labs). Secondary
 536 antibodies conjugated to Alexa Fluor 488/647 (Jackson ImmunoResearch) were used at 1:250. 5%
 537 normal goat serum in phosphate buffered saline was used for blocking and diluting antibodies.
 538 Confocal images were collected with a Zeiss LSM 780 and processed with ImageJ.

539 **Single-cell RNA sequencing procedure**

540 Single-cell RNA sequencing was performed following previously described protocol (Li et al.,
 541 2017). Briefly, *Drosophila* brains with mCD8-GFP labeled cells using specific GAL4 drivers
 542 were dissected at appropriate timepoints (0–6h APF, 24–30h APF, 48–54h APF, and 1–5 day
 543 adults). Optic lobes were removed from brain during dissection for all timepoints except for 0–6h
 544 APF. Single-cell suspension were prepared and GFP positive cells were sorted using
 545 Fluorescence Activated Cell Sorting (FACS) into individual wells of 384-well plates containing
 546 lysis buffer using SH800 (Sony Biotechnology). Full-length poly(A)-tailed RNA was reverse-
 547 transcribed and amplified by PCR following the SMART-seq2 protocol (Picelli et al., 2014).
 548 cDNA was digested using lambda exonuclease (New England Biolabs) and then amplified for 25
 549 cycles. Sequencing libraries were prepared from amplified cDNA, pooled, and quantified using
 550 BioAnalyser (Agilent). Sequencing was performed using the Novaseq 6000 Sequencing system
 551 (Illumina) with 100 paired-end reads and 2 x 8 bp index reads.

552 **QUANTIFICATION AND STATISTICAL ANALYSIS**

553 Unless otherwise specified, all data analysis was performed in Python using Scanpy (Wolf et al.,
 554 2018), Numpy, Scipy, Pandas, scikit-learn, and custom single-cell RNA-seq modules (Li et al.,
 555 2017; Brbic et al., 2020). Gene Ontology analysis were performed using Flymine (Lyne et al.,
 556 2007). Sequencing reads and preprocessed sequence data are available in the NCBI Gene
 557 Expression Omnibus (GSE161228). Custom analysis code is available at
 558 https://github.com/Qijing-Xie/FlyPN_development.

559 **Sequence alignment and preprocessing**

560 Reads were aligned to the *Drosophila melanogaster* genome (r6.10) using STAR (2.5.4) (Dobin
 561 et al., 2013). Gene counts were produced using HTseq (0.11.2) with default settings except “-m
 562 intersection-strict” (Anders et al., 2015). We removed low-quality cells having fewer than
 563 100,000 uniquely mapped reads. To normalize for differences in sequencing depth across
 564 individual cells, we rescaled gene counts to counts per million reads (CPM). All analyses were
 565 performed after converting gene counts to logarithmic space via the transformation
 566 $\text{Log}_2(\text{CPM}+1)$. We further filter out non-neuronal cells by selecting cells with high expression of
 567 canonical neuronal genes (*elav*, *brp*, *Syt1*, *nSyb*, *CadN*, and *mCD8-GFP*). We retained cells
 568 expressing at least $8 \text{ Log}_2(\text{CPM}+1)$ for least 2/6 markers.

569 **Dimensionality reduction and clustering**

570 To select variable genes for dimensionality reduction, we used previously described methods to
 571 search for either overdispersed genes (Satija et al., 2015) or ICIM genes (Li et al., 2017). We
 572 then further reduced its dimensionality using tSNE to project the reduced gene expression matrix
 573 into a two-dimensional space (van der Maaten & Hinton, 2008). We observed that most of our
 574 recently sequenced cells using NovaSeq exhibited some small batch effect with PNs sequenced
 575 using NextSeq [PNs from (Li et al., 2017)]. To overcome this batch effect (in Figure 2, and

576 Figure 7—figure supplement 2 A, C), we performed principal component analysis (PCA) on the
 577 ICIM matrix, applied Harmony to correct for batch effect on the principal components (PCs)
 578 (Korsunsky et al., 2019), and used tSNE to further project the Harmony-corrected PCs into a
 579 two-dimensional space.

580 To cluster PNs in an unbiased manner, we applied the hierarchical density-based
 581 clustering algorithm, HDBSCAN, on the tSNE projection (McInnes et al., 2017). Parameters
 582 min_cluster_size and min_samples were adjusted to separate clusters representing different types
 583 of PNs. In addition, we also clustered cells using an independent, community-detection method
 584 called Leiden on the neighborhood graph computed based on the ICIM gene matrix (Blondel et
 585 al., 2008; Levine et al., 2015; McInnes et al., 2018). Both methods appeared to agree with each
 586 other for all datasets we examined (examples in Figure 5—figure supplement 1), and we
 587 assigned PN types in Figure 2 based on HDBSCAN clustering.

588 **Global level dynamic gene identification**

589 To identify dynamically expressed genes on the global level (Figure 3), we first identified the top
 590 150 most differentially expressed genes (Mann-Whitney U test) between every two stages and
 591 combined them to obtain a set of 474 dynamic genes. We calculated the median expression of
 592 each gene at each timepoint and normalized these median expression values by dividing them by
 593 the maximum value across time points. We then performed dimensionality reduction on the
 594 expression profiles of the genes using tSNE, and identified clusters using HDBSCAN on the
 595 projected coordinates. This resulted in identification of 8 sets of genes with distinct dynamic
 596 profiles, of which 2 sets are upregulated (Figure 3E), 4 sets are down regulated (Figure 3D), and
 597 2 sets without obvious trend from 0h APF to adult cells (data not shown).

598 **Transcriptomic similarity calculation**

599 To analyze the transcriptome differences of PNs in different stages (Figure 4E, F), we first
 600 isolated IPNs and adPNs to analyze cells from each lineage separately. Cell-level analysis was
 601 performed by calculating for each cell mean inverse Euclidean distance in the 2-dimensional
 602 UMAP space from all other cells within each stage using the 1215 genes identified by ICIM
 603 from most PNs of all stages (Figure 3A). Box plots show the distance distribution at each stage
 604 (Figure 4E and F, left). Cluster-level analysis was performed on the MARS clusters. We
 605 identified a set of differentially expressed genes for each cluster and calculated Pearson
 606 correlation on differentially expressed genes between all pairs of clusters. Bar plots represent
 607 mean values across all pairs and errors are 95% confidence intervals determined by
 608 bootstrapping with n=1,000 iterations (Figure 4E and F, right).

609 **PN type identification for most PNs**

610 We observed that the transcriptomes of different PN types are the most distinct at 24h APF and
 611 variable genes identified at this stage carry type-specific information (Figure 5). Therefore, we
 612 calculated the differentially expressed genes among 24h APF clusters and applied MARS to
 613 identify clusters in the space of those genes. MARS is able to reuse annotated single-cell datasets
 614 to learn shared low-dimensional space of both annotated and unannotated datasets in which cells
 615 are grouped according to their cell types. However, initially we did not have any annotated
 616 experiments, so we first applied MARS to annotate 24h APF clusters. We then used 24h APF
 617 clusters as annotated dataset and moved to annotate PNs at 48h APF. We then repeated the same
 618 procedure by gradually increasing our set of annotated datasets. In particular, we used 24h and

619 48h APF data to help in annotating 0h APF, and finally all three datasets (0h, 24h, 48h) for the
 620 adult PNs. We proceed in this order according to the expected difficulty to identify PN types at a
 621 particular stage (Figure 5). At each stage, we ran MARS multiple times with different random
 622 initializations and architecture parameters to increase our confidence in the discovered clusters,
 623 and combined annotations from these different runs. For each cluster, we additionally manually
 624 checked the expressions of known PN markers to confirm the annotations.

625 **Matching clusters representing the same PN type across development using marker
 626 expression**

627 For each cluster, we used Mann-Whitney U test to find genes that are highly expressed in that
 628 cluster compared to the rest. Then, among those genes, we searched for genes or 2-gene
 629 combinations which are uniquely expressed in 1 cluster. We check each gene or combination of
 630 genes at the other stages, and if they are also only expressed in 1 cluster and they are of the same
 631 lineage, we consider them to be the same types of PNs. Genes used to match clusters
 632 representing the same PN types at different timepoints are summarized in a dot-plot in Figure
 633 7—figure supplement 2.

634 In addition, we used previously sequenced subset of PNs using *Mz19-GAL4* and *kn-GAL4*
 635 to overlay with most PNs in combinations of those markers to confirm our matching.

636 **Matching clusters representing the same PN type across development using similarity
 637 calculation**

638 For each cluster, we found the set of differentially expressed genes in that cluster compared to all
 639 other clusters at the same stage. Next, we computed the similarity of the sets of identified
 640 differentially expressed genes between all pairs of clusters across subsequent stages. Specifically,
 641 we computed similarity scores between all pairs of clusters from (i) 0h and 24h APF, (ii) 24h and
 642 48h APF, and (iii) 48h and adult APF. The similarity of the sets of differentially expressed genes
 643 was computed as the Jaccard similarity index defined as the ratio of the cardinality of the
 644 intersection of two sets and the cardinality of the union of the sets. We excluded clusters
 645 representing vPNs and APLs for matching most PNs across 4 stages (Figure 7). For each cluster,
 646 we then identified its most similar cluster at the adjacent stage according to the Jaccard index. If
 647 the clusters between two stages coincide—meaning that two clusters from two stages have the
 648 highest similarity to each other, we consider the clusters to be matched. Empirically, we found
 649 this matching procedure to be stringent, resulting in high confidence matching pairs.

650 **Correlation between different PN types**

651 MARS clusters of excitatory PNs were used for analysis in Figure 8. We performed PCA on the
 652 entire matrix and calculated their correlation based on the PCs. Dendograms shown in Figure
 653 8—figure supplement 1 are generated using distance calculated using Farthest Point Algorithm
 654 and organized so the distance between successive leaves is minimal.

655 To observe the relationship between birth timing and their transcriptomic similarity, for
 656 each stage, we selected adPN clusters, performed PCA among all genes detected, calculated their
 657 correlation, and plotted the correlation matrices according to their birth order (Yu et al., 2010)
 658 (Figure 8B). For the two clusters representing either VM7 or VM5v PNs, we ordered them based
 659 on their correlation with decoded PN types whose birth order are adjacent to either of these two
 660 PN types. We are showing adPNs in the figure because we decoded much fewer transcriptomic
 661 clusters belonging to the IPN lineage, which is too few to carry out analysis shown in Figure 8

662 C–D with robust statistical backing. Nevertheless, we still observed higher correlation between
 663 IPN types with adjacent birth-order in 0h and 24h APF (data not shown).

664 **Spearman's rank correlation calculation and permutation test**

665 For consistency, 8 adPN types that were decoded across 4 stages were selected for this analysis
 666 (Figure 8C). For each PN type X, the group of PNs that are born either earlier or later than X was
 667 selected depending on which direction contains more PN types (each group contains at least 5
 668 types of PNs). Then, we ranked the PN types according to their correlation with X and calculated
 669 the Spearman's rank correlation of this ranking with the ranking based on their birth order. For
 670 each stage, we obtained the average correlation coefficients and plotted the result as a red dot on
 671 the x-axis for each timepoint. Higher value indicates higher correlation between birth order and
 672 order calculated based on their transcriptomic similarity.

673 To determine if we can reject the null hypothesis that the adPN transcriptomic similarity
 674 do not covary with the ranks of the birth order, we performed permutation test. We randomly
 675 shuffled the birth order and performed the aforementioned correlation calculation for 5000
 676 iterations. The distribution of the simulated average correlations is shown in the histogram of
 677 Figure 8C. We obtained the p-value by dividing the number of times of the simulated correlation
 678 is greater than the observed correlation by the total number of iterations.

679 **Developmental trajectory analysis**

680 Pseudo-time analysis of 0h APF adPNs was performed using the monocle package in R (Trapnell
 681 et al., 2014; Qiu et al., 2017; Cao et al., 2019). We selected only adPNs born at larval stage
 682 because the embryonically born adPNs have a very distinct transcriptomes which skew clustering.
 683 We applied the dimensionality reduction method UMAP (Becht et al., 2018) on 561 24h ICIM
 684 genes to resolve distinct PN types. This dimensionally reduced dataset was then used as the basis
 685 for a developmental trajectory graph created by Monocle 3. We then selected the cluster
 686 representing DL1 PNs to be the root node of the trajectory and computed the pseudo-times based
 687 on distance from the root in accordance to the trajectory.

688 **Differential gene expression analysis**

689 We used adPN and IPN clusters to identify differentially expressed genes at each stage (**Figure**
 690 **9**). We performed Mann-Whitney U test on each cluster compared to the rest of the clusters at
 691 each developmental stage and applied Benjamini-Hochberg Procedure to adjust p-value. Genes
 692 with an adjusted p-value of less than 0.01 were kept for our analysis.

693 To identify genes that are transcription factors (TFs), cell surface molecules (CSM), ion channels,
 694 and transmembrane receptors, we used curated lists. The TF list was from the FlyTF database
 695 (Pfreundt et al., 2010) and the CSM list was from (Kurusu et al., 2008). These lists were
 696 manually curated to remove spurious annotations and redundancies according to Flybase
 697 annotation. Lists of ion channels and transmembrane receptors were based on gene groups
 698 obtained from FlyBase. To avoid redundancy, ion channels that also belong to the
 699 transmembrane receptor gene group are not plotted as transmembrane receptors (**Figure 9C**,
 700 bottom).

701

702 **Acknowledgement**

703 We thank Yoshi Aso, Gerald Rubin, Hugo Bellen, Kai Zinn, and Larry Zipursky for the kind
 704 gifts of reagents. We thank the Bloomington *Drosophila* Stock Center and the Vienna
 705 *Drosophila* Resource Center for fly lines, and Addgene for plasmids. We thank Tom Clandinin,
 706 Yanyang Ge, Julia Kaltschmidt, Justus Kebschull, Kang Shen, Andrew Shuster, and all Luo lab
 707 members for technical support and insightful advice on this study. We thank Mary Molacavage
 708 for administrative assistance.

709 **Additional information**

710 Competing interests

711 The authors declare that no competing interest exists.

712

713 Funding

714 This work was supported by NIH grant R01 DC005982 (to L.L.) and 1K99AG062746 (to H.L.),
 715 and by Wu Tsai Neurosciences Institute at Stanford (Neuro-omics project). Qijing Xie was a
 716 Bertarelli Fellow. S.R.Q. is a Chan Zuckerberg Biohub investigator. L.L. is a Howard Hughes
 717 Medical Institute investigator. Hongjie Li was a Wu Tsai Neuroscience Institute interdisciplinary
 718 postdoctoral scholar.

719

720 **References**

721 Alyagor, I., Berkun, V., Keren-Shaul, H., Marmor-Kollet, N., David, E., Mayseless, O., Issman-
 722 Zecharya, N., Amit, I., & Schuldiner, O. (2018). Combining Developmental and
 723 Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling.
 724 *Dev Cell*, 47(1), 38-52 e36. doi:10.1016/j.devcel.2018.09.013

725 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-
 726 throughput sequencing data. *Bioinformatics*, 31(2), 166-169.
 727 doi:10.1093/bioinformatics/btu638

728 Bates, A. S., Schlegel, P., Roberts, R. J. V., Drummond, N., Tamimi, I. F. M., Turnbull, R., Zhao,
 729 X., Marin, E. C., Popovici, P. D., Dhawan, S., Jamasb, A., Javier, A., Serratosa Capdevila,
 730 L., Li, F., Rubin, G. M., Waddell, S., Bock, D. D., Costa, M., & Jefferis, G. (2020).
 731 Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain.
 732 *Curr Biol*, 30(16), 3183-3199 e3186. doi:10.1016/j.cub.2020.06.042

733 Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F., &
 734 Newell, E. W. (2018). Dimensionality reduction for visualizing single-cell data using
 735 UMAP. *Nat Biotechnol*. doi:10.1038/nbt.4314

736 Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L., & Wilson, R. I. (2007). Sensory
 737 processing in the *Drosophila* antennal lobe increases reliability and separability of
 738 ensemble odor representations. *Nat Neurosci*, 10(11), 1474-1482. doi:10.1038/nn1976

739 Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
 740 communities in large networks. *Journal of Statistical Mechanics-Theory and Experiment*.
 741 doi:Artn P10008
 742 10.1088/1742-5468/2008/10/P10008

743 Brbic, M., Zitnik, M., Wang, S., Pisco, A. O., Altman, R. B., Darmanis, S., & Leskovec, J.
 744 (2020). MARS: discovering novel cell types across heterogeneous single-cell
 745 experiments. *Nat Methods*. doi:10.1038/s41592-020-00979-3

746 Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D. M., Hill, A. J., Zhang, F., Mundlos, S.,
 747 Christiansen, L., Steemers, F. J., Trapnell, C., & Shendure, J. (2019). The single-cell

748 transcriptional landscape of mammalian organogenesis. *Nature*, 566(7745), 496-502.
 749 doi:10.1038/s41586-019-0969-x

750 Carrillo, R. A., Ozkan, E., Menon, K. P., Nagarkar-Jaiswal, S., Lee, P. T., Jeon, M., Birnbaum,
 751 M. E., Bellen, H. J., Garcia, K. C., & Zinn, K. (2015). Control of Synaptic Connectivity
 752 by a Network of Drosophila IgSF Cell Surface Proteins. *Cell*, 163(7), 1770-1782.
 753 doi:10.1016/j.cell.2015.11.022

754 Cembrowski, M. S., & Menon, V. (2018). Continuous Variation within Cell Types of the
 755 Nervous System. *Trends Neurosci*, 41(6), 337-348. doi:10.1016/j.tins.2018.02.010

756 Cosmanescu, F., Katsamba, P. S., Sergeeva, A. P., Ahlsen, G., Patel, S. D., Brewer, J. J., Tan, L.,
 757 Xu, S., Xiao, Q., Nagarkar-Jaiswal, S., Nern, A., Bellen, H. J., Zipursky, S. L., Honig, B.,
 758 & Shapiro, L. (2018). Neuron-Subtype-Specific Expression, Interaction Affinities, and
 759 Specificity Determinants of DIP/Dpr Cell Recognition Proteins. *Neuron*, 100(6), 1385-
 760 1400 e1386. doi:10.1016/j.neuron.2018.10.046

761 Deng, B., Li, Q., Liu, X., Cao, Y., Li, B., Qian, Y., Xu, R., Mao, R., Zhou, E., Zhang, W., Huang,
 762 J., & Rao, Y. (2019). Chemoconnectomics: Mapping Chemical Transmission in
 763 Drosophila. *Neuron*, 101(5), 876-893 e874. doi:10.1016/j.neuron.2019.01.045

764 Diao, F., Ironfield, H., Luan, H., Diao, F., Shropshire, W. C., Ewer, J., Marr, E., Potter, C. J.,
 765 Landgraf, M., & White, B. H. (2015). Plug-and-play genetic access to drosophila cell
 766 types using exchangeable exon cassettes. *Cell Rep*, 10(8), 1410-1421.
 767 doi:10.1016/j.celrep.2015.01.059

768 Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J. C., & Rubin, G. M. (2018). Genetic Reagents
 769 for Making Split-GAL4 Lines in Drosophila. *Genetics*, 209(1), 31-35.
 770 doi:10.1534/genetics.118.300682

771 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
 772 M., & Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*,
 773 29(1), 15-21. doi:10.1093/bioinformatics/bts635

774 Duffy, J. B., Harrison, D. A., & Perrimon, N. (1998). Identifying loci required for follicular
 775 patterning using directed mosaics. *Development*, 125(12), 2263-2271. Retrieved from
 776 <https://www.ncbi.nlm.nih.gov/pubmed/9584125>

777 Elkahlah, N. A., Rogow, J. A., Ahmed, M., & Clowney, E. J. (2020). Presynaptic developmental
 778 plasticity allows robust sparse wiring of the Drosophila mushroom body. *Elife*, 9.
 779 doi:10.7554/eLife.52278

780 Gratz, S. J., Wildonger, J., Harrison, M. M., & O'Connor-Giles, K. M. (2013). CRISPR/Cas9-
 781 mediated genome engineering and the promise of designer flies on demand. *Fly (Austin)*,
 782 7(4), 249-255. doi:10.4161/fly.26566

783 Hie, B., Bryson, B., & Berger, B. (2019). Efficient integration of heterogeneous single-cell
 784 transcriptomes using Scanorama. *Nat Biotechnol*, 37(6), 685-691. doi:10.1038/s41587-
 785 019-0113-3

786 Holguera, I., & Desplan, C. (2018). Neuronal specification in space and time. *Science*, 362(6411),
 787 176-180. doi:10.1126/science.aas9435

788 Hong, W., & Luo, L. (2014). Genetic control of wiring specificity in the fly olfactory system.
 789 *Genetics*, 196(1), 17-29. doi:10.1534/genetics.113.154336

790 Hong, W., Mosca, T. J., & Luo, L. (2012). Teneurins instruct synaptic partner matching in an
 791 olfactory map. *Nature*, 484(7393), 201-207. doi:10.1038/nature10926

792 Hong, W., Zhu, H., Potter, C. J., Barsh, G., Kurusu, M., Zinn, K., & Luo, L. (2009). Leucine-rich
 793 repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.
 794 *Nat Neurosci*, 12(12), 1542-1550. doi:10.1038/nn.2442

795 Inada, K., Tsuchimoto, Y., & Kazama, H. (2017). Origins of Cell-Type-Specific Olfactory
 796 Processing in the Drosophila Mushroom Body Circuit. *Neuron*, 95(2), 357-367 e354.
 797 doi:10.1016/j.neuron.2017.06.039

798 Jain, S., Lin, Y., Kurmangaliyev, Y., Mirshahidi, P., Parrington, B., & Zipursky, S. L. (2020). A
 799 Global Temporal Genetic Program for Neural Circuit Formation. *BioRxiv*.

800 Jan, Y. N., & Jan, L. Y. (1994). Genetic control of cell fate specification in Drosophila peripheral
 801 nervous system. *Annu Rev Genet*, 28, 373-393.
 802 doi:10.1146/annurev.ge.28.120194.002105

803 Jan, Y. N., & Jan, L. Y. (2010). Branching out: mechanisms of dendritic arborization. *Nat Rev
 804 Neurosci*, 11(5), 316-328. doi:10.1038/nrn2836

805 Jeanne, J. M., Fisek, M., & Wilson, R. I. (2018). The Organization of Projections from Olfactory
 806 Glomeruli onto Higher-Order Neurons. *Neuron*, 98(6), 1198-1213 e1196.
 807 doi:10.1016/j.neuron.2018.05.011

808 Jefferis, G. S., Marin, E. C., Stocker, R. F., & Luo, L. (2001). Target neuron prespecification in
 809 the olfactory map of Drosophila. *Nature*, 414(6860), 204-208. doi:10.1038/35102574

810 Jefferis, G. S., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., Jr., & Luo, L.
 811 (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated
 812 fruit and pheromone representation. *Cell*, 128(6), 1187-1203.
 813 doi:10.1016/j.cell.2007.01.040

814 Jefferis, G. S., Vyas, R. M., Berdnik, D., Ramaekers, A., Stocker, R. F., Tanaka, N. K., Ito, K., &
 815 Luo, L. (2004). Developmental origin of wiring specificity in the olfactory system of
 816 Drosophila. *Development*, 131(1), 117-130. doi:10.1242/dev.00896

817 Jenett, A., Rubin, G. M., Ngo, T. T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D.,
 818 Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J. H., Peng, H.,
 819 Trautman, E. T., Svirskas, R. R., Myers, E. W., Iwinski, Z. R., Aso, Y., DePasquale, G.
 820 M., Enos, A., Hulamm, P., Lam, S. C., Li, H. H., Laverty, T. R., Long, F., Qu, L.,
 821 Murphy, S. D., Rokicki, K., Safford, T., Shaw, K., Simpson, J. H., Sowell, A., Tae, S.,
 822 Yu, Y., & Zugates, C. T. (2012). A GAL4-driver line resource for Drosophila
 823 neurobiology. *Cell Rep*, 2(4), 991-1001. doi:10.1016/j.celrep.2012.09.011

824 Johnston, R. J., Jr., & Desplan, C. (2010). Stochastic mechanisms of cell fate specification that
 825 yield random or robust outcomes. *Annu Rev Cell Dev Biol*, 26, 689-719.
 826 doi:10.1146/annurev-cellbio-100109-104113

827 Kalish, B. T., Cheadle, L., Hrvatin, S., Nagy, M. A., Rivera, S., Crow, M., Gillis, J., Kirchner, R.,
 828 & Greenberg, M. E. (2018). Single-cell transcriptomics of the developing lateral
 829 geniculate nucleus reveals insights into circuit assembly and refinement. *Proc Natl Acad
 830 Sci U S A*, 115(5), E1051-E1060. doi:10.1073/pnas.1717871115

831 Kirilly, D., Gu, Y., Huang, Y., Wu, Z., Bashirullah, A., Low, B. C., Kolodkin, A. L., Wang, H.,
 832 & Yu, F. (2009). A genetic pathway composed of Sox14 and Mical governs severing of
 833 dendrites during pruning. *Nat Neurosci*, 12(12), 1497-1505. doi:10.1038/nn.2415

834 Kirilly, D., Wong, J. J., Lim, E. K., Wang, Y., Zhang, H., Wang, C., Liao, Q., Wang, H., Liou, Y.
 835 C., Wang, H., & Yu, F. (2011). Intrinsic epigenetic factors cooperate with the steroid
 836 hormone ecdysone to govern dendrite pruning in Drosophila. *Neuron*, 72(1), 86-100.
 837 doi:10.1016/j.neuron.2011.08.003

838 Kohwi, M., & Doe, C. Q. (2013). Temporal fate specification and neural progenitor competence
 839 during development. *Nat Rev Neurosci*, 14(12), 823-838. doi:10.1038/nrn3618

840 Kolodkin, A. L., & Tessier-Lavigne, M. (2011). Mechanisms and molecules of neuronal wiring:
 841 a primer. *Cold Spring Harb Perspect Biol*, 3(6). doi:10.1101/cshperspect.a001727

842 Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,
 843 M., Loh, P. R., & Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of
 844 single-cell data with Harmony. *Nat Methods*, 16(12), 1289-1296. doi:10.1038/s41592-
 845 019-0619-0

846 Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P., & Zipursky, S. L. (2020).
 847 Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. *Neuron*.
 848 doi:10.1016/j.neuron.2020.10.006

849 Kurusu, M., Cording, A., Taniguchi, M., Menon, K., Suzuki, E., & Zinn, K. (2008). A screen of
 850 cell-surface molecules identifies leucine-rich repeat proteins as key mediators of synaptic
 851 target selection. *Neuron*, 59(6), 972-985. doi:10.1016/j.neuron.2008.07.037

852 Lai, S. L., Awasaki, T., Ito, K., & Lee, T. (2008). Clonal analysis of Drosophila antennal lobe
 853 neurons: diverse neuronal architectures in the lateral neuroblast lineage. *Development*,
 854 135(17), 2883-2893. doi:10.1242/dev.024380

855 Lee, P. T., Zirin, J., Kanca, O., Lin, W. W., Schulze, K. L., Li-Kroeger, D., Tao, R., Devereaux,
 856 C., Hu, Y., Chung, V., Fang, Y., He, Y., Pan, H., Ge, M., Zuo, Z., Housden, B. E., Mohr,
 857 S. E., Yamamoto, S., Levis, R. W., Spradling, A. C., Perrimon, N., & Bellen, H. J. (2018).
 858 A gene-specific T2A-GAL4 library for Drosophila. *eLife*, 7. doi:10.7554/eLife.35574

859 Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene
 860 function in neuronal morphogenesis. *Neuron*, 22(3), 451-461. doi:10.1016/s0896-
 861 6273(00)80701-1

862 Lee, T., Marticke, S., Sung, C., Robinow, S., & Luo, L. (2000). Cell-autonomous requirement of
 863 the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in
 864 Drosophila. *Neuron*, 28(3), 807-818. doi:10.1016/s0896-6273(00)00155-0

865 Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D., Litvin,
 866 O., Fienberg, H. G., Jager, A., Zunder, E. R., Finck, R., Gedman, A. L., Radtke, I.,
 867 Downing, J. R., Pe'er, D., & Nolan, G. P. (2015). Data-Driven Phenotypic Dissection of
 868 AML Reveals Progenitor-like Cells that Correlate with Prognosis. *Cell*, 162(1), 184-197.
 869 doi:10.1016/j.cell.2015.05.047

870 Levine, R. B., Morton, D. B., & Restifo, L. L. (1995). Remodeling of the insect nervous system.
 871 *Curr Opin Neurobiol*, 5(1), 28-35. doi:10.1016/0959-4388(95)80083-2

872 Li, H. (2020). Single-cell RNA sequencing in Drosophila: Technologies and applications. *Wiley
 873 Interdiscip Rev Dev Biol*, e396. doi:10.1002/wdev.396

874 Li, H., Horns, F., Wu, B., Xie, Q., Li, J., Li, T., Luginbuhl, D. J., Quake, S. R., & Luo, L. (2017).
 875 Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA
 876 Sequencing. *Cell*, 171(5), 1206-1220 e1222. doi:10.1016/j.cell.2017.10.019

877 Li, H., Li, T., Horns, F., Li, J., Xie, Q., Xu, C., Wu, B., Kebschull, J. M., McLaughlin, C. N.,
 878 Kolluru, S. S., Jones, R. C., Vacek, D., Xie, A., Luginbuhl, D. J., Quake, S. R., & Luo, L.
 879 (2020a). Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory
 880 Receptor Expression and Axon Targeting. *Curr Biol*, 30(7), 1189-1198 e1185.
 881 doi:10.1016/j.cub.2020.01.049

882 Li, H., Shuster, S. A., Li, J., & Luo, L. (2018). Linking neuronal lineage and wiring specificity.
 883 *Neural Dev*, 13(1), 5. doi:10.1186/s13064-018-0102-0

884 Li, J., Han, S., Li, H., Udeshi, N. D., Svinkina, T., Mani, D. R., Xu, C., Guajardo, R., Xie, Q., Li,
 885 T., Luginbuhl, D. J., Wu, B., McLaughlin, C. N., Xie, A., Kaewsapsak, P., Quake, S. R.,
 886 Carr, S. A., Ting, A. Y., & Luo, L. (2020b). Cell-Surface Proteomic Profiling in the Fly
 887 Brain Uncovers Wiring Regulators. *Cell*, 180(2), 373-386 e315.
 888 doi:10.1016/j.cell.2019.12.029

889 Liang, L., Li, Y. L., Potter, C. J., Yizhar, O., Deisseroth, K., Tsien, R. W., & Luo, L. Q. (2013).
 890 GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-
 891 Order Neurons. *Neuron*, 79(5), 917-931. doi:10.1016/j.neuron.2013.06.014

892 Lin, S., Kao, C. F., Yu, H. H., Huang, Y., & Lee, T. (2012). Lineage analysis of Drosophila
 893 lateral antennal lobe neurons reveals notch-dependent binary temporal fate decisions.
 894 *PLoS Biol*, 10(11), e1001425. doi:10.1371/journal.pbio.1001425

895 Liu, Z., Yang, C. P., Sugino, K., Fu, C. C., Liu, L. Y., Yao, X., Lee, L. P., & Lee, T. (2015).
 896 Opposing intrinsic temporal gradients guide neural stem cell production of varied
 897 neuronal fates. *Science*, 350(6258), 317-320. doi:10.1126/science.aad1886

898 Luan, H., Peabody, N. C., Vinson, C. R., & White, B. H. (2006). Refined spatial manipulation of
 899 neuronal function by combinatorial restriction of transgene expression. *Neuron*, 52(3),
 900 425-436. doi:10.1016/j.neuron.2006.08.028

901 Luo, L. (2020). *Principles of Neurobiology* (Second Edition). Boca Raton: Garland Science.

902 Lyne, R., Smith, R., Rutherford, K., Wakeling, M., Varley, A., Guillier, F., Janssens, H., Ji, W.,
 903 McLaren, P., North, P., Rana, D., Riley, T., Sullivan, J., Watkins, X., Woodbridge, M.,
 904 Lilley, K., Russell, S., Ashburner, M., Mizuguchi, K., & Micklem, G. (2007). FlyMine:
 905 an integrated database for Drosophila and Anopheles genomics. *Genome Biol*, 8(7), R129.
 906 doi:10.1186/gb-2007-8-7-r129

907 Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H., & Luo, L. (2002). Representation of the
 908 glomerular olfactory map in the Drosophila brain. *Cell*, 109(2), 243-255.
 909 doi:10.1016/s0092-8674(02)00700-6

910 Marin, E. C., Watts, R. J., Tanaka, N. K., Ito, K., & Luo, L. (2005). Developmentally
 911 programmed remodeling of the Drosophila olfactory circuit. *Development*, 132(4), 725-
 912 737. doi:10.1242/dev.01614

913 McInnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering.
 914 *Journal of Open Source Software*, 2(11), 205.

915 McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and
 916 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*.

917 McLaughlin, C. N., Brbic, M., Xie, Q., Li, T., Horns, F., Kolluru, S. S., Keschuk, J. M., Vacek,
 918 D., Xie, A., & Li, J. (2020). Single-cell transcriptomes of developing and adult olfactory
 919 receptor neurons in Drosophila. *BioRxiv*.

920 Ozel, M. N., Simon, F., Jafari, S., Holguera, I., Chen, Y. C., Benhra, N., El-Danaf, R. N.,
 921 Kapuralin, K., Malin, J. A., Konstantinides, N., & Desplan, C. (2020). Neuronal diversity
 922 and convergence in a visual system developmental atlas. *Nature*. doi:10.1038/s41586-
 923 020-2879-3

924 Parnas, M., Lin, A. C., Huetteroth, W., & Miesenbock, G. (2013). Odor discrimination in
 925 Drosophila: from neural population codes to behavior. *Neuron*, 79(5), 932-944.
 926 doi:10.1016/j.neuron.2013.08.006

927 Pfreundt, U., James, D. P., Tweedie, S., Wilson, D., Teichmann, S. A., & Adryan, B. (2010).
 928 FlyTF: improved annotation and enhanced functionality of the Drosophila transcription

929 factor database. *Nucleic Acids Res*, 38(Database issue), D443-447.
 930 doi:10.1093/nar/gkp910

931 Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G., Sagasser, S., & Sandberg, R. (2014).
 932 Full-length RNA-seq from single cells using Smart-seq2. *Nat Protoc*, 9(1), 171-181.
 933 doi:10.1038/nprot.2014.006

934 Pignoni, F., & Zipursky, S. L. (1997). Induction of Drosophila eye development by
 935 decapentaplegic. *Development*, 124(2), 271-278. Retrieved from
 936 <https://www.ncbi.nlm.nih.gov/pubmed/9053304>

937 Polanski, K., Young, M. D., Miao, Z., Meyer, K. B., Teichmann, S. A., & Park, J. E. (2020).
 938 BBKNN: fast batch alignment of single cell transcriptomes. *Bioinformatics*, 36(3), 964-
 939 965. doi:10.1093/bioinformatics/btz625

940 Potter, C. J., Tasic, B., Russler, E. V., Liang, L., & Luo, L. (2010). The Q system: a repressible
 941 binary system for transgene expression, lineage tracing, and mosaic analysis. *Cell*, 141(3),
 942 536-548. doi:10.1016/j.cell.2010.02.025

943 Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., & Trapnell, C. (2017).
 944 Reversed graph embedding resolves complex single-cell trajectories. *Nat Methods*,
 945 14(10), 979-982. doi:10.1038/nmeth.4402

946 Sanes, J. R., & Yamagata, M. (2009). Many paths to synaptic specificity. *Annu Rev Cell Dev
 947 Biol*, 25, 161-195. doi:10.1146/annurev.cellbio.24.110707.175402

948 Sanes, J. R., & Zipursky, S. L. (2020). Synaptic Specificity, Recognition Molecules, and
 949 Assembly of Neural Circuits. *Cell*, 181(6), 1434-1435. doi:10.1016/j.cell.2020.05.046

950 Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., & Regev, A. (2015). Spatial reconstruction of
 951 single-cell gene expression data. *Nat Biotechnol*, 33(5), 495-502. doi:10.1038/nbt.3192

952 Schubiger, M., Wade, A. A., Carney, G. E., Truman, J. W., & Bender, M. (1998). Drosophila
 953 EcR-B ecdysone receptor isoforms are required for larval molting and for neuron
 954 remodeling during metamorphosis. *Development*, 125(11), 2053-2062. Retrieved from
 955 <https://www.ncbi.nlm.nih.gov/pubmed/9570770>

956 Stocker, R. F., Heimbeck, G., Gendre, N., & de Belle, J. S. (1997). Neuroblast ablation in
 957 Drosophila P[GAL4] lines reveals origins of olfactory interneurons. *J Neurobiol*, 32(5),
 958 443-456. doi:10.1002/(sici)1097-4695(199705)32:5<443::aid-neu1>3.0.co;2-5

959 Tanaka, N. K., Suzuki, E., Dye, L., Ejima, A., & Stopfer, M. (2012). Dye fills reveal additional
 960 olfactory tracts in the protocerebrum of wild-type Drosophila. *J Comp Neurol*, 520(18),
 961 4131-4140. doi:10.1002/cne.23149

962 Tasic, B. (2018). Single cell transcriptomics in neuroscience: cell classification and beyond. *Curr
 963 Opin Neurobiol*, 50, 242-249. doi:10.1016/j.conb.2018.04.021

964 Thummel, C. S. (1996). Flies on steroids--Drosophila metamorphosis and the mechanisms of
 965 steroid hormone action. *Trends Genet*, 12(8), 306-310. doi:10.1016/0168-
 966 9525(96)10032-9

967 Tirian, L., & Dickson, B. J. (2017). The VT GAL4, LexA, and split-GAL4 driver line collections
 968 for targeted expression in the Drosophila nervous system. *BioRxiv*, 198648.

969 Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-
 970 connected communities. *Sci Rep*, 9(1), 5233. doi:10.1038/s41598-019-41695-z

971 Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak,
 972 K. J., Mikkelsen, T. S., & Rinn, J. L. (2014). The dynamics and regulators of cell fate
 973 decisions are revealed by pseudotemporal ordering of single cells. *Nat Biotechnol*, 32(4),
 974 381-386. doi:10.1038/nbt.2859

975 van der Maaten, L., & Hinton, G. (2008). Visualizing Data using t-SNE. *Journal of Machine*
976 *Learning Research*, 9, 2579-2605. Retrieved from <Go to ISI>://WOS:000262637600007

977 Vosshall, L. B., & Stocker, R. F. (2007). Molecular architecture of smell and taste in Drosophila.
978 *Annu Rev Neurosci*, 30, 505-533. doi:10.1146/annurev.neuro.30.051606.094306

979 Wilson, R. I. (2013). Early olfactory processing in Drosophila: mechanisms and principles. *Annu*
980 *Rev Neurosci*, 36, 217-241. doi:10.1146/annurev-neuro-062111-150533

981 Wolf, F. A., Angerer, P., & Theis, F. J. (2018). SCANPY: large-scale single-cell gene expression
982 data analysis. *Genome Biol*, 19(1), 15. doi:10.1186/s13059-017-1382-0

983 Wong, J. J., Li, S., Lim, E. K., Wang, Y., Wang, C., Zhang, H., Kirilly, D., Wu, C., Liou, Y. C.,
984 Wang, H., & Yu, F. (2013). A Cullin1-based SCF E3 ubiquitin ligase targets the
985 InR/PI3K/TOR pathway to regulate neuronal pruning. *PLoS Biol*, 11(9), e1001657.
986 doi:10.1371/journal.pbio.1001657

987 Wu, J. S., & Luo, L. (2006). A protocol for dissecting Drosophila melanogaster brains for live
988 imaging or immunostaining. *Nat Protoc*, 1(4), 2110-2115. doi:10.1038/nprot.2006.336

989 Xie, Q., Wu, B., Li, J., Xu, C., Li, H., Luginbuhl, D. J., Wang, X., Ward, A., & Luo, L. (2019).
990 Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner
991 olfactory neurons. *Proc Natl Acad Sci U S A*, 116(32), 16068-16073.
992 doi:10.1073/pnas.1905832116

993 Yu, H. H., Kao, C. F., He, Y., Ding, P., Kao, J. C., & Lee, T. (2010). A complete developmental
994 sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM. *PLoS Biol*,
995 8(8). doi:10.1371/journal.pbio.1000461

996 Zeng, H., & Sanes, J. R. (2017). Neuronal cell-type classification: challenges, opportunities and
997 the path forward. *Nat Rev Neurosci*, 18(9), 530-546. doi:10.1038/nrn.2017.85

998 Zhong, S., Zhang, S., Fan, X., Wu, Q., Yan, L., Dong, J., Zhang, H., Li, L., Sun, L., Pan, N., Xu,
999 X., Tang, F., Zhang, J., Qiao, J., & Wang, X. (2018). A single-cell RNA-seq survey of
1000 the developmental landscape of the human prefrontal cortex. *Nature*, 555(7697), 524-528.
1001 doi:10.1038/nature25980

1002

1003 **Figure legends**

1005 **Figure 1. Overview of single-cell transcriptomic profiling of *Drosophila* olfactory projection 1006 neurons (PNs).**

1007 (A) Schematic of the adult *Drosophila* olfactory system. Approximately 50 types of olfactory
1008 receptor neurons (ORNs) form one-to-one synaptic connections with 50 types of excitatory PNs
1009 at 50 glomeruli in the antennal lobe. Illustrated are two types each of ORNs (brown) and PNs
1010 (green), as well as two glomeruli to which their axons and dendrites target. (B) Schematic of the
1011 developmental process of the adult *Drosophila* olfactory system. The ~50 types of uniglomerular
1012 excitatory PNs are from either anterodorsal (adPN) or lateral (IPN) neuroblast lineages. PNs with
1013 cell body on the ventral side are inhibitory ventral PNs (vPNs). (C) Representative confocal
1014 images of PNs from four different developmental stages, 0h APF, 24h APF, 48h APF, and adult.
1015 APF: after puparium formation. Images are shown as maximum z-projections of confocal stacks.
1016 Antenna lobe is outlined. Scale bars, 40 μ m. (D) Workflow of the single-cell RNA sequencing
1017 using plate-based SMART-seq2. FACS: fluorescence-activated cell sorting. (E) Summary of the
1018 number of high-quality PNs sequenced at each timepoint and driver lines used. Most PNs refer to
1019 PNs sequenced using either *GH146-GAL4* or *VT033006-GAL4*. (F) Visualization of all
1020 sequenced PNs from four different developmental stages using tSNE plot. Dimensionality
1021 reduction was performed using the top 500 overdispersed genes identified from all sequenced
1022 PNs.

1024 **Figure 1—figure supplement 1. Technical characteristics of PN scRNA-seq.**

1025 (A) Representative confocal image and illustration of cells labeled by *GH146-GAL4* at 0h APF.
1026 Other than PNs and a pair of APL neurons in the central brain (arrowheads), many cells in the
1027 optic lobes (*) are also labeled. (B) Representative confocal image and illustration of cells
1028 labeled by *VT033006-GAL4* at 0h APF. This driver labels excitatory PNs, but not cells in the
1029 optic lobes or vPN or APL neurons. Scale bars, 40 μ m. (C) Distribution of the number of
1030 uniquely mapped reads per cell. (D) Distribution of the number of detected genes per cell. (E)
1031 Heatmaps showing the expression of: *mCD8-GFP*, pan-neuronal makers (*nSyb*, *elav*, *CadN*, *Syt1*,
1032 and *brp*), PN marker (*Oaz*), and glial markers (*repo* and *alarmone*). Expression levels are indicated by
1033 the color bar (CPM, transcript counts per million).

1035 **Figure 2. Matching 15 transcriptomic clusters to specific PN types at 24h APF.**

1036 (A) Representative maximum z-projection of confocal stacks of *split#28-GAL4* in adults.
1037 Dendrites of *split#28-GAL4*+ PNs target the DC3 and DA4l glomeruli. (B) Diagram of *split#28-GAL4*+
1038 PNs. (C) tSNE plot showing newly sequenced *split#28-GAL4*+ PNs, which form two
1039 clusters that can be assigned to DC3 and DA4l PNs (see also Figure 2—figure supplement 1). (D)
1040 Representative confocal images of *split#7-GAL4* labeled PNs using permanent labeling strategy.
1041 One anterior section and one posterior section of the antennal lobe are shown. Using permanent
1042 labeling, we found that this driver is expressed in 8 PN types. Genotype: *split#7-GAL4*, *UAS-Flp*,
1043 *Actin promoter-FRT-STOP-FRT-GAL4*, *UAS-mCD8-GFP*. (E) Diagram of *split#7-GAL4*+ PNs.
1044 *split#7-GAL4* labels 8 types of PNs. 4 from the adPN lineage (green letters) and 4 from the IPN
1045 lineage (red letters). (F) tSNE plot of *split#7-GAL4* PNs with *GH146*+ PNs (see Figure 2—
1046 figure supplement 2 for details on the decoding procedure). (G) Representative maximum z-
1047 projection of confocal stacks of *kn*+ PNs in the adult. *kn-GAL4* was intersected with *GH146-Flp*
1048 to restrict the expression of GAL4 in only PNs. (H) Representative confocal images of *split#15-*

1049 *GAL4* in adults, which labels 2 *kn+* PN types. **(I)** Diagram showing that *kn+* PNs include 6 types
 1050 of adPNs and two vPNs. **(J)** tSNE plot of *kn-GAL4* PNs with *GH146*+ PNs (see Figure 2—
 1051 figure supplement 3 for details on the decoding procedure). **(K)** Dot plot summarizing drivers
 1052 and marker genes we used to map 21 transcriptomic clusters to 20 PN types [14 adPNs, 5 IPNs—
 1053 DA1 PNs form two clusters, one *fru+* and one *fru-* (Li et al., 2017)—and 1 vPNs] and the
 1054 anterior paired lateral (APL) neurons at 24h APF. Gene expression level [$\log_2(\text{CPM}+1)$] is
 1055 shown by the dot color, and percentages of cells expressing a marker are shown by dot size. **(L)**
 1056 tSNE plot showing 24h APP PNs colored by PN types (*GH146*+ PNs with *split#7+ / split#28*
 1057 PNs to increase cell number in some less abundant PN types). Scale bars, 20 μm . Axes, D
 1058 (dorsal), L (lateral). In panel B, E, and I, orange glomeruli represent PN types of unknown
 1059 transcriptomic identity prior to this study. Green glomeruli represent PN types whose
 1060 transcriptomic identity were previously decoded. Note that the positions of cells on a tSNE plot
 1061 are dependent on the random initialization of the program as well as every cell present in the
 1062 dataset, therefore the position of *GH146*+ PNs clusters are different when we plot them with
 1063 different set of newly sequenced PNs (gray in panels C, F, and J).
 1064

Figure 2—figure supplement 1. Validation of DA4l PN identity.

(A) Visualization of *GH146*+ and *split#28-GAL4*+ PNs using tSNE. Cells are colored according
 1066 to driver genotypes (left) or by the expression of *zfh2* (right). **(B)** *zfh2-GAL4*, after intersecting
 1067 with *GH146-Flp*, labels DA4l PNs. Scale bars, 20 μm . Axes, D (dorsal), L (lateral).
 1068

Figure 2—figure supplement 2. Decoding *split#7+* PNs.

(A) Representative confocal images of *split#7+* PNs. Without permanent labeling, this driver is
 1071 strongly expressed in 3 PN types in adults. Permanent labeling showed that it can label 8 adult
 1072 PN types (Figure 2D), suggesting that this driver is expressed in 8 PN types during development
 1073 and turned off in 5 of them in adult stage. **(B)** Visualization of *GH146*+ and *split#7+* PNs
 1074 colored according to genotype (left), *acj6* (middle), and *CG31676* (right) expression. Previously,
 1075 we know among those *split#7+* PNs, the cells with *CG31676* expression are DA1 PNs (Li et al.
 1076 2017). **(C)** Among *split#7+* adPN clusters (circled in green), only one cluster does not express
 1077 *C15*. Intersection between *C15-p65^{AD}* and the *GAL4* DNA-binding domain (DBD) from *split#7*
 1078 (top) as well as intersection between *C15-GAL4^{DBD}* and the p65-activating domain (AD) from
 1079 *split#7* (bottom) revealed that the *C15* negative cluster represents DL1 PNs. **(D)** Among *split#7+*
 1080 adPNs (circled in green), two clusters are *danr-*. One of those cluster represents DL1 PNs.
 1081 Intersection between *danr-p65^{AD}* and *VT033006-GAL4^{DBD}* (*split-GAL4* with PN specific
 1082 expression) revealed the other *danr-* adPN is VA6 PNs. **(E)** One *split#7+* cluster specifically
 1083 expresses *DIP-zeta*. Intersection between *DIP-zeta-GAL4* and *GH146-Flp* revealed this cluster
 1084 represents VA2 PNs. As three out of four adPN clusters are assigned, we assigned the last
 1085 unassigned to be DA3 PNs. **(F)** Among *split#7+* IPNs (circled in red), only one cluster is *DIP-*
 1086 *eta-*. Intersection between *DIP-eta-GAL4* and *GH146-Flp* revealed the identity of this cluster as
 1087 VA5 PNs. **(G)** The *DIP-eta-* cluster also specifically expresses *AstA*. Intersection between *AstA-*
 1088 *GAL4* and *GH146-Flp* labels VA5 PNs, further confirming its identity. **(H)** Among the last two
 1089 unmapped clusters, one is *DIP-beta+*. Intersection between *DIP-beta-GAL4* and *GH146-Flp*
 1090 revealed the cluster negative for *DIP-beta* is DM2 PNs. And we assigned the remaining *split#7+*
 1091 IPN cluster to be VC2 PNs. Scale bars, 20 μm . Axes, D (dorsal), L (lateral).
 1092

Figure 2—figure supplement 3. Decoding the identity of *kn+* PNs.

1095 (A) *kn* is expressed in 7 transcriptomic cluster in *GH146*+ PNs at 24h APF. (B) Visualization of
 1096 *kn*+ and *split#15-GAL4*+ PNs at 24h APF using tSNE. *kn*+ PNs (green) form 8 clusters, two of
 1097 them intermingled with *split#15-GAL4*+ PNs (purple). These 8 clusters are assigned to specific
 1098 PN types using information in the following panels. (C) Summary of marker genes used to
 1099 decode the identity of *kn-GAL4*+ PNs. *trol*+ cluster represents VM2 PNs (Li et al., 2007). (D)
 1100 Intersection between *kn-GAL4*^{DBD} and *danr-p65*^{AD} with *GH146-Flp* revealed that the cluster
 1101 positive for both *kn* and *danr* is VA1v PNs. (E) Intersection between *C15-p65*^{AD} and *elav-*
 1102 *GAL4*^{DBD} revealed that the cluster positive for *acj6* but negative for *C15* is D PNs. (F)
 1103 Visualization of *DIP-beta* expression among *GH146*+ PNs. DA1 IPNs does not express *DIP-*
 1104 *beta*. (G) Visualization of *DIP-beta* expression among *kn*+ PNs. One vPN cluster expresses
 1105 *DIP-beta*. (H) Representative confocal image of *DIP-beta-GAL4* after intersecting with *GH146-*
 1106 *Flp*. Innervation of the DA1 glomerulus indicated the *DIP-beta*+ vPN cluster is vPN (DA1).
 1107 Scale bars, 20 μ m. Axes, D (dorsal), L (lateral).

Figure 3. Global gene expression dynamics of PNs.

(A) Visualization of PNs from 4 different developmental stages: 0h APF, 24h APF, 48h APF, and adult sequenced using either *VT033006-GAL4* or *GH146-GAL4*. tSNE dimensionality reduction was performed using 1216 genes identified by iterative clustering for identifying markers (ICIM) among them. (B) Hierarchical heatmap showing the expression of the top 52 out of 474 differentially expressed genes identified among PNs of different developmental stages. (C) Examples of the expression of the dynamic genes. Cells are colored according to the expression level of each gene. *Akap200* (A kinase anchor protein 200, encodes a scaffolding protein that contributes to the maintenance and regulation of cytoskeletal structure), *cib* (ciboulot, encodes an actin binding protein), and *fax* (failed axon connections, a gene involved in axon development) have the highest expression in early pupal stage and are downregulated gradually. *Rdl* (Resistant to dieldrin, encodes a chloride channel), *slo* (slowpoke, encodes a subunit of calcium-activated potassium channel), and *CG8177* (Anion exchanger 2), are upregulated as PNs develop. (D, E) Top 474 differentially expressed genes can be divided into 8 groups based on their dynamic profiles—2 groups without obvious developmental trend (not shown), 5 groups of down-regulated genes (D), and 2 groups of up-regulated genes (E). Pink lines represent individual genes and the black line shows mean expression of genes in each group. The highest expression is normalized as 1 for all genes. The top 10 GO terms for up-regulated and down-regulated genes are shown on right.

Figure 4. PN transcriptomes show distinct features at different stages of development.

(A) Visualization of most PNs from 0h APF, 24h APF, 48h APF, and adults using tSNE based on genes identified by ICIM at each stage. Adult clusters (circled) are identified using HDBSCAN. (B) Clustering of 0h APF PNs using HDBSCAN identified two clusters. (C) Part of the molecular pathways critical for neurite pruning in *Drosophila*. (D) Genes whose function have been implicated in neurite pruning have higher expression in cluster 0: *Sox14* (p-value: 5.01E-51), *Mical* (p-value: 1.49E-09), *Cull* (p-value: 8.15E-4), *shrb* (p-value: 6.37E-19) and *Vps20* (p-value: 1.23E-17) (Mann-Whitney U test). (E, F). PN transcriptomic similarity calculated at the cell level (mean inverse Euclidean distance calculated using 1216 ICIM genes identified from PNs of all 4 stages) and the cluster level (Pearson correlation calculated using differentially expressed genes identified from 24h PN clusters) for adPNs (E) [0h APF: 587 cells, cell-level similarity (mean \pm standard deviation): 0.350 \pm 0.036, 15 clusters, cluster-level

similarity (mean \pm standard deviation): 0.615 ± 0.160 ; 24h APF: 547 cells, cell-level similarity: 0.292 ± 0.041 , 15 clusters, cluster-level similarity: 0.395 ± 0.189 ; 48h APF: 301 cells, cell-level similarity: 0.377 ± 0.046 , 13 clusters, cluster-level similarity: 0.484 ± 0.212 ; adult stage: 209 cells, cell-level similarity: 0.422 ± 0.058 , 15 clusters, cluster-level similarity: 0.741 ± 0.129] and IPNs (F) [0h APF: 484 cells, cell-level similarity: 0.402 ± 0.052 , 10 clusters, cluster-level similarity: 0.736 ± 0.129 ; 24h APF: 354 cells, cell-level similarity: 0.360 ± 0.056 , 10 clusters, cluster-level similarity: 0.474 ± 0.057 ; 48h APF: 296 cells, cell-level similarity: 0.385 ± 0.043 , 10 clusters, cluster-level similarity: 0.570 ± 0.171 ; adult stage: 191 cells, cell-level similarity: 0.444 ± 0.057 , 8 clusters, cluster-level similarity: 0.754 ± 0.141]. (G) Schematic summary of PN transcriptome similarity changes from early pupal stage to adulthood. PN diversity peaks during circuit assembly around 24h APF and gradually diminishes as they develop into mature neurons. (H) Expression of *VACHT*, *Gad1*, and *VGlut* in adult PNs.

Figure 4—figure supplement 1. Visualization of most PNs at different stages using tSNE.
Dimensionality reduction was computed using top 2000 overdispersed genes found at each stage.

Figure 4—figure supplement 2. Embryonically born and larval born PNs at 0h APF.

(A) The larger cluster at 0h APF consists of both adPNS (*acj6*+) and IPNs (*vvl*+) while the smaller cluster contains only adPNS. (B) Two types of embryonically born PNs, DA4l and VA6 PNs, are both mapped to the smaller cluster (details in Figure 7).

Figure 5. PN type identification by MARS.

(A) Dimensionality reduction of most PNs at 4 developmental stages by 561 ICIM genes found at 24h APF. (B) PN types identified by MARS. Different MARS clusters are illustrated in different colors.

Figure 5—figure supplement 1. PN type identification using two other independent methods.

(A) Dimensionality reduction by 24h ICIM genes followed by cluster identification using HDBSCAN. Circled cells belong to two PN types but are assigned to the same cluster using HDBSCAN. (B) Cluster identification by Leiden based on neighborhood graph computed on 24h ICIM genes. Circled cells belong to two PN types but are assigned to the same cluster using Leiden. (C) 24h APF PNs colored according to PN types validated in Figure 2. (D) PN types identified using MARS (same as Figure 5B). Some PN types which are incorrectly annotated by HDBSCAN or Leiden are correctly annotated as distinct clusters by MARS.

Figure 6. Two complementary approaches to match transcriptomic clusters representing same PN types at different developmental stages.

(A) scRNA-seq was performed for *kn*+ PNs from 3 different developmental stages: 24h APF, 48h APF, and adult. (B) tSNE plots showing *kn*+ PNs from three different stages, plotted separately. Cells are clustered according to 24h ICIM genes. Cell numbers are indicated. (C) *kn*+ PNs from three different stages plotted in the same tSNE plot. Cells are clustered according to 24h ICIM genes. (D) Two approaches were used for matching the same PN types at different stages: 1) automatic prediction by calculating the transcriptomic similarity between clusters at two stages 2) manual matching of clusters using specific markers or marker combinations. (E) Jaccard similarity index of automatically matched transcriptomic clusters from different stages. Clusters #7 (brown cells in panel G) in 24h and 48h APF do not match with any cluster in the

1188 adult stage; therefore, the similarity calculation is left as not applicable (NA). **(F)** Examples of
 1189 markers used to manually match transcriptomic clusters representing the same PN types across
 1190 different stages. **(G)** All *kn*+ PN types (6 adPNs and 3 vPNs) are matched from three different
 1191 stages. Two independent approaches (automatic and manual) produced similar results.
 1192

1193 **Figure 6—figure supplement 1. *kn*+ adPN transcriptomes become more similar as**
 1194 **development proceeds.**

1195 **(A)** Bar plot of Euclidean distance between all pairs of *kn*+ cells using ICIM genes identified
 1196 among them. *kn*+ vPNs are excluded from this analysis. 24h APF: 98 cells, mean \pm standard
 1197 deviation: 0.374 ± 0.066 ; 48h APF: 174 cells, mean \pm standard deviation (std): 0.446 ± 0.912 ;
 1198 adult: 124 cells, mean \pm std: 0.493 ± 0.085 **(B)** Bar plot of Pearson's correlation between all pairs
 1199 of *kn*+ adPN clusters. 24h APF: 6 clusters, mean \pm std: 0.167 ± 0.141 ; 48h APF: 6 clusters, mean
 1200 \pm std: 0.424 ± 0.170 ; adult: 6 clusters, mean \pm std: 0.506 ± 0.187 .
 1201

1202 **Figure 7. Matching transcriptomic cluster representing the same PN types across four**
 1203 **developmental stages.**

1204 **(A)** Visualization of most PNs at 4 different developmental stages: 0h APF, 24h APF, 48h APF,
 1205 and adult. 561 ICIM genes at 24h APF PNs were used for dimensionality reduction. **(B)**
 1206 Visualization of the same types of PNs at all developmental stages. Clusters with the same color
 1207 represent same neuronal type. Light grey dots indicate cells that have neither been decoded nor
 1208 matched. **(C)** Summary of transcriptomic clusters mapped to known PN types at different
 1209 developmental stages. Solid red-lines indicate clusters we can unambiguously match using
 1210 marker combinations; dashed red-lines indicate PN types we can narrow down to less than 3
 1211 transcriptomic clusters. Solid green-lines indicate clusters that are two-way matched
 1212 automatically (two clusters from two stages are the most similar to each other); dashed green-
 1213 lines indicates clusters that are one-way matched automatically (one cluster is the most similar
 1214 with the other but not the other way around). Circles with white "+" indicate PN types that have
 1215 been sequenced and confirmed at that stage using additional GAL4 lines (see Figure 7—figure
 1216 supplement 1).
 1217

1218 **Figure 7—figure supplement 1. Supporting evidence for matching PN types across**
 1219 **developmental stages.**

1220 **(A, C)** Visualization of *GH146*+ PNs (grey) with *Mz19*+ PNs (green) at 48h APF (A) and at the
 1221 adult stage (C). PN type of *Mz19*+ PNs shown on left were decoded previously (Li et al. 2017).
 1222 **(B, D)** Visualization of *kn*+ PNs from cells sequenced using *GH146-GAL4* (in grey) and cells
 1223 sequenced using *kn-GAL4* (in blue) at 48h APF (A) and at the adult stage (C). Annotation of *kn*-
 1224 *GAL4*+ cells was done in Figure 6. **(E)** Visualization of the same types of PNs matched
 1225 automatically (left) or manually (right) in tSNE space (same as Figure 7C). Transcriptomic
 1226 clusters representing the same PN types of different developmental stages are labeled in the same
 1227 color. Colors used to indicate PN types are identical to those in Figure 7B.
 1228

1229 **Figure 7—figure supplement 2. Markers used for manually matching PNs.**

1230 Dot plot of markers used to match the same types of PNs across different stages. Size of the dot
 1231 represents percentage of cells expressing a given marker in a cluster at a given stage, and color of
 1232 the dot represents expression level.
 1233

1234 **Figure 8. PN types with adjacent birth order share more similar transcriptomes at early**
 1235 **pupal stages.**

1236 (A) Different PN types born from a common neuroblast follow a stereotyped sequence. The birth
 1237 order of PNs determines to which glomerulus their dendrites target. The birth order of adPNs are
 1238 shown on right. PN types with known transcriptomic identities at any of the four stages are
 1239 highlighted in red. (B) Correlation matrix of the transcriptomes of adPNs with known identities
 1240 (Pearson's correlation). PN types are ordered according to their birth order. At 0h and 24h APF,
 1241 PN types with birth orders adjacent to each other exhibit the highest correlations in their
 1242 transcriptomes, as indicated by high correlations in boxes just off the diagonal line. (C) Results
 1243 of permutation test under the null hypothesis that the ranks of adPN transcriptomic similarity do
 1244 no covary with the ranks of birth order. Observed values is the average Spearman correlation of
 1245 8 adPN types decoded in all 4 stages (red dot). The distribution is the average Spearman
 1246 correlations obtained by randomly permutating the birth order for 5000 iterations (histogram). (D)
 1247 Developmental trajectory analysis showing an unbiased pseudo time of 0h APF adPNs
 1248 (embryonically born types excluded). The pseudo time roughly matches their birth order. (E)
 1249 Expression levels of 15 genes in adPNs with known identity at 0h APF. These genes have been
 1250 shown to exhibit temporal expression gradient in PN neuroblasts (Liu et al. 2015). The highest
 1251 expression is normalized as 1 for all genes.

1252 **Figure 8—figure supplement 1. Hierarchical clustering of all excitatory PNs.**

1253 Hierarchical clustering of all excitatory PN clusters of 0h APF (A), 24h APF (B), 48h APF (C),
 1254 and adult (D). Correlation calculation and hierarchical clustering were based on the principal
 1255 components calculated using the entire gene matrix. adPNs are indicated by green bar and IPNs
 1256 are indicated by orange bar on the top and left side of each plot. Clusters that have been matched
 1257 to specific PN types are labeled.

1258 **Figure 9. Differentially expressed genes between different PN types.**

1259 (A) Number of differentially expressed (DE) genes identified at each developmental stage among
 1260 all excitatory PN clusters or among the 12 PN types that are matched in all four stages. 103 and
 1261 52 genes are differentially expressed in all four stages among all excitatory PN types or among
 1262 the 12 PN types, respectively. (B) Percentage of transcription factors (TFs) or cell-surface
 1263 molecules (CSMs) from the list of genes that are differentially expressed among PNs in all four
 1264 stages compared to the genome-wide percentage. (C, D) Dot plot of the 17 TFs (C) and 23 CSMs
 1265 (D) that are differentially expressed in all four stages among the 12 PN types.

1266 **Figure 9—figure supplement 1**

1267 Dot plot of 114 TFs that are differentially expressed in any of the four stages among the 12 PN
 1268 type matched across all stages.

1269 **Figure 9—figure supplement 2**

1270 Dot plot of 228 CSMs that are differentially expressed in any of the four stages among the 12 PN
 1271 type matched across all stages.

1272 **Figure 10. Differentially expressed genes among different PN types in the adult stage.**

1273 (A) Venn diagram of differentially DE genes at 24h APF (497 genes) and in adults (542 genes).
 1274 (B) Top 10 biological process terms of DE genes found in 24h APF PNs only (top), in both 24h
 1275 APF and adults PNs (middle), and in adult PNs only (bottom). GO terms associated with neural

1281 development are colored in orange, and GO terms associated with metabolism are colored in
1282 blue. (C) Dot plot of adult DE genes that belong to the ‘ion channels’ (top) or ‘transmembrane
1283 receptors’ (bottom) gene group from FlyBase. PN types are separated by lineage and decoded
1284 PN types are labeled and ordered according to their birth order within each lineage.

Figure 1

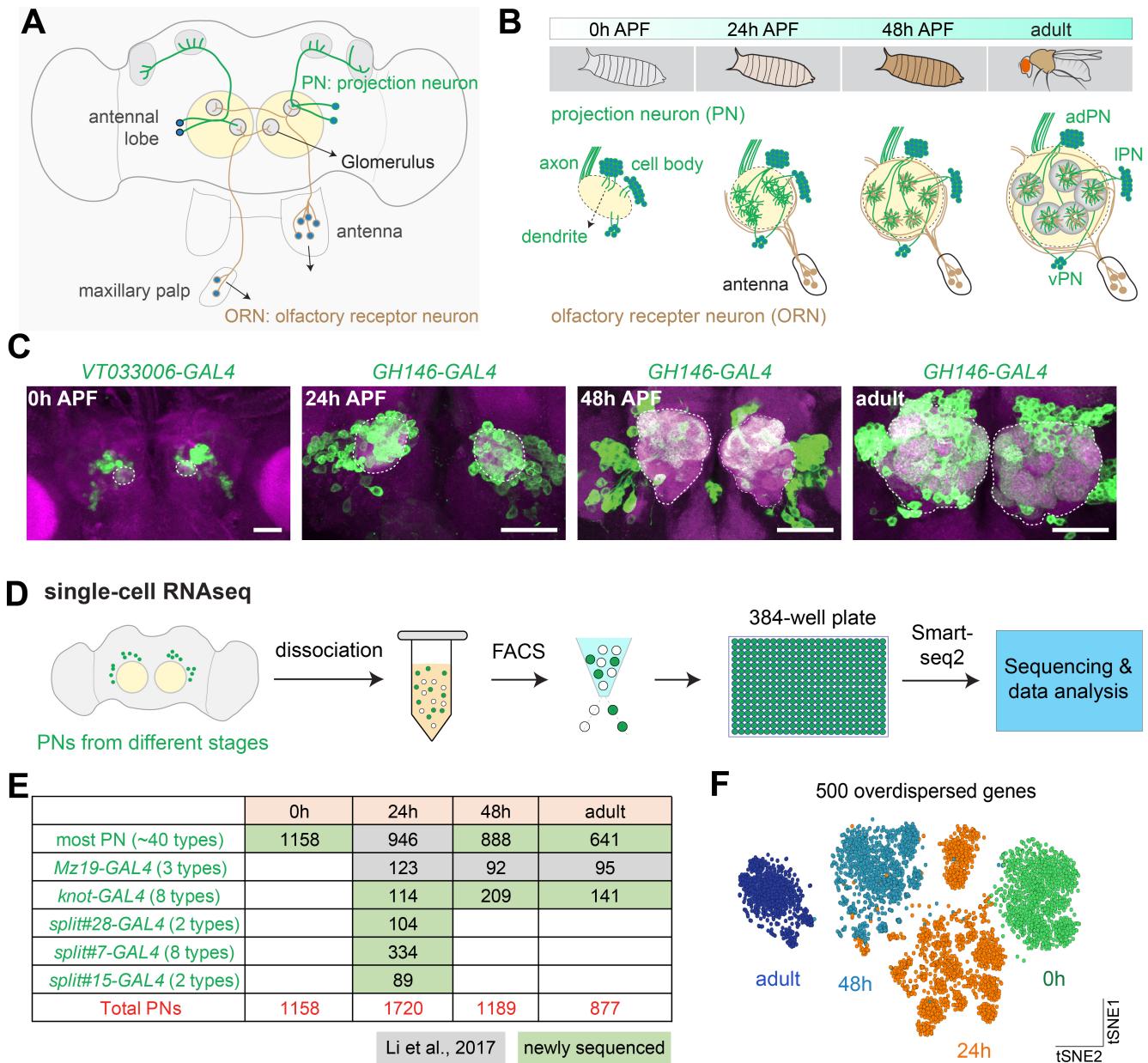


Figure 1 supplement 1

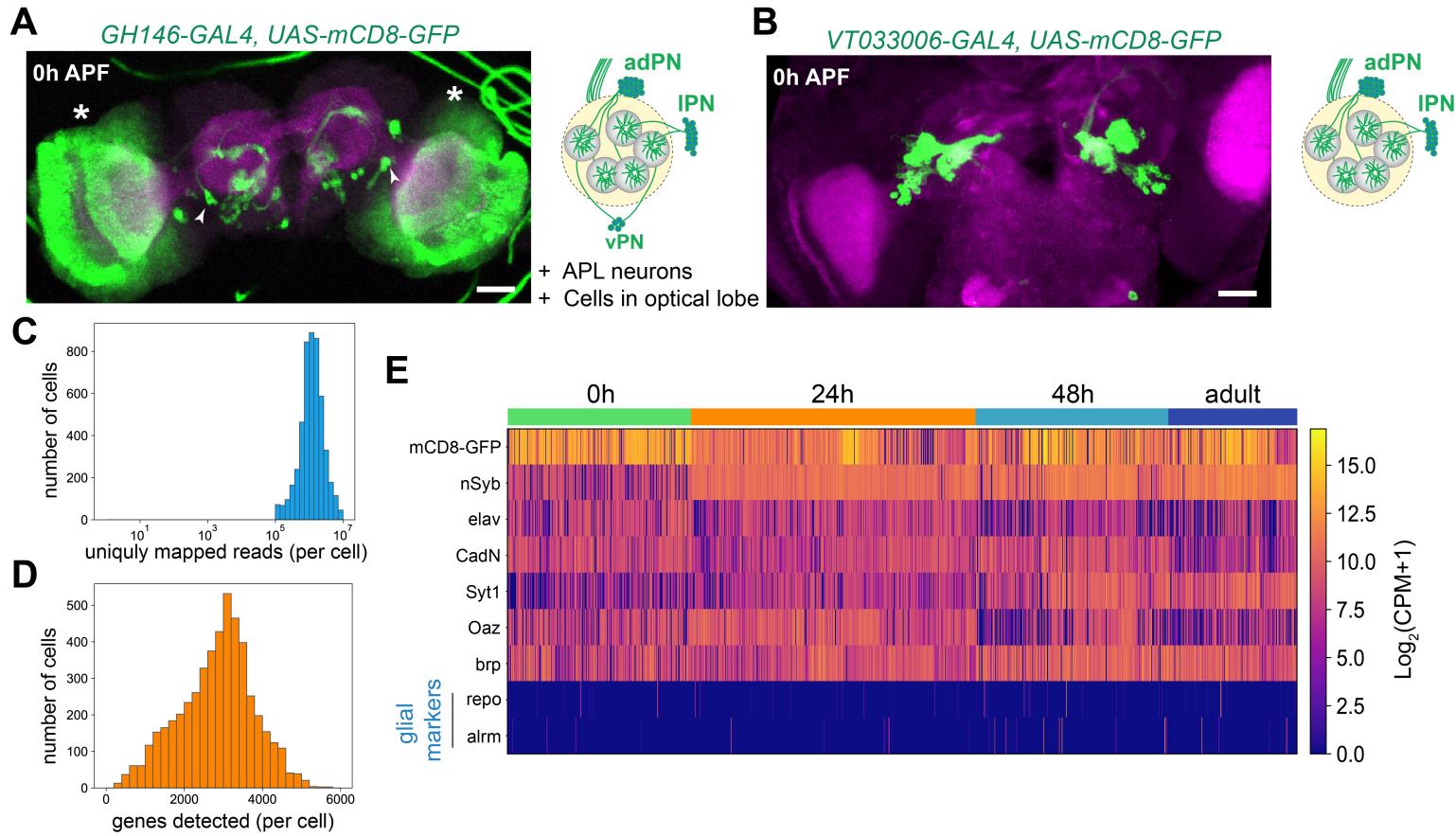


Figure 2

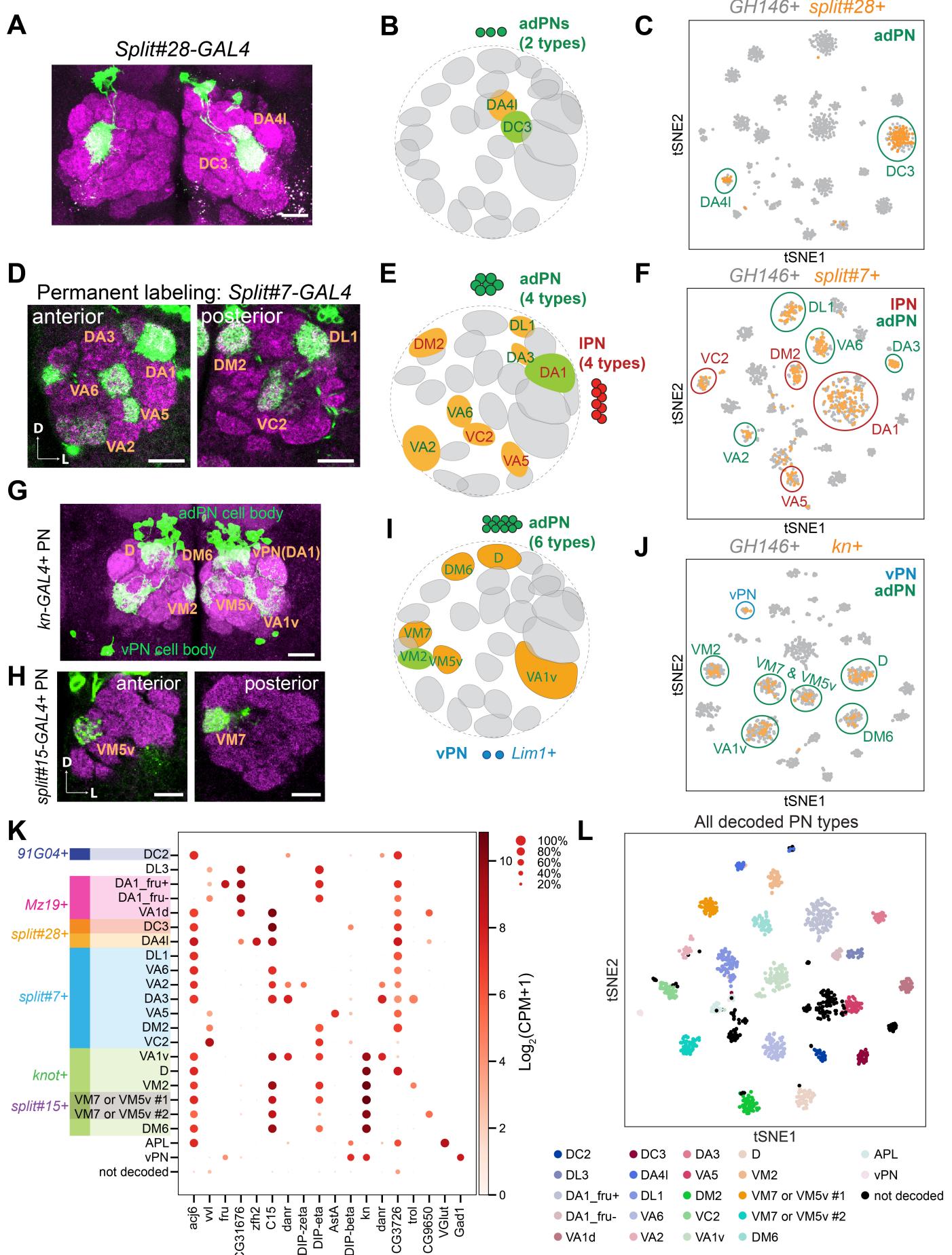


Figure 2 supplement 1

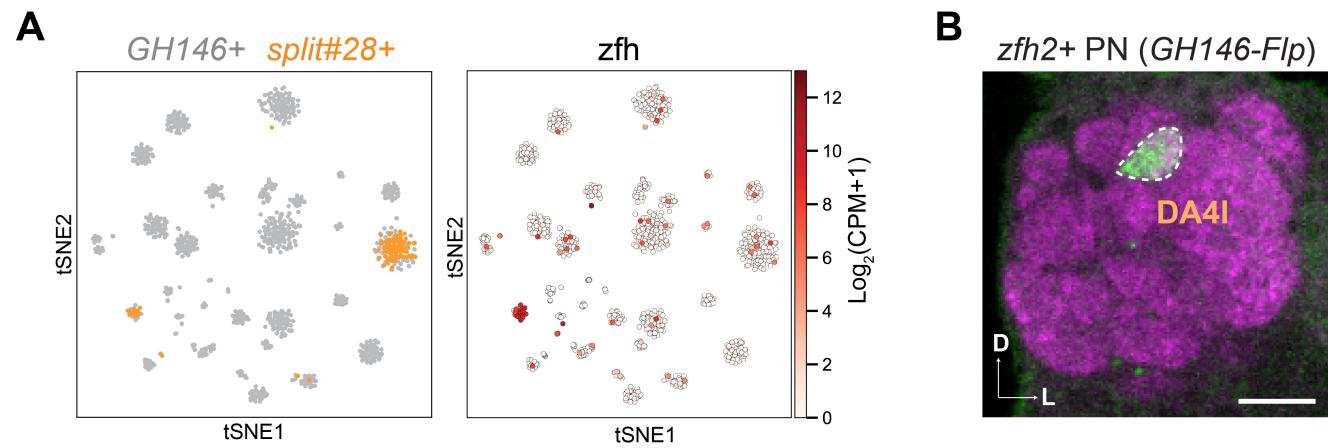


Figure 2 supplement 2

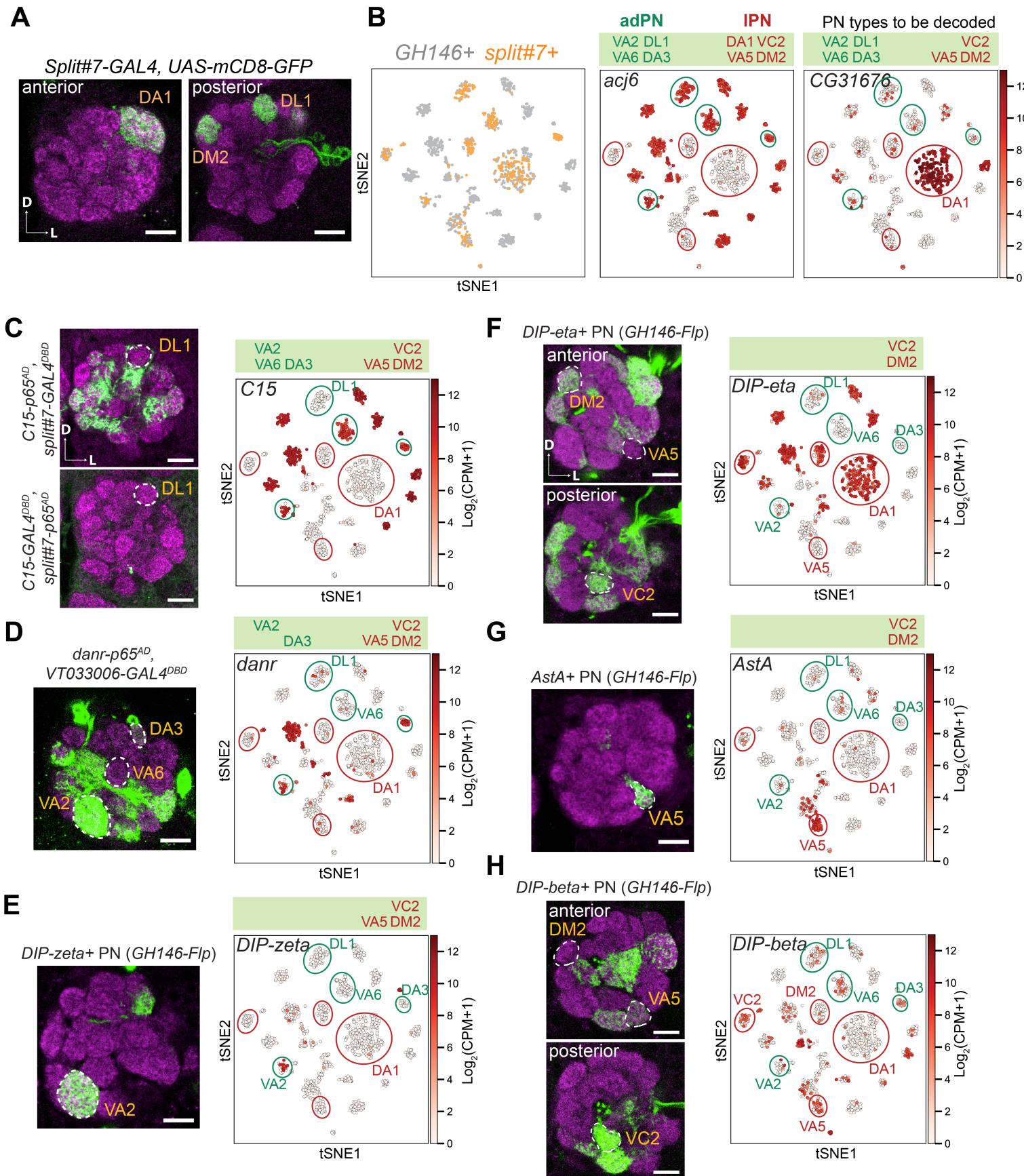


Figure 2 supplement 3

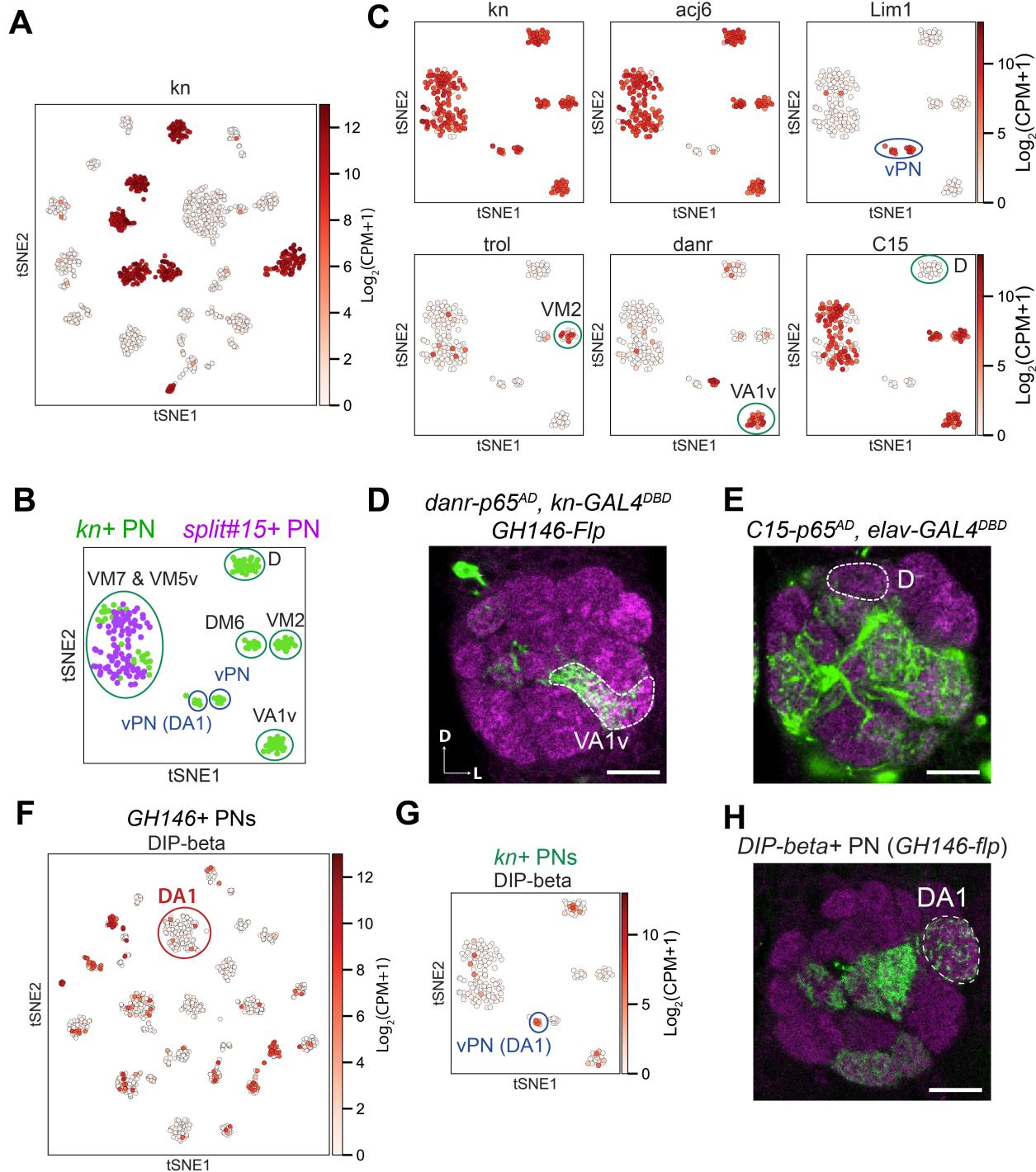


Figure 3

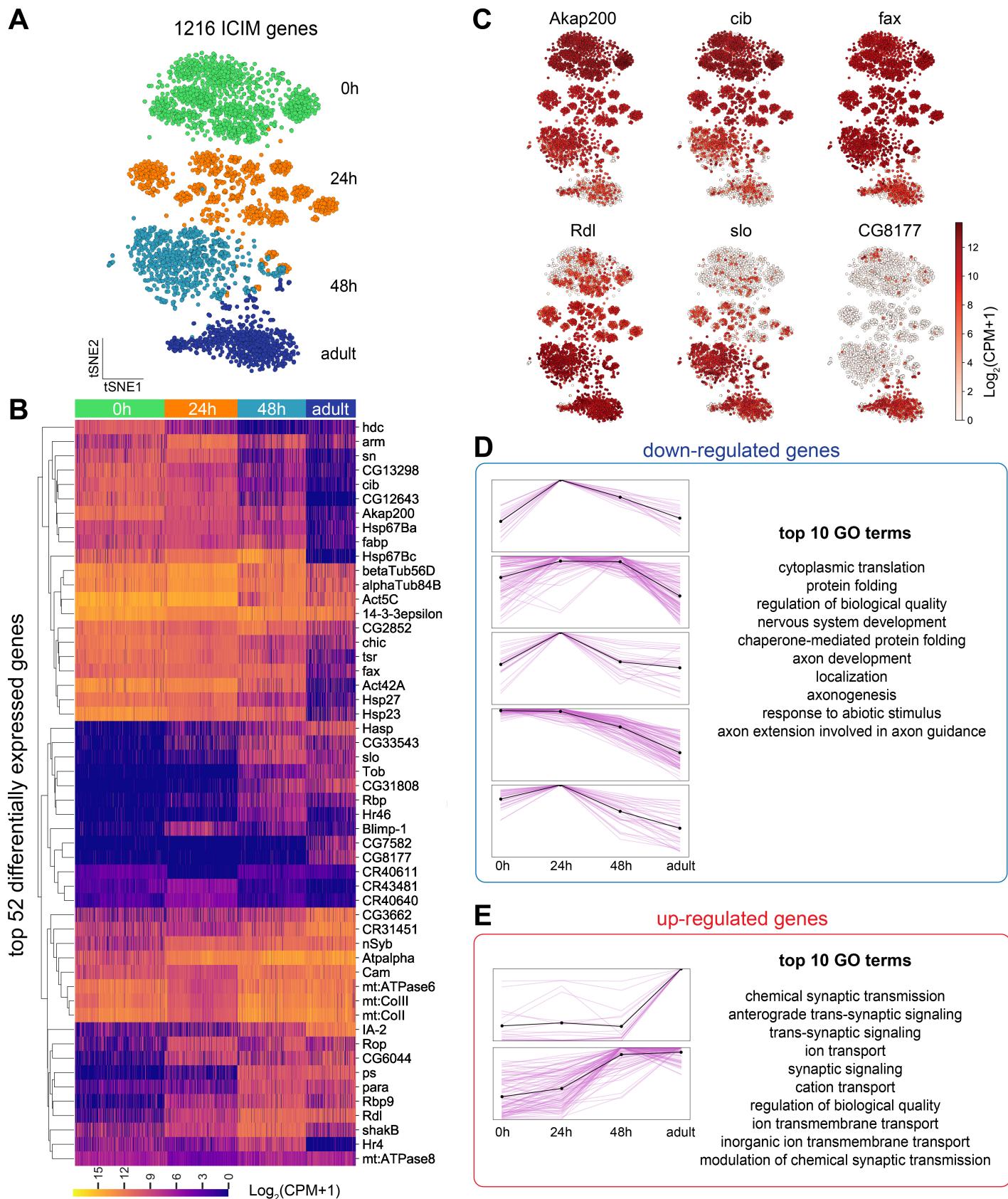
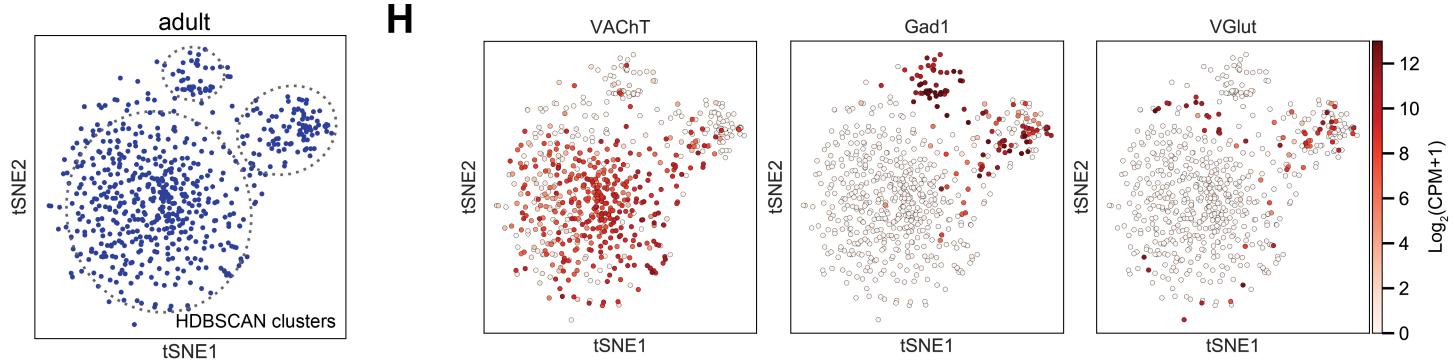
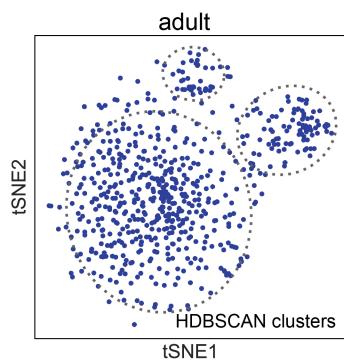
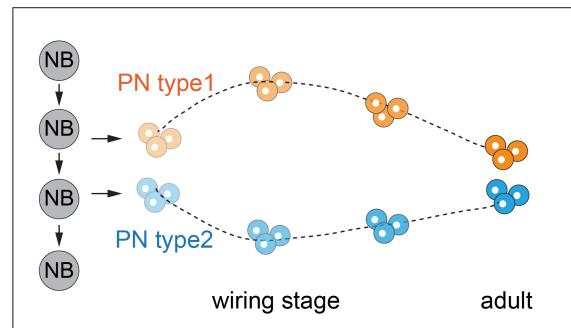
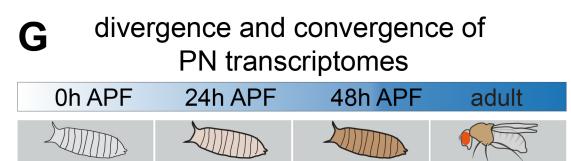
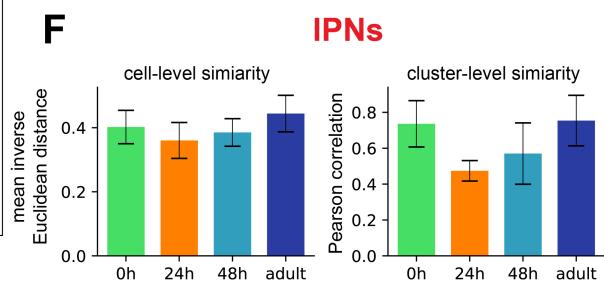


Figure 4

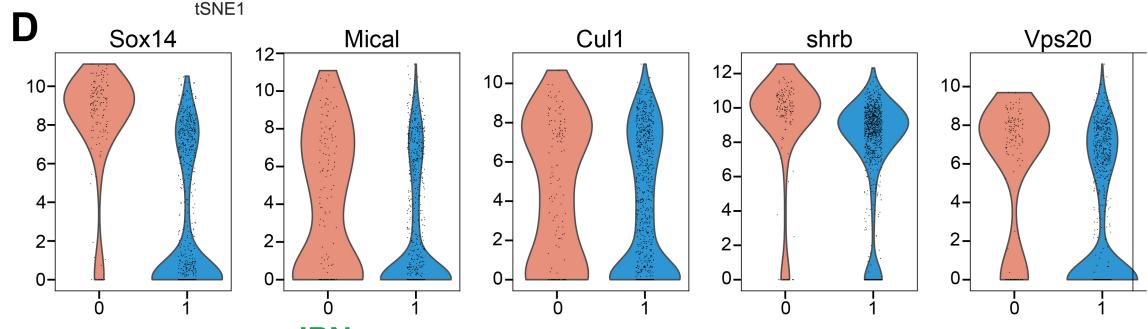
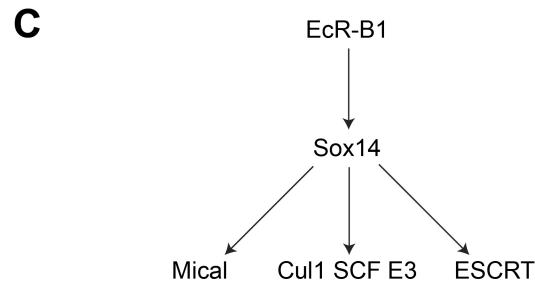
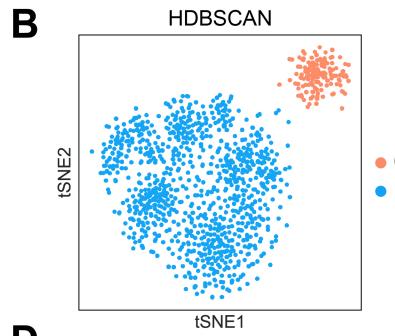
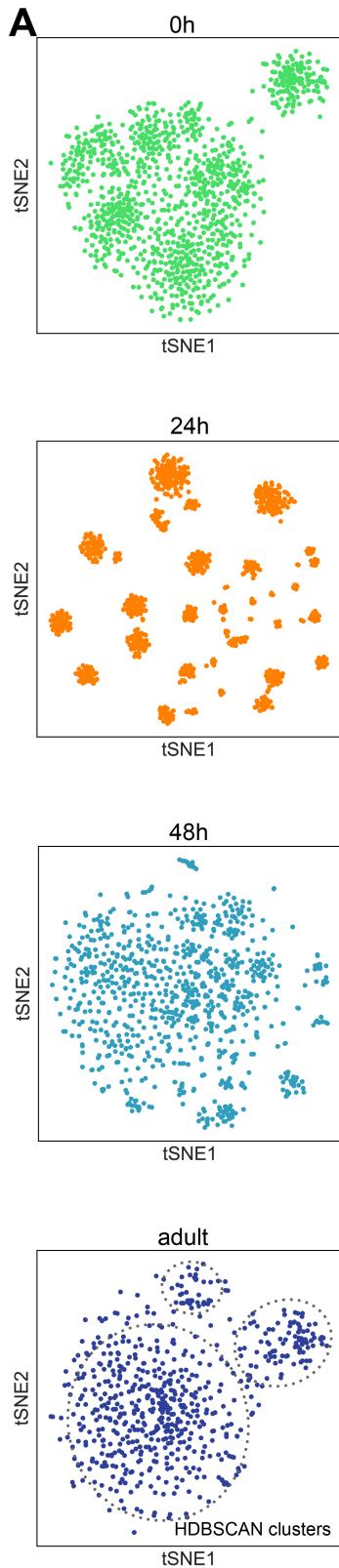





Figure 4 supplement 1

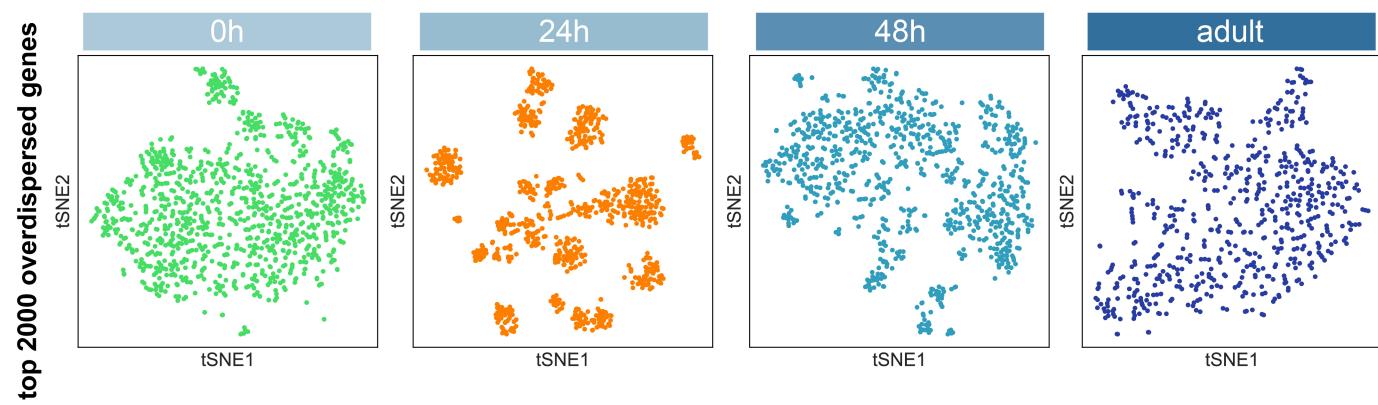


Figure 4 supplement 2



Figure 5

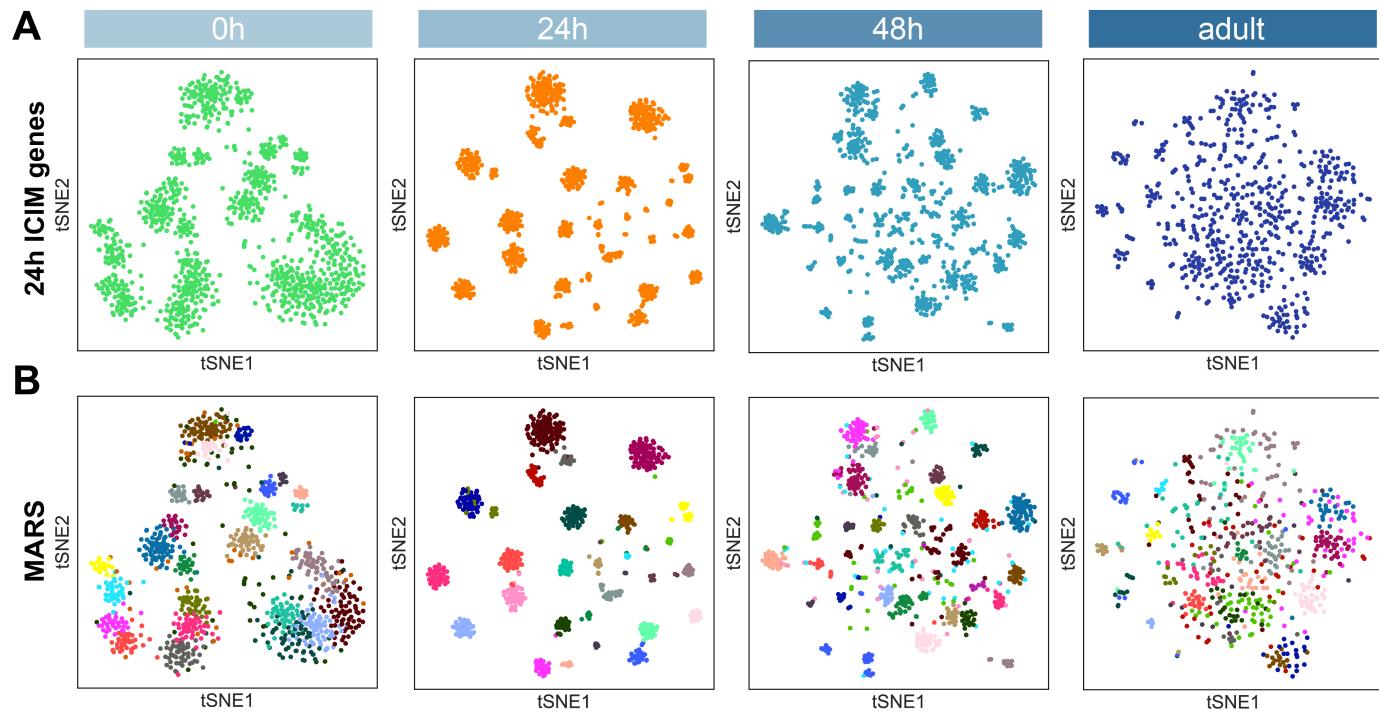
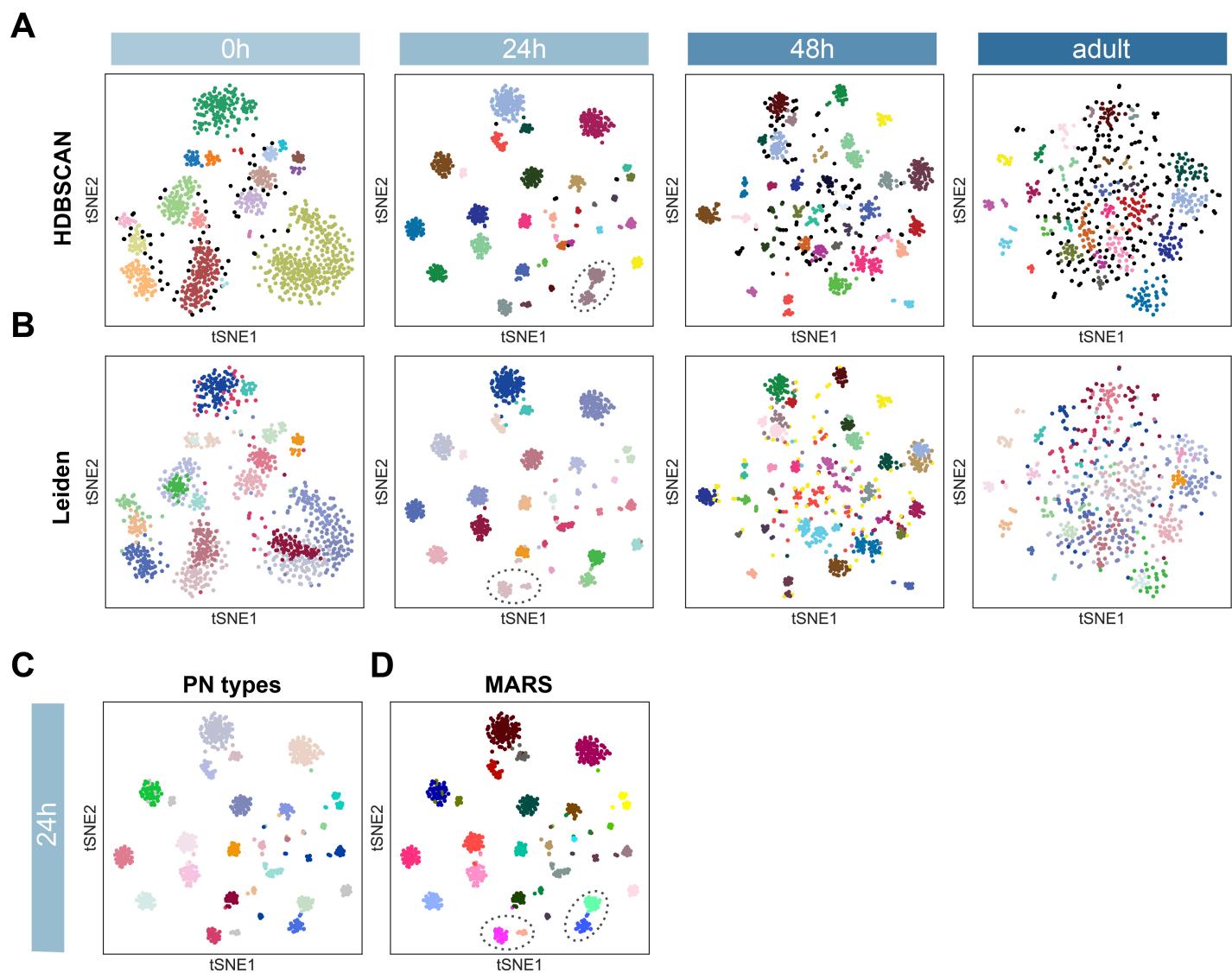



Figure 5 supplement 1

Figure 6

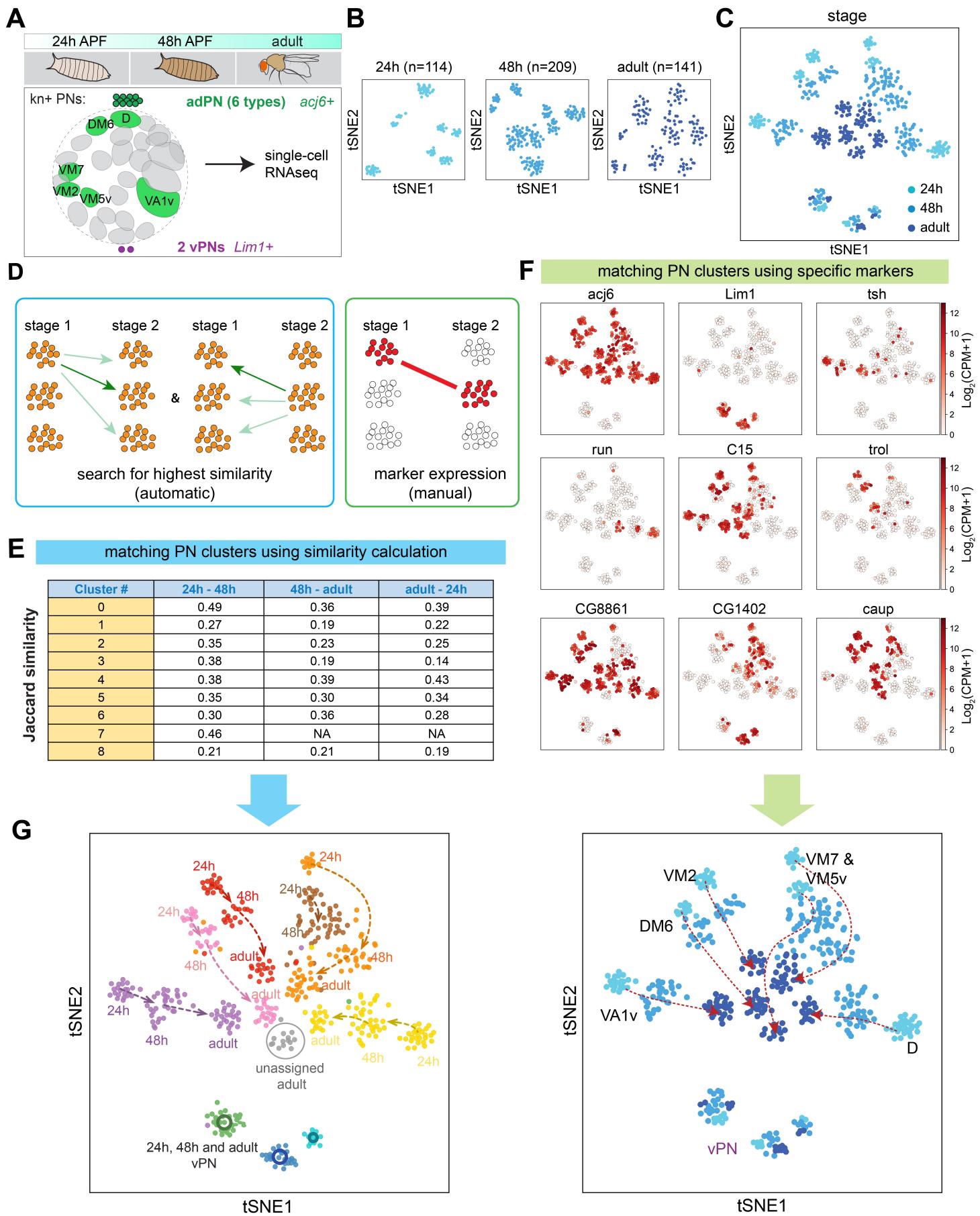
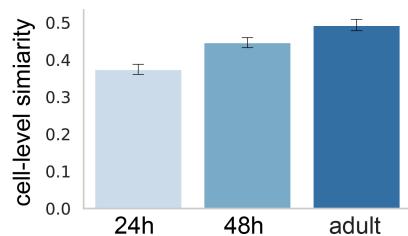



Figure 6 supplement 1

A

B

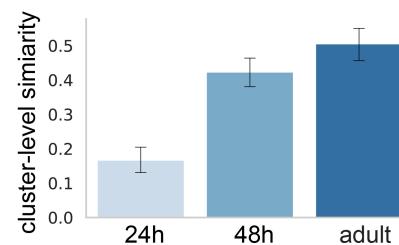


Figure 7

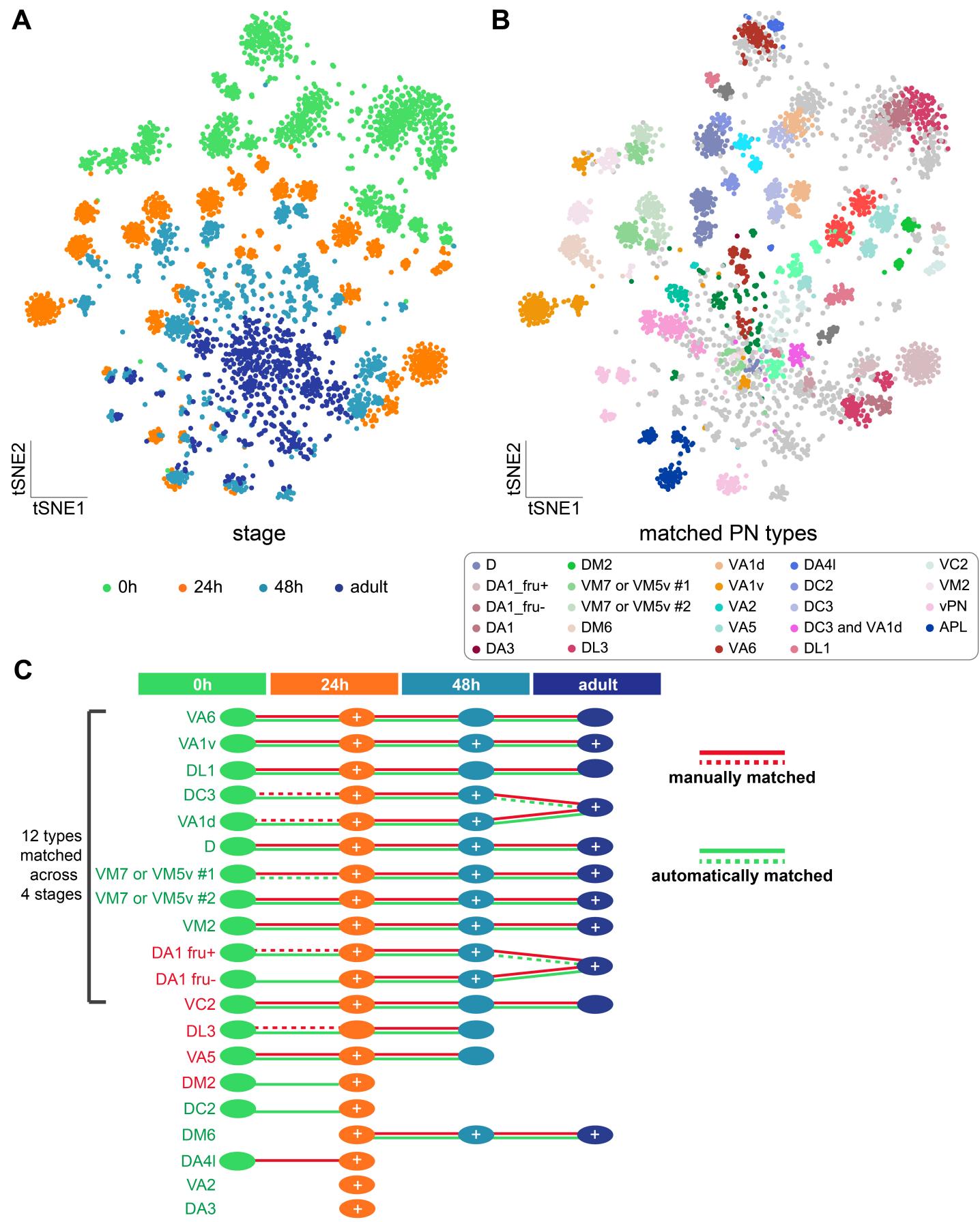
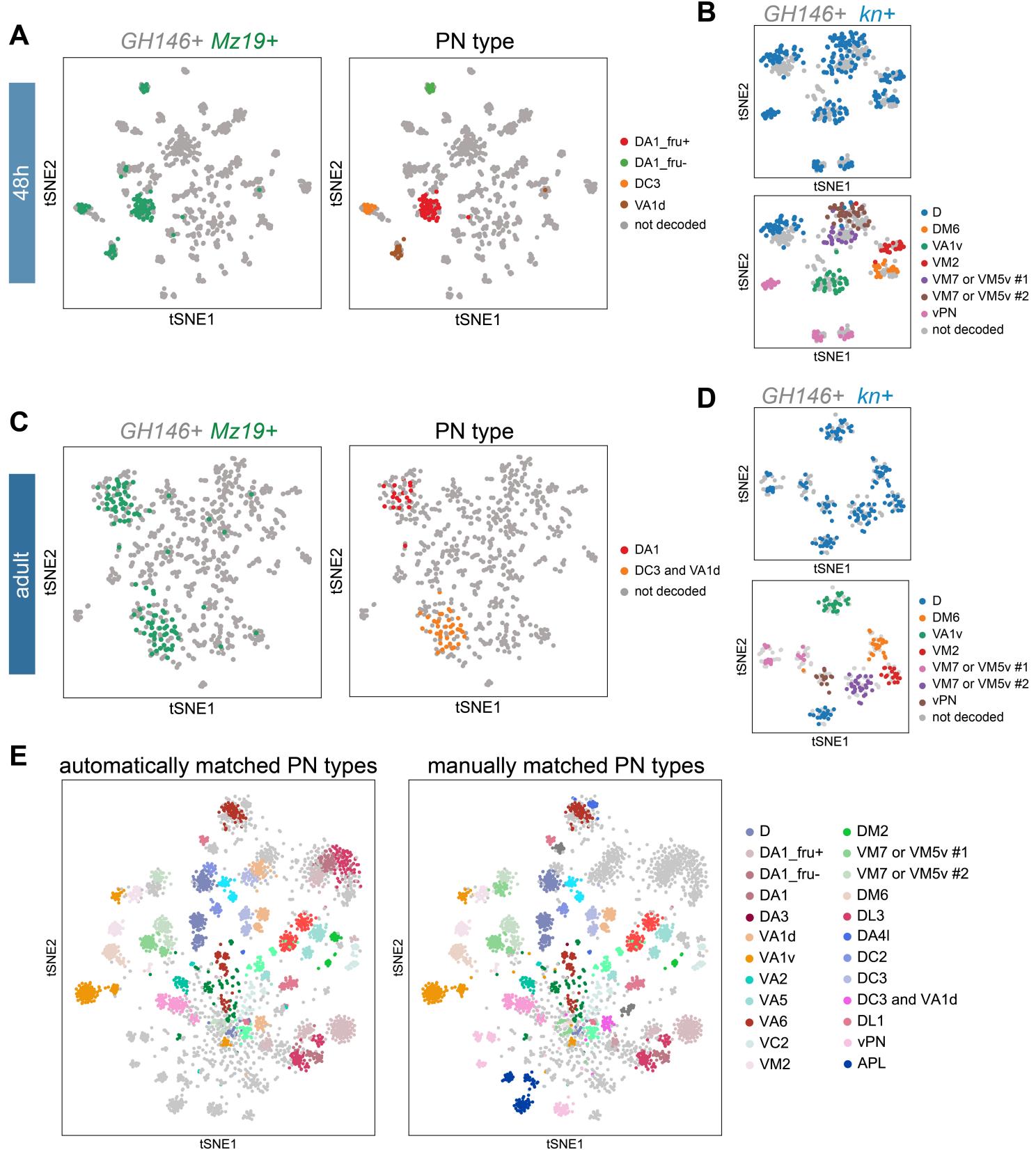
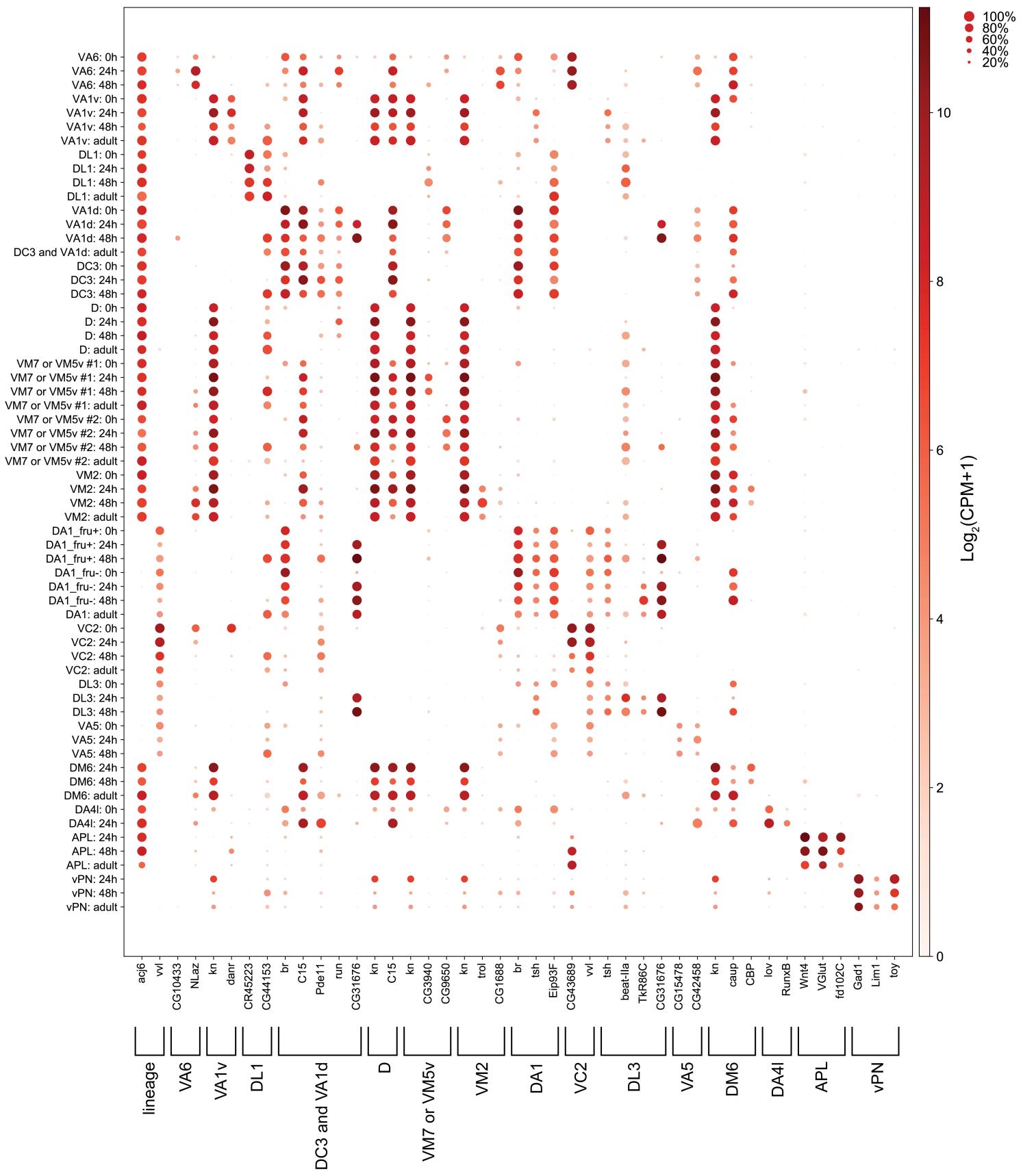
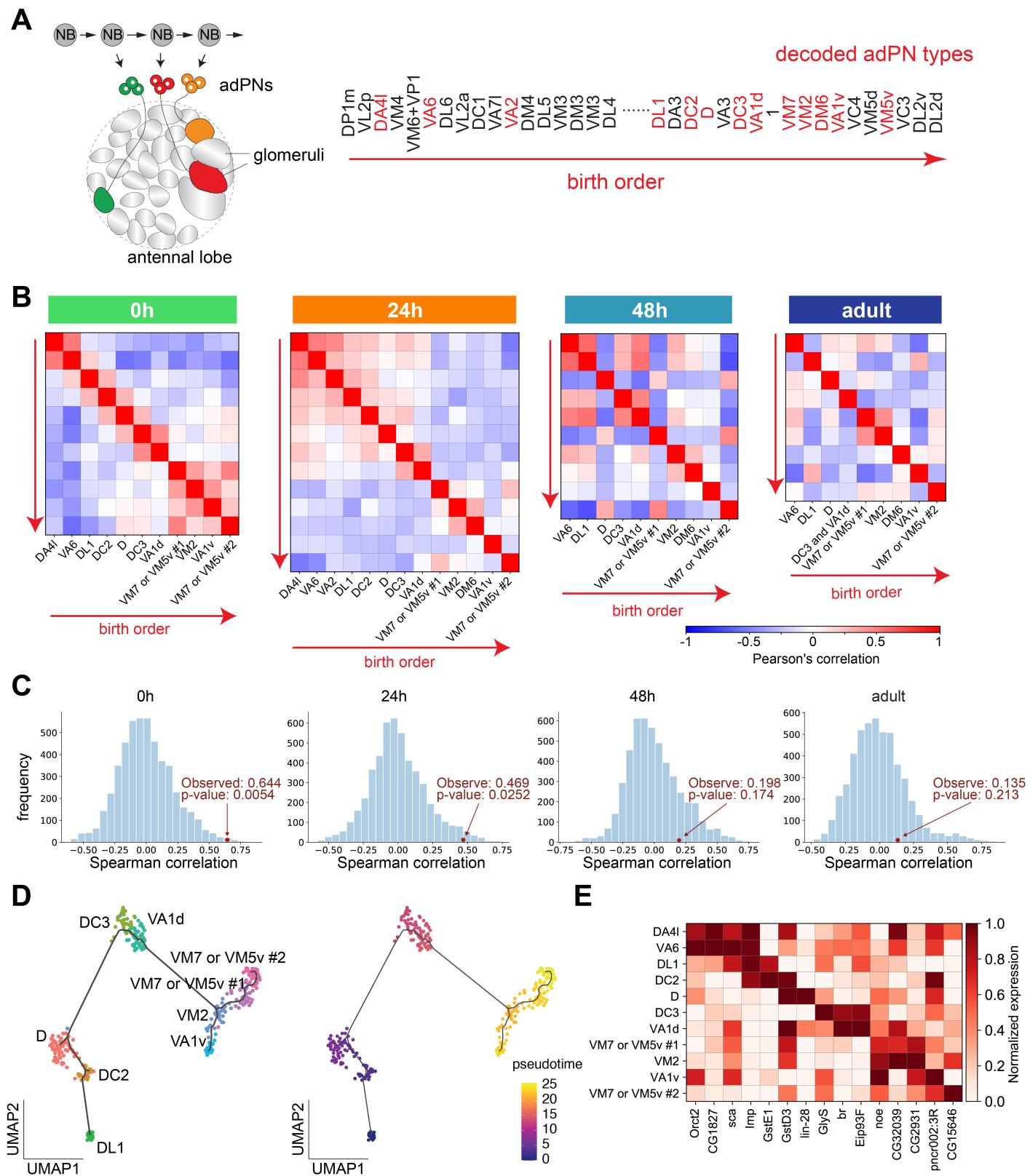


Figure 7 supplement 1

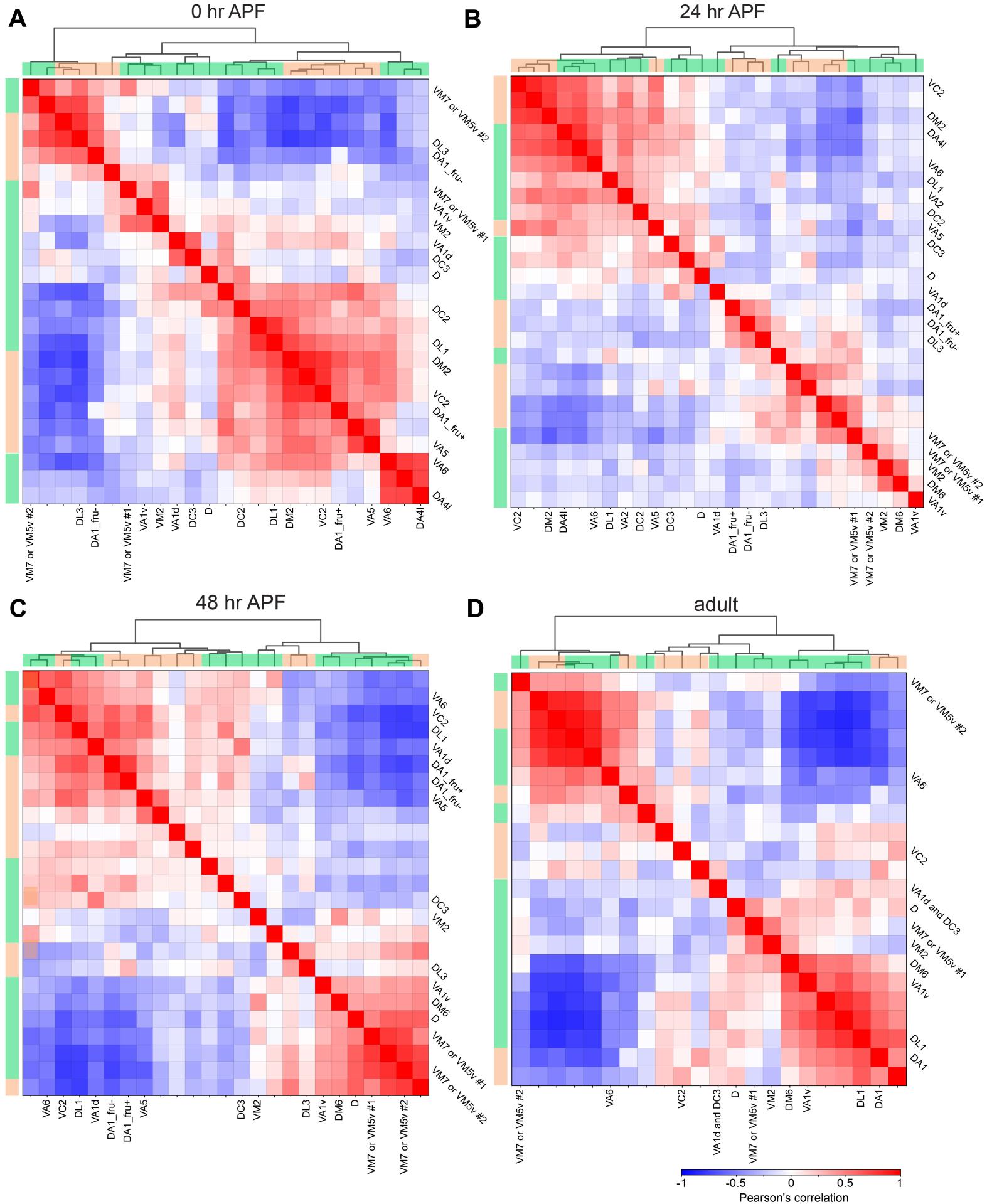

Figure 7 supplement 2

Figure 8

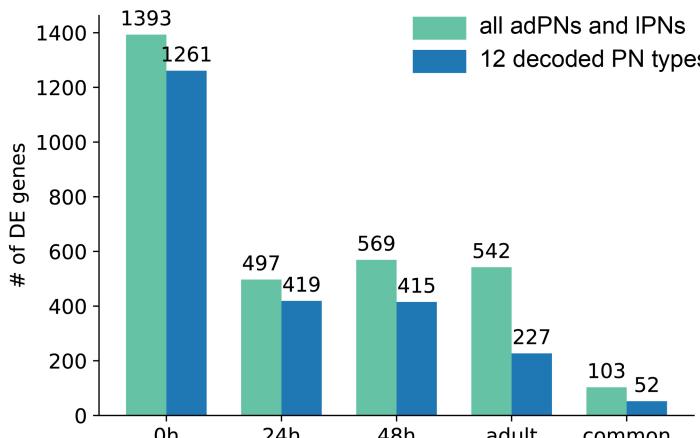


Figure 8 supplement 1

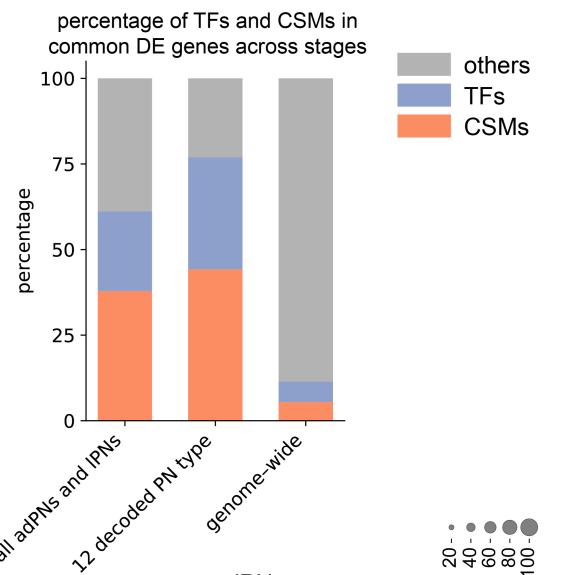
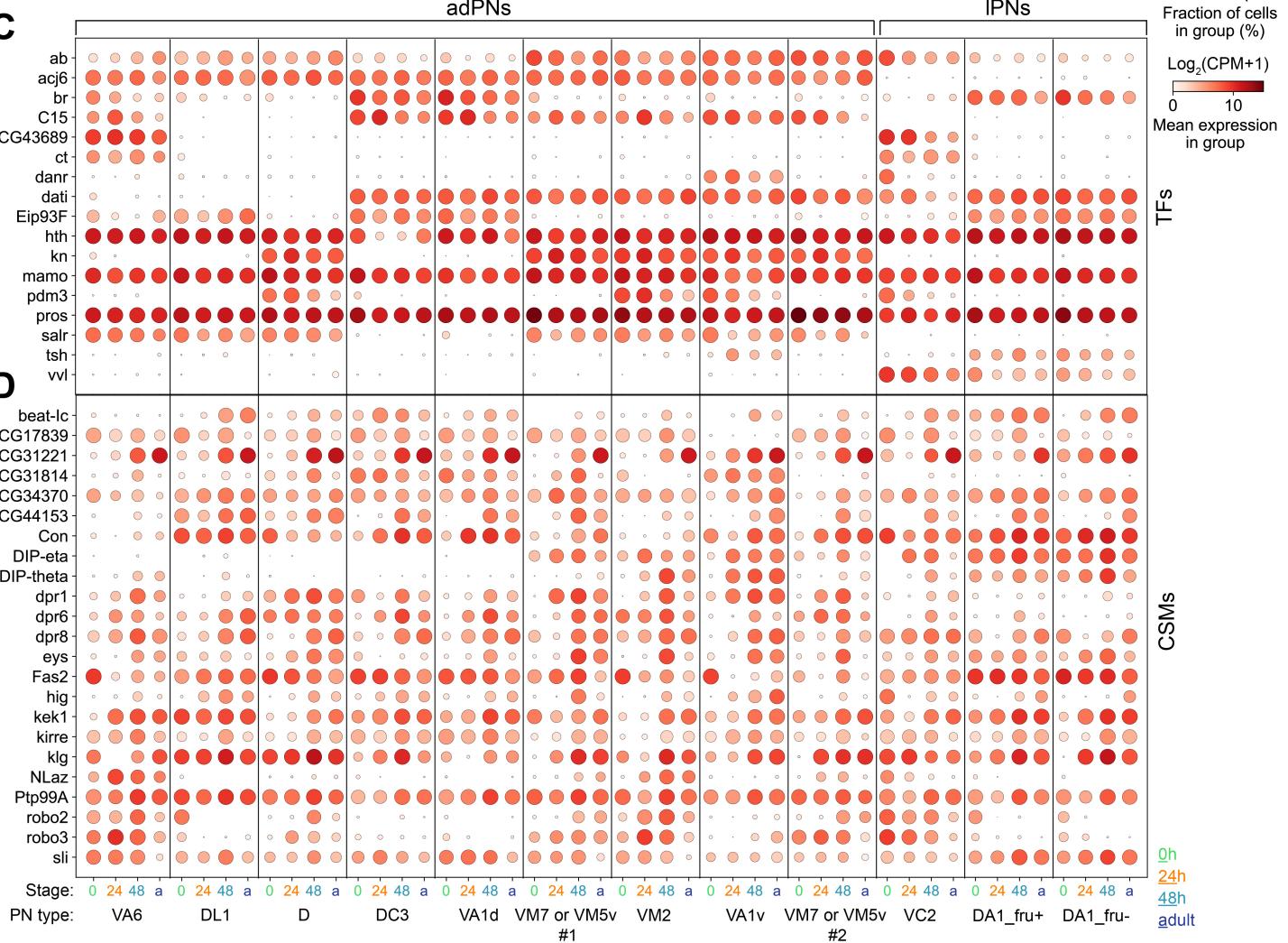


Figure 9

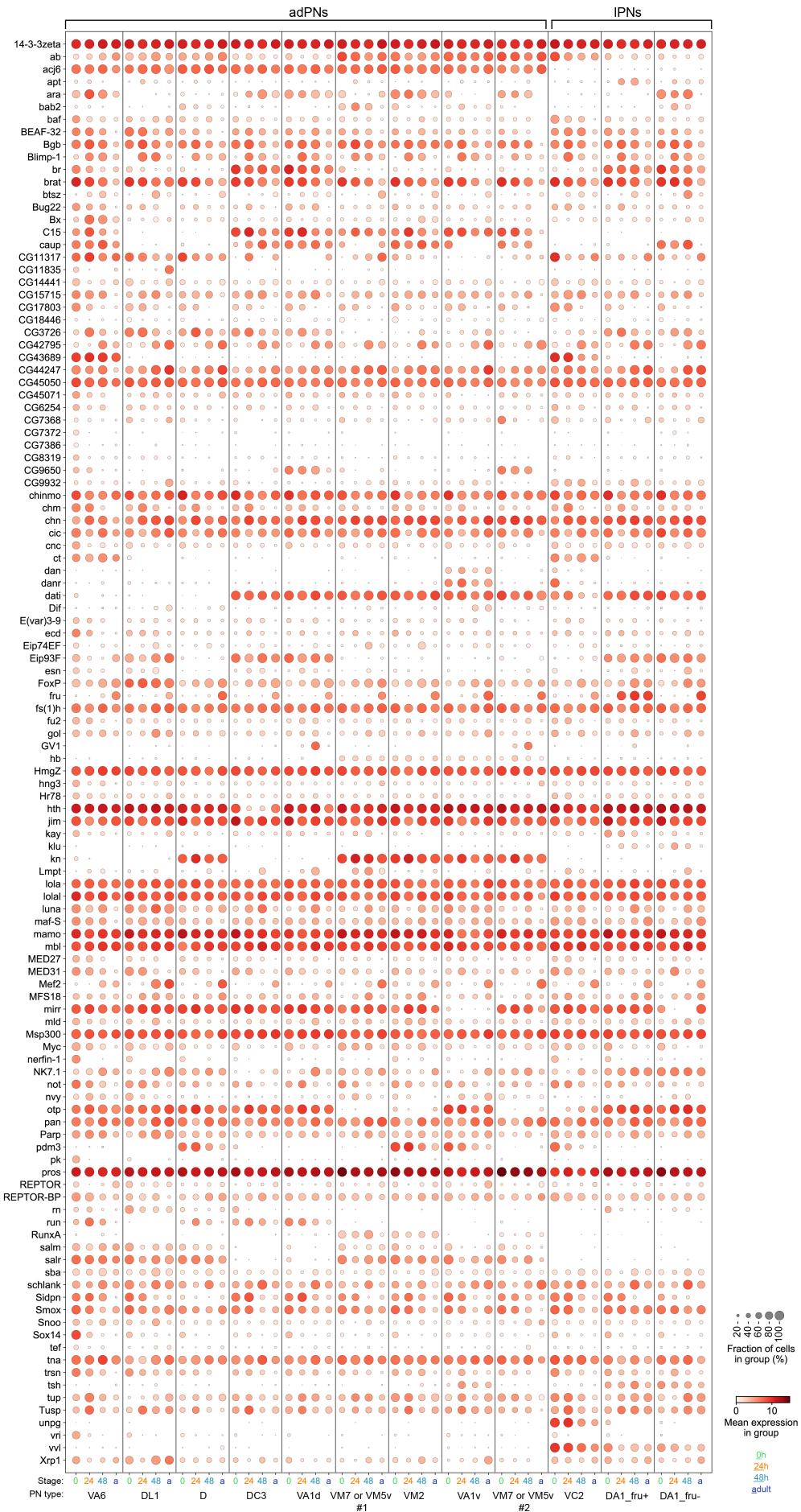
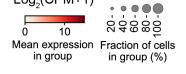

A

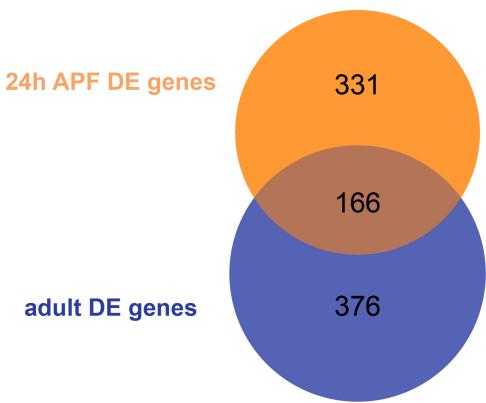
B

C

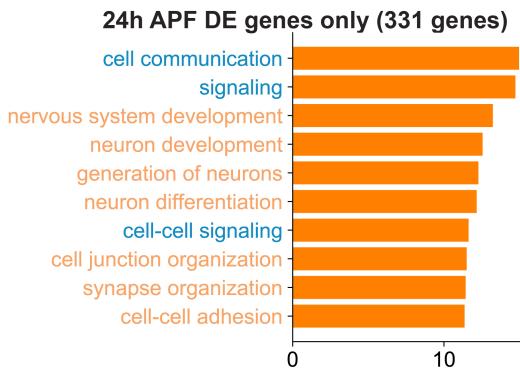
D

Figure 9 Figure supplement 1

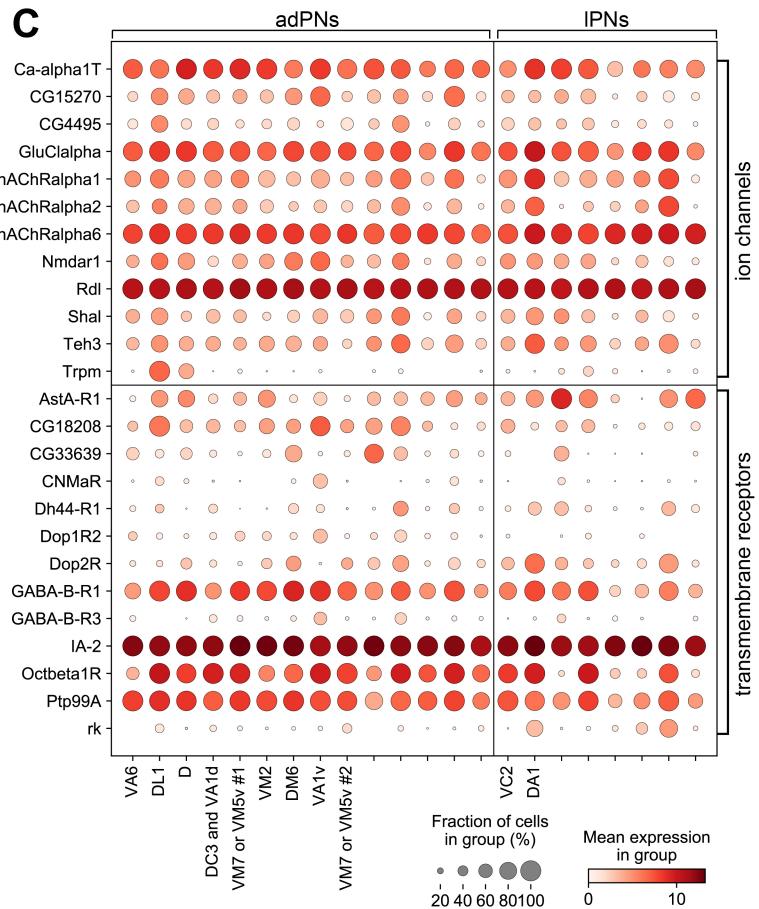




Figure 9 supplement 2

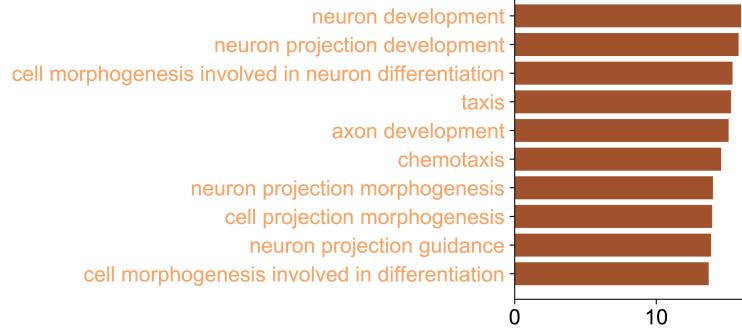
CSMs differentially expressed in at least 1 stage

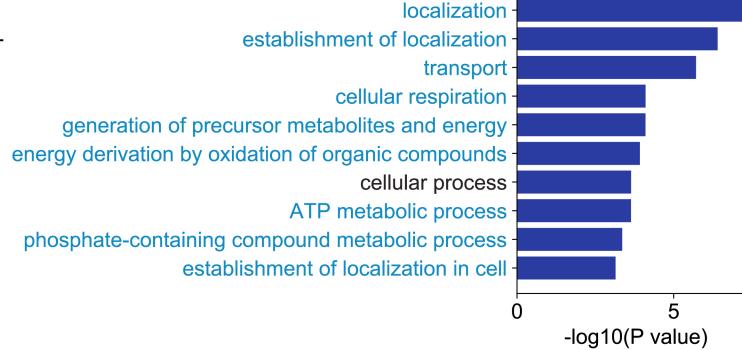

Figure 10

A



B


Neural development
Metabolism


C

common DE genes (166 genes)

adult DE genes only (376 genes)

