
CONNECTING IMAGES AND NATURAL LANGUAGE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Andrej Karpathy

August 2016

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/wf528qt3314

© 2016 by Andrej Karpathy. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/wf528qt3314

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Fei-Fei Li, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Percy Liang

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

A long-standing goal in the field of artificial intelligence is to develop agents that can perceive

and understand the rich visual world around us and who can communicate with us about it in

natural language. Significant strides have been made towards this goal over the last few years

due to simultaneous advances in computing infrastructure, data gathering and algorithms. The

progress has been especially rapid in visual recognition, where computers can now classify images

into categories with a performance that rivals that of humans, or even surpasses it in some cases such

as classifying breeds of dogs. However, despite much encouraging progress, most of the advances in

visual recognition still take place in the context of assigning one or a few discrete labels to an image

(e.g. person, boat, keyboard, etc.).

In this dissertation we develop models and techniques that allow us to connect the domain of

visual data and the domain of natural language utterances, enabling translation between elements of

the two domains. In particular, first we introduce a model that embeds both images and sentences

into a common multi-modal embedding space. This space then allows us to identify images that

depict an arbitrary sentence description and conversely, we can identify sentences that describe any

image. Second, we develop an image captioning model that takes an image and directly generates

a sentence description without being constrained a finite collection of human-written sentences to

choose from. Lastly, we describe a model that can take an image and both localize and describe

all if its salient parts. We demonstrate that this model can also be used backwards to take any

arbitrary description (e.g. white tennis shoes) and e�ciently localize the described concept in a

large collection of images. We argue that these models, the techniques they take advantage of

internally and the interactions they enable are a stepping stone towards artificial intelligence and

that connecting images and natural language o↵ers many practical benefits and immediate valuable

applications.

From the modeling perspective, instead of designing and staging explicit algorithms to process

images and sentences in complex processing pipelines, our contribution lies in the design of hy-

brid convolutional and recurrent neural network architectures that connect visual data and natural

language utterances with a single network. Therefore, the computational processing of images,

iv

sentences, and the structure of the multimodal embeddings that associate them emerges automat-

ically during the process of optimizing a loss function with respect to the network’s parameters

over training datasets of images and their captions. This approach enjoys many of the benefits of

neural networks including the use of simple, homogeneous computations that are easy to parallelize

on hardware, and strong performance due to end-to-end training that formulates the problem as a

single optimization problem in which all components of the model share the same end objective. We

show that our models advance the state of the art on tasks that require joint processing of images

and natural language and that we can design the architectures in ways that facilitate interpretable

visual inspection of the network’s predictions.

v

Acknowledgments

There are many people I must thank for contributing to the five wonderful years of my experience

as a PhD student.

First I must thank my adviser Fei-Fei Li who, through more than 2,000 emails and many meetings

over five years, molded and chiseled me from an eager but mostly confused student to a competent

researcher. Fei-Fei’s passion, foresight, ambition and zeal for perfection are infectious. When I came

up with an ambitious project goal she pushed me to work on the next step. When I produced terrible

paper drafts she patiently repeated the same thing 10 times until I got it. When I pitched an idea

she distilled its essence, uncovered the more fundamental story and placed in a wider context. I am

very grateful to Fei-Fei for teaching me not just about some aspects of computer vision or the art

of communicating ideas, but for teaching me how to think.

I’ve been very fortunate to learn from many other remarkably inspiring people who I’ve developed

a lot of respect and admiration for and who have become my role models in many respects. I

would like to especially thank Chris Manning who is a seemingly infinite generative model of unique

perspectives and insightful comments, feedback and advice. My thinking and research philosophy

has similarly been shaped by thoughtful discussions and interactions with Percy Liang. I would also

like to thank Vladlen Koltun, Andrew Ng, Daphne Koller, Sebastian Thrun, Noah Goodman, Leo

Guibas, Silvio Saverese and Gordon Wetzstein who have all shaped my approach to research, my

thoughts on innovation and who inspired me to think bigger and aim higher.

I would like to thank my close collaborators who I’ve had the distinct pleasure of working with

and learning from. This especially includes Justin Johnson who has an uncanny ability to power

through code and results one week before a deadline and Stephen Miller, whose massive output

and productivity are apparently not a function of the amount of time spent sleeping. It was also

a great pleasure to collaborate with Adam Coates, Armand Joulin, Olga Russakovsky, Jon Krause

and Richard Socher.

I have to thank many people who have contributed to my day-to-day life and who have made

my experience at Stanford so pleasant. From the Computer Vision Lab: Serena Yeung, Alireza

Fathi, Alexandre Alahi, Guido Pusiol, Lamberto Ballan, Catalin Iordan, Michelle Greene, Chris

Baldassano, Timnit Gebru, Ranjay Krishna, Kevin Tang, Emily Tang, Vignesh Ramanathan, Yuke

vi

Zhu, Albert Haque, Juan Carlos Niebles, Joseph Lim, Jia Deng and Bangpeng Yao.

There are many others who I was fortunate to get to know and become friends with: Ben Poole,

Sida Wang, Volodymyr Kuleshov, Jake Lussier, Victoria Popic, Kevin Lewi, Jesse Levinson, David

Held, Irene Kaplow, Alex Teichman, Brody Huval, Thang Luong, Ngiam Jiquan, Will Zou, Sam

Bowman, Gabor Angeli, Jean Wu, Sergey Levine, Philipp Krähenbühl, Jacob Steinhardt, Tudor

Achim, Bharath Ramsundar, Kai Sheng Tai, Andre Esteva, Brett Kuprel, Manolis Savva, Okke

Schrijvers, Jonathan Ho and Jon Gauthier.

During my PhD I also squeezed in two summer internships at Google and one internship at

DeepMind. All three were a wonderful learning experience that had a lot of impact on my research

trajectory. From these internships I would especially like to thank Greg Corrado, Tom Dean, Jon

Shlens, Je↵ Dean, George Toderici, Sanketh Shetty, Rahul Sukthankar, Volodymyr Mnih, Koray

Kavukcuoglu, David Silver, and Geo↵ Hinton.

I am thankful to several funding agencies that supported my research, including the O�ce of

Naval Research Multidisciplinary University Research Initiative (ONR MURI), Intel, Yahoo! Labs,

and NVIDIA.

I would also like to extend thanks to people who I had the pleasure of interacting with and learning

from during my Master’s degree just before I entered as a PhD student at Stanford, especially Michiel

van de Panne, Stelian Coros, Nando de Freitas and Kevin Murphy.

A big thank you to my sister who always believes in me ten times more than I do. And to my

my parents, who sacrificed the comfort of Slovakia to move our family to Canada when I was young,

and in so doing allowed me to grasp new opportunities and pursue my dreams. It is in large part

my determination to vindicate their leap of faith and make them proud that drives my ambitions.

vii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Overview . 1

1.2 Related Work . 4

1.3 Contributions and Outline . 8

2 Deep Learning Background 10

2.1 Supervised Learning . 10

2.2 Optimization . 14

2.3 Backpropagation . 16

2.4 Neural Networks . 19

2.4.1 Vanilla Neural Networks . 19

2.4.2 Convolutional Neural Networks . 20

2.4.3 Recurrent Neural Networks . 23

2.5 Summary . 26

3 Matching Images and Sentences 28

3.1 Related Work . 28

3.2 Model . 29

3.2.1 Representing Images . 30

3.2.2 Representing Sentences . 31

3.2.3 Alignment Objective . 34

3.3 Optimization . 37

3.4 Experiments . 37

3.4.1 Data . 37

3.4.2 Ranking Evaluation . 38

viii

3.4.3 Qualitative Evaluation . 40

3.5 Conclusions . 42

4 Generating Image Captions 43

4.1 Related Work . 44

4.2 Model . 44

4.3 Optimization . 46

4.4 Experiments . 47

4.5 Conclusions . 51

5 Dense Image Captioning 52

5.1 Related Work . 54

5.2 Model . 54

5.2.1 Model Architecture . 55

5.2.2 Loss Function . 59

5.2.3 Training and Optimization . 59

5.3 Experiments . 59

5.3.1 Dense Captioning . 60

5.3.2 Image Retrieval using Regions and Captions 63

5.4 Conclusions . 66

6 Conclusions 67

Bibliography 71

ix

List of Tables

3.1 Image-Sentence ranking experiment results. R@K is Recall@K (high is good). Med r is

the median rank (low is good). In the results for our models, we take the top 5 validation set

models, evaluate each independently on the test set and then report the average performance.

The standard deviations on the recall values range from approximately 0.5 to 1.0. 39

4.1 Evaluation of full image predictions on 1,000 test images. B-n is BLEU score that

uses up to n-grams. High is good in all columns. For future comparisons, our ME-

TEOR/CIDEr Flickr8K scores are 16.7/31.8 and the Flickr30K scores are 15.3/24.7. 48

4.2 Learned word representations. Our model automatically arranges all words in an

embedding, where nearby words have similar a↵ects on the model. This table shows

some example word queries (in bold) and to the right of them their closest words in

the learned embedding in order. 48

5.1 Dense captioning evaluation on the test set of 5,000 images. The language metric

is METEOR (high is good), our dense captioning metric is Average Precision (AP,

high is good), and the test runtime performance for a 720 ⇥ 600 image with 300

proposals is given in milliseconds on a Titan X GPU (ms, low is good). EB, RPN,

and GT correspond to EdgeBoxes [112], Region Proposal Network [81], and ground

truth boxes respectively, used at test time. Therefore, the numbers in GT columns

(italic) serve as upper bounds assuming perfect localization. 61

5.2 Results for image retrieval experiments. We evaluate ranking using recall at k (R@K,

higher is better) and median rank of the target image (Med.rank, lower is better).

We evaluate localization using ground-truth region recall at di↵erent IoU thresholds

(IoU@t, higher is better) and median IoU (Med. IoU, higher is better). Our method

outperforms baselines at both ranking and localization. 63

x

List of Figures

1.1 Levels of visual recognition. Left: assign a category to an image. Middle: describe

an image with a sentence. Right: jointly detect and describe all salient aspects of

the image. 2

2.1 Diagram of the data flow in a typical supervised learning problem approached with a

neural network. The input is a dataset of pairs (x, y) of examples x and labels y. We

must choose the form of three functions: 1) The function f that maps the examples

x to some predicted labels ŷ (usually a neural network in this dissertation) using also

some parameters w (sometimes also denoted ✓) that we will learn. 2) The function

L(ŷ, y) that evaluates the mismatch between the prediction and the true label, and

3) the function R that evaluates the complexity of the mapping. The data loss and

the regularization loss are added and the entire graph produces a single scalar value

measuring how well the parameters fit our data and how “simple” the mapping is.

The objective becomes to find the parameters w that minimize the final loss. 13

xi

2.2 An example of backpropagation along a computational graph. During forward pass

x and y take on specific (numerical) values and the vector (or scalar) z is computed

using some fixed function (e.g. z = x� y). Notice that we can immediately compute

the Jacobian matrices @z
@x and @z

@y of this transformation using calculus, because we

know what function z is computing in the forward pass. These tell us what first order

influence x and y have on the value of z. The value z goes o↵ into a computational

graph and eventually at the end of the graph the total loss g (a scalar) is computed.

The backward pass proceeds in the reverse order, recursively applying the chain rule

to find the influence of all inputs of the graph on the final output. In particular,

this computational unit finds out what @g
@z is, telling us how z influences the final

graph output. The chain rule states that to backpropagate this we should take the

global gradient on z, @g
@z and multiply it onto the local gradients for each input. For

example, the global gradient for x will become @g
@x = @z

@x
@g
@z . If x, z are vectors then

this is a single matrix-vector multiplication. The gradient is then recursively chained,

in turn, through the functions that produced the values of x and y until the inputs

are reached. In neural network applications, the inputs we are interested in are the

parameters, and their gradient tells us which way they should be nudged to decrease

the loss. 18

2.3 Left: A diagram of the biological inspiration behind a single neuron. Inputs xi

interact multiplicatively with the synapses wi, the cell body accumulates the sum

and then fires an output signal after the activation function. If the activation is the

sigmoid non-linearity (with output range in [0,1]), then the output can be interpreted

as the average firing rate of the neuron. Right: an example arrangement of neurons

in a 3-layer neural network. Neurons in one layer have connections to all neurons in

the previous layer but are not connected to each other. This arrangement allows us to

e�ciently evaluate activations of all neurons in one layer with a matrix multiplication. 20

2.4 Illustration of convolving a 5⇥5 filter (which we will eventually learn) over a 32⇥32⇥3

input array with stride 1 and with no input padding. The filters are always small

spatially (5 vs. 32), but always span the full depth of the input array (3). There are

28⇥28 unique positions for a 5⇥5 filter in a 32⇥32 input, so the convolution produces

a 28⇥ 28 activation map, where each element is the result of a dot product between

the filter and the input. A convolutional layer has not just one but a set of di↵erent

filters (e.g. 64 of them), each applied in the same way and independently, resulting

in their own activation maps. The activation maps are finally stacked together along

depth to produce the output of the layer (e.g. 28⇥ 28⇥ 64 array in this case). . . . 21

xii

2.5 An ordinary neural network (left) might take an input vector (red), transform it

through some hidden layer (green), and produce an output vector (blue). In these

diagrams boxes indicate vectors and arrows indicate functional dependencies. Recur-

rent neural networks allow us to process sequences of vectors, for example: 1) at the

output, 2) at the input, or 3) both either serially or in parallel. This is facilitated by

a recurrent hidden layer (green) that manipulates a set of internal variables ht based

on previous hidden state ht�1 and the current input using a fixed recurrence formula

ht = f✓(ht�1, xt), where ✓ are parameters we can learn. 24

2.6 An example of using a RNN as a character-level language model. The training se-

quence is “hello” and the vocabulary has 4 characters: h,e,l,o. The inputs are 1-hot

encodings of the chatacters “h,e,l,l”, and we want the RNN to predict the next char-

acter in the sequence at each time step. The RNN has a 3-dimensional hidden state

(green) and there are 4 dimensions in the output vectors (blue), interpreted as the

logits (i.e. scores) for the next character. The loss function and the gradient will

encourage the logits of correct characters (highlighted in green) to become higher,

and the other logits (in red) to become lower. 25

3.1 Overview of the image sentence matching model. Left: A single neural network that

takes an image and a sentence and computes a (scalar-valued) matching score. The

network consists of three components: an image encoder that process an image into

a single vector v or a set of fragment vectors {v}, a sentence encoder that processes

the sentence into a single vector s or a set of fragment vectors {s}, and a module

that computes the score. Right: During training we compute pairwise scores for

image-sentence pairs in a batch of training data. The loss function will encourage the

true image-sentence pair scores (along the diagonal, in green) to be higher than the

false image-sentence pair scores (o↵-diagonal, in red). 29

3.2 Diagram for our model. The network takes an image and a sentence and computes

the image-sentence matching score S. The image is encoded using the image fragment

encoding into a set of vectors {v} - the CNN features corresponding to objects detected

with an R-CNN [29] and the full image (Section 3.2.1). The sentence is encoded

into fragment vectors {s} using a bidirectional RNN (Section 3.2.2). Equation 3.6

computes the pairwise inner products between all fragments across the two modalities

(the magnitudes are shown in grayscale, where white is high an black is low), and

then these scores are processed with a max across columns and a sum across rows to

compute the image-sentence score. The model is optimized using the loss in Equation

3.5. 37

xiii

3.3 Example alignments predicted by our model. For every test image above, we retrieve

the most compatible test sentence and visualize the highest-scoring region for each

word and the associated scores (vTi st). We hide the alignments of low-scoring words

to reduce clutter. We assign each region an arbitrary color. 40

3.4 Left: Flickr30K test set regions with high vector magnitude, indicating a strong

influence on the image-sentence score. Right: This table shows the top magnitudes

of vectors (kstk) for words in Flickr30K. Since the magnitude of individual words in

our model is also a function of their surrounding context in the sentence, we report

the average magnitude. 41

3.5 Examples of highest scoring regions for queried snippets of text, on 5,000 images of

MS COCO test set images. 42

4.1 Diagram of the Multimodal Recurrent Neural Network model. Each arrow indicates a

functional dependence. The RNN takes a word vector (green) and the context vector

from previous time steps (yellow) and defines a distribution over the next word in

the sentence (blue vectors). The RNN is conditioned on the image information at the

first time step (the arrow annotated with the weight matrix Whi. START and END

are special tokens denoting the beginning and the end of the sentence. 45

4.2 Example sentences generated by the Multimodal RNN for test images. 49

5.1 Left: An image captioning model is forced to fall back on a generic caption to describe

the image in one sentence. Right: The proposed DenseCap model can both localize

and describe all elements of the visual scene, including the full image as a special case. 52

5.2 The Dense Captioning task (bottom right) simultaneously combines the challenges of

object detection (high label density, x-axis) and image captioning (high label com-

plexity, y-axis). That is, the model must both detect and describe all salient aspects

of the visual scene. Importantly, a dense captioning model can also allow the converse

task of using a query description to search an image collection and identify matching

regions. 53

5.3 Model overview. An input image is first processed a CNN. The Localization Layer

proposes regions and smoothly extracts a batch of corresponding activations using

bilinear interpolation. These regions are processed with a fully-connected recognition

network and described with an RNN language model. The model is trained end-to-end

with gradient descent. 55

5.4 Example captions generated and localized by our model on test images. We render

the top few most confident predictions. On the bottom row we additionally contrast

the amount of information our model generates compared to the Full image RNN. . 60

xiv

5.5 Additional predictions from the DenseCap model shown in a di↵erent format. The

captions are shown both in the boxes but also listed below, in a decreasing order of

their prediction confidence. The colors are arbitrary. 61

5.6 Example image retrieval results using our dense captioning model. From left to right,

each row shows a grund-truth test image, ground-truth region captions describing the

image, and the top images retrieved by our model using the text of the captions as a

query. Our model is able to correctly retrieve and localize people, animals, and parts

of both natural and man-made objects. 64

5.7 Example results for open world detection. We use our dense captioning model to

localize arbitrary pieces of text in images, and display the top detections on the test

set for several queries. 65

6.1 An image depicting an amusing situation. 68

xv

1

Introduction

1.1 Overview

“We may hope that machines will eventually compete with men in all purely intellectual fields.

But which are the best ones to start with? Even this is a di�cult decision. Many people think

that a very abstract activity, like the playing of chess, would be best. It can also be maintained

that it is best to provide the machine with the best sense organs that money can buy, and then

teach it to understand and speak English. This process could follow the normal teaching of

a child. Things would be pointed out and named, etc. Again I do not know what the right

answer is, but I think both approaches should be tried.”

– Alan Turing, Computing Machinery and Intelligence (1950)

Following Alan Turing’s inspiring vision, one of the dreams of the field of Artificial Intelligence

is to enable computers to see and understand the rich visual world around us and endow them with

the ability to communicate with us in natural language.

Humans find it easy to accomplish a wide variety of tasks that involve complex visual recognition

and scene understanding, tasks that involve communication in natural language and tasks that

combine translation between the two modalities. For instance, a quick glance at an image is su�cient

for a human to point out and describe an immense amount of details about the visual scene. Using

the example in Figure 1.1, we can look at the image and immediately point out and describe the

“orange spotted cat”, the “skateboard with red wheels”, the “brown hardwood floor”, or simply say

that the entire image is a “cat riding a skateboard”.

Challenges. Since this ability feels so natural and e↵ortless for us it can be easy to forget

how di�cult this task is for a computer. In a computer, this image is represented as one large

array of numbers indicating the brightness at any position. An ordinary image might have a few

1

1. INTRODUCTION 2

Classification

Cat

Captioning

A cat
riding a
skateboard

Dense Captioning
Orange spotted cat

Skateboard with
red wheels

Cat riding a
skateboard

Brown hardwood
flooring

Figure 1.1: Levels of visual recognition. Left: assign a category to an image. Middle: describe an
image with a sentence. Right: jointly detect and describe all salient aspects of the image.

million of these pixels and a computer must transform these patterns of brightness values into high-

level, semantic concepts such as a “cat”. Moreover, a di↵erent breed of cat seen under di↵erent

lighting conditions, with a di↵erent camera angle, or in a di↵erent pose might still depict a “cat

riding a skateboard”, but the pattern of brightness values could be completely di↵erent. Conversely,

patterns with very similar low-level statistics (e.g. fur-like high frequency patterns) might instead

be part of many di↵erent objects (carpets, coats, etc.) or animals (dogs, bears, monkeys, etc.).

The challenges are no less severe on the language side. A natural language description such as “cat

riding a skateboard” will be represented in the computer as a sequence of integers indicating the

index of each word in a vocabulary (e.g. “cat riding a skateboard” might be [252, 823, 18, 1742]).

Therefore, the very natural task of pointing out and naming di↵erent parts of an image in fact

involves a complex pattern recognition process of identifying salient subsets of a grid of a few million

brightness values and annotating them with sequences of integers. Moreover, the image captions we

will work with in this dissertation often require detecting and describing complex high-level concepts

that are not only visual but require di�cult inferences. For example, some images can be annotated

by humans as “a group of men fighting”, which requires the ability to detect multiple people and

analyze their poses, spatial arrangements or even their facial features. Alternatively, someone could

be described as “waiting” for something, “playing” with something, or “playing a joke” on someone.

Encouraging progress. Despite the di�culty of this task, we have recently witnessed rapid

progress in the area of visual recognition. In particular, the state of the art image recognition models

based on deep convolutional neural networks [58] have become capable of distinguishing thousands of

visual categories at accuracies comparable to humans, or even surpassing them in some fine-grained

categories such as breeds of dogs [84]. Our progress on related tasks such as segmentation and

object detection has been similarly dramatic [81, 107]. Together, these advances have enabled many

real-world applications including face detection and recognition, personal photo search, perception

in robotics and self-driving cars, etc.

Remaining challenges. However, the predominant approach in most of these applications is

to model the visual recognition problem as a task of classifying images into some number of fixed

and hard-coded visual categories (Figure 1.1, left). For instance, the ImageNet visual recognition

challenge [84] (a popular visual recognition benchmark) consists of a set of 1,000 categories that were

1. INTRODUCTION 3

picked manually by the organizers (examples include “hot dog”, “screwdriver”, “jellyfish”, “note-

book”, “Yorkshire terrier”, and also perplexingly exclude many common concepts such as “person”,

“face”, etc.). Similarly, the PASCAL VOC [24] object detection benchmark uses a di↵erent set of

20 manually chosen categories (e.g.. “car”, “person”, “potted plant”, etc.). Other datasets for scene

classification, action classification or attribute classification use their own sets of categories. While

visual categories constitute a convenient modeling assumption, this approach pales in comparison

to the complexity of descriptions that humans can compose for images (e.g. Figure 1.1, right).

Outline of contributions. In this dissertation we develop models and techniques for using

natural language as a label space for computer vision tasks. For instance, a model should be able to

look at an image and describe all of its visual content in natural language instead of merely assigning

it a category. Conversely, given a natural language description the model should be able to identify

visual regions that depict that description. In other words, our goal is to connect the two modalities

of vision and natural language and enable computers to translate between them.

Long-term motivations. These aspirations can be motivated both on a long-term scale of

building up towards intelligent machines and on a shorter horizon scale of o↵ering valuable practical

applications. First, these techniques are a step towards a future in which we can interact with

computers in natural language, especially where these interactions can be properly grounded in

physical environments. In addition, working towards artificially intelligent agents will require us to

make available to computers large amounts of information about how our world works. Concretely,

there are two massive sources of knowledge we can draw on: the physical domain that contains

information about the world, scenes, objects and interactions (accessed with highest bandwidths

through visual sensors) and the digital domain of the Internet that contains a vast amount of semantic

information that cannot be inferred from physical domain alone (e.g. what happened in 1760),

encoded primarily in natural language. Therefore, vision and language are the primary channels

by which the knowledge of the world can be accessed and it is critical that we develop techniques

that can relate information across the two domains instead of processing each independently. As a

concrete short-term example, this might allow a computer to read on the Internet that a camel is “an

even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as ”humps”

on its back” and recognize such concept in visual data based on the description alone. In a longer-

term future, the computer could read about procedures (e.g. cooking, fixing something broken, etc.)

or about stories or events that unfolded in the past and understand their precise grounding in the

physical world, which could unlock critical inferences not mentioned in the text alone (e.g. it’s clear

what would happen if I “lift a heavy ball above my head and let go”).

Short-term motivations. The aspirations to connect the two modalities can also be motivated

with more concrete, short-term and practical arguments. First, using natural language as a label

space for visual recognition o↵ers many appealing practical properties. Language is a rich encoding

that can naturally represent nouns (objects, people, scenes), adjectives (attributes) verbs (actions)

1. INTRODUCTION 4

and nested constructs that denote relationships. Therefore, predicting natural language utterances

generalizes and inherits the challenges of many other visual recognition tasks that are currently

treated as separate areas in computer vision, including object recognition, scene classification, at-

tribute classification, action recognition, etc. Second, the end users of our Computer Vision systems

are humans, who are already fluent in natural language. Therefore, if computers used language as

a label space we could enable significantly easier and more natural interactions between computers

and humans, without having to resort to translations between natural language and fixed categories

at input or output of our systems. For example, searching a personal photo collection with arbitrary

text queries such as “pictures of me swimming with friends next to a waterfall” would not have to

go through intermediate stages of invoking action classifiers for “swimming”, or object classifiers for

“person” or the “waterfall”, but could be directly consumed by a model and treated as a first class

citizen representation. Conversely, a computer could directly describe a visual scene to a visually

impaired person, or answer queries about the scene.

Challenges of this approach. However, this approach also poses some challenges. One com-

mon criticism is that in this setting the evaluation becomes more di�cult. For instance, in image

classification each image is annotated by some category so it is straight forward to compute and

report an accuracy - the fraction of predictions that are correct. However, if a model annotates an

image with an arbitrary sentence it can be more di�cult to evaluate how correct that sentence is.

In a standard setting, we might have some number of reference sentences written by humans that

we can compare each prediction to, but this comparison can be di�cult to specify explicitly. In our

work we use the state of the art automatic evaluation methods that o↵er the highest correlations

with human judgments and expect that additional progress can be made in further improving these

methods in the future. Another criticism is that this approach couples the visual recognition task

(i.e. what is in this image?) with the language modeling task (i.e. how do serialize concepts into

fluent text?); it may feel natural to decouple these two tasks, study them in isolation and then com-

pose them to form the full system later. On the other hand, addressing these tasks jointly will allow

us to formulate a single model that automatically discovers all of its intermediate representations

during training, without us having to explicitly specify what specific features should be extracted

while processing the image to support the description task.

1.2 Related Work

Images and natural language. The work in this dissertation draws inspiration from much work

that has aspired to connect the image and language modalities. Some of the earliest work focused on

the problem of associating nouns with image region features based on statistical models [71, 2, 20, 41]

that leverage co-occurrence statistics. Some extensions of these approaches have been developed

to model not just nouns but prepositions and comparative adjectives that may be used to express

1. INTRODUCTION 5

relationships between objects [33]. More recently people have started to tackle more general language

constructs and full sentences. For instance, the early work of Farhadi et al. [26] present a model that

maps both images and sentences to a common meaning space, through which they can either retrieve

images based on a sentence query or vice versa. However, their model was based on a restricted

processing that focused on extracting a single (object, action, scene) triple from each image and

sentence. The work of Ordonez et al. [73] developed a similar approach but used more general images,

a larger set of object categories and scenes, and additional image aspects including stu↵, attributes,

etc. Similarly, Socher and Fei-Fei [89] mapped image segments and words into a common meaning

space using kernelized canonical correlation analysis on feature representations in both domains.

Hodosh et al. [39] adopted a similar approach on the level of full images and sentences. Since these

ranking methods are constrained to annotating images from a finite collection of sentences, many

approaches have been proposed to overcome this limitation and generate descriptions. The early

work of Yao et al. [104] developed an approach processed an image with a hierarchical parsing engine

and then serialized to text via an intermediate process of part of speech production rules that get

filled in based on the image content. Unfortunately, their approach required extensive hand-coded

details about the generative process. A similar approach in spirit was used earlier by Gupta et al.

[34] who used AND-OR graphs to describe sport event videos. The work of Li et al. [60] instead

detected objects in the image and composed them into a sentence using pretrained n-grams, which

act as large lookup tables of frequently-occurring short snippet phrases. Kuznetsova et al. [53]

generate captions by retrieving and then selectively combining pieces of human-written sentences.

Kulkarni et al. [52] use a approach where detections of objects, scenes, modifiers or spatial attributes

are inserted into fixed sentence templates. Finally, Yang et al. [103] and Mitchell et al. [70] similarly

estimate likely words based on object detections and generate descriptions by growing syntactic trees

with production rules.

In this dissertation, we share the aspirations of this body of work and address both the image

captioning and image ranking tasks, but develop novel techniques and algorithms in the neural net-

works modeling paradigm which o↵ers superior results and multiple appealing practical properties.

In addition, we build on these aspirations by introducing the dense captioning task, which requires

the computer to both detect and describe all salient regions of an image. Unlike the early work in

this area [71, 2, 20], our descriptions consist of arbitrary sentences and noun phrases instead of a

finite collection of nouns.

Sources of data. The vast majority of modeling approaches in this area fall under the category

of data-driven techniques, in which a model learns from human annotation data. It is therefore

important to highlight the available datasets and carefully study their statistics.

There are a few datasets that relate the visual domain with the domain of natural language.

In this dissertation we use the Flickr8K [39], Flickr30K [106] and MS COCO [62] datasets which

consist of a set of images (e.g. city scenes, living rooms, parks restaurants, bathrooms, etc.), each

1. INTRODUCTION 6

annotated with five descriptions written by humans on the Amazon Mechanical Turk. It is also worth

pointing out the distinction between a caption and a description. A caption is often understood as

sentences that are designed to explicitly mention non-obvious aspects of the scene (such as the exact

people, locations or dates) that cannot be derived from the image alone (i.e. they add information),

while the latter describes the visual content in text. In the case of image-sentence datasets, the

human annotators are asked to describe the content of the image with a sentence. Therefore, these

datasets contain primarily images descriptions since it is di�cult for people unfamiliar with the

precise context of a photo to appropriately caption the image. In this dissertation we will use the

two terms (description, caption) interchangeably but predominantly refer to a description instead

of a caption.

Empirically, in this data collection task people often describe the most salient aspects of the

image and gravitate towards describing people and their actions and interactions with each other or

the environment. A few examples of these descriptions include “a panda bear sitting under a shady

tree while eating bamboo”, “a display case filled with smart phones behind glass”, “two children

snuggled next to each other while sleeping”, “four men cutting into a cake with Malaysia written

on it”, and “a dog resting his head on the side of the boat looking out at the water”. Notice that

this unconstrained setting o↵ers a mix of variety of concepts: some of them visual and more easily

detectable (e.g. “dog”, “bear”, “cake”) and some of them more semantic and harder to infer (e.g.

“children sleeping”, or “looking out”).

In addition, we will also take advantage of the Visual Genome dataset [50], which instead contains

multiple descriptions per image, each of which is additionally grounded to some bounding box

region in the image. In this case, during data collection the humans were asked to identify multiple

rectangular regions in the image and describe their content. Interestingly, these descriptions do

not only feature descriptions of the most salient concepts, as is the case with the image captioning

datasets, but also include descriptions such as “silver door handle”, or “computer monitor”, which

are otherwise not very salient and are generally unlikely to be mentioned in descriptions of entire

images.

Modeling approach.

Most of the modeling approaches in the work discussed so far use processing pipelines that first

consist of steps of feature extraction, object detection, scene or attribute classification to extract

high-level concepts from the images, and then these are related to natural language utterances with

statistical models. The downsides of this approach are that the model quickly devolves into complex

multi-staged pipelines with preprocessing stages, intermediate computations and representations,

and a large number of hyperparameters. The object, scene or attribute detectors are also often

trained on distinct datasets with their own statistics and biases and the transfer to the eventual

domain of interest is limited.

Recently, due to the availability of large-scale datasets and faster computation we have witnessed

1. INTRODUCTION 7

rapid progress in visual recognition with the use of deep convolutional neural networks [51, 84].

These models are based on a number of techniques developed starting in the 1940s. Under the name

“cybernetics”, McCulloch and Pitts [67], Rosenblatt [82] and Widrow and Ho↵ [100] developer

early models neurons with adjustable synaptic strengths and learning rules. In the 1980s, under

the name “connectionism” and “parallel distributed processing”, Rumelhart, Hinton and Williams

popularized the use of backpropagation for training networks of neurons [83], which is used to this

day as an exceedingly e↵ective credit assignment algorithm based on e�ciently evaluating (by a

recursive application of the chain rule) the gradient of a loss function with respect to the parameters

of the network. In particular, one of the first successful applications of these techniques in visual

recognition was the work of LeCun et al. [57] for digit recogniton, which similar to Fukushima’s

Neocognitron [28] arranged neurons in a lattice structure and a local connectivity in space. This

was the first description of a modern convolutional neural network, but its success on large-scale

visual recognition problems (such the ImageNet challenge [84]) was only possible a few decades later

with significantly more computation and training data [51] (under a new name of “deep learning”).

Convolutional networks describe a function from an input space (e.g. images) to an output space

(e.g. probabilities for some number of classes) and the parameters of this function (the synaptic

strengths of the connections of all neurons) are trained using a large collection of labeled images

(e.g. ImageNet dataset). We say that in this approach the model is trained “end-to-end”, meaning

that the entire computational process from the inputs to the outputs shares the same end objective

(correctly classifying images) and is jointly optimized over. This property is widely recognized as

one of the core properties that makes these models work so well in practice. Another practical

advantage of these models is that once they are trained on one dataset they can be used a fixed

feature extractor for images, but more importantly they can be “finetuned” on a di↵erent dataset

by initializing the parameters from the first task and continuing to train them on a second [17, 87],

which often leads to sizable improvements in the final performance. In our work we use convolutional

neural networks as a core processing module for images, but finetune them as part of larger neural

network architectures that relate the images to language constructs.

In addition to progress in visual recognition, we have witnessed similar successes in natural lan-

guage processing. In particular related to this dissertation, Mikolov et al. [69] have demonstrated

that it is possible to learn distribution representations [37] of words such that words that occur in

similar contexts are found nearby in the vector space. For example, the words “woman” and “girl”

might (after training on a large collection of sentences) be found nearby each other, indicating a

similar semantic meaning. Similar to convolutional networks, we can repurpose these word embed-

dings in other applications and further “finetune” them on new tasks. Lastly, we take advantage

of work on neural language models [4], that formulate neural network architectures that represent

probability distributions over sequences of words (i.e. sentences). More recently, recurrent neural

networks [99, 38] have proven especially e↵ective in the language modeling task [68, 92, 31]. In our

1. INTRODUCTION 8

work we use language models and techniques in larger architectures that represent the conditional

distribution over sentences given an image.

In summary, in this dissertation we adopt the end-to-end learning paradigm and design neural

network architectures for the tasks of image-sentence matching, image captioning tasks and image

region-annotation. As a result, our models are more computationally homogenous, simpler and

yield superior results due to the benefits of end-to-end training and transfer learning from large-

scale related datasets such as ImageNet [14].

1.3 Contributions and Outline

In this dissertation we develop models for connecting images with natural language. In particular,

we develop neural network architectures that process and align the two modalities and train their

parameters end-to-end on datasets of image captions.

In Chapter 2 we provide relevant mathematical background for supervised learning, backprop-

agation, optimization, neural networks, and describe commonly used architectural design patterns

for processing images and text, especially convolutional and recurrent neural networks.

In Chapter 3 we develop a model that can match images and sentences. That is, given a

finite set of images and sentences, we can pick an image and rank the sentences based on how

compatible they are with that image (how well they describe its content) and conversely, we can

pick a sentence and rank the images based on how compatible they are with that sentence (how well

they depict that description). The model will process the image and the sentence independently

and embed them into a common multimodal embedding space, in which inner products correspond

to intermodal similarities. The content of these chapters is based primarily on the ranking model

section of Karpathy and Fei-Fei [43], and to a much lesser degree on earlier work from Karpathy et

al. [45] and Socher et al. [90].

In Chapter 4 we specifically address the problem of generating novel descriptions for images and

relax the restriction of the ranking model that assumes a finite collection of sentences to choose form.

The model can therefore take an image as input and generate a novel description that might not

appear verbatim in the training data. The architecture is based on a combination of a convolutional

network for processing the image and a recurrent neural network language conditioned on the image

information. The content of this chapter is based on the generation model section of Karpathy and

Fei-Fei [43] and to a much lesser degree on Karpathy, Johnson and Fei-Fei [44], where Karpathy and

Johnson are equal co-authors.

In Chapter 5 we remove the restriction that an image must be described with a single sentence

and present a model that can be both detect and describe all salient parts of an image. Therefore,

this model may choose to describe the entire image as seen in the previous chapter, but in addition it

can also spatially localize and describe many other parts of an image, such as people, backgrounds,

1. INTRODUCTION 9

cell phones, etc. The architecture of this model comprises a convolutional neural network followed

by a region proposal module inspired by object detection methods and a recurrent neural network

language model for describing all detected regions of interest. The content of this chapter are based

on the work of Johnson, Karpathy and Fei-Fei [42] where Johnson and Karpathy are equal first

co-authors.

Finally, in Chapter 6 we identify the remaining challenges and discuss the path forward.

2

Deep Learning Background

This chapter provides the necessary technical background on machine learning and neural networks.

For a more thorough and slower-paced introduction we recommend the Deep Learning book from

Goodfellow et al. [3].

2.1 Supervised Learning

Many practical problems can be formulated as requiring a computer to perform a mapping f : X !
Y , where X is an input space and Y is an output space. For instance, in visual recognition X could

be the space of images and Y could be the interval [0, 1] indicating the probability of a cat appearing

somewhere in the image. Unfortunately, in many cases it is di�cult to manually specify the function

f by conventional means (e.g. it is unclear how one might write down a program that recognizes a

cat). The supervised learning paradigm o↵ers an alternative approach that takes advantage of the

fact that it is often relatively easy to obtain examples (x, y) 2 X ⇥ Y of the desired mapping. In

our running example, this would correspond to collecting a dataset of images each labeled with the

presence or absence of a cat, as annotated by humans.

The objective. Concretely, we assume a training dataset of n examples {(x1, y1), . . . (xn, yn)}
made up of independent and identically distributed (i.i.d.) samples from a data generating distribu-

tion D; i.e. (xi, yi) ⇠ D for all i. We then think about learning the mapping f : X 7! Y by searching

over a set of candidate functions and finding the one that is most consistent with the training ex-

amples. More precisely, we consider some particular class of functions F and choose a scalar-valued

loss function L(ŷ, y) that measures the disagreement between a predicted label ŷi = f(xi) for some

f 2 F and a true label yi. Our objective in learning is to find f⇤ 2 F that ideally satisfies:

f⇤ = argmin
f2F

E(x,y)⇠DL(f(x), y). (2.1)

10

2. DEEP LEARNING BACKGROUND 11

In other words, we seek a function f⇤ that minimizes the expected loss over the data generating

distribution D. In practical applications, once we identify this function we can discard the original

training data and only keep the learned function f⇤, which we use to map elements of X to Y .

Unfortunately, the optimization problem above is intractable because we do not have access to

all possible elements of D and therefore cannot evaluate the expectation or simplify it analytically

without making unrealistically strong assumptions about the form of D,L or f . However, under

the i.i.d. assumption we can approximate the expected loss in Equation 2.1 above with sampling by

averaging the loss over the available training data:

f⇤ ⇡ argmin
f2F

1

n

nX

i=1

L(f(xi), yi). (2.2)

In other words we optimize the loss only over the available training examples, but the hope is

that this is a good proxy objective for the actual objective in Equation 2.1.

Regularization. Unfortunately, optimizing Equation 2.2 instead of Equation 2.1 poses chal-

lenges. For instance, consider a function f that maps each xi in the training data to its yi but returns

zero everywhere else. This would be a solution to Equation 2.2 (for any sensible loss function L that

achieves a minimum value when y = ŷ), but we would expect very high loss for all other points in D

that are not in the training set. In other words, we would not expect this function to generalize to

all (x, y) ⇠ D. An additional less esoteric concern is that there may be many di↵erent functions that

all achieve the same loss under Equation 2.2 (so there is no unique solution), but their generalization

outside of the training data could vary. If all we have are the training data then how do we choose

among an entire set of f 2 F that all achieve the same loss in Equation 2.2? Both of these concerns

can be alleviated by introducing a regularization term R to the objective:

f⇤ = argmin
f2F

1

n

nX

i=1

L(f(xi), yi) +R(f), (2.3)

where R is a scalar-valued function that encodes preference for some functions over others, regardless

of their fit to the training data. This addition can be partly justified as following the principle of

Occam’s razor, which could be stated as: “Suppose there exist two explanations for an occurrence.

In this case the simpler one is usually better”. Put in another way, the regularization is a measure

of complexity of a function. Together with the regularization term, the objective in Equation 2.3

encourages simple solutions that also fit the training data well, and its intended e↵ect is to some

extent compensate for the discrepancy between the objective in Equation 2.2 and Equation 2.1.

Example: Linear regression. Consider a simple example where we are given a dataset of 100

(n = 100) 2-dimensional points (X = R2) each annotated with a scalar (Y = R). The hypothesis

class F we may consider is the set of linear functions fromX to Y (i.e. F = {wTx+b | w 2 R2, b 2 R}
). In this case our hypothesis space is spanned by 3 parameters (w1, w2, b), where we w = [w1, w2].

2. DEEP LEARNING BACKGROUND 12

A commonly used loss function in a regression setting is the (squared) di↵erence between the target

and the predicted value, L(ŷ, y) = (ŷ � y)2. Finally, as a commonly used regularization we could

use R(w, b) = �(w2
1+w2

2) which discourages the parameters w1, w2 from being too large and causing

one input feature to have a disproportionate e↵ect on the predictions, and � is also a parameter

specifying the strength of the regularization. Putting these pieces together, the problem is to solve:

f⇤ = argmin
w,b

1

n

nX

i=1

(wTxi + b� yi)
2

�

| {z }
fit the training data

+

�(w2

1 + w2
2)

�

| {z }
regularization

.

In particular also note that it is common to exclude the bias terms from the regularization since

these do not interact multiplicatively with inputs; they merely allow the model to o↵set itself away

from the origin.

Example: Neural network regression. As a brief preview, to extend the above example to

a neural network it su�ces to make the hypothesis space F more complex. For instance, instead of

searching over linear functions of form f(x) = wTx+ b we could use f(x) = w2 tanh(WT
1 x+ b1)+ b2,

where W1, w2, b1, b2 are all parameters: W1 is a matrix of size H ⇥ 2, b1 is a vector of size H, w2 is

a vector of size H, and b2 is a scalar. Here H is an integer that we are free to choose (e.g. 100; it

is often interpreted as the number of neurons in the hidden layer) and the hyperbolic tangent tanh

is applied elementwise (it squashes values to the interval [�1, 1] and is in neural networks context

commonly referred to as a non-linearity). The objective thus becomes:

f⇤ = arg min
W

1

,b
1

,w
2

,b
2

1

n

nX

i=1

(w2 tanh(W
T
1 xi + b1) + b2 � yi)

2

�

| {z }
fit the training data

+

�(kW1k22 + kw2k22)

�

| {z }
regularization

.

Example: Neural network classification. Instead of predicting some scalar-valued quantity

for each input, a common practical setting is that of classification where one wants to assign the input

a discrete category. For instance, using three possible classes we could use f(x) = W2 tanh(WT
1 x+

b1) + b2, where W2 is now a K ⇥ H matrix (K = 3 in this example), so the output of f is a

3-dimensional vector. It is common to interpret the numbers in this vector as logits, and hence

compute the probabilities of the three classes by passing this vector through the softmax function,

which takes a vector z and outputs a vector of the same size p, where pi = ezi/
PK

k=1 e
zk . Note

that the vector z can contain arbitrary real-valued quantities, but the vector p is normalized so that

all of its elements are between 0 and 1 and they sum to 1 (e.g. [0.2, 0.5, 0.3]) . This vector p is

essentially our prediction ŷ from the network and the correct label y is a 3-dimensional vector that

is all zero except for a single 1 at the index of the true class. For example, if the correct class is the

third one then y = [0, 0, 1]. The most commonly used loss function in the classification setting is

2. DEEP LEARNING BACKGROUND 13

x

y

w

f

R

y

L

parameters

data

regularization loss

^
+

data loss

loss

Figure 2.1: Diagram of the data flow in a typical supervised learning problem approached with a
neural network. The input is a dataset of pairs (x, y) of examples x and labels y. We must choose
the form of three functions: 1) The function f that maps the examples x to some predicted labels ŷ
(usually a neural network in this dissertation) using also some parameters w (sometimes also denoted
✓) that we will learn. 2) The function L(ŷ, y) that evaluates the mismatch between the prediction
and the true label, and 3) the function R that evaluates the complexity of the mapping. The data loss
and the regularization loss are added and the entire graph produces a single scalar value measuring
how well the parameters fit our data and how “simple” the mapping is. The objective becomes to
find the parameters w that minimize the final loss.

the cross-entropy loss, which has the form:

L(ŷ, y) = �
KX

k=1

yk log ŷk = � log ŷy=1,

where the first equality is the definition of the cross-entropy between two distributions H(p, q) =

�
P

x p(x) log q(x), and the second equality simplifies the expression because the true distribution in

classification settings are usually assumed to have all of their probability mass on the single correct

element, whose integer index we denote y = 1. Since we interpret the output of the network as

containing probabilities of the three di↵erent classes, we also see that we are e↵ectively minimizing

the negative log probability of the correct class, consistent with a probabilistic interpretation of this

loss as maximizing the log likelihood of the class y conditioned on the input x.

Summary. In supervised learning we are given a dataset of n datapoints {(x1, y1), . . . (xn, yn)}
where (xi, yi) 2 X ⇥ Y and we identify three quantities to formalize the problem:

1. The search space of functions F , where each f 2 F maps X to Y .

2. The scalar-valued loss function L(ŷ, y) that evaluates the mismatch between a true label y and

a predicted label ŷ = f(x).

3. The scalar-valued regularization loss R(f) that measures the complexity of a mapping.

Most commonly in deep learning the space of functions F will be a neural network with some

2. DEEP LEARNING BACKGROUND 14

parameters as seen in the example above, the loss L will be a euclidean loss in regression or a cross-

entropy loss in classification, and the regularization R is most commonly the L2 norm (i.e. sum of

squares of all weights).

Once these choices are made, the problem of learning a model for a supervised learning task

reduces to an optimization problem of the general form ✓⇤ = argmin✓ g(✓), where ✓ is a parameter

vector and g(✓) = 1
n

Pn
i=1 L(f✓(xi), yi) + R(f✓). Here we are making it clear that the parameters

✓ usually belong entirely to the function mapping f , and the functions L,R do not involve any

parameters. We now turn to the process of solving this optimization problem in practice.

2.2 Optimization

In the last section we saw that we can reduce the task of learning a model for a supervised learning

problem to solving an optimization problem of the form ✓⇤ = argmin✓ g(✓), where ✓ is a parameter

vector and g usually combines the average loss of all examples and a regularization penalty.

Derivative free optimization. First, observe that we can evaluate g(✓) for any arbitrary ✓ so

one approach to solving this optimization problem is to to use stochastic hill-climbing methods that

e↵ectively “guess-and-check”. For instance, one can draw a large number of ✓ at random from some

distribution, check each one, and take the one that minimizes g. A more elaborate approach might

iteratively seek to improve some candidate ✓ by repeatedly making small perturbations. Unfortu-

nately, typical neural networks we want to train might have parameter vectors with several million

or billion parameters, so many of these approaches are computationally intractable.

First order methods. We can improve the e�ciency of the optimization by making additional

assumptions about g. In particular, if we restrict ourselves to only using di↵erentiable functions then

we can compute the gradient r✓g with backpropagation (the details of this process will be discussed

in the next section). The gradient is a vector of partial derivatives, giving us the slope of g along

every dimension of ✓. The gradient allows us to construct the first order approximation in the Taylor

expansion of g, hence the name “first order methods”. We can use the gradient as a search direction;

in particular, we can improve ✓ (in the sense of achieving lower g) by adding to it a small amount

of the negative gradient direction (since we want to minimize g, but the gradient gives the direction

of increase of g). This insight motivates the gradient descent (GD) algorithm that alternates the

two steps: 1) evaluate the gradient with backpropagation and 2) update the parameters by taking

a small step in the direction of the negative gradient. As a last practical consideration, the datasets

we use in practice can be very large (e.g. ImageNet has 1 million training images) so we only

estimate the gradient using a small minibatch of examples (e.g. around 100) at a time. This allows

us to perform many approximate updates instead of fewer exact updates - a strategy that works

well in most practical applications. The resulting algorithm, Stochastic Gradient Descent (SGD) is

summarized in Algorithm 1.

2. DEEP LEARNING BACKGROUND 15

Algorithm 1 Stochastic Gradient descent.

Given a starting point ✓ 2 domg
Given a step size ✏ 2 R+

repeat
1. Sample a minibatch of m examples {(x1, y1), . . . , (xm, ym)} from training data
2. Estimate the gradient r✓g (✓) ⇡ r✓

⇥
1
m

Pm
i=1 L(f✓(xi), yi) +R(f✓)

⇤
with backpropagation

3. Compute the update direction: �✓ := �✏r✓g (✓)
4. Perform a parameter update: ✓ := ✓ +�✓

until convergence.

A critical parameter in SGD is the step size ✏ (also called the learning rate). If it is too high

the optimization may not converge or even diverge. If it is set too low learning will take too long.

One toy example to consider minimizing the function y = x2 (which has the gradient dy
dx = 2x) with

gradient descent starting from x = 1. Then ✏ > 1 will cause gradient descent to diverge to infinity,

✏ = 1 will cause the optimization to oscillate indefinitely between x = 1 and x = �1, and ✏ < 1

will lead to convergence to the minimum at x = 0. In particular, the optimal learning rate in this

toy example is just at the edge of divergence, x = 0.9999̄. In practice a good heuristic is to binary

search by hand to find the lowest setting of ✏ that makes the optimization diverge (e.g. 0.1), and set

the initial learning rate to be slightly smaller than this amount (e.g. 0.05) as a safety margin. It is a

good idea to anneal this learning rate during training and a good rule of thumb is to reduce it by a

factor of approximately 100 by the end of the optimization. This can either be done by multiplying

by a constant (e.g. 0.1 twice) at fixed intervals, or by using an annealing schedule (e.g. ✏t = ↵e�t�

for some ↵,�). Minor but consistent improvements can also be achieved with Polyak averaging [78],

where we compute an averaged parameter vector ✓̄ (e.g. ✓̄ = 0.999✓̄+0.001✓) after every parameter

update and using ✓̄ at test time. In general, di↵erent settings will work better or worse for di↵erent

problems, so it is common to determine problem-specific settings using cross-validation, which we

will discuss later in this section.

Advanced first order optimization techniques. In practice one can often obtain faster

converge by modifying the computation of the update direction (Step 3 in Algorithm 1). For instance,

one of these techniques is the Momentum update, designed to encourage progress along small but

consistent directions of the gradient. Using a shorthand notation of g = r✓g(✓) for the gradient

vector, the update �✓ is computed first by updating an intermediate variable v := ↵v+g (initialized

at zero), and then computing the update as �✓ := �✏v. notice that the variable v contains an

exponentially-decaying sum of previous gradient directions. This update has a close relationship to

physics, where the gradient is interpreted as a force F on a particle with position ✓, incrementing its

velocity instead of its position directly. This is consistent with Newton’s second law F = dp
dt , where

momentum p = mv, and the mass m is assumed to be a constant.

Momentum modulates the update with a running estimate of the first moment of the gradient (its

mean). A number of methods have also been developed that modulate the update using the second

2. DEEP LEARNING BACKGROUND 16

moment. For example, theAdagrad update [19] uses an intermediate variable r := r+g�g of sum of

squared gradients (� is elementwise multiplication). The second moment then modulates the update

as follows: �✓ := � ✏
�+

p
r
�g, where � is a small number (e.g. 1e�5), preventing division by zero. The

RMSProp update [96] instead uses a running mean of the second moment: r := ⇢r+ (1� ⇢)g� g,

where ⇢ is usually set to 0.99 or so. Finally, the Adam update [46] estimates both first and second

running moments and can be seen as a combination of RMSProp with Momentum. These methods

have an equalizing e↵ect on parameter updates: parameters that see large gradients will take smaller

steps and parameters that see very low gradients will take larger steps.

Cross-validation. We saw that the problem formulation and the optimization require many

settings that we left unspecified - for example the regularization strength �, the step size for stochastic

gradient descent ✏, the number of hidden units in a neural network H, etc. Many of these parameters

are di�cult to attach to the parameter vector ✓ and train with gradient descent. Instead, we resort

to stochastic optimization techniques; that is, we try several possibilities, optimize the model in

each case and finally evaluate the predictions on a withheld, validation set of examples that were

not used during training. This is a way of estimating the generalization error. In cases where not

too many examples are available it is also possible to split the dataset into some number of folds,

use one fold for validation and the rest for training, cycle over all possible choices of the validation

fold, and report the average validation performance across all folds. This process is referred to as

cross-validation, or k-fold cross-validation (e.g. 10-fold cross-validation in case of 10 folds). However,

it is common to hear people say “cross-validation” even when they only use a single validation fold.

2.3 Backpropagation

We saw that if we can evaluate the gradient of the loss function then we can use stochastic gradient

descent to minimize it, and in the process find mappings f 2 F that achieve low regularization cost

and map X to Y consistent with the training data.

We now discuss backpropagation - the process by which we e�ciently compute gradients of

scalar valued functions with respect to their inputs. The backpropagation algorithm is a recursive

application of the chain rule from calculus. Recall that the function we are interested in computing

gradients of is g, which takes as input the dataset of examples (xi, yi) and the parameters ✓. We are

specifically interested in the gradient r✓g with respect to the parameters ✓ in order to perform the

parameter update but we could, if we wanted to, also compute the gradients for the inputs xi with

the same process.

Toy example. Using an example, suppose that we had an expression y = (2x+3)2 and that we

are interested in computing @y/@x. In a neural network application x would be a vector containing

both the input data and the network parameters and y would be the total loss. Introducing interme-

diate variables for clarity, we have that the output y is a function of the input x through a sequence

2. DEEP LEARNING BACKGROUND 17

of a few intermediate functions a = 2x, b = a + 3, and y = b2. In addition, note that the gradient

of every individual transformation with respect to its input is easy to write down: @a/@x = 2,

@b/@a = 1, and @y/@b = 2b. Once we know these (local) derivatives, we can obtain the desired

(global) derivative @y/@x by repeatedly applying the chain rule, which tells us that: @y
@x = @y

@b
@b
@a

@a
@x .

General statement. Looking at the example above and generalizing, we would like to multiply

the individual local derivatives of all intermediate functions together to obtain the final derivative

of the output with respect to the input. Using more general notation, suppose we had an input

vector x0 that we transform through a series of functions xi = fi(xi�1) where i = 1, . . . , k and the

last xk is a scalar. We assume that the gradient (or at least the subgradient) exists, so we can

calculate the Jacobian matrix @xi
@xi�1

of all intermediate transformations, which tells us how every

output dimension of xi depends on every input dimension of xi�1. By chain rule the final gradient

we are interested in is, analogous to our example, simply the matrix product of all the Jacobians:
@xk
@x

0

=
Qk

i=1
@xi

@xi�1

.

Practical considerations. It’s important to note that in most neural network applications x0

is large (e.g. all pixels of an image) while xk is small (usually one, since we have a scalar-valued loss

function). Therefore, it becomes computationally important to evaluate the above product of all

Jacobians from end to front - i.e. starting with @xk
@xk�1

down to @x
1

@x
0

, instead of the other way around.

It’s best to see this with a concrete example; if x had 10 dimensions then in our example above the

product @y
@x = @y

@b
@b
@a

@a
@x would require multiplying three matrices of sizes: [1⇥10]⇥[10⇥10]⇥[10⇥10].

Going from front (right) to back (left) requires [10 ⇥ 10] ⇥ [10 ⇥ 10] matrix multiplication followed

by [1 ⇥ 10] ⇥ [10 ⇥ 10], while going from back to front merely requires [1 ⇥ 10] ⇥ [10 ⇥ 10] twice.

More generally, if there are many inputs and a single output (as is the case in most neural network

applications) it is always more computationally e�cient to go back to front (this is called reverse-

mode di↵erentiation). Conversely, if there was a single input and many outputs then it would

be more e�cient to go front to back (forward-mode di↵erentiation). Unfortunately, reverse mode

di↵erentiation requires us to keep all intermediate values computed during the forward pass in

memory because we need them as we backpropagate the gradients backward later - this is a price

in memory capacity we pay for computational e�ciency.

Note that in principle for arbitrary functions the Jacobian matrices @xi
@xi�1

could be very large.

However, in most practical applications these matrices have very special structure and we do not

have to explicitly create them in memory. For example, an elementwise non-linearity tanh that

takes a 4096-dimensional vector and applies tanh to all dimensions has a Jacobian matrix of size

4096 ⇥ 4096. However, since the transformation acts elementwise, the Jacobian matrix is almost

entirely zero except for elements along the diagonal. It would be wasteful to explicitly create this

matrix in memory and perform a full matrix multiplication; instead, since the Jacobian only has

elements along the identity for this specific operation, the matrix multiplication can be implemented

very e�ciently by only doing an elementwise multiplication with the elements along the diagonal.

2. DEEP LEARNING BACKGROUND 18

activations

gradients
“local gradients”

Figure 2.2: An example of backpropagation along a computational graph. During forward pass x
and y take on specific (numerical) values and the vector (or scalar) z is computed using some fixed
function (e.g. z = x�y). Notice that we can immediately compute the Jacobian matrices @z

@x and @z
@y

of this transformation using calculus, because we know what function z is computing in the forward
pass. These tell us what first order influence x and y have on the value of z. The value z goes
o↵ into a computational graph and eventually at the end of the graph the total loss g (a scalar) is
computed. The backward pass proceeds in the reverse order, recursively applying the chain rule to
find the influence of all inputs of the graph on the final output. In particular, this computational
unit finds out what @g

@z is, telling us how z influences the final graph output. The chain rule states

that to backpropagate this we should take the global gradient on z, @g
@z and multiply it onto the local

gradients for each input. For example, the global gradient for x will become @g
@x = @z

@x
@g
@z . If x, z are

vectors then this is a single matrix-vector multiplication. The gradient is then recursively chained,
in turn, through the functions that produced the values of x and y until the inputs are reached. In
neural network applications, the inputs we are interested in are the parameters, and their gradient
tells us which way they should be nudged to decrease the loss.

In summary, evaluating the gradient of the output with respect to the input reduces to, by

the chain rule, a product of Jacobian matrices. In neural network applications we first perform a

forward pass in which we take a batch of data {(xi, yi)}mi=1 and current parameters ✓ and “forward”

the network to compute all intermediate values (caching them for later) and the cost g. Then during

backpropagation we proceed backwards through all intermediate stages (the “backwards pass”) and

“chain” the local gradients, each time matrix multiplying by the next Jacobian matrix in the full

product. In many cases we do not need to actually create the full Jacobian matrices and can take

advantage of special structure to chain the gradients in a more computationally e�cient manner.

Computational Graph. Instead of thinking of the computational process of a Neural Network

as a linear list of operations it is more intuitive to think about the function from inputs to outputs

2. DEEP LEARNING BACKGROUND 19

as a directed acyclic graph (DAG) of operations, where vectors flow along edges and nodes represent

di↵erentiable transformations that consume some number of vectors and combine them to one vector

that then flows to other nodes. Most implementations of backpropagation organize the code base

around a Graph object that maintains the connectivity of operations (also called gates, or layers) and

a large collection of possible operations. Both Graph and Node objects implement two functions:

forward() and backward(). The Graph’s forward() iterates over all nodes in the topological

order and calls their forward(), and its backward() iterates in the reverse order and calls their

backward(). Each Node computes its output with some function during its forward() call, and in

backward() it is given the gradient of the loss function with respect to its output and returns the

“chained” gradients on all of its inputs. By “chained” we mean taking the gradient on its output

and multiplying it by its own local gradient (the Jacobian of this transformation). This gradient

then flows to its children nodes that perform the same operation recursively. As a last technical

note, if the output of a node is used in multiple places in the graph then correct behavior by the

multivariable chain rule is to add the gradients during backpropagation along all branches. This

would be handled in the Graph object.

As an example, a tanh layer would implement the forward function as y = tanhx, where tanh

is applied elementwise. During backpropagation the backward function will be called by the Graph

object, supplying it with @g
@y , the “Jacobian product so far”, where g is the loss at the end of

the graph. The objective of the backward function is to chain the Jacobian of this layer onto

the running product, in this case computing the matrix product @g
@x = @y

@x
@g
@y . However, since the

Jacobian @y
@x of this layer only has elements along the diagonal, this matrix multiply can instead

be implemented e�ciently as @g
@x = eye(@y@x) �

@g
@y , where � is an elementwise multiplication and

eye(@y@x) is the diagonal of the matrix as a vector (for tanh this would be the vector (1� y� y) since
d
dx tanhx = (1� (tanhx)2)). The Graph object will then take the returned @g

@x from this layer, and

pass it on to the node that computed x, continuing the recursive process all the way to the inputs

of the graph (the data and the parameters).

2.4 Neural Networks

In the previous sections we saw that we can define arbitrary di↵erentiable functions f that transform

the inputs x to predicted outputs ŷ, and optimize the model with respect to any di↵erentiable loss

function using stochastic gradient descent. We now turn to the details of the function f , which we

have so far left unspecified.

2.4.1 Vanilla Neural Networks

In absence of any assumptions about the structure of x, we construct neural networks by repeating

matrix multiplications and element-wise non-linearities. As an example, a 2-layer neural network

2. DEEP LEARNING BACKGROUND 20

Figure 2.3: Left: A diagram of the biological inspiration behind a single neuron. Inputs xi interact
multiplicatively with the synapses wi, the cell body accumulates the sum and then fires an output
signal after the activation function. If the activation is the sigmoid non-linearity (with output range
in [0,1]), then the output can be interpreted as the average firing rate of the neuron. Right: an
example arrangement of neurons in a 3-layer neural network. Neurons in one layer have connections
to all neurons in the previous layer but are not connected to each other. This arrangement allows
us to e�ciently evaluate activations of all neurons in one layer with a matrix multiplication.

would be implemented as f(x) = W2�(W1x), where W1,W2 are matrices and � is an element-wise

non-linearity (e.g. tanh). A 3-layer network would have the form f(x) = W3�(W2�(W1x)), etc.

Note that if the non-linearity is an identity function then the entire neural network reduces (in

representational power) to a linear function. Common settings for the non-linearities are tanh, the

sigmoid function 1/(1+e�x) and the rectified linear unit (ReLU) max(0, x). Note that the last layer

of the neural network normally does not contain the non-linearity. Also note that a 1-layer neural

network is a simple linear transformation.

Biological inspiration. The biological inspiration for neural networks has historically emerged

from a crude model of a biological neuron. In particular, each row of the weight matrices W models

one neuron and its synaptic connection strengths to its input - positive weights are excitory, negative

weights inhibitory, and a weight of zero represents no dependence. The weighted sum of the inputs

(after the inner product) arrives at the cell body. The original model used a sigmoid activation

function which squashes the weighted sum to the range between [0,1], and is interpreted as the firing

rate of the neuron. In this interpretation, each matrix multiplication by a weight matrix W and a

subsequent sigmoid non-linearity evaluates, in parallel, the firing rates of several neurons arranged

in a layer, where none of the neurons connect to each other and each one is connected to the same

inputs in the layer before.

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs, or ConvNets) [58] are neural network architectures specif-

ically designed for handling data with some spatial topology (e.g. images, videos, sound spectro-

grams in speech processing, character sequences in text, or 3D voxel data). In each of these cases

an input example x is a multi-dimensional array (i.e. a tensor). E.g. a 256x256 color image is

2. DEEP LEARNING BACKGROUND 21

32

32

3

32x32x3 image
5x5x3 filter

convolve: (slide) over all
spatial locations and
compute dot products

activation map

1

28

28

Figure 2.4: Illustration of convolving a 5⇥5 filter (which we will eventually learn) over a 32⇥32⇥3
input array with stride 1 and with no input padding. The filters are always small spatially (5 vs. 32),
but always span the full depth of the input array (3). There are 28⇥ 28 unique positions for a 5⇥ 5
filter in a 32⇥ 32 input, so the convolution produces a 28⇥ 28 activation map, where each element
is the result of a dot product between the filter and the input. A convolutional layer has not just
one but a set of di↵erent filters (e.g. 64 of them), each applied in the same way and independently,
resulting in their own activation maps. The activation maps are finally stacked together along depth
to produce the output of the layer (e.g. 28⇥ 28⇥ 64 array in this case).

a 256 ⇥ 256 ⇥ 3 tensor (for 3 color channels red, green, blue). A sound spectrogram could be an

array of size 1, 000 ⇥ 128, indicating the amplitude of any one of 128 frequencies at any point in

time from t = 1, . . . , 1000. Some sentence could be represented on a character level as a 112 ⇥ 30,

indicating which of 30 possible characters occupies any one of 112 positions in the sentence. In

many of these cases the input dimensionality is high (e.g. the image above will have approximately

200,000 numbers) and it is wasteful (in both number of parameters and processing time) to use fully

connected layers as we saw in simple neural networks in the preceding section. In these cases we

prefer to design neural network architectures that are aware of the spatial layout of the input and

use specific local connectivity and sensible parameter sharing schemes.

Concrete example. The core computational building block of a Convolutional Neural Network

is the Convolutional Layer (or the CONV layer) which takes an input tensor and produces an

output tensor by convolving the input with a set of filters. We’ll introduce the concept with a

concrete example and then discuss the more general case. In this dissertation we are primarily

concerned with processing images. Suppose that our input is a color image of with and height of 227

- i.e. a 227⇥ 227⇥ 3 tensor X. Now consider a 5⇥ 5⇥ 3 filter w, which is a tensor of 5 ⇤ 5 ⇤ 3 = 75

parameters that we will eventually want to learn. We can convolve this filter by sliding it across

all spatial positions of the input tensor and computing a dot product between a small chunk of X

and the filter w at each position. The result will be an activation map, which in this case would

have the dimensions 223⇥ 223 (223 is the number of unique positions that a filter of 5 elements can

be placed over an input of size 227). It is common to also pad the input with a border of zeros to

2. DEEP LEARNING BACKGROUND 22

control the output dimension. For instance, padding with a border of zeros of thickness of 2 in this

case would result in a 227⇥ 227 output activation map. It is also possible to apply filters with some

stride. For example applying the 5⇥ 5⇥ 3 filter to the 227⇥ 227⇥ 3 input tensor with no padding

and stride of 2 would instead give an output activation map of size 112 ⇥ 112 (we will shortly see

how we can compute these output size in general). Finally, the CONV layer does not possess only

a single filter but an entire set of them. For example, if we use 32 filters then each would compute

its own 112 ⇥ 112 activation map and these are stacked to produce the final output tensor (e.g. of

size 112 ⇥ 112 ⇥ 32). Intuitively, each filter has the capacity to “look for” certain local features in

the input tensor and the parameters that make up the filters are trained with backpropagation.

General definition. More generally, a convolutional layer for images (i.e. assuming input

tensors with three spatial dimensions):

• Accepts a tensor of size W1 ⇥H1 ⇥D1

• Requires 4 hyperparameters: The number of filters K, their spatial extent F , the stride with

which they are applied S, and the amount of zero padding on the borders of the input, P .

• The convolutional layer produces an output volume of size W2 ⇥ H2 ⇥ D2, where W2 =

(W1 � F + 2P)/S + 1, H2 = (H1 � F + 2P)/S + 1, and D2 = K.

• The number of parameters in each filter is F ⇤ F ⇤D1, for a total of (F ⇤ F ⇤D1) ⇤K weights

and K biases. In particular, note that the spatial extent of the filters is small in space (F ⇥F),

but always goes through the full depth of the input tensor (D1)

• In the output tensor, each d�th slice of the output (of size W2⇥H2) is the result of performing

a valid convolution of the d�th filter over the input tensor with a stride of S and then o↵setting

the result by d�th bias.

Biological inspiration and interpretation. The convolutional layer can be interpreted with

the neuron analogy as follows. The result of a dot product with one filter at one specific location

represents the (pre-activation) output of one neuron that only has connections to that specific part

of the input array. Moreover, since we slide each filter over the input and use the same weights at

every location we are e↵ectively introducing a parameter sharing scheme, where neighboring neurons

in one activation map all use the same weights. The result is a massive decrease in the number of

parameters in each convolutional layer, which helps address overfitting. As a specific example,

consider a 227 ⇥ 227 ⇥ 3 input that is processed with a convolutional layer with 32 filters of size

5⇥5⇥3, using padding of 2 and stride of 1. The output would in this case be 227⇥227⇥32, indicating

the firing of all filters at all spatial locations. This layer therefore produced 227⇤227⇤32 = 1, 648, 928

outputs only using 5 ⇤ 5 ⇤ 3 ⇤ 32 + 32 = 2432 total parameters (weights and biases). In comparison,

if this was a fully connected layer with the same number of neurons in the hidden layer, we would

2. DEEP LEARNING BACKGROUND 23

be using 1, 648, 928 ⇤ (227 ⇤ 227 ⇤ 3 + 1) = 254, 904, 481, 664 parameters (weights and biases) - an

astronomically large number, and we’d expect to heavily overfit even if we assumed that we could

compute or store the results.

Pooling layers. In addition to convolutional layers, to further control overfitting it is common

to use pooling layers that decrease the size of the representation with a fixed downsampling trans-

formation (i.e. without any parameters). In particular, the pooling layers operate on each channel

(activation map) independently and downsample them spatially. A commonly used setting is to use

2⇥2 filters with stride of 2, where each filter computes the max operation (i.e. over 4 numbers). The

result is that an input tensor is downscaled exactly by a factor of 2 in both width and height and the

representation size is reduced by a factor of 4, at the cost of losing some local spatial information.

ConvNet architectures. Finally, a convolutional network is built by stacking convolutional

layers and possibly introducing pooling layers to control the computational complexity of the archi-

tecture. A typical convolutional neural network architecture that processes images might take the

form [INPUT, [CONV,CONV, POOL]⇥ 3, FC, FC]. Here, INPUT represents a tensor of a batch

of images (e.g. [100⇥ 32⇥ 32⇥ 3] for a batch of 100 32⇥ 32 color images) CONV is a convolutional

layer with 3⇥3 filters applied with padding of 1 and stride of 1, POOL stands for a typical 2⇥2 filter

max pooling layer with stride of 2, and FC are fully-connected layers, where the last one computes

the logits of di↵erent classes just before a softmax classifier. In this architecture the spatial size of

the input is reduced by a factor of 2 in both width and height after each POOL layer, so after the

third POOL layer the spatial size of the representation along width and height would be 4⇥ 4.

2.4.3 Recurrent Neural Networks

In many practical applications the input or output spaces contain sequences. For example, sentences

are often modeled as a sequence of words, where each word is encoded as a one-hot vector (i.e. a

vector of all zeros except for a single 1 at the index of the word in a fixed vocabulary). A recurrent

neural network (RNN) is a connectivity pattern that processes a sequence of vectors {x1, . . . , xT }
using a recurrence formula of the form ht = f✓(ht�1, xt), where f is a function that we describe in

more detail below and the same parameters ✓ are used at every time step, allowing us to process

sequences with an arbitrary number of vectors. The hidden vector ht can be interpreted as a running

summary of all vectors x until that time step and the recurrence formula updates the summary based

on the next vector. It is common to either use h0 = ~0, or to treat h0 as parameters and learn the

starting hidden state. The precise mathematical form of the recurrence (ht�1, xt) ! ht varies from

model to model and we describe these details next.

Vanilla Recurrent Neural Network (RNN) uses a recurrence of the form

ht = tanh

W

xt

ht�1

!!
.

2. DEEP LEARNING BACKGROUND 24

Figure 2.5: An ordinary neural network (left) might take an input vector (red), transform it through
some hidden layer (green), and produce an output vector (blue). In these diagrams boxes indicate
vectors and arrows indicate functional dependencies. Recurrent neural networks allow us to process
sequences of vectors, for example: 1) at the output, 2) at the input, or 3) both either serially or in
parallel. This is facilitated by a recurrent hidden layer (green) that manipulates a set of internal
variables ht based on previous hidden state ht�1 and the current input using a fixed recurrence
formula ht = f✓(ht�1, xt), where ✓ are parameters we can learn.

That is, the previous hidden vector and the current input are concatenated and transformed

linearly by the parameters W . Note that this is equivalent to instead writing ht = tanh(Wxhxt +

Whhht�1), where the two matrices Wxh,Whh concatenated horizontally are equivalent to the matrix

W above. These equations omit the additional bias vector for brevity. The tanh nonlinearity can

also replaced with ReLU. If the input vectors xt have dimension D and the hidden states dimension

H then W is a matrix of size [H ⇥ (D + H)]. Interpreting the equation, the new hidden states

at each time step are a linear function of elements of xt, ht�1 and squashed by non-linearity. The

vanilla RNN has a simple form, but unfortunately, the additive interactions are a weak form of

coupling [92, 101] between the inputs and the hidden states and the functional form of vanilla RNN

leads to undesirable dynamics during backpropagation [6] (In particular, the gradients tend to either

vanish or explode over long time periods). The exploding gradient concern can be alleviated with a

heuristic of clipping the gradients at some maximum value [75], but the RNNs still su↵er from the

vanishing gradient problem.

Long Short-Term Memory. The LSTM [38] recurrence is designed to address the limitations

of the vanilla RNN. Its recurrence formula has a form that allows the inputs xt and ht�1 interact in

a more computationally complex manner that includes multiplicative interactions, and the LSTM

recurrence uses additive interactions over time steps that more e↵ectively propagate gradients back-

wards in time [38]. In addition to a hidden state vector ht, LSTMs also maintain a memory vector

ct. At each time step the LSTM can choose to read from, write to, or reset the cell using explicit

gating mechanisms. The precise form of the update is as follows:

2. DEEP LEARNING BACKGROUND 25

Figure 2.6: An example of using a RNN as a
character-level language model. The training
sequence is “hello” and the vocabulary has 4
characters: h,e,l,o. The inputs are 1-hot en-
codings of the chatacters “h,e,l,l”, and we want
the RNN to predict the next character in the
sequence at each time step. The RNN has a 3-
dimensional hidden state (green) and there are
4 dimensions in the output vectors (blue), in-
terpreted as the logits (i.e. scores) for the next
character. The loss function and the gradient
will encourage the logits of correct characters
(highlighted in green) to become higher, and
the other logits (in red) to become lower.

0

BBBB@

i

f

o

g

1

CCCCA
=

0

BBBB@

sigm

sigm

sigm

tanh

1

CCCCA
W

xt

ht�1

!
ct = f � ct�1 + i� g

ht = o� tanh(ct)

Here, the sigmoid function sigm and tanh are applied element-wise, and if the input dimension-

ality is D and the hidden state has H units then the matrix W has dimensions [4H ⇥ (D + H)].

The three vectors i, f, o 2 RH are thought of as binary gates that control whether each memory cell

is updated, whether it is reset to zero, and whether its local state is revealed in the hidden vector,

respectively. The activations of these gates are based on the sigmoid function and hence allowed to

range smoothly between zero and one to keep the model di↵erentiable. The vector g 2 RH ranges

between -1 and 1 and is used to additively modify the memory contents. This additive interac-

tion is a critical feature of the LSTM’s design, because during backpropagation a sum operation

merely equally distributes gradients. This allows gradients on the memory cells c to flow backwards

through time uninterrupted for long time periods, or at least until the flow is disrupted with the

multiplicative interaction of an active forget gate.

Example: Character-level Language Modeling. Character-level language models are a

commonly studied interpretable testbed for sequence learning. In this setting, the input to the

RNN is a sequence of characters from some text (e.g. “cat sat on a ”) and the network is trained to

predict the next character in the sequence (“m” in this example, the first letter of “mat”). Concretely,

assuming a fixed vocabulary of K characters we encode all characters with K-dimensional one-hot

vectors {xt}, t = 1, . . . , T , and feed these to the network to obtain a sequence of H-dimensional

hidden vectors {ht}. To obtain predictions for the next character in the sequence we further project

the hidden states to a sequence of vectors {yt}, where yt = Wyht and Wy is a [K ⇥H] parameter

matrix. These vectors are the logits of the next character (so the probabilities are obtained by passing

2. DEEP LEARNING BACKGROUND 26

these through a softmax function) and the objective is to minimize the average cross-entropy loss

over all targets.

2.5 Summary

In summary, a typical workflow for applying a neural network in some context looks as follows:

Data preparation. First, obtain a dataset. For the purposes of this dissertation we have as-

sumed that the dataset is made up of a set of pairs (x, y) where x is some input example and y is

a label. We then split the dataset into three folds, commonly a training, validation and test fold

(common proportions could be 80%, 10%, 10% respectively). We will use the training fold for opti-

mizing the parameters with backpropagation, the validation fold for hyperparameter optimization,

and the test fold for evaluation (discussed below in more detail).

Data preprocessing. Preprocessing the data can help improve convergence of neural networks

[58]. For images, common preprocessing techniques involve standardizing the data (subtracting the

mean and dividing by the standard deviation individually for every input dimension of x), or at

the very least subtracting the mean. It is critical to estimate these statistics only on the training

data, and using these fixed statistics to process the validation and test data, as this appropriately

simulates the deployment of the final system into a real-world application.

Architecture design. Next we must to decide on a family of architectures that we wish to

explore. In our notation above, this amounts to designing the internals of the computation graph

that makes up the function f . This stage is more of an art than a science, but we discuss a few

common heuristics used in practice. It is common to process pixel data with convolutions and

sequence data with recurrent networks. For the scale of the architecture, a very rough rule of thumb

is that the full model should have approximately similar number of parameters as there are examples

in the training dataset. For example the ImageNet challenge [84] dataset has 1M examples, or a

small factor more if you consider data augmentation. The ConvNets we train on ImageNet usually

have on order of 10M parameters and regularization techniques (such as L2 regularization, dropout,

and data augmentation) are used to further constrain the model to prevent overfitting.

Optimization. A default recommendation is to use Adam [46] for optimization, with learning

rates of approximately 1e�3, the coe�cient of first moment of 0.9 and second moment 0.99. It is

often beneficial to anneal the learning rate during the course of training by approximately a factor

of 100 by the very end of training, but it si common to decay the first time only after half of the

training is finished. As a a good sanity check to help debug the code, it is a good idea to try to

overfit a single batch of data (reaching zero training loss) before optimizing over the full training

set. During optimization it is almost always a good idea to use Polyak averaging [78], where we keep

track of an averaged parameter vector ✓̄ (e.g. ✓̄ = 0.999✓̄ + 0.001✓) after every parameter update

and use ✓̄ to compute the validation performance and when saving the model checkpoint to file.

2. DEEP LEARNING BACKGROUND 27

Hyperparameter optimization. The optimization with stochastic gradient can be seen as an

inner loop of the optimization, while hyperparameter optimization is the outer loop that determines

good values of hyperparameters that are di�cult or impossible to backpropagate into (such as the

learning rate, or the number of units in the hidden layers). This process consists of sampling

hyperparameters from some search range (it is best to sample at random rather than along the grid

[7]), optimizing the model, and evaluating the model on the validation fold. The final best model is

the one that achieves the best validation performance.

Evaluation. Once we identify the best trained model (with the lowest validation loss), we

evaluate the model a single time on the test set and report the performance. Consistent improvements

can always be obtained by using model ensembles, which average the results of evaluating multiple

models trained from di↵erent initializations or with di↵erent hyperparameters.

The remainder of this dissertation is organized around three projects that leverage this modeling

machinery for connecting images and language. We now discuss the details of each project in turn.

3

Matching Images and Sentences

In this chapter we develop approaches for matching images and sentences. Concretely, we are given

a finite set of images and a set of sentences. Then, given any of the sentences we would like to rank

the images based on how well they depict the sentence, and conversely, given any of the images we

would like to rank the sentences based on how well they describe that image. Note that this is a

limited setup for image captioning because we are retrieving compatible sentences from a finite set.

In the next chapter (Chapter 4) we are going to relax this constraint and generate new sentences.

We approach this problem in a data-driven manner. In particular, we develop models that

consist of a neural network that takes one image and one sentence and calculates a scalar-valued

score, indicating how well the image and sentence match. We then train the model end-to-end

on a dataset of images captioned with sentences written by humans on Amazon Mechanical Turk

(AMT), and encourage the model to assign high scores to matching image-sentence pairs, and low

score otherwise (see Figure 3.1 for overview).

3.1 Related Work

The approaches developed for matching images and sentences in this chapter were originally inspired

by the pioneering work of Barnard et al. [2] and Socher et al. [89] who match image regions with

nouns, and Rashtchian et al., [79] and Hodosh et al. [39], who collected the first image sentence

datasets and developed the first ranking techniques and evaluation criteria that we adopt in this

work. Our approach was also inspired by Frome et al. [27], who associate words and images through

a multimodal embedding.

Parallel to this work, a number of related approaches for grounding natural language in images

using a ranking approach have been developed [49, 61, 66, 113, 111, 47]. Our work di↵ers from

many of these approaches in that our models go beyond global representations for both images and

sentences and instead work on the level of image and sentence fragments. This allows us to reach

28

3. MATCHING IMAGES AND SENTENCES 29

“A dog jumping
over a hurdle”

Image Encoder

Sentence Encoder

Compute
Matching
Score

“dog jumping
over a hurdle”

“man in blue
wetsuit surfing”

“baseball player
throwing the ball”

0.5 0.1 -1.5

-1.5 2.0 0.9

0.3 0.6 2.1

Figure 3.1: Overview of the image sentence matching model. Left: A single neural network that
takes an image and a sentence and computes a (scalar-valued) matching score. The network consists
of three components: an image encoder that process an image into a single vector v or a set of
fragment vectors {v}, a sentence encoder that processes the sentence into a single vector s or a
set of fragment vectors {s}, and a module that computes the score. Right: During training we
compute pairwise scores for image-sentence pairs in a batch of training data. The loss function will
encourage the true image-sentence pair scores (along the diagonal, in green) to be higher than the
false image-sentence pair scores (o↵-diagonal, in red).

higher ranking performance and interpretable results, since we can visually inspect the sentence

fragments (words) grounded in the image fragments (image regions).

Our models consist of neural networks that take images and sentences as input. Multiple ap-

proaches have been developed prior to this work for representing images and words in higher-level

neural representations. On the image side, Convolutional Neural Networks (CNNs) [51, 58] have

recently emerged as a powerful class of models for image classification and object detection [84]. On

the sentence side, our work takes advantage of pretrained word vectors [5, 76, 69] to obtain low-

dimensional representations of words. Finally, Recurrent Neural Networks have been previously used

or proposed in the context of language modeling [4, 68, 92]. We build on many of these approaches

and incorporate them in larger neural network architectures that model images and sentences jointly

through multimodal embeddings, not in isolation.

3.2 Model

Overview. We assume that we are given a dataset of a fixed set of images, each annotated with

a sentence description written by an AMT worker. We would now like to formulate the ranking

problem by designing a model that takes an (image, sentence) pair and returns their compatibility

score. The challenge lies in the fact that both images and sentences are complex high-dimensional

objects, so relating objects between these modalities requires a model to simultaneously process and

understand images, sentences, and the ability to relate objects across the two modalities.

Given an image sentence pair, models developed prior to our work [39] approached the problem

in three key stages: encode the image into a vector, encode the sentence into a vector, and finally

3. MATCHING IMAGES AND SENTENCES 30

compare the vectors across the two modalities with a loss function that encourages “true” image

sentence pairs to have a high score, and “false” image sentence pairs to have a low score.

Our approach consists of first, formulating a single neural network that performs this task within

the end-to-end learning paradigm and without using explicit feature representations. We show that

doing so improves the performance because all components of the model share the same objective.

Second, we enrich the model by reasoning about the cross-modal correspondence on the level of

individual image/sentence fragments, instead of the global objects. We show that this not only

leads to higher performance but also provides interpretable results.

3.2.1 Representing Images

In this section we discuss two strategies for encoding images: encoding an image I into a vector v

(“global image encoding”), or into a set of vectors {vr} (“fragment-level image encoding”). The en-

coding function is designed from di↵erentiable components to support backpropagation and contains

parameters that can be learned.

Global image encoding

In encoding images into vectors we build on advances in computer vision where Convolutional Neural

Networks [58] have been shown to transform raw images into powerful representations [84, 51] that

support (on average) human-level performance on the ImageNet classification challenge [84]. Similar

to most practical applications in computer vision, we use a ConvNet that is first pretrained on the

ImageNet classification challenge. We then remove the last layer of the ConvNet which computes the

1,000 probabilities of di↵erent ImageNet classes, but keep all the other layers and parameters intact.

This ConvNet can be seen as a feature extractor function CNN✓c(I), which takes image pixels I

and has parameters ✓c. For example, the AlexNet [51] has approximately 60 million parameters ✓c

and CNN✓c(I) is a 4096�dimensional vector. This vector is the representation after a non-linearity

(e.g. ReLU in AlexNet) and immediately preceding the ImageNet classifier (which we discard).

In practice it is common to use the pretrained CNN as a fixed feature extractor and compute

the features for all images in the dataset. The image encoding v then takes the form:

v = W [CNN✓c(I)] + b. (3.1)

That is, we encode the image by taking its feature vector and passing it through a linear trans-

formation. We will train the parameters W, b and the vector v will continue to further processing

in the network. It is also worth pointing out that one can easily also backpropagate through the

CNN and adjust the parameters ✓c instead. This process is called finetuning, and while it is simple

conceptually it can in many cases be much more computationally expensive (the CNN often uses

most of the computation), and practically di�cult compared to simply referencing a precomputed

3. MATCHING IMAGES AND SENTENCES 31

4096�dimensional vector for any image.

Fragment-level image encoding

Following prior work [52], we observe that sentence descriptions make frequent references to objects

and their attributes. Therefore, to encode images into sets of vectors we follow Girshick et al. [29]

to detect objects in every image with a Region-based Convolutional Neural Network (R-CNN). The

CNN is pre-trained on ImageNet [14] and finetuned on the 200 classes of the ImageNet Detection

Challenge [84]. We then use the top 19 detected locations in addition to the whole image (so 20

regions in total) and compute the representations based on the pixels Ir inside each bounding box

region with:

vr = W [CNN✓c(Ir)] + b, (3.2)

where, as described in Section 3.2.1, CNN(Ir) transforms the pixels inside bounding box region Ir

into (e.g.) 4096-dimensional activations of the fully connected layer immediately before the classifier.

The matrix W has dimensions h⇥ 4096, where h is the size of the multimodal embedding space (h

takes on values of approximately 1,000 in our experiments). Every image is thus represented as a

set of h-dimensional vectors {vr | r = 1 . . . 20}.
Finally, notice that in this encoding we use an external, pretrained and fixed object detector to

identify 19 regions that are to be encoded. This is undesirable because the resulting approach is

not entirely end-to-end, but we adopt this approach to simplify the processing pipeline and keep the

computational complexity low. In Chapter 5 we will instead adopt an approach where the object

detector is trained jointly and fully end-to-end with the dense captioning task.

3.2.2 Representing Sentences

We saw that we can use neural networks to encode an image into a vector v or a set of fragment

vectors {v} with functions made of di↵erentiable components and parameters. We now discuss

analogous encoders for sentences. That is, we are given a sequence of words that make up a sentence

and we would like to represent it as either one vector s or a set of fragment vectors {s}.
For the purposes of this section assume that each sentence is represented as a sequence of words

drawn from a fixed vocabulary V of all possible words. Each word is encoded using the one-hot

encoding that is all zero except for a single 1 at the index of the word in the vocabulary. That is,

we will denote It 2 R|V | to be the one-hot encoding of the t�th word in a sentence, and a sentence

is a sequence of one-hot vectors [I1, . . . , IT], where T is the number of words.

As a technical side note, in practice some words might be very rare in the training data; in this

case it is common to add a special UNK word (short for “unknown”) to the vocabulary and remap all

rare words (e.g. occurring only 5 times in the training data) to the UNK word during preprocessing

3. MATCHING IMAGES AND SENTENCES 32

[64].

Bag of Words

One of the simplest ways to encode a sentence is to think of each word as an individual sentence

fragment, and to compute its representation by projecting the one-hot vector I with a linear trans-

formation: st = WwIt, where Ww is a matrix of parameters to learn during backpropagation. Since

I is a one-hot vector, this operation e↵ectively selects a single row of the matrix Ww. We thus call

this the word embedding matrix (in practice common word embedding sizes are on the order of 500).

If overfitting is a concern due to lack of data, the matrix Ww can also be initialized (and possibly

also fixed) to word vectors obtained from other unsupervised objectives, such as word2vec [69].

The individual word representations can serve as the fragments for the sentence or we can combine

them into one sentence representation through a sum (i.e. s =
P

t st), or an average. This encoding

is capable of representing what words occur somewhere in the sentence, but their spatial relationships

within the sentence are lost during the encoding. For example, in encoding the sentence “a red cup

on a wooden table” we would know that each word occurred, but we would lose the information

about which objects the words “red” or “wooden” were describing.

n-grams. One can extend this approach by encoding not the individual words alone but bigrams

(pairs), or trigrams (triples) of contiguous words. More generally we refer to these as n-gram

representations. The simplest approach might be to concatenate the individual word representations

into one vector [st, st+1], or to forward this concatenated vector through one or two layers of a fully-

connected neural network. This would allow the network to distinguish and represent the presence

of a “red cup” instead of “red” and “cup” individually, but longer relationships within the sentence

would still be lost.

Recurrent Neural Network

A recurrent neural network sentence encoder can in principle produce a representation that is a

function of all words in the sentence and all of their (possibly long) relationships. A common

approach is to encode every word first using a word embedding matrix and then feed each encoded

word into an RNN one word at a time. Concretely, we would compute for t = 1, . . . , T :

h0 = ~0

et = WwIt
ht = f(Whhht�1 +Wxhet + b).

Here, the first line initializes the hidden state of the RNN at a vector of zeros, the second line

3. MATCHING IMAGES AND SENTENCES 33

computes the word embeddings, and the last line is a vanilla RNN recurrence that strings together

all word representations (in practice we could use the LSTM recurrence instead). The parameters

Ww,Whh,Wxh, b are learned with backpropagation and the non-linearity f is commonly set as tanh

or ReLU. Finally, the representation s for the entire sentence could either be the last hidden state

of the RNN (s = hT), or the sum or average of all hidden states (s =
PT

t=1 ht).

It is also worth pointing out that in the above equations we’re stacking two linear transformations

(Ww,Wxh) since Wxhet = WxhWwIt. This only makes sense if the word embedding size is smaller

than the hidden size of the RNN H, in which case the two matrices multiplied together form a

low-rank factorization of a larger H ⇥ |V | matrix (where recall that |V | is the number of words in

the vocabulary).

Recursive Neural Networks

Recurrent Neural Networks are a simple sentence encoder that is both rich (in that it encodes all

words and their relationships) and very e�cient to implement (since it scans linearly across the

sentence). However, it can be argued that sentences have a compositional structure by construction

and that a better suited encoder would respect this hierarchical structure during encoding. Recursive

Neural Networks are a generalization of Recurrent Neural Networks in that they allow more complex

encoding over arbitrary tree structure (a vanilla RNN is a special case where the tree is a chain).

Unfortunately, it is not clear how one can assign a tree for each sentence in a principled manner.

Doing so with di↵erentiable operations is nontrivial, so previous work often resorts to using o↵-

the-shelf parsing algorithm on the sentence (e.g. either extracting a constituency parse tree or a

dependency tree [13]) to determine the merging order. Another downside is that recursive networks

are more di�cult to parallelize because every sentence has a di↵erent merging path. However, this

concern can be alleviated with careful implementation [8].

The core idea is to start with word vectors at the leafs of the tree and then recursively merge

their representations all the way to the root node of the tree, which becomes the representation

for the entire sentence. That is, the representation hn for some node in the tree n is computed

as hn = m(hc1n
, . . . , hcqn), where c1n, . . . , c

q
n are the children nodes of node n and m is a merging

function. The base case are the individual words, for which the hidden representation is computed

with an embedding matrix as before.

For a constituency parse tree which organizes the hierarchy of a sentence into a binary tree, the

merging function in a CT-RNN [91] could take the form hn = f(Wlhc1n
+ Wrhc2n

), where f is a

nonlinearity (e.g. tanh), Wl,Wr are parameter matrices, and hc1n
, hc2n

are the left and right child

representations, respectively.

A DT-RNN [90] instead merges representations over a dependency tree (we use the collapsed tree

formalism of the Stanford dependency parser [13]), which organizes words in a tree structure linked

by labeled edges describing the syntactic relationships. The dependency tree has the advantage that

3. MATCHING IMAGES AND SENTENCES 34

it pushes the central content words such as the main action or verb and its subject and object to

the top of the tree, giving them a larger influence on the final sentence representation. The merging

formula takes a very similar form to the one provided above, except it accommodates multiple

possible children per node [90]. Finally, the SDT-RNN (the first S stands for “semantic”) is an

extension of the DT-RNN where every type of relationship in the dependency tree is associated with

a relationship-specific weight matrix in the recursive merging function.

Bidirectional Recurrent Neural Network

Lastly, the Bidirectional Recurrent Neural Network (BRNN) [85], consists of one RNN that processes

the sentence left to right and another separate RNN that processes the sentence right to left. The

hidden vectors from both sides are concatenated (or averaged) to produce a representation at each

word. In this way, the representation of each word is enriched by a variably-sized context around

that word. The precise form of the BRNN we use looks as follows for t = 1, . . . , T :

xt = Ww t

hf
t = f(Wfxxt +Wfh

f
t�1 + bf)

hb
t = f(Wbxxt +Wbh

b
t+1 + bb)

st = f(Wd(h
f
t + hb

t) + bd).

Note that the BRNN consists of two independent streams of processing, one moving left to right

(hf
t) and the other right to left (hb

t). The final h-dimensional representation st for the t-th word is

a function of both the word at that location and also its surrounding context in the sentence. A

typical size of the hidden representation in our experiments ranges between 300-600 dimensions. The

typical settings for the activation function f are either ReLU or tanh. The st function as individual

fragment vectors, encoding the word t and its context from both sides, as mediated by the two

RNN streams.

3.2.3 Alignment Objective

We’ve now discussed several approaches for computing either a global representation where every

image is encoded into a vector v and every sentence into a vector s, or fragment representations

where every image is encoded into a set of vectors {v} and every sentence into a set of vectors {s}.
We now discuss the loss functions that can align vectors of the two modalities by thinking of these

vectors as occupying a common multimodal embedding space.

3. MATCHING IMAGES AND SENTENCES 35

Aligning Images and Sentences

Suppose that we have a training set of N images and sentences. Using the global image and sentence

encoders we can compute the vectors vk, k = 1, . . . , N and sl, l = 1, . . . , N , where vk, sl correspond

if k = l and do not correspond otherwise. One of the first and simplest alignment loss function one

might think of uses the L2 distance loss:

L =
NX

k=1

kvk � skk22. (3.3)

This loss encourages the image and their corresponding sentence representations to be close.

Unfortunately, this loss requires ad-hoc alternating optimization to prevent the trivial solution v =

~0, s = ~0 regardless of the input. A more natural alternative that also works significantly better in

practice [90, 45] can be formulated in the max margin framework. In particular, first notice that we

can use the inner product S = vT s between an image and sentence vector to be a score indicating

the degree of compatibility.

Interpretation. Since vT s = kvk|sk cos(✓), the dot product is related to the angle between the

two vectors (assuming they are both of similar lengths). Therefore, this modeling choice has the

interpretation of embedding both images and sentences into a common multimodal embedding space

and thinking of two objects as compatible if they point in a similar direction. An alternative concrete

interpretation of the dimensions of v, s is that they can learn to detect related features across the

two modalities. For example, the first dimension of v could be positive if there are fur-like textures

in the image and the first dimension of s could be positive if “dog” or some other furry animal was

mentioned somewhere in the sentence. Then if both of these dimensions are either both positive

(both present) or both negative (both absent), they will positively interact in the dot product and

increase the score of the match. Conversely, if fur textures are detected in the image but the sentence

does not mention any fur-like animals the matching score would decrease.

Interpreting the score of the match to be S = vT s, we could desire that the correct image-

sentence pairs have positive scores and the incorrect ones to have negative scores. Inspired by a

binary support vector machine, we could hence formulate the score as follows:

L(✓) =
NX

k=1

NX

l=1

max(0, 1� yklSkl) + �k✓k22, (3.4)

where ykl is +1 if k = l and �1 otherwise. Therefore, if k = l then we obtain zero loss only if the

matching score is greater than 1, and if k 6= l then we obtain zero loss only if the matching score is

lower than -1. The regularization is added to serve the same function as it does in a binary support

vector machine, where it gives rise to the max-margin property of the SVM. Note that similar to

the SVM objective, it is safe to use 1 as the desired score margin instead of introducing another

hyperparameter because the absolute scores can be arbitrarily inflated or shrunk by uniformly scaling

3. MATCHING IMAGES AND SENTENCES 36

the weights by a constant and the regularization strength on the weights already encourages the

weights to be low. Since the absolute scale of the weights is arbitrary it is safe to set the margin to

any specific fixed constant.

The loss above is sensible but its form still imposes constraints that are stronger than what we

desire. In particular, it su�ces that given any image we would like the correct sentence to have a

larger score than any other sentence (by a margin), and conversely, given any sentence we would

like the correct image to score higher than any other image (by a margin). We can express this as:

L(✓) =
X

k

hX

l

max(0, Skl � Skk + 1)

| {z }
rank images

+
X

l

max(0, Slk � Skk + 1)

| {z }
rank sentences

i
+ �k✓k22. (3.5)

This formulation has the advantage that it precisely expresses what we desire out of the scores

and nothing more. In particular, it does not impose a particular absolute scale on the scores S -

they are free to vary as long as they satisfy the desired constraints and therefore as long as they

correctly rank the images and the sentences.

Aligning Image Sentence Fragments

We’ve seen that if we have one image vector v and a sentence vector s then we can compute the

matching score as the inner product S = vT s. We now discuss the case of multiple fragment vectors

{v}, {s} for both images and sentences, respectively. Recall that the vectors {v} are CNN features

from important regions in the image, such as those that correspond to objects in the scene. The

vectors {s} encode the words in the sentence, enriched by their context in the sentence. Intuitively,

if we have a sentence such as “dog leaps to catch a frisbee” (Figure 3.2.3), then we would like the

score to be high if the entities mentioned in the sentence can be found somewhere in the sentence.

In this example, we should be able to identify a leaping dog, the concept of catching, and a frisbee.

Notice that there is an asymmetry between these two domains: anything that is mentioned in the

sentence should be found somewhere in the image if the score is to be high, but the converse is not

true; images may contain many other entities that might not be mentioned in the captions because

they have a low saliency, but this shouldn’t prevent us from assigning a high matching score. This

asymmetry motivates us to compute the matching score of the image-sentence pair as a function of

the image-sentence fragment scores as follows:

S =
X

t

max
i

vTi st. (3.6)

That is, for every sentence fragment st, maxi vTi st evaluates the best match of that fragment to

any of the image fragments. Then, the
P

t adds up the extent to which every sentence fragment

3. MATCHING IMAGES AND SENTENCES 37

Figure 3.2: Diagram for our model. The network
takes an image and a sentence and computes the
image-sentence matching score S. The image is en-
coded using the image fragment encoding into a set
of vectors {v} - the CNN features corresponding to
objects detected with an R-CNN [29] and the full
image (Section 3.2.1). The sentence is encoded into
fragment vectors {s} using a bidirectional RNN (Sec-
tion 3.2.2). Equation 3.6 computes the pairwise in-
ner products between all fragments across the two
modalities (the magnitudes are shown in grayscale,
where white is high an black is low), and then these
scores are processed with a max across columns and a
sum across rows to compute the image-sentence score.
The model is optimized using the loss in Equation 3.5.

aligns to something in the image to compute the final matching score.

3.3 Optimization

To optimize the model we use SGD with mini-batches of 100 image-sentence pairs and momentum

of 0.9. We cross-validate the learning rate and the regularization strength. We also use dropout

regularization in all layers except in the recurrent connections [108] and clip gradients elementwise at

5 (assuming that the loss/gradients are normalized across a batch but not across time). We use the

AlexNet to extract features for whole images or detected objects and keep its weights fixed during

optimization (i.e. we do not finetune the CNN). This is done purely as a practical simplification of

the experiments.

3.4 Experiments

In the following experiments we evaluate a model that uses the image fragment encoder and the

bidirectional RNN sentence fragment encoder. The image-sentence scores are computed using Equa-

tion 3.6 and the ranking loss function in Equation 3.5. We analyze this model quantitatively with

respect to prior work and baselines based on some of the simpler encoders described in the previous

section, and conduct qualitative study of the learned representations.

3.4.1 Data

Image-Sentence Datasets. The image-sentence datasets we use in our ranking experiments are

the Flickr8K [39] and Flickr30K [106] datasets. These datasets contain 8,000 and 31,000 images

respectively and each is annotated with 5 sentences by workers on Amazon Mechanical Turk (AMT).

3. MATCHING IMAGES AND SENTENCES 38

For both datasets we use 1,000 images for validation, 1,000 for testing and the rest for training

(consistent with [39, 45]).

Data Preprocessing. We convert all sentences to lowercase and discard non-alphanumeric charac-

ters. We filter words to that occur less than 5 times in the training set, which results in vocabularies

with 2538 and 7414 words for Flickr8K, and Flickr30K datasets respectively.

3.4.2 Ranking Evaluation

Evaluation metric. To evaluate the model we take the test set of (withheld) images and sentences

and retrieve items in one modality given a query item from the other. In particular, given an image

we would like its caption to rank high in the list of all test sentences sorted by the score S (we refer

to this as Image Annotation task), and conversely given a sentence we would like its image to rank

high in the list of all test images sorted by the score S (this is an Image Search task). Concretely,

for each item we record the rank r indicating the (integer) position of its correct associated item

in the ranked list (ideally this is 1 for all images and sentences, indicating that the correct result is

the top item in the list). We then report the median rank (Med r) across all items and Recall@K,

which measures the fraction of times the correct item was found among the top K results (ideally

this is 100%, and lowest possible is 0%). As a technical side note, each image has 5 sentences so in

the Image Annotation task we record the best (lowest) rank among the 5 correct sentences so that

the best achievable median rank remains 1. The result of these experiments can be found in Table

3.1, and example retrievals in Figure 3.3. We now highlight some of the takeaways.

Fragment representations yield higher performance. First, our fragment-based full model

(“Our model: BRNN”) dramatically outperforms Socher et al. [90] (e.g. Recall@10 41.1 ! 61.4

in Image Annotation and 41.1 ! 50.5 in Image Search for Flickr30K), who trained with the same

ranking loss but used a global image encoder and a global sentence encoder (a Recursive Neural

Network). However, this comparison is not entirely fair because Socher et al. also use a less powerful

CNN based on an autoencoder [56], while our results use the AlexNet [51] which displays superior

performance on the ImageNet challenge [84].

A similar ranking loss was adopted by Kiros et al. [47] who use an LSTM sentence encoder.

We list their performance with a CNN that is equivalent in power (AlexNet [51]) to the one used

in this work, but similar to Vinyals et al. [98] they outperform our model with a more powerful

CNN (VGGNet [88] and GoogLeNet [93] respectively). However, controlling for the strength of

the CNN we again see an improvement in using fragment-level encoders and alignment scores (e.g.

50.9 ! 61.4 for Image Annotation R@10 and 46.3 ! 50.5 for Image Search R@10).

These findings are consistent with Karpathy et al. [45] (“DeFrag”), who conduct controlled

experiments comparing fragment-level models to global models and find consistent improvements.

Since we use di↵erent word vectors, dropout for regularization, di↵erent cross-validation ranges and

larger embedding sizes, we re-implemented their loss for a fair comparison (“Our implementation of

3. MATCHING IMAGES AND SENTENCES 39

Image Annotation Image Search
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Flickr8K
Kiros et al. [47] 13.5 36.2 45.7 13 10.4 31.0 43.7 14
Mao et al. [65] 14.5 37.2 48.5 11 11.5 31.0 42.4 15
Our implementation of DeFrag [45] 13.8 35.8 48.2 10.4 9.5 28.2 40.3 15.6
Our model: DepTree edges 14.8 37.9 50.0 9.4 11.6 31.4 43.8 13.2
Our model: BRNN 16.5 40.6 54.2 7.6 11.8 32.1 44.7 12.4

Flickr30K
SDT-RNN (Socher et al. [90]) 9.6 29.8 41.1 16 8.9 29.8 41.1 16
Kiros et al. [47] 14.8 39.2 50.9 10 11.8 34.0 46.3 13
Mao et al. [65] 18.4 40.2 50.9 10 12.6 31.2 41.5 16
Donahue et al. [18] 17.5 40.3 50.8 9 - - - -
DeFrag (Karpathy et al. [45]) 14.2 37.7 51.3 10 10.2 30.8 44.2 14
Our implementation of DeFrag [45] 19.2 44.5 58.0 6.0 12.9 35.4 47.5 10.8
Our model: DepTree edges 20.0 46.6 59.4 5.4 15.0 36.5 48.2 10.4
Our model: BRNN 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2
Vinyals et al. [98] (more powerful CNN) 23 - 63 5 17 - 57 8

Table 3.1: Image-Sentence ranking experiment results. R@K is Recall@K (high is good). Med r is the

median rank (low is good). In the results for our models, we take the top 5 validation set models, evaluate

each independently on the test set and then report the average performance. The standard deviations on

the recall values range from approximately 0.5 to 1.0.

DeFrag”). Their model uses a more complicated loss function made up of two losses (fragment loss

and global loss) which we eliminate in favor of the simpler and more powerful Equation 3.6 and the

ranking loss function in Equation 3.5. To examine this change in isolation we remove the BRNN

and used dependency tree relations exactly as described in Karpathy et al. [45] to encode sentence

fragments. The only di↵erence between that model (“Our model: DepTree edges”) and the one of

Karpathy et al. [45] is our simpler loss function and we see that the formulation developed here

achieves consistent improvements (58.0 ! 59.4 and 47.5 ! 48.2 for R@10 in annotation and search

respectively).

We also list the cited performance of approaches from Mao et al. [65] and Donahue et al. [18] but

these models are based on an image captioning model that is trained with maximum likelihood and

repurposed for ranking, while our objective directly optimizes correct ranking performance. This

could partly explain our superior performance in both cases.

In summary, compared to other work that uses AlexNets, our full model shows consistent im-

provement that we can trace to our fragment-level treatment of images and sentences. Since fragment

representations extract much more raw information from the image it is possible that the gap could

be closed with much larger embedding sizes. However, this extension is non-trivial because the num-

ber of parameters in the model would also start to grow very quickly, while the fragment approach

does not introduce any more parameters than a global encoding method. However, as we’ll see in

the next section, the fragment-level approach does not only lead to better results but also has the

benefit of providing interpretable visualizations that allow us to examine the internal computations

and explicit groundings that support the model’s decisions.

BRNN outperforms dependency tree relations. Our best model uses the BRNN to encode

sentence fragments. The dependency tree relations were previously shown to work better than using

3. MATCHING IMAGES AND SENTENCES 40

Figure 3.3: Example alignments predicted by our model. For every test image above, we retrieve
the most compatible test sentence and visualize the highest-scoring region for each word and the
associated scores (vTi st). We hide the alignments of low-scoring words to reduce clutter. We assign
each region an arbitrary color.

only individual words or bigrams [45]. In turn, we observe in our experiments that using the

BRNN as an encoder further improves the performance (59.4 ! 61.4 and 48.2 ! 50.5 for R@10 in

annotation and search respectively). Compared to using an external dependency tree parser, the

BRNN is a more end-to-end encoding approach that does not rely on computation that we cannot

backpropagate through. Moreover, compared to using dependency tree edges the BRNN has the

capacity to base the encoding of each fragment on more than 2 words.

3.4.3 Qualitative Evaluation

Qualitative. As can be seen from example groundings in Figure 3.3, the model discovers interpretable

visual-semantic correspondences, even for small or relatively rare objects such as an “accordion”.

These would be likely missed by models that only reason about full images. Note that one limitation

of our model is that it does not explicitly handle or support counting. For instance, the last example

we show contains the phrase “three people”. These words should align to the three people in the

image, but our model puts the bounding box around two of the people. In doing so, the model may

be taking advantage of the BRNN structure to modify the “people” vector to preferentially align

to regions that contain multiple people. However, this is still unsatisfying because such spurious

detections only exist as a result of an error in the RCNN inference process, which presumably failed

to localize the individual people.

3. MATCHING IMAGES AND SENTENCES 41

Magnitude Word Magnitude Word
0.42 now 2.61 kayaking
0.42 simply 2.59 trampoline
0.43 actually 2.59 pumpkins
0.44 but 2.58 windsurfing
0.44 neither 2.56 wakeboard
0.45 then 2.54 acrobatics
0.45 still 2.54 sousaphone
0.46 obviously 2.54 skydivers
0.47 that 2.52 wakeboarders
0.47 which 2.52 skateboard
0.47 felt 2.51 snowboarder
0.47 not 2.51 wakeboarder
0.47 might 2.50 skydiving

Figure 3.4: Left: Flickr30K test set regions with high vector magnitude, indicating a strong influence
on the image-sentence score. Right: This table shows the top magnitudes of vectors (kstk) for
words in Flickr30K. Since the magnitude of individual words in our model is also a function of their
surrounding context in the sentence, we report the average magnitude.

We can examine another form of a qualitative retrieval experiment in which we consider a query

text snippet and then retrieve image regions across the entire test set that has the highest average

score with each word in the query. We show examples of such queries in Figure 3.5. Notice that the

model is sensitive to compound words and modifiers. For example, “red bus” and “yellow bus” give

very di↵erent results. Additionally, it can be seen that the quality of the results deteriorates for less

frequently occurring concepts, such as “straw hat”. However, we emphasize that the model learned

these visual appearances of text snippets from raw data of full images and sentences, without any

explicit correspondences. We have additionally published a web demo that displays our alignment

results for all images in the MS COCO test set.1

Learned region and word vector magnitudes. An appealing feature of our alignment model

is that it learns to modulate the importance of words and regions by scaling the magnitude of their

embedding vectors s, v. To see this, recall that we compute the image-sentence similarity between

image and sentence as S =
P

t maxi vTi st.

Disciminative words. As a result of this formulation, we observe that representations of visually

discriminative words such as “kayaking, pumpkins“ tend to have higher magnitude in the embedding

space, which translates to a higher influence on the final image-sentence scores due to the inner

product. Conversely, the model learns to map stop words such as “now, simply, actually, but” near

the origin, which reduces their influence. The table in Figure 3.4 shows the top few words with

highest and lowest magnitudes kstk.
Discriminative regions. Similarly, image regions with discriminative entities are assigned vectors

of higher magnitudes by our model. This can be be interpreted as a measure of visual saliency, since

these regions would produce large scores if their textual description was present in a corresponding

sentence. We show some regions with high magnitudes in Figure 3.4 (left). Notice the common

occurrence of often described and easily visually identifiable regions such as balls, bikes, helmets.

1
http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/

3. MATCHING IMAGES AND SENTENCES 42

“red bus”

“yellow bus”

“sprinkled donut”

“bowl of fruit”

“straw hat”

Figure 3.5: Examples of highest scoring regions for queried snippets of text, on 5,000 images of MS
COCO test set images.

3.5 Conclusions

We have developed a model that can match images and sentences. The model consists of a single

neural network that takes image-sentence pairs and is trained end-to-end with a ranking objective

over image-sentence datasets. Our evaluation shows strong performance compared to previous meth-

ods and baseline approaches that use simpler (global) image and sentence encoders. Our qualitative

experiments also show that the specific structure of our architecture allows us to inspect the model’s

predictions and gain an understanding of its predictions.

One of the limitations of the model is that we assumed an external object detector (RCNN) to

extract salient regions and their CNN features. In Chapter 5 we describe a model that includes

the object detection module in the model architecture. Another limitation is that we model both

the image and the sentence as a set of vectors, discarding a lot of information such as the spatial

position of each bounding box in the image. Therefore, the model would not be able to distinguish

between sentences such as “a dog on the left of a person” and “a dog on the right of a person”.

4

Generating Image Captions

In the previous chapter we’ve developed a model that can annotate images with sentences by itera-

tively checking a matching score with one image and many candidate sentences written by humans.

This represents a step up from annotating an image wish a single discrete category, but the approach

su↵ers from multiple limitations:

1. We are restricted to only a finite collection of sentences and the algorithm is incapable of

mixing and matching the individual pieces of sentences and generalizing to new concepts.

2. The approach is ine�cient because in order to label an image we must iterate over many

di↵erent sentences and check their score one by one.

3. The approach is unsatisfying; when humans describe images they do so e�ciently and di-

rectly; it doesn’t feel as though we are internally matching thousands of full-formed candidate

descriptions against the image.

In this chapter we develop a model that can take an image and directly generate its sentence

description. The model is based on a novel combination of a Convolutional Neural Network to

process the image and a Recurrent Neural Network Language Model that is conditioned on the

image information. Unlike previous pioneering work in the image captioning literature [26, 52] our

model is trained end-to-end on raw data and with few explicit assumptions. The model allows us to

sample likely descriptions of images in a simple, e�cient feedforward process. Our experiments show

that this approach allows us to outperform retrieval baselines similar to the ones in the previous

chapter that are constrained to a finite collection of sentences to choose from.

43

4. GENERATING IMAGE CAPTIONS 44

4.1 Related Work

A number of approaches pose the task of generating descriptions for images as a retrieval problem,

where the most compatible annotation in the training set is transferred to a test image [26, 39,

41, 73, 90], or where training annotations are broken up and stitched together [53, 55, 60]. Several

approaches generate image captions based on fixed templates that are filled based on the content of

the image [1, 21, 26, 35, 52, 103, 104] or generative grammars [105, 70], but this approach limits the

variety of possible outputs.

More closely related to us is the approach of Kiros et al. [47, 48] who developed a log-bilinear

neural network model that generates captions based on a finite length context window. Several

approaches that alleviate the finite context constraint have been developed in parallel with this

work based on a Recurrent Neural Network language model [10, 18, 25, 65, 98]. Our RNN is simpler

than most of these approaches but also su↵ers slightly in performance. We quantify this comparison

in our experiments. Finally, Recurrent Neural Networks have been previously used or proposed in

the context of language modeling [4, 68, 92], but we additionally condition these models on images.

4.2 Model

In this section we assume an input set of images, each annotated with a sentence description. The

key challenge is in the design of a model that can predict a variable-sized sequence of words for each

image.

RNN language models. We can look to Natural Language Processing (NLP) literature

for inspiration on how to tackle this problem. In particular, language modeling is a common

task in NLP where one wants to represent probability distributions over sentences (treated as se-

quences of words). In particular, we would like to model the joint distribution p(x1, . . . , xT) where

x1, . . . , xT are words. Notice that we can factor this joint distribution into a product of marginals:

p(x1, . . . , xT) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xT |x1, . . . , xT�1) =
QT

t=1 p(xt|x1, . . . , xt�1). There-

fore, we can represent distributions over sentences by modeling the conditional probability of a word

given all the previous words in the sequence. Previous work has relied on Recurrent Neural Net-

works (RNNs) [22, 68, 92], to model this conditional probability since it can (in principle) capture

dependencies of arbitrary lengths between the words, unlike the more traditional n-gram models

that only condition a word based on the last n words before it, usually with a lookup table based

on counts and smoothing techniques for handling outliers.

Multimodal RNN language model. We explore a simple but e↵ective extension that addi-

tionally conditions the language model’s generative process on the content of an input image. We

call this model a Multimodal RNN. During training our Multimodal RNN takes the raw image pixels

I and a sequence of input vectors (x1, . . . , xT). The vectors xt could be linear projections of one-hot

input vectors using a word embedding matrix that can be learned with backpropagation, or if the

4. GENERATING IMAGE CAPTIONS 45

Figure 4.1: Diagram of the Multimodal Recurrent
Neural Network model. Each arrow indicates a
functional dependence. The RNN takes a word
vector (green) and the context vector from previ-
ous time steps (yellow) and defines a distribution
over the next word in the sentence (blue vectors).
The RNN is conditioned on the image informa-
tion at the first time step (the arrow annotated
with the weight matrix Whi. START and END
are special tokens denoting the beginning and the
end of the sentence.

data size is a concern they can be set according to a separate criterion (e.g. word2vec [69]). The

Multimodal RNN then computes a sequence of hidden states (h1, . . . , hT) and a sequence of output

vectors (y1, . . . , yT) by iterating the following recurrence relation for t = 1 to T :

bv = Whi[CNN✓c(I)] (4.1)

ht = f(Whxxt +Whhht�1 + bh + {t = 1}� bv) (4.2)

yt = Wohht + bo. (4.3)

In the equations above, Whi,Whx,Whh,Woh and bh, bo are learnable parameters, CNN✓c(I) is

the last feature layer of a CNN (after non-linearity), f is the activation function (we use ReLU), and

the hidden state h0 we initialize to a zero vector. The output vectors yt hold the logits of all words

in the dictionary. The vocabulary also contains an additional special END token that corresponds

to the period at the end of the sentence, and which we expect the RNN to always predict as the last

word in any sentence. Note that we provide the image context vector bv to the RNN only at the

first iteration (modulated by a multiplicative interaction with the delta function {t = 1}), which
we found to work better than providing this information at each time step (possibly due to easier

overfitting). Note that the RNN has to juggle two tasks simultaneously: 1) it has to remember

the image information in its hidden state and 2) it has to use its hidden state to maintain internal

variables that allow it to track context and predict the desired sequences. For the purposes of

achieving 1), note that the RNN has the capacity to use some dimensions of h to store the image

information by learning identity recurrent connections for these units, which would exactly preserve

the image information. E.g. to exactly store and maintain the first hidden state the RNN would

learn the first row of Whh to be [1, 0, 0, . . . , 0], and the first row of Whx to be all zero. A typical size

of the hidden layer of the RNN in our experiments is 512 neurons.

RNN training. The training proceeds as follows (refer to Figure 4.1): We set h0 = ~0, x1 to a

special START vector, and the desired label for y1 to be the first word in the ground truth sequence.

4. GENERATING IMAGE CAPTIONS 46

Analogously, at the second time step t = 2, we set x2 to the word vector of the first word and

expect the network to predict the second word, etc. Finally, on the last step when xT represents the

last word, the target label is set to a special END token. The cost function is to maximize the log

probability assigned to the target labels (i.e. the Softmax classifier, or the cross-entropy loss).

Finally, note that the number of time steps T is one greater than the number of words in the

ground truth caption for the image due to the o↵set introduced by the START and END tokens. For

example, a caption with 7 words would require T = 8 applications of the recurrence. In practice we

upper bound T to 16. When constructing mini-batches of data during optimization we keep track of

the length of each individual caption in the minibatch. We then forward the RNN for 16 timesteps

on the entire minibatch regardless of the lengths of the individual sentences (this is done to preserve

the e�ciency of parallel computation). However, during backpropagation we keep track of the index

of last prediction for each example in the minibatch and backpropagate accordingly. An alternative

and possibly faster solution is to pad sequences with END tokens and expect the RNN to always

predict END token if the END token is fed in as the input. This way there is no need to track the

indices of the last word for each example in a minibatch.

RNN at test time. To predict a caption for a test image we compute the image representation

bv, set h0 = ~0, x1 to the START vector, compute the logits for the first word in the caption, y1,

and pass this through the softmax function to obtain a probability distribution for the first word

in the sequence. We normalize the distribution and sample a word (or pick the argmax), set x2 to

be its embedding vector, and repeat this process until the END token is generated. In practice we

found that beam search decoding [110] (e.g. with beam size 3) can improve results since it normally

produces a more globally likely caption for an input image, which might otherwise not be produced

in a greedy manner one word at a time. Beam search is implemented by keeping track of some fixed

number of the top most likely sequences so far at each time step. Therefore, if the beam size is

1 then this corresponds to greedily appending the single most likely word at that time step to the

prediction and proceeding forward.

4.3 Optimization

The Multimodal RNN is di�cult to optimize party due to the word frequency disparity between

rare words and common words (e.g. the END token occurs in every sentence and the word “a” in

nearly every sentence, while the word “toothbrush” but might only occur 5 times in total). We

achieved good results with RMSprop [96], which is an adaptive step size method that scales the

update of each weight by a running average of its gradient norm. We also experimented with SGD,

SGD+Momentum, Adadelta and Adagrad, but found these to work worse. In later experiments we

also used Adam, which slightly outperformed RMSProp. We found that clipping the gradients [75]

(we only experimented with simple per-element clipping) at an appropriate value provided consistent

4. GENERATING IMAGE CAPTIONS 47

but small improvements. Since the distribution of the words in English is highly non-uniform, the

model spends the first few iterations mostly learning the biases for the Softmax classifier such that

it is predicting every word at random with the appropriate dataset frequency. We found that we

could obtain faster convergence early in the training (and nicer-looking loss curves) by explicitly

initializing the biases of all words in the dictionary (in the Softmax classifier) to log probability

of their occurrence in the training data. Therefore, with small weights and biases set appropriately

the model right away predicts word at random according to their chance distribution. Lastly,

we experimented with initializing word representations xi with word2vec vectors [69], but found

that it was su�cient to train these vectors from random initialization without changes in the final

performance. Moreover, we found that the word2vec vectors have some unappealing properties when

used in multimodal language-visual tasks. For instance, all colors (e.g. red, blue, green) are clustered

nearby in the word2vec representation because they are relatively interchangeable in most language

contexts. However, their visual instantiations are very di↵erent.

4.4 Experiments

Datasets. The image captioning datasets we use in our experiments are the Flickr8K [39], Flickr30K

[106] and MS COCO [62]. These datasets contain 8,000, 31,000 and 123,000 images respectively

and each is annotated with 5 sentences using Amazon Mechanical Turk (AMT). For Flickr8K and

Flickr30K, we use 1,000 images for validation, 1,000 for testing and the rest for training (consistent

with [39, 45]). For MS COCO we use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lowercase and discard non-alphanumeric char-

acters. We filter words to those that occur at least 5 times in the training set, which results in 2538,

7414, and 8791 words for Flickr8k, Flickr30K, and MS COCO datasets respectively.

We now evaluate the ability of our RNN model to describe images. We use the VGGNet [88] as

the CNN. The word vector embedding size is 512 and the size of the hidden layer in the RNN is

512. As evaluation metrics we use the BLEU [74], METEOR [15] and CIDEr [97] scores computed

with the coco-caption code [9].1 Each one of these methods evaluates a candidate sentence by

measuring how well it matches a set of five reference sentences written by humans.

Hyperparameters. We use an RNN with 512 units in the hidden layer. Even with this

relatively low amount of units we find that the model is prone to overfitting, and we experimented

with introducing a dropout layer between the hidden state and the next step predictions with a

probability of dropping units from 0 to as high as 0.9, without significant performance deterioration

(dropout of about 0.5 worked well). The initial learning rate for Adam was 4e�4, but we found that

the performance was much less sensitive to the learning rate with Adam than with simple SGD.

Adam’s ↵ was set to 0.8 and � to 0.999, but these settings were not particularly sensitive. We also

1
https://github.com/tylin/coco-caption

4. GENERATING IMAGE CAPTIONS 48

Flickr8K Flickr30K MS COCO 2014
Model B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 B-1 B-4 ME-

TEOR
CIDEr

Nearest Neighbor — — — — — — — — 48.0 10.0 0.157 0.38
Mao et al. [65] 58 28 23 — 55 24 20 — — — — —
Google NIC [98] 63 41 27 — 66.3 42.3 27.7 18.3 66.6 24.6 — —
LRCN [18] — — — — 58.8 39.1 25.1 16.5 62.8 — — —
MS Research [25] — — — — — — — — — 21.1 0.207 —
Chen and Zitnick [10] — — — 14.1 — — — 12.6 — 19.0 0.204 —
Our model 57.9 38.3 24.5 16.0 57.3 36.9 24.0 15.7 62.5 23.0 0.195 0.66

Table 4.1: Evaluation of full image predictions on 1,000 test images. B-n is BLEU score that uses
up to n-grams. High is good in all columns. For future comparisons, our METEOR/CIDEr Flickr8K
scores are 16.7/31.8 and the Flickr30K scores are 15.3/24.7.

Word query Nearest words Word query Nearest words
car van, atv, snowmobile, minivan, figs, motorcyclist several multiple, couple, many, numerous

street highway, alleyway, sidewalk, roadway, freeway horse pony, ox, dirtbike, horseback, gira↵ee
bike bicycle, motorbike, moped, motorcycle two 2, five, four, three, multiple, 3

looks stares, look, staring, starring, gazing, looked jumps leaping, leaps, jumping, analog
red purple, maroon, burgundy, beige, jalapenos truck firetruck, van, scooter, panels, minivan

ocean sea, pond, waters, crashing, building, parasailers below underneath, beneath, inspects

Table 4.2: Learned word representations. Our model automatically arranges all words in an embed-
ding, where nearby words have similar a↵ects on the model. This table shows some example word
queries (in bold) and to the right of them their closest words in the learned embedding in order.

experimented with a model that received the image information at every time step instead of just

the first time step and observed lower BLEU-4 scores by about 2 points.

Multimodal RNN outperforms retrieval baseline. Our first comparison is to a nearest

neighbor retrieval baseline. Here, we annotate each test image with a sentence of the most similar

image from the training set, as determined by L2 distance based on the VGGNet [88] features.

Table 4.1 shows that the Multimodal RNN confidently outperforms this retrieval method. It is

worth noting that a more sophisticated nearest neighbor approach based on multiple neighbors and

a consensus voting strategy can be very competitive with state of the art CNN-RNN approaches

similar to the one explored in this work [16]. However, unlike retrieval approaches based on nearest

neighbor techniques or ranking methods as those explored in the previous chapter, the parametric

approach here takes only a fraction of a second to evaluate per image.

Comparison to other work. Several related models have been developed in parallel to this

work, which we include in Table 4.1 for comparison. Most similar to our model is the model of

Vinyals et al. [98]. Unlike this work where the image information is communicated through a bias

term on the first time step of the RNN, they incorporate the image information as a first word.

They also use a more powerful but more complex sequence learner (LSTM [38]), a di↵erent CNN

(GoogLeNet [93]), and report they results of a model ensemble while we report the results of a single

model. Donahue et al. [18] use a 2-layer factored LSTM (similar in structure to the RNN in Mao et

al. [65]). Both models appear to work worse than ours, but this is likely in large part due to their

use of the less powerful AlexNet [51] as the convolutional network. Compared to these approaches,

4. GENERATING IMAGE CAPTIONS 49

Figure 4.2: Example sentences generated by the Multimodal RNN for test images.

our model prioritizes simplicity and speed at a slight cost in performance.

Learned word representations. The model automatically arranges the words in an embedding

space using a word embedding matrix that is trained with backpropagation. We can inspect the

learned representations to gain an understanding of its layout. Table 4.2 shows some example words

and their nearest neighbors in the learned embedding representation, as determined by taking the

inner product of their word embedding vectors. Words that are close in this table have a similar

e↵ect on the model’s further predictions. For instance, we see that the model has learned that the

words cat, van, atv, snowmobile, minivan all have similar meanings and e↵ects. The model also

learned synonyms of several, jumps, below, red, etc. Notice that these embeddings are learned from

scratch on raw data, so the model must also figure out that both staring and its incorrectly spelled

form starring are both similar to the word looks.

Qualitative. The model generates sensible descriptions of images (see Figure 4.2) but commonly

makes subtle mistakes. For example, the man’s shirt on the first image is very dark blue, the

construction worker does not appear to be working on a road (but it is di�cult to tell), etc. We

were curious to quantify the extent to which the model creates novel descriptions. For example, the

first prediction “man in black shirt is playing a guitar” does not appear in the training set. However,

there are 20 occurrences of “man in black shirt” and 60 occurrences of “is paying guitar”, which the

model may have composed to describe the first image. The model often gets the right gist of the

scene, but sometimes guesses specific fine-grained words incorrectly.

4. GENERATING IMAGE CAPTIONS 50

We find one example result (“woman in bikini is jumping over a hurdle”) to be especially illu-

minating. This sentence does not occur in the training data. Our general qualitative impression of

the model is that it learns certain templates, e.g. [<noun>in <noun>is <verb>in <noun>],

and then fills these in based on textures in the image. In this particular case, the model has first

correctly identified a woman in bikini jumping. Then, the volleyball net has the visual appearance of

a hurdle and the phrase “jumping over a hurdle” occurs often in the training data (usually featuring

dogs), which together may have caused the model to insert this substring into one of its learned

sentence templates.

Caption statistics comparisons. We can can get a deeper understanding of the generated

captions by considering the statistics of generated sentences over the entire test set and comparing

them to the statistics of human-written captions.

First, in general, we find that a relatively large portion of generated sentences (60% with beam

size 7) can be found in the training data. This fraction decreases with lower beam size; For instance,

with beam size 1 this falls to 25%, but the performance also deteriorates (e.g. from 0.66 to 0.61

CIDEr). In our experiments we found that beam size of 2 worked best on the validation data

(followed closely by beam size 3), where 46% of the generated sentences can be found in the training

data. Note that the the training dataset contains a large amount of sentences (a bit more than half

a million). We find that the generated captions have a much lower variety than human captions. In

the entire dataset of training sentences we find that the ratio of unique sentences to all sentences

is 95.7% for human captions (i.e. barely any captions are repeats), while this ratio is 30% for the

generated captions. That is, of all predictions on the test set of 40,000 test images we find only

12,000 unique captions.

To further quantify the discrepancy in the variety, we parsed all generated and human-written

sentences with part of speech tags. For example, the sentence “a man sitting on a couch with a

dog” has the part of speech tags [DT, NN, VBG, IN, DT, NN, IN, DT, NN], where for example

DT are determiners (“a”, “the”, etc.), NN are nouns, VB* are verbs, etc. We can then analyze

the variety of part of speech tag forms. In particular, we find that the most common form of the

generated captions is [DT NN IN DT NN CC DT NN], which accounts for 4.5% of all generated

sentences (an example is “a plate with a sandwich and a salad”). This is followed by [DT NN VBZ

VBG IN DT NN IN DT NN] that accounts for 3.2% of generated captions (an example is “a boat

is sailing in the water near a city”). Overall, we find that the uniqueness ratio is very low for the

generated sentences (8%) while it is much higher for human-written sentences (73%). Moreover, the

top 10 of tag sequences account for 20% of the generated captions and the top 100 account for 53%

of the generated captions. For human-written captions the top 10 tag sequences only account for

2% of the captions, and the top 100 for 8% of the captions. This again shows that humans generate

significantly more varied sentence structures.

Lastly, we can study this discrepancy on the level of words. As mentioned, the vocabulary used

4. GENERATING IMAGE CAPTIONS 51

during training is almost 10,000 words. However, we find that the network’s predictions across the

entire test set only contain 1,079 unique words, indicating that 9,000 words are not learned, likely

because they are very rare in the training data. Moreover, 82% of the generated words come from

a collection of only 100 words, while the top 100 words used by humans only form 64% of all words

used in human captions. This indicates that the vocabulary used by humans is much richer and

varied, while the network uses a vocabulary of only 100 words 82% of the time, and commands up

to about 1,000 words in total.

We would like to emphasize that the networks only train on about 100,000 images, which is a

very small collection compared to ImageNet and its 1,200,000 images. In addition, the MS COCO

dataset does not have a large variety of images and qualitative assessment suggests that very large

portions of images contain gira↵es, elephants, zebras and toilets. Therefore, the networks are not

faced with a large quantity or variety during training and we expect that further improvements can

be obtained by scaling our image-sentence datasets along the size and variety dimensions.

4.5 Conclusions

We developed a model that can generate image captions. The model is a Recurrent Neural Net-

work Language Model conditioned on image information through an added interaction with the

representation produced by a Convolutional Neural Network. The entire model can be optimized

end-to-end on raw image-sentence datasets. Quantitative experiments demonstrate that the model

can caption images better than an approach based on a retrieval method that is only constrained

to a finite collection of sentences. Qualitative experiments display sensible properties of the learned

word representations and overall appealing and sometimes amusing captions. Statistical analysis of

the captions suggests that the results lack in variety compared to the variety of captions that humans

produce and we expect that further advances can be made both by more sophisticated models and

by scaling up the size and variety of the image-sentence datasets.

Although our results are encouraging, the model is subject to multiple limitations. First, the

model can only generate a description of one input array of pixels at a fixed resolution. A more

sensible approach might be to use multiple saccades around the image to identify all entities, their

mutual interactions and wider context before generating a description. Additionally, the RNN

receives the image information only through additive bias interactions, which are known to be less

expressive than more complicated multiplicative interactions [92, 38]. Finally, the model does not

provide an easy way to do image retrieval based on captions, as seen in the ranking task of Chapter

3. It is possible to search for images that would have been likely to generate the given caption, but

the model’s objective was not explicitly designed or trained for this testing protocol.

5

Dense Image Captioning

In Chapter 3 we saw that we can label images with sentences chosen from a finite set of human-written

captions. In Chapter 4 we then introduced a model that generate new sentences without being

constrained to merely choosing from a given collection of sentences. This approach is much more

computationally e�cient and satisfying philosophically because it can learn to compose snippets

of captions it has seen in the past to generate novel sentences, but it is still subject to several

limitations. In particular, if we feed a complex image to an image captioning model the network

may have to fall back on relatively vague and generic descriptions in an e↵ort to describe the full

image (e.g. “a group of people sitting in an o�ce”; see Figure 5.1, left). In this chapter we develop

DenseCap, a model that relaxes this constraint and can simultaneously both detect and describe

everything in a visual scene (Figure 5.1, right), including the full image as merely a special case.

a group of people in an office

black computer monitor
man wearing a blue shirt

sitting on a chair

people are in
the background

computer monitor on a desk

silver handle
on the wall

man with black hair

black bag
on the floor

red and
brown chair

wall is white

a group of people in an office

Figure 5.1: Left: An image captioning model is forced to fall back on a generic caption to describe
the image in one sentence. Right: The proposed DenseCap model can both localize and describe
all elements of the visual scene, including the full image as a special case.

52

5. DENSE IMAGE CAPTIONING 53

Classification

Cat

Captioning

A cat
riding a
skateboard

Detection

Cat

Skateboard

Dense Captioning
Orange spotted cat

Skateboard with
red wheels

Cat riding a
skateboard

Brown hardwood
flooring

label densityWhole Image Image Regions

label
complexity

Single
Label

Sequence

Figure 5.2: The Dense Captioning task (bot-
tom right) simultaneously combines the chal-
lenges of object detection (high label density,
x-axis) and image captioning (high label com-
plexity, y-axis). That is, the model must both
detect and describe all salient aspects of the
visual scene. Importantly, a dense caption-
ing model can also allow the converse task of
using a query description to search an image
collection and identify matching regions.

Our ability to e↵ortlessly point out and describe all aspects of an image relies on a strong

semantic understanding of a visual scene and all of its elements. However, despite numerous potential

applications, this ability remains a challenge for our state of the art visual recognition systems. In

the last few years there has been significant progress in image classification [84, 51, 109, 93], where

the task is to assign one label to an image. Further work has pushed these advances along two

orthogonal directions: First, rapid progress in object detection [86, 29, 94] has identified models

that e�ciently identify and label multiple salient regions of an image. Second, recent advances in

image captioning [9, 65, 43, 98, 102, 18, 10] have expanded the complexity of the label space from

a fixed set of categories to sequence of words able to express significantly richer concepts.

However, despite encouraging progress along the label density and label complexity axes, these

two directions have remained separate. In this work we take a step towards unifying these two

inter-connected tasks into one joint framework. First, we introduce the dense captioning task (see

Figure 5), which requires a model to predict a set of descriptions across regions of an image. Object

detection is hence recovered as a special case when the target labels consist of one word, and image

captioning is recovered when all images consist of one region that spans the full image.

Additionally, we develop a Fully Convolutional Localization Network architecture (FCLN) to

address the dense captioning task. Our model is inspired by recent work in image captioning [98,

43, 65, 18, 10] in that it is composed of a Convolutional Neural Network followed by a Recurrent

Neural Network language model. However, drawing on work in object detection [81], our second

core contribution is to introduce a new dense localization layer. This layer is fully di↵erentiable and

can be inserted into any neural network that processes images to enable region-level training and

predictions. Internally, the localization layer predicts a set of regions of interest in the image and

then uses bilinear interpolation [40, 32] to smoothly extract the activations inside each region.

We evaluate the model on the large-scale Visual Genome dataset, which contains 94,000 images

and 4,100,000 region captions. Our results show both performance and speed improvements over

approaches based on previous state of the art. We make our code and data publicly available to

support further progress on the dense captioning task.

5. DENSE IMAGE CAPTIONING 54

5.1 Related Work

Our work builds on recent work in object detection, image captioning, and soft spatial attention

that allows downstream processing of particular regions in the image.

Object Detection. Our core visual processing module is a Convolutional Neural Network (CNN)

[58, 51], which has emerged as a powerful model for visual recognition tasks [84]. The first application

of these models to dense prediction tasks was introduced in R-CNN [29], where each region of

interest was processed independently. Further work has focused on processing all regions with only

single forward pass of the CNN [36, 30], and on eliminating explicit region proposal methods by

directly predicting the bounding boxes either in the image coordinate system [94, 23], or in a fully

convolutional [63] and hence position-invariant settings [86, 81, 80]. Most related to our approach

is the work of Ren et al. [81] who develop a region proposal network (RPN) that regresses from

anchors to regions of interest. However, they adopt a 4-step optimization process, while our approach

does not require training pipelines. Additionally, we replace their RoI pooling mechanism with a

di↵erentiable, spatial soft attention mechanism [40, 32]. In particular, this change allows us to

backpropagate through the region proposal network and train the whole model jointly.

Image Captioning. Several pioneering approaches have explored the task of describing images with

natural language [2, 52, 26, 72, 89, 90, 54, 41]. More recent approaches based on neural networks

have adopted Recurrent Neural Networks (RNNs) [99, 38] as the core architectural element for

generating captions. These models have previously been used in language modeling [4, 31, 68, 92],

where they are known to learn powerful long-term interactions [44]. Several recent approaches

to Image Captioning [65, 43, 98, 18, 10, 47, 25] rely on a combination of RNN language model

conditioned on image information. A recent related approach is the work of Xu et al. [102] who

use a soft attention mechanism [11] over regions of the input image with every generated word. Our

approach to spatial attention is more general in that the network can process arbitrary a�ne regions

in the image instead of only discrete grid positions in an intermediate conv volume. However, for

simplicity, during generation we follow Vinyals et al. [98], where the visual information is only

passed to the language model once on the first time step.

Finally, the metrics we develop for the dense captioning task are inspired by metrics developed

for image captioning [97, 15, 9].

5.2 Model

Our goal is to design an architecture that jointly localizes regions of interest and then describes

each with natural language. The primary challenge is to develop a model that supports end-to-

end training with a single step of optimization, and both e�cient and e↵ective inference. Our

proposed architecture (see Figure 5.3) draws on architectural elements present in recent work on

object detection, image captioning and soft spatial attention to simultaneously address these design

5. DENSE IMAGE CAPTIONING 55

CNN

Image:
3 x W x H Conv features:

C x W’ x H’

Region features:
B x C x X x Y Region Codes:

B x D

LSTM
Striped gray cat

Cats watching TV

Localization Layer

Conv

Region Proposals:
4k x W’ x H’

Region scores:
k x W’ x H’Conv features:

C x W’ x H’
Bilinear Sampler Region features:

B x 512 x 7 x 7

Sampling Grid:
B x X x Y x 2

Sampling Grid
Generator

Best Proposals:
B x 4

Recognition
Network

Figure 5.3: Model overview. An input image is first processed a CNN. The Localization Layer
proposes regions and smoothly extracts a batch of corresponding activations using bilinear interpo-
lation. These regions are processed with a fully-connected recognition network and described with
an RNN language model. The model is trained end-to-end with gradient descent.

constraints.

In Section 5.2.1 we first describe the components of our model. Then in Sections 5.2.2 and 5.2.3 we

address the loss function and the details of training and inference.

5.2.1 Model Architecture

Convolutional Network

As the core visual processing module we use the VGG-16 architecture [88] due to its state-of-the-art

performance on the ImageNet challenge [84]. The network consists of 13 layers of 3⇥ 3 convolutions

interspersed with 5 layers of 2⇥2 max pooling. We remove the final (fifth) pooling layer, so an input

image of shape 3⇥W ⇥H gives rise to a tensor of features of shape C ⇥W 0 ⇥H 0 where C = 512,

W 0 =
⌅
W
16

⇧
, and H 0 =

⌅
H
16

⇧
(16 because we only have 4 max-pooling layers remaining, each halving

the spatial resolution). This tensor (in light blue in Figure 5.3) then feeds into the localization layer

(purple), discussed next.

Fully Convolutional Localization Layer

The localization layer receives an input tensor of activations, identifies spatial regions of interest and

smoothly extracts a fixed-sized representation from each region. Our approach is based on that of

Faster R-CNN [81], but we replace their RoI pooling mechanism [30] with bilinear interpolation [40],

allowing our model to propagate gradients backward through the coordinates of predicted regions.

5. DENSE IMAGE CAPTIONING 56

This modification also opens up the possibility of predicting a�ne or morphed region proposals

instead of rectangular bounding boxes [40], but we leave these extensions to future work.

Inputs/outputs. The localization layer accepts a tensor of activations of size C⇥W 0⇥H 0. It then

internally selects B regions of interest and returns three output tensors giving information about

these regions:

1. Region Coordinates: A matrix of shape B ⇥ 4 giving bounding box coordinates for each

output region.

2. Region Scores: A vector of length B giving a confidence score for each output region. Regions

with high confidence scores are more likely to correspond to ground-truth regions of interest.

3. Region Features: A tensor of shape B ⇥ C ⇥ X ⇥ Y giving features for each region; Each

region is hence represented by an X ⇥ Y grid of C-dimensional features (in our experiments

X,Y,C are (7,7,512) respectively as this is the spatial size of the last tensor in a VGGNet just

before the first fully-connected layer).

Convolutional Anchors. Similar to Faster R-CNN [81], our localization layer predicts region

proposal locations not in the raw absolute coordinate system of the image but by predicting o↵sets

from a set of anchor boxes. In particular, we project each point in the W 0 ⇥ H 0 grid of input

features back into the W ⇥ H image plane, and consider k anchor boxes of di↵erent aspect ratios

centered at this projected point. For each of these k anchor boxes, the localization layer predicts

a confidence score and four scalars regressing from the anchor to the predicted box coordinates.

These are computed by passing the input feature map through a 3⇥ 3 convolution with 256 filters,

a rectified linear nonlinearity, and a 1 ⇥ 1 convolution with 5k filters. This results in a tensor of

shape k ⇥W 0 ⇥H 0 containing scores and 4k ⇥W 0 ⇥H 0 o↵sets for all anchors.

Box Sampling. The previous step is done convolutionally (independently and in parallel across all

spatial positions in the W 0 ⇥H 0 grid), so the number of (scored) regions we produce at this stage of

processing is k⇥W 0⇥H 0. As an example, with k = 12 and a typical image of size W = 720, H = 540

(i.e. W 0 = 45, H 0 = 33) the localization layer will at this stage predict 45⇥ 33⇥ 12 = 17, 280 scored

regions. This is a very large number, so the localization layer will subsample the number of these

regions to a much smaller number (i.e. B << 17, 280 in this example). The subsampling (see

“Sampling” in Figure 5.3) is done di↵erently at training and at test time.

At training time, we follow the approach of [81] and sample a minibatch containing B = 256

boxes with at most B/2 positive regions and the rest negatives. A region is positive if it has an

intersection over union (IoU) of at least 0.7 with some ground-truth region. In addition, the predicted

region of maximal IoU with each ground-truth region is positive. A region is negative if it has IoU

< 0.3 with all ground-truth regions. Our sampled minibatch contains BP B/2 positive regions

and BN = B � BP negative regions, sampled uniformly without replacement from the set of all

5. DENSE IMAGE CAPTIONING 57

positive and all negative regions respectively. This subsampling is done only for e�ciency since it is

prohibitively expensive to process all regions for every image.

At test time we subsample using greedy non-maximum suppression (NMS) based on the predicted

proposal confidences to select the B = 300 most confident proposals. Note that the use of NMS here

is unsatisfying because our test time protocol di↵ers from the training regime (where no NMS was

carried out). Unfortunately it is non-trivial to overcome this limitation and designing a “neural”

NMS or alternative di↵erentiable suppression methods is a worthy goal for future work.

The coordinates and confidences of the sampled proposals are collected into tensors of shape

B ⇥ 4 and B respectively, and are output from the localization layer.

Box Regression. As an aside technical but important point, we adopt the parameterization of [30]

to regress from anchors to the region proposals. Given an anchor box with center (xa, ya), width

wa, and height ha, our model predicts scalars (tx, ty, tw, th) giving normalized o↵sets and log-space

scaling transforms, so that the output region has center (x, y) and shape (w, h) given by

x = xa + txwa y = ya + tyha (5.1)

w = wa exp(tw) h = ha exp(hw) (5.2)

This parameterization has the appealing property that when the network predicts all zero then

the predicted region will be exactly the anchor.

Bilinear Interpolation. After sampling, we are left with region proposals of varying sizes and as-

pect ratios. In order to interface with the full-connected recognition network and the RNN language

model, we must extract a fixed-size feature representation for each variably sized region proposal.

To solve this problem, Fast R-CNN [30] proposes an RoI pooling layer where each region proposal

is projected onto the W 0 ⇥H 0 grid of convolutional features and divided into a coarse X ⇥ Y grid

aligned to pixel boundaries by rounding. Features are max-pooled within each grid cell, resulting in

an X ⇥ Y grid of output features.

The RoI pooling layer is a function of two inputs: convolutional features and region proposal

coordinates. Gradients can be propagated backward from the output features to the input features,

but not to the input proposal coordinates. To overcome this limitation, we replace the RoI pooling

layer with with bilinear interpolation [32, 40], which is internally implemented by generating a

sampling grid and using it in a bilinear sampler transformation (shown in Figure 5.3 at the end of

the localization layer).

Concretely, given an input feature map U of shape C ⇥ W 0 ⇥ H 0 and a region proposal, we

interpolate the features of U to produce an output feature map V of shape C ⇥ X ⇥ Y . After

projecting the region proposal onto U we follow [40] and compute a sampling grid G of shape

X ⇥ Y ⇥ 2 associating each element of V with real-valued coordinates into U . If Gi,j = (xi,j , yi,j)

then Vc,i,j should be equal to U at (c, xi,j , yi,j); however since (xi,j , yi,j) are real-valued, we convolve

5. DENSE IMAGE CAPTIONING 58

with a sampling kernel k and set

Vc,i,j =
WX

i0=1

HX

j0=1

Uc,i0,j0k(i
0 � xi,j)k(j

0 � yi,j). (5.3)

We use bilinear sampling, corresponding to the kernel k(d) = max(0, 1 � |d|). The sampling

grid is a linear function of the proposal coordinates, so gradients can be propagated backward

into predicted region proposal coordinates. Running bilinear interpolation to extract features for all

sampled regions gives a tensor of shape B⇥C⇥X⇥Y , forming the final output from the localization

layer.

Recognition Network

The recognition network is a fully-connected neural network that processes region features from the

localization layer. The features from each region are flattened into a vector and passed through

two full-connected layers, each using rectified linear units and regularized using Dropout. For each

region this produces a code of dimension D = 4096 that compactly encodes its visual appearance.

The codes for all positive regions are collected into a matrix of shape B⇥D and passed to the RNN

language model.

In addition, we allow the recognition network one more chance to refine the confidence and

position of each proposal region. It outputs a final scalar confidence of each proposed region and

four scalars encoding a final spatial o↵set to be applied to the region proposal. These two outputs

are computed as a linear transform from the D-dimensional code for each region. The final box

regression uses the same parameterization as Section 5.2.1.

RNN Language Model

Following previous work [65, 43, 98, 18, 10] we use the region codes to condition an RNN language

model [31, 68, 92]. Concretely, given a training sequence of tokens s1, . . . , sT , we feed the RNN T +2

word vectors x�1, x0, x1, . . . , xT , where x�1 = CNN(I) is the region code encoded with a linear layer

and followed by a ReLU non-linearity, x0 corresponds to a special START token, and xt encode each

of the tokens st, t = 1, . . . , T . The RNN computes a sequence of hidden states ht and output vectors

yt using a recurrence formula ht, yt = f(ht�1, xt) (we use the LSTM [38] recurrence). The vectors

yt have size |V | + 1 where V is the token vocabulary, and where the additional one is for a special

END token. The loss function on the vectors yt is the average cross entropy, where the targets at

times t = 0, . . . , T � 1 are the token indices for st+1, and the target at t = T is the END token. The

vector y�1 is ignored. Our tokens and hidden layers have size 512.

At test time we feed the visual information x�1 to the RNN. At each time step we sample the

most likely next token and feed it to the RNN in the next time step, repeating the process until the

special END token is sampled.

5. DENSE IMAGE CAPTIONING 59

5.2.2 Loss Function

During training our ground truth consists of positive boxes and descriptions. Our model predicts

positions and confidences of sampled regions twice: in the localization layer and again in the recog-

nition network. We use binary logistic lossses for the confidences trained on sampled positive and

negative regions. For box regression, we use a smooth L1 loss in transform coordinate space similar

to [81]. The fifth term in our loss function is a cross-entropy term at every time-step of the language

model.

We normalize all loss functions by the batch size and sequence length in the RNN. We searched

over an e↵ective setting of the weights between these contributions and found that a reasonable

setting is to use a weight of 0.1 for the first four criterions, and a weight of 1.0 for captioning.

5.2.3 Training and Optimization

We train the full model end-to-end in a single step of optimization. We initialize the CNN with

weights pretrained on ImageNet [84] and all other weights from a gaussian with standard deviation of

0.01. We use stochastic gradient descent with momentum 0.9 to train the weights of the convolutional

network, and Adam [46] to train the other components of the model. We use a learning rate of

1⇥ 10�6 and set �1 = 0.9,�2 = 0.99. We begin fine-tuning the layers of the CNN after 1 epoch, and

for e�ciency we do not fine-tune the first four convolutional layers of the network.

Our training batches consist of a single image that has been resized so that the longer side has

720 pixels. Our implementation uses Torch7 [12]. One mini-batch runs in approximately 300ms on

a Titan X GPU and it takes about three days of training for the model to converge.

5.3 Experiments

Dataset. Existing datasets that relate images and natural language either only include full image

captions [9, 106], or ground words of image captions in regions but do not provide individual region

captions [77]. We perform our experiments using the Visual Genome (VG) region captions dataset

[50]. This dataset contains 94,313 images and 4,100,413 snippets of text (43.5 per image), each

grounded to a region of an image. Images were taken from the intersection of MS COCO and

YFCC100M [95], and annotations were collected on Amazon Mechanical Turk by asking workers to

draw a bounding box on the image and describe its content in text. Example captions from the

dataset include “cats play with toys hanging from a perch”, “newspapers are scattered across a

table”, “woman pouring wine into a glass”, “mane of a zebra”, and “red light”.

Preprocessing. We collapse words that appear less than 15 times into a special <UNK> token, giving

a vocabulary of 10,497 words. We strip referring phrases such as “there is...”, or “this seems to be

a”. For e�ciency we discard all annotations with more than 10 words (7% of annotations). We also

5. DENSE IMAGE CAPTIONING 60

A man and a woman sitting
at a table with a cake. A train is traveling down the tracks near a forest.A large jetliner flying through a blue sky. A teddy bear with

a red bow on it.

Our Model:

Full Image RNN:

Figure 5.4: Example captions generated and localized by our model on test images. We render the
top few most confident predictions. On the bottom row we additionally contrast the amount of
information our model generates compared to the Full image RNN.

discard all images that have fewer than 20 or more than 50 annotations to reduce the variation in

the number of regions per image. We are left with 87,398 images; we assign 5,000 each to val/test

splits and the rest to train.

For test time evaluation we also preprocess the ground truth regions in the validation/test images

by merging heavily overlapping boxes into single boxes with several reference captions. For each

image we iteratively select the box with the highest number of overlapping boxes (based on IoU with

threshold of 0.7), and merge these together (by taking the mean) into a single box with multiple

reference captions. We then exclude this group and repeat the process.

5.3.1 Dense Captioning

In the dense captioning task the model receives a single image and produces a set of regions, each

annotated with a confidence and a caption.

Evaluation metrics. Intuitively, we would like our model to produce both well-localized predictions

(as in object detection) and accurate descriptions (as in image captioning).

Inspired by evaluation metrics in object detection [24, 62] and image captioning [97], we propose

to measure the mean Average Precision (AP) across a range of thresholds for both localization and

5. DENSE IMAGE CAPTIONING 61

Figure 5.5: Additional predictions from the DenseCap model shown in a di↵erent format. The
captions are shown both in the boxes but also listed below, in a decreasing order of their prediction
confidence. The colors are arbitrary.

Language (METEOR) Dense captioning (AP) Test runtime (ms)

Region source EB RPN GT EB RPN GT Propos-
als

CNN+Recog RNN Total

Image RNN [43] 0.173 0.197 0.209 2.42 4.27 14.11 210ms 2950ms 10ms 3170ms

Region RNN [43] 0.221 0.244 0.272 1.07 4.26 21.90 210ms 2950ms 10ms 3170ms

FCLN on EB [30] 0.264 0.296 0.293 4.88 3.21 26.84 210ms 140ms 10ms 360ms

Our model 0.264 0.273 0.305 5.24 5.39 27.03 90ms 140ms 10ms 240ms

Table 5.1: Dense captioning evaluation on the test set of 5,000 images. The language metric is
METEOR (high is good), our dense captioning metric is Average Precision (AP, high is good), and
the test runtime performance for a 720⇥ 600 image with 300 proposals is given in milliseconds on a
Titan X GPU (ms, low is good). EB, RPN, and GT correspond to EdgeBoxes [112], Region Proposal
Network [81], and ground truth boxes respectively, used at test time. Therefore, the numbers in
GT columns (italic) serve as upper bounds assuming perfect localization.

language accuracy. For localization we use intersection over union (IoU) thresholds .3, .4, .5, .6, .7.

For language we use METEOR score thresholds 0, .05, .1, .15, .2, .25. We adopt METEOR since

this metric was found to be most highly correlated with human judgments in settings with a low

number of references [97]. We measure the average precision across all pairwise settings of these

thresholds and report the mean AP.

To isolate the accuracy of language in the predicted captions without localization we also merge

ground truth captions across each test image into a bag of references sentences and evaluate predicted

captions with respect to these references without taking into account their spatial position.

Baseline models. Following Karpathy and Fei-Fei [43], we train only the Image Captioning model

(excluding the localization layer) on individual, resized regions. We refer to this approach as a Region

RNN model. To investigate the di↵erences between captioning trained on full images or regions we

also train the same model on full images and captions from MS COCO (Full Image RNN model).

At test time we consider three sources of region proposals. First, to establish an upper bound

we evaluate the model on ground truth boxes (GT). Second, similar to [43] we use an external

5. DENSE IMAGE CAPTIONING 62

region proposal method to extract 300 boxes for each test image. We use EdgeBoxes [112] (EB) due

to their strong performance and speed. Finally, EdgeBoxes have been tuned to obtain high recall

for objects, but our regions data contains a wide variety of annotations around groups of objects,

stu↵, etc. Therefore, as a third source of test time regions we follow Faster R-CNN [81] and train

a separate Region Proposal Network (RPN) on the VG regions data. This corresponds to training

our full model except without the RNN language model.

As the last baseline we reproduce the approach of Fast R-CNN [30], where the region proposals

during training are fixed to EdgeBoxes instead of being predicted by the model (FCLN on EB). The

results of this experiment can be found in Table 5.1. We now highlight the main takeaways.

Discrepancy between region and image level statistics. Focusing on the first two rows of Table

5.1, the Region RNN model obtains consistently stronger results on METEOR alone, supporting

the di↵erence in the language statistics present on the level of regions and images. Note that these

models were trained on nearly the same images, but one on full image captions and the other on

region captions. However, despite the di↵erences in the language, the two models reach comparable

performance on the final metric.

RPN outperforms external region proposals. In all cases we obtain performance improvements

when using the RPN network instead of EB regions. The only exception is the FCLN model that was

only trained on EB boxes. Our hypothesis is that this reflects people’s tendency of annotating regions

more general than those containing objects. The RPN network can learn these distributions from

the raw data, while the EdgeBoxes method was designed for high recall on objects. In particular,

note that this also allows our model (FCLN) to outperform the FCLN on EB baseline, which is

constrained to EdgeBoxes during training (5.24 vs. 4.88 and 5.39 vs. 3.21). This is despite the

fact that their localization-independent language scores are comparable, which suggests that our

model achieves improvements specifically due to better localization. Finally, the noticeable drop in

performance of the FCLN on EB model when evaluating on RPN boxes (5.39 down to 3.21) also

suggests that the EB boxes have particular visual statistics, and that the RPN boxes are likely out

of sample for the FCLN on EB model.

Our model outperforms individual region description. Our final model performance is listed

under the RPN column as 5.39 AP. In particular, note that in this one cell of Table 5.1 we report

the performance of our full joint model instead of our model evaluated on the boxes from the

independently trained RPN network. Our performance is quite a bit higher than that of the Region

RNN model, even when the region model is evaluated on the RPN proposals (5.93 vs. 4.26). We

attribute this improvement to the fact that our model can take advantage of visual information from

the context outside of the test regions.

Qualitative results. We show example predictions of the dense captioning model in Figure 5.4

and Figure 5.5. The model generates rich snippet descriptions of regions and accurately grounds

the captions in the images. For instance, note that several parts of the elephant in Figure 5.4 are

5. DENSE IMAGE CAPTIONING 63

Ranking Localization

R@1 R@5 R@10 Med. rank IoU@0.1 IoU@0.3 IoU@0.5 Med. IoU

Full Image RNN [43] 0.10 0.30 0.43 13 - - - -

EB + Full Image RNN [43] 0.11 0.40 0.55 9 0.348 0.156 0.053 0.020

Region RNN [30] 0.18 0.43 0.59 7 0.460 0.273 0.108 0.077

Our model (FCLN) 0.27 0.53 0.67 5 0.560 0.345 0.153 0.137

Table 5.2: Results for image retrieval experiments. We evaluate ranking using recall at k (R@K,
higher is better) and median rank of the target image (Med.rank, lower is better). We evaluate
localization using ground-truth region recall at di↵erent IoU thresholds (IoU@t, higher is better)
and median IoU (Med. IoU, higher is better). Our method outperforms baselines at both ranking
and localization.

correctly grounded and described (“trunk of an elephant”, “elephant is standing”, and both “leg of

an elephant”). The same is true for the airplane example, where the tail, engine, nose and windows

are correctly localized. Common failure cases include repeated detections (e.g. the elephant is

described as standing twice).

Runtime evaluation. Our model is e�cient at test time: a 720 ⇥ 600 image is processed in

240ms. This includes running the CNN, computing B = 300 region proposals, and sampling from

the language model for each region.

Table 5.1 (right) compares the test-time runtime performance of our model with baselines that

rely on EdgeBoxes. Regions RNN is slowest since it processes each region with an independent

forward pass of the CNN; with a runtime of 3170ms it is more than 13⇥ slower than our method.

FCLN on EB extracts features for all regions after a single forward pass of the CNN. Its runtime

is dominated by EdgeBoxes, and it is ⇡ 1.5⇥ slower than our method.

Our method takes 88ms to compute region proposals, of which nearly 80ms is spent running

NMS to subsample regions in the Localization Layer. This time can be drastically reduced by using

fewer proposals: using 100 region proposals reduces our total runtime to 166ms.

5.3.2 Image Retrieval using Regions and Captions

In addition to generating novel descriptions, our dense captioning model can support image retrieval

using natural-language queries, and can localize these queries in retrieved images. We evaluate our

model’s ability to correctly retrieve images and accurately localize textual queries.

Experiment setup. We use 1000 random images from the VG test set for this experiment. We

generate 100 test queries by repeatedly sampling four random captions from some image and then

expect the model to correct retrieve the source image for each query.

Evaluation. To evaluate ranking, we report the fraction of queries for which the correct source

image appears in the top k positions for k 2 {1, 5, 10} (recall at k) and the median rank of the

correct image across all queries.

To evaluate localization, for each query caption we examine the image and ground-truth bounding

box from which the caption was sampled. We compute IoU between this ground-truth box and the

5. DENSE IMAGE CAPTIONING 64

GT image Query phrases Retrieved Images

Figure 5.6: Example image retrieval results using our dense captioning model. From left to right,
each row shows a grund-truth test image, ground-truth region captions describing the image, and
the top images retrieved by our model using the text of the captions as a query. Our model is able
to correctly retrieve and localize people, animals, and parts of both natural and man-made objects.

model’s predicted grounding for the caption. We then report the fraction of query caption for which

this overlap is greater than a threshold t for t 2 {0.1, 0.3, 0.5} (recall at t) and the median IoU across

all query captions.

Models. We compare the ranking and localization performance of full model with baseline models

from Section 5.3.1.

For the Full Image RNN model trained on MS COCO, we compute the probability of generating

each query caption from the entire image and rank test images by mean probability across query

captions. Since this does not localize captions we only evaluate its ranking performance.

The Full Image RNN and Region RNN methods are trained on full MS COCO images and

ground-truth VG regions respectively. In either case, for each query and test image we generate

100 region proposals using EdgeBoxes and for each query caption and region proposal we compute

the probability of generating the query caption from the region. Query captions are aligned to the

proposal of maximal probability, and images are ranked by the mean probability of aligned caption

/ region pairs.

The process for the full FCLN model is similar, but uses the top 100 proposals from the local-

ization layer rather than EdgeBoxes proposals.

Discussion. Figure 5.6 shows examples of ground-truth images, query phrases describing those

images, and images retrieved from these queries using our model. Our model is able to localize small

objects (“hand of the clock”, “logo with red letters”), object parts, (“black seat on bike”, “chrome

5. DENSE IMAGE CAPTIONING 65

head of a gira↵e legs of a zebra

red and white

sign

white tennis shoes

hands holding a

phone

front wheel of a bus

Figure 5.7: Example results for open world detection. We use our dense captioning model to localize
arbitrary pieces of text in images, and display the top detections on the test set for several queries.

exhaust pipe”), people (“man is wet”) and some actions (“man playing tennis outside”).

Quantitative results comparing our model against the baseline methods is shown in Table 5.2.

The relatively poor performance of the Full Image RNN model (Med. rank 13 vs. 9,7,5) may be

due to mismatched statistics between its train and test distributions: the model was trained on

full images, but in this experiment it must match region-level captions to whole images (Full Image

RNN) or process image regions rather than full images (EB + Full Image RNN).

The Region RNN model does not su↵er from a mismatch between train and test data, and

outperforms the Full Image RNN model on both ranking and localization. Compared to Full Image

RNN, it reduces the median rank from 9 to 7 and improves localization recall at 0.5 IoU from 0.053

to 0.108.

Our model outperforms the Region RNN baseline for both ranking and localization under all

metrics, further reducing the median rank from 7 to 5 and increasing localization recall at 0.5 IoU

from 0.108 to 0.153.

The baseline uses EdgeBoxes which was tuned to localize objects, but not all query phrases refer

to objects. Our model achieves superior results since it learns to propose regions from the training

data.

Open-world Object Detection Using the retrieval setup described above, our dense captioning

model can also be used to localize arbitrary pieces of text in images. This enables “open-world”

object detection, where instead of committing to a fixed set of object classes at training time we can

specify object classes using natural language at test-time. We show example results for this task in

Figure 5.7, where we display the top detections on the test set for several phrases.

Our model can detect animal parts (“head of a gira↵e”, “legs of a zebra”) and also understands

5. DENSE IMAGE CAPTIONING 66

some object attributes (“red and white sign”, “white tennis shoes”) and interactions between objects

(“hands holding a phone”). The phrase “front wheel of a bus” is a failure case: the model correctly

identifies wheels of buses, but cannot distinguish between the front and back wheel.

5.4 Conclusions

We introduced the dense captioning task, which requires a model to simultaneously localize and de-

scribe regions of an image. To address this task we developed the FCLN architecture, which supports

end-to-end training and e�cient test-time performance. Our FCLN architecture is based on recent

CNN-RNN models developed for image captioning but includes a novel, di↵erentiable localization

layer that can be inserted into any neural network to enable spatially-localized predictions. Our

experiments in both generation and retrieval settings demonstrate the power and e�ciency of our

model with respect to baselines related to previous work, and qualitative experiments show visually

pleasing results. In future work we would like to relax the assumption of rectangular proposal regions

(which is in principle a trivial extension due to our use of spatial transformers in the localization

layer) and to discard test-time non-maximum suppression in favor of a trainable spatial suppression

layer.

6

Conclusions

We’ve witnessed rapid advances in the field of Computer Vision over the last few years. An often

cited benchmark that exemplifies this progress is the ImageNet Large-Scale Visual Recognition

Challenge, where we’ve seen the top-5 error rate for image classification (a core visual recognition

problem) decrease from 27% in 2010 down to 3% in 2016. To put this in context, this performance

rivals human recognition capabilities, or even surpasses it in some fine-grained categories such as

recognizing di↵erent breeds of dogs [84].

However, far from diminishing opportunities for research in Computer Vision, progress on this

core task has energized the field and unlocked a wide variety of ambitious problems that once defied

our attempts but suddenly seem within our grasp. In particular, in this dissertation we developed

models and techniques that push the frontier of visual recognition by expanding the label space from

a discrete set of categories to the space of natural language utterances. We argued that doing so is 1)

a stepping stone towards Artificial Intelligence agents that can perceive the visual world and interact

with us in natural language (in a manner similar to that imagined by Turing at the conception of

the field), 2) a yet unsolved and critical next frontier in Computer Vision and 3) desirable from a

practical perspective since humans communicate and serialize knowledge in this encoding format.

Concretely, in Chapter 3 we developed models that can match images and sentences. This allowed

us to annotate images with sentence descriptions and, conversely, retrieve images from a database

for any text query. Our final model not only allowed us to perform this task to high accuracy, but

allowed us to visually inspect the model’s predictions (e.g. seeing exactly which parts of the image

caused a model to think that it might depict “a man playing accordion in a public area”).

In Chapter 4 we introduced a model that can take an image and generate a new sentence descrip-

tion without being constrained to merely choosing from a finite collection of sentences written by

humans. The model generates qualitatively sensible sentences that are novel approximately 50% of

the time, and we showed in quantitative evaluation that the model outperforms previous captioning

methods based on a ranking approach.

67

6. CONCLUSIONS 68

Finally, in Chapter 5 we expanded the image captioning model to both detect and describe

all salient aspects of an image. The final model can process an image in as little as a few hundred

milliseconds and covers images with detailed grounded descriptions at all scales, from holistic image-

level scale as in image captioning to the level of individual object or animal parts.

From a modeling perspective, the models we developed fall under the category of deep learning

approaches, where each model defines a single di↵erentiable function from raw inputs to raw out-

puts. The function’s parameters are trained by optimizing the final objective of interest end-to-end

on data. This approach o↵ers many practical benefits: it relies on relatively simple and homogeneous

operations repeated in layers which decreases code complexity, it uses parallel computations that

can be carried out very e�ciently on specialized Graphics Processing Unit cards (GPUs), and all

components of the model share the same objective, which in practice often results in high perfor-

mance. We hope that many of the architectural elements featured in our models can be reused and

help inspire future work.

Despite recent rapid progress in visual recognition, it is clear that many challenges still remain

before we can realize Turing’s vision of machines that can sense the visual world and interact with

us through natural language. The remaining challenges are best illustrated with a concrete example.

Consider the image in Figure 6.1:

Figure 6.1: An image depicting an amusing situation.

It only takes a few short moments to go from glancing at the image to a feeling of amusement,

in a realization of the full depicted situation. The steps we take to fully perceive this visual scene

are numerous and astonishing. It is instructive to enumerate at least some of them:

• Starting o↵ with some of the easier concepts, you recognize that the image contains several

people in suits standing in a hallway.

6. CONCLUSIONS 69

• You recognize that there are 3 mirrors in the scene so some of those people are “fake” replicas

from di↵erent viewpoints.

• You probably recognize one of these people as a specific individual (President Obama) from

only the few pixels that make up his face and perhaps some of the wider context that includes

his clothes and the other people.

• You recognize that there’s a person standing on a scale, even though the scale occupies only

very few white pixels that blend in with the white walls. However, the body pose of the person

as well as his eye gaze possibly help disambiguate this fact.

• You recognize that Obama has his foot positioned just slightly on top of the scale. In particular,

you reason about the 3D structure of the scene rather than simply the 2D coordinate system

of the image.

• You’re also aware of basic physics: Obama’s center of mass is slightly ahead of him. Therefore

he is leaning in on the scale, applying some force on it. In this inference you’re taking advantage

of intuitive physics.

• You understand that scales measure force that is applied vertically on them, so it will over-

estimate the weight of the person standing on it. That is, you’re reasoning about object

a↵ordances, their function and purpose.

• The person measuring his weight is not aware of Obama behind him, which you can derivate

based on an understanding of the field of view of a person, and that the slight push from the

foot is unlikely to be felt by him.

• You understand that people are self-conscious about their weight. You also understand that

he is reading o↵ the scale measurement, and that shortly the over-estimated weight might

confuse him because it will likely be much higher than what he expects. Notice that you’re

reasoning about the state of mind of people and the implications of events that are about to

unfold seconds after this image was taken. You also reason about what information is likely

available to di↵erent people. Collectively, you’ve already made a large number of inferences

based on intuitive psychology.

• There are several people in the back who find the person’s imminent confusion amusing. That

is, you reason about the state of mind of people, their view of the state of mind of another

person, and the dynamics of these states over time.

• Finally, the fact that the perpetrator of the joke is the president further contributes to the

uniqueness of the situation. That is, you’re bringing knowledge of social roles and what actions

are more or less likely to be undertaken by di↵erent people based on their status and identity.

6. CONCLUSIONS 70

DenseCap is an arguably large step forward in comparison to labeling an image with a category,

but its performance on this particular image would clearly be abysmal. The model might correctly

recognize hundreds of concepts in the image: it might identify and describe all of the people, theirs

suits, the checkered floor, the lockers, lights on the ceiling, or possibly even distinguish the mirrors.

And yet, it would completely miss the point of the scene, barely scratching at the surface of the

semantic content of the depicted situation. In this light, DenseCap is a texture-based sequence

memorizer with some limited generalization, not a probabilistic inference engine that pieces together

an understanding of a complex scene from both the visual evidence and a rich general understanding

of how the world works: that people have minds, goals, beliefs, identities and social status, or that

objects have specific a↵ordances, intended uses, or that they obey certain physical dynamics.

How can we endow computers with an understanding of so many interconnected abstract concepts

and knowledge?

First, it is important to recognize that a necessary (but not su�cient) condition is that the

information about the world must be made available to the computer. This already presents many

practical di�culties related to data collection and storage. For instance, in this concrete example, I

recognize Obama from news articles and TV, and a computer cannot do so until it somehow gains

access to the same data. As a more problematic example, I understand how the mechanical scale

in image works because I’ve interacted with one myself in the real world: I stood on it and saw its

reading change, I played with the setting of its counter weights, I shifted my weight around and

saw it react. Therefore, an argument can be made that I’ve benefited a great deal from embodied

interaction with the environment and my ability to run small experiments that disambiguate between

di↵erent likely hypotheses of world dynamics. This line of thought argues that we might not reach

the same level of understanding in computers until they can also interact with the world in the same

way we have done for many years of our upbringing.

Second, it is insightful to note that the representations of these abstract relationships are di�cult

to manually encode in some formal language and provide to the computer directly under the umbrella

of supervised learning. For instance, CYC [59] is a popular example of an attempt to assemble a

comprehensive ontology and knowledge base of common knowledge in a formal language, which

turned out to be very challenging. Instead, it seems that a more promising approach is to allow a

model to discover its own internal representations, similar to word embedding methods where the

structure and relationships emerge as a result of optimizing some objective.

Lastly, one central challenge lies in how we can design architectures that can model abstract con-

cepts and theories (e.g. that people have a finite field of view, or that scales measure weight) and how

they can be acquired, stored and manipulated in an end-to-end learning framework. Furthermore,

one would like to represent distributions over theories and come up with objectives that encourage

agents to disambiguate between competing hypotheses (e.g. figuring out how a scale works).

To make further progress, it is these kinds of problems that we must turn to next.

Bibliography

[1] Andrei Barbu, Alexander Bridge, Zachary Burchill, Dan Coroian, Sven Dickinson, Sanja Fidler,

Aaron Michaux, Sam Mussman, Siddharth Narayanaswamy, Dhaval Salvi, et al. Video in

sentences out. In UAI 2012, 2012.

[2] Kobus Barnard, Pinar Duygulu, David Forsyth, Nando De Freitas, David M Blei, and Michael I

Jordan. Matching words and pictures. The Journal of Machine Learning Research, 2003.

[3] Ian Goodfellow Yoshua Bengio and Aaron Courville. Deep learning. Book in preparation for

MIT Press, 2016.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilis-

tic language model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

[5] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gau-

vain. Neural probabilistic language models. In Innovations in Machine Learning. Springer,

2006.

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is di�cult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[7] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal

of Machine Learning Research, 13(Feb):281–305, 2012.

[8] Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Man-

ning, and Christopher Potts. A fast unified model for parsing and sentence understanding.

Association for Computational Linguistics, 2016.

[9] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar,

and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv

preprint arXiv:1504.00325, 2015.

[10] Xinlei Chen and C Lawrence Zitnick. Learning a recurrent visual representation for image

caption generation. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015.

71

BIBLIOGRAPHY 72

[11] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia content using

attention-based encoder-decoder networks. IEEE Transactions on Multimedia, 17(11):1875–

1886, 2015.

[12] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environ-

ment for machine learning. In BigLearn, Advances in Neural Information Processing Systems

Workshop, 2011.

[13] Marie-Catherine De Marne↵e, Bill MacCartney, Christopher D Manning, et al. Generating

typed dependency parses from phrase structure parses. In Proceedings of Language Resources

and Evaluation Conference, volume 6, pages 449–454, 2006.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, 2009.

[15] Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation

for any target language. In Proceedings of the Association for Computational Linguistics 2014

Workshop on Statistical Machine Translation, 2014.

[16] Jacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, and C Lawrence Zitnick.

Exploring nearest neighbor approaches for image captioning. arXiv preprint arXiv:1505.04467,

2015.

[17] Je↵ Donahue, Yangqing Jia, Oriol Vinyals, Judy Ho↵man, Ning Zhang, Eric Tzeng, and Trevor

Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML,

pages 647–655, 2014.

[18] Je↵rey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini

Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks

for visual recognition and description. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2625–2634, 2015.

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[20] Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and David A Forsyth. Object recognition

as machine translation: Learning a lexicon for a fixed image vocabulary. In European conference

on computer vision, pages 97–112. Springer, 2002.

[21] Desmond Elliott and Frank Keller. Image description using visual dependency representations.

In Proceedings of the Empirical Methods on Natural Language Processing, pages 1292–1302,

2013.

BIBLIOGRAPHY 73

[22] Je↵rey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[23] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov. Scalable ob-

ject detection using deep neural networks. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2014.

[24] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zis-

serman. The pascal visual object classes (voc) challenge. International Journal of Computer

Vision, 88(2):303–338, 2010.

[25] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Srivastava, Li Deng, Piotr Dollár,

Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C Platt, et al. From captions to visual

concepts and back. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1473–1482, 2015.

[26] Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian,

Julia Hockenmaier, and David Forsyth. Every picture tells a story: Generating sentences

from images. In Proceedings of the European Conference on Computer Vision, pages 15–29.

Springer, 2010.

[27] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Je↵ Dean, Tomas Mikolov, et al.

Devise: A deep visual-semantic embedding model. In Advances in Neural Information Pro-

cessing Systems, 2013.

[28] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition una↵ected by shift in position. Biological cybernetics, 36(4):193–202,

1980.

[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object

detection and semantic segmentation. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2014.

[30] Ross Girshick. Fast R-CNN. In Proceedings of the International Conference on Computer

Vision, 2015.

[31] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[32] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent neural net-

work for image generation. Proceedings of the International Conference on Machine Learning,

2015.

BIBLIOGRAPHY 74

[33] Abhinav Gupta and Larry S Davis. Beyond nouns: Exploiting prepositions and comparative

adjectives for learning visual classifiers. In European conference on computer vision, pages

16–29. Springer, 2008.

[34] Abhinav Gupta, Praveen Srinivasan, Jianbo Shi, and Larry S Davis. Understanding videos,

constructing plots learning a visually grounded storyline model from annotated videos. In

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages

2012–2019. IEEE, 2009.

[35] Ankush Gupta and Prashanth Mannem. From image annotation to image description. In

Neural information processing. Springer, 2012.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep

convolutional networks for visual recognition. In Proceedings of the European Conference on

Computer Vision, pages 346–361. Springer, 2014.

[37] Geo↵rey E Hinton, James L Mcclelland, and David E Rumelhart. Distributed representa-

tions, parallel distributed processing: explorations in the microstructure of cognition, vol. 1:

foundations, 1986.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[39] Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking

task: data, models and evaluation metrics. Journal of Artificial Intelligence Research, 2013.

[40] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial trans-

former networks. Advances in Neural Information Processing Systems, 2015.

[41] Yangqing Jia, Mathieu Salzmann, and Trevor Darrell. Learning cross-modality similarity for

multinomial data. In IEEE International Conference on Computer Vision, 2011.

[42] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional localization

networks for dense captioning. Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, 2016.

[43] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image de-

scriptions. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,

2014.

[44] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent

networks. International Conference on Learning Representations Workshop, 2016.

BIBLIOGRAPHY 75

[45] Andrej Karpathy, Armand Joulin, and Li Fei-Fei. Deep fragment embeddings for bidirectional

image sentence mapping. In Advances in neural information processing systems, 2014.

[46] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings

of the International Conference on Learning Representations, 2015.

[47] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying visual-semantic embeddings

with multimodal neural language models. Transactions of the Association for Computational

Linguistics, 2015.

[48] Ryan Kiros, Richard S Zemel, and Ruslan Salakhutdinov. Multimodal neural language models.

Proceedings of the International Conference on Machine Learning, 2014.

[49] Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. What are you

talking about? text-to-image coreference. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2014.

[50] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,

Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein, and

Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense im-

age annotations. 2016.

[51] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems, 2012.

[52] Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C Berg,

and Tamara L Berg. Baby talk: Understanding and generating simple image descriptions. In

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2011.

[53] Polina Kuznetsova, Vicente Ordonez, Alexander C. Berg, Tamara L. Berg, and Yejin Choi.

Collective generation of natural image descriptions. In Association for Computational Lin-

guistics, 2012.

[54] Polina Kuznetsova, Vicente Ordonez, Alexander C Berg, Tamara L Berg, and Yejin Choi.

Generalizing image captions for image-text parallel corpus. In Association for Computational

Linguistics, 2013.

[55] Polina Kuznetsova, Vicente Ordonez, Tamara L Berg, UNC Chapel Hill, and Yejin Choi.

Treetalk: Composition and compression of trees for image descriptions. Transactions of the

Association for Computational Linguistics, 2(10):351–362, 2014.

[56] Quoc V Le. Building high-level features using large scale unsupervised learning. In 2013 IEEE

international conference on acoustics, speech and signal processing, pages 8595–8598. IEEE,

2013.

BIBLIOGRAPHY 76

[57] Y LeCun, B Boser, JS Denker, D Henderson, RE Howard, W Hubbard, and LD Jackel. Hand-

written digit recognition with a back-propagation network. In Advances in neural information

processing systems 2, NIPS 1989, pages 396–404. Morgan Kaufmann Publishers, 1990.

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha↵ner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[59] Douglas B Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications

of the ACM, 38(11):33–38, 1995.

[60] Siming Li, Girish Kulkarni, Tamara L Berg, Alexander C Berg, and Yejin Choi. Composing

simple image descriptions using web-scale n-grams. In Proceedings of the Fifteenth Conference

on Computational Natural Language Learning, pages 220–228. Association for Computational

Linguistics, 2011.

[61] Dahua Lin, Sanja Fidler, Chen Kong, and Raquel Urtasun. Visual semantic search: Retrieving

videos via complex textual queries. In 2014 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2657–2664. IEEE, 2014.

[62] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Pro-

ceedings of the European Conference on Computer Vision, pages 740–755. Springer, 2014.

[63] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-

mantic segmentation. Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, 2015.

[64] Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech Zaremba. Ad-

dressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206,

2014.

[65] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L Yuille. Explain images with multi-

modal recurrent neural networks. arXiv preprint arXiv:1410.1090, 2014.

[66] Cynthia Matuszek*, Nicholas FitzGerald*, Luke Zettlemoyer, Liefeng Bo, and Dieter Fox. A

Joint Model of Language and Perception for Grounded Attribute Learning. In Proceedings of

the 2012 International Conference on Machine Learning, Edinburgh, Scotland, June 2012.

[67] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[68] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-

current neural network based language model. In INTERSPEECH, 2010.

BIBLIOGRAPHY 77

[69] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je↵ Dean. Distributed repre-

sentations of words and phrases and their compositionality. In Advances in Neural Information

Processing Systems, 2013.

[70] Margaret Mitchell, Xufeng Han, Jesse Dodge, Alyssa Mensch, Amit Goyal, Alex Berg, Kota

Yamaguchi, Tamara Berg, Karl Stratos, and Hal Daumé III. Midge: Generating image de-

scriptions from computer vision detections. In Proceedings of the 13th Conference of the Eu-

ropean Chapter of the Association for Computational Linguistics, pages 747–756. Association

for Computational Linguistics, 2012.

[71] Yasuhide Mori, Hironobu Takahashi, and Ryuichi Oka. Image-to-word transformation based

on dividing and vector quantizing images with words. In First International Workshop on

Multimedia Intelligent Storage and Retrieval Management, pages 1–9. Citeseer, 1999.

[72] Vicente Ordonez, Xufeng Han, Polina Kuznetsova, Girish Kulkarni, Margaret Mitchell, Kota

Yamaguchi, Karl Stratos, Amit Goyal, Jesse Dodge, Alyssa Mensch, et al. Large scale retrieval

and generation of image descriptions. International Journal of Computer Vision, 2015.

[73] Vicente Ordonez, Girish Kulkarni, and Tamara L Berg. Im2text: Describing images using 1

million captioned photographs. In Advances in Neural Information Processing Systems, 2011.

[74] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic

evaluation of machine translation. In Proceedings of the 40th annual meeting on association

for computational linguistics, pages 311–318. Association for Computational Linguistics, 2002.

[75] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the di�culty of training recurrent

neural networks. Proceedings of the International Conference on Machine Learning, 2013.

[76] Je↵rey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for

word representation. In Proceedings of the Empirical Methods on Natural Language Processing,

2014.

[77] Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and

Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer

image-to-sentence models. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2641–2649, 2015.

[78] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.

SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[79] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. Collecting image

annotations using amazon’s mechanical turk. In Proceedings of the Association for Computa-

tional Linguistics HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s

Mechanical Turk, pages 139–147. Association for Computational Linguistics, 2010.

BIBLIOGRAPHY 78

[80] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Uni-

fied, real-time object detection. Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, 2016.

[81] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time

object detection with region proposal networks. In Neural Information Processing Systems

(NIPS), 2015.

[82] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-

zation in the brain. Psychological review, 65(6):386, 1958.

[83] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[84] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-

Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[85] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. Signal Process-

ing, IEEE Transactions on, 1997.

[86] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun.

Overfeat: Integrated recognition, localization and detection using convolutional networks. In

Proceedings of the International Conference on Learning Representations, 2014.

[87] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features

o↵-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pages 806–813, 2014.

[88] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. Proceedings of the International Conference on Learning Representations,

2015.

[89] Richard Socher and Li Fei-Fei. Connecting modalities: Semi-supervised segmentation and

annotation of images using unaligned text corpora. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, 2010.

[90] Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y Ng.

Grounded compositional semantics for finding and describing images with sentences. TAsso-

ciation for Computational Linguistics, 2014.

BIBLIOGRAPHY 79

[91] Richard Socher, Cli↵ C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes

and natural language with recursive neural networks. In Proceedings of the International

Conference on Machine Learning, 2011.

[92] Ilya Sutskever, James Martens, and Geo↵rey E Hinton. Generating text with recurrent neural

networks. In Proceedings of the International Conference on Machine Learning, 2011.

[93] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[94] Christian Szegedy, Scott Reed, Dumitru Erhan, and Dragomir Anguelov. Scalable, high-quality

object detection. arXiv preprint arXiv:1412.1441, 2014.

[95] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas

Poland, Damian Borth, and Li-Jia Li. The new data and new challenges in multimedia research.

arXiv preprint arXiv:1503.01817, 2015.

[96] T Tieleman and Geo↵rey E Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude., 2012.

[97] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based im-

age description evaluation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4566–4575, 2015.

[98] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural

image caption generator. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3156–3164, 2015.

[99] Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market

model. Neural Networks, 1(4):339–356, 1988.

[100] Bernard Widrow, Marcian E Ho↵, et al. Adaptive switching circuits. In IRE WESCON

convention record, volume 4, pages 96–104. New York, 1960.

[101] Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan Salakhutdinov. On

multiplicative integration with recurrent neural networks. arXiv preprint arXiv:1606.06630,

2016.

[102] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel,

and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual

attention. Proceedings of the International Conference on Machine Learning, 2015.

BIBLIOGRAPHY 80

[103] Yezhou Yang, Ching Lik Teo, Hal Daumé III, and Yiannis Aloimonos. Corpus-guided sentence

generation of natural images. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 444–454. Association for Computational Linguistics, 2011.

[104] Benjamin Z Yao, Xiong Yang, Liang Lin, Mun Wai Lee, and Song-Chun Zhu. I2t: Image

parsing to text description. Proceedings of the IEEE, 98(8):1485–1508, 2010.

[105] Mark Yatskar, Lucy Vanderwende, and Luke Zettlemoyer. See no evil, say no evil: Description

generation from densely labeled images. Lexical and Computational Semantics, 2014.

[106] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denota-

tions: New similarity metrics for semantic inference over event descriptions. TAssociation for

Computational Linguistics, 2014.

[107] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv

preprint arXiv:1511.07122, 2015.

[108] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.

arXiv preprint arXiv:1409.2329, 2014.

[109] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In

Proceedings of the European Conference on Computer Vision, pages 818–833. Springer, 2014.

[110] Weixiong Zhang. State-space search: Algorithms, complexity, extensions, and applications.

Springer Science & Business Media, 1999.

[111] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-

ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations

by watching movies and reading books. In Proceedings of the IEEE International Conference

on Computer Vision, pages 19–27, 2015.

[112] C. Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In

Proceedings of the European Conference on Computer Vision, 2014.

[113] C Lawrence Zitnick, Devi Parikh, and Lucy Vanderwende. Learning the visual interpretation

of sentences. Proceedings of the International Conference on Computer Vision, 2013.

