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Abstract

Multi-Dimensional Expressions (MDX) provide an interface for asking several related OLAP queries
simultaneously. An interesting problem is how to optimize the execution of an MDX query, given that
most data warehouses maintain a set of redundant materialized views to accelerate OLAP operations. A
number of greedy and approximation algorithms have been proposed for different versions of the
problem. In this paper we evaluate experimentally their performance using the APB and TPC-H
benchmark concluding that they do not scale well for realistic workloads. Motivated by this fact, we
develop two novel greedy algorithms. Our algorithms construct the execution plan in a top-down manner
by identifying in each step the most beneficial view, instead of finding the most promising query. We
show by extensive experimentation that our methods outperform the existing ones in most cases.
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1. Introduction

Effective decision-making is vital in a global competitive environment where business intelligence

systems are becoming an essential part of virtually every organization. The core of such systems is a data

warehouse, which stores historical and consolidated data from the transactional databases, supporting

complicated ad-hoc queries that reveal interesting information. The so-called On-Line Analytical

Processing (OLAP) [2] queries typically involve large amounts of data and their processing should be

efficient enough to allow interactive usage of the system.

A common technique to accelerate OLAP is to store some redundant data, either statically or

dynamically. In the former case, some statistical properties of the expected workload are known in

advance. The aim is to select a set of views for materialization such that the query cost is minimized

while meeting the space and/or maintenance cost constraints, which are provided by the administrator. [8,

5, 7] describe greedy algorithms for the view selection problem. In [6] an extension of these algorithms is

proposed, to select both views and indices on them. [1] employs a method which identifies the relevant

views of a lattice for a given workload. [22] uses a simple and fast algorithm for selecting views in

lattices with special properties.

Dynamic alternatives are exploited in [18, 3, 11]. These systems reside between the data warehouse

and the clients and implement a disk cache that stores aggregated query results in a finer granularity than

views.

Most of these papers assume that the OLAP queries are sent to the system one at a time. Nevertheless,

this is not always true. In multi-user environments, many queries can be submitted concurrently. In

addition, the API proposed by Microsoft [13] for Multi-Dimensional Expressions (MDX), which

becomes the de-facto standard for many products, allows the user to formulate multiple OLAP operations

in a single MDX expression. For a set of OLAP queries, an optimized execution plan can be constructed

to minimize the total execution time, given a set of materialized views. This is similar to the multiple
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query optimization problem for general SQL queries [16, 19, 20, 17], but due to the restricted nature of

the problem, better techniques can be developed.

[26] was the first work to deal with the problem of multiple query optimization in OLAP

environments. They designed three new join operators, namely: Shared scan for Hash-based Star Join,

Shared Index Join and Shared Scan for Hash-based and Index-based Star Join. These operators are

based on common subtask sharing among the simultaneous OLAP queries. Such subtasks include the

scanning of the base tables, the creation of hash tables for hash based joins and the filtering of the base

tables in the case of index based joins. Their results indicate that there are substantial savings by using

these operators in ROLAP systems. In the same paper they propose greedy algorithms for creating the

optimized execution plan for an MDX query, using the new join operators.

In [12] three versions of the problem are examined: In the first one, all the simple queries in an MDX

are assumed to use hash based start join. A polynomial approximation algorithm is designed, which

delivers a plan whose evaluation cost is O(nε) times worse than the optimal, where n is the number of

queries and 0 < ε ≤ 1. In the second case, all simple queries use index-based join. They present an

approximation algorithm whose output plan’s cost is n times the optimal. The third version is more

general since it is a combination of the previous ones. For this case, a greedy algorithm is presented.

Exact algorithms are also proposed, but their running time is exponential, so they are practically useful

only for small problems.

In this paper we use the TPC-H [24] and APB [15] benchmarks in addition to a 10-dimensional

synthetic database, to test the performance of the above algorithms under realistic workloads. Our

experimental results suggest that the existing algorithms do not scale well when more views are

materialized. We observed that in many cases when the space for materialized views increases, the

execution cost of the plan derived by the optimization algorithms is higher than the case where no

materialization is allowed!
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Motivated by this fact, we propose a novel greedy algorithm, named Best View First (BVF) that

doesn't suffer from this problem. Our algorithm follows a top-down approach by identifying the most

beneficial view in each iteration, as opposed to finding the most promising query to add to the execution

plan. Although the performance of BVF is very good in the general case, it deteriorates when the number

of materialized views is small. To avoid this, we also propose a multilevel version of BVF (MBVF). We

show by extensive experimentation that our methods outperform the existing ones in most realistic cases.

The rest of the paper is organized as follows: In section 2 we introduce some basic concepts and we

review the work of [26] and [12]. In section 3 we identify the drawbacks of the current approaches and in

section 4 we describe our methods. Section 5 presents our experimental results while section 6

summarizes our conclusions.

2. Background

For the rest of the paper we will assume that the multi-dimensional data are mapped on a relational

database using a star schema [10]. Let D1, D2, …, Dn be the dimensions (i.e. business perspectives) of the

database, such as Product, Customer and Time. Let M be the measure of interest; Sales for example. Each

Di table stores details about the dimension, while M is stored in a fact table F. A tuple of F contains the

measure plus pointers to the dimension tables (figure 1a).

FACT TABLE
Product_ID

Customer_ID
Time_ID

Sales

PRODUCT
Product_ID
Description

Color
Shape

CUSTOMER
Customer_ID

Name
Address

TIME
Time_ID

Day
Month
Quarter

Year

PCT

PC PT CT

P C T

(a) The star schema (b) The data-cube lattice
Figure 1: A data warehouse schema. The dimensions are Product, Customer and Time

There are O(2n) possible group-by queries for a data warehouse with n dimensional attributes. A

detailed group-by query can be used to answer more abstract aggregations. [8] introduces the search

lattice L, which represents the interdependencies among group-by’s. L is a directed graph whose nodes
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represent group-by queries. There is a path from node ui to node uj if ui can be used to answer uj (figure

1b).

NEST ({Venkatrao, Netz}, {USA_North.CHILDREN, USA_South, Japan})
ON COLUMNS {Qtr1.CHILDREN, Qtr2, Qtr3, Qtr4.CHILDREN}
ON ROWS
CONTEXT SalesCube
FILTER (Sales, [1991], Products.ALL)

Figure 2: A multidimensional expression (MDX)

A multidimensional expression (MDX) provides a common interface for decision support applications

to communicate with OLAP servers. Figure 2 shows an example MDX query, taken from the Microsoft

document [13]. MDX queries are independent from the underline engine thus they do not contain any

join attributes or conditions. In terms of SQL statements, we identify the following six queries:

1. The total sales for Venkatrao and Netz in all states of USA_North for the 2nd and 3rd quarters in 1991.

2. The total sales for Venkatrao and Netz in all states of USA_North for the months of the 1st and 4th

quarters in 1991.

3. The total sales for Venkatrao and Netz in region USA_South for the 2nd and 3rd quarters in 1991.

4. The total sales for Venkatrao and Netz in region USA_South for the months of the 1st and 4th quarters

in 1991.

5. The total sales for Venkatrao and Netz in Japan for the 2nd and 3rd quarters in 1991.

6. The total sales for Venkatrao and Netz in Japan for the months of the 1st and 4th quarters in 1991.

Therefore, an MDX expression can be decomposed into a set Q of group-by SQL queries. We need to

generate an execution plan for the queries in Q, given a set of materialized views, such that the total

execution time is minimized. The group-by attributes of the queries usually refer to disjoint regions of the

data-cube [4] and the selection predicates can be disjoint. These facts complicate the employment of

optimization techniques for general SQL queries [16, 19, 20, 17] while more suitable methods can be

developed due to the restricted nature of the problem.
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Recall that we assumed a star schema for the warehouse. The intuition behind optimizing the MDX

expression is to construct subsets of Q that share star joins. Usually, when the selectivity of the queries is

low, hash-based star joins [23] are used; otherwise, the index-based star join method [14] can be applied.

[26] introduced three shared join operators to perform the star joins. The first operator is the shared

scan for hash-based star join. Let q1 and q2 be two queries which can be answered by the same

materialized view v. Consequently they will share some (or all) of their dimensions. Assume that both

queries are non-selective so hash-based join is used. To answer q1 we construct hash tables for its

dimensions and we probe each tuple of v against the hash tables. Observe that for q2 we don't need to

rebuild the hash tables for the common dimensions. Furthermore, only one scanning of v is necessary.

Consider now that we have a set Q of queries all of which use hash-based star join and let L be the lattice

of the data-cube and MV be the set of materialized views. We want to assign each q∈Q to a view v∈MV

such that the total execution time is minimized. If v is used by at least one query, its contribution to the

total execution cost is:

)()()( _/ vttvSizevt joinhashOI
hash
MV

+⋅=

where Size(v) is the number of tuples in v, tI/O is the time to fetch a tuple from the disk to the main

memory, and thash_join(v) is the total time to generate the hash tables for the dimensions of v and to perform

the hash join. Let q be a query that is answered by v≡mv(q). Then the total execution cost is increased by:

))(,())(())(,( qmvqtqmvSizeqmvqt CPU
hash
Q

⋅=

where tCPU(q,v) is the time per tuple to process the selections in q and to evaluate the aggregate function.

Let MV'⊆MV be the set of materialized views which are selected to answer the queries in Q. The total

cost of the execution plan is:

∑∑
∈∈∈

+=
')(,'

))(,()(
MVqmvQq

hash

MVv

hashhash qmvqtvtt
QMVtotal
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The problem of finding the optimal execution plan is equivalent to minimizing hash
totalt which is likely to

be NP-hard. [12] provide an exhaustive algorithm which runs in exponential time. Since the algorithm is

impractical for real life applications, they also describe an approximation algorithm. They reduce the

problem to a directed Steiner tree problem and apply the algorithm of [25]. The solution is O(|Q|ε) times

worse than the optimal, where 0 < ε ≤ 1.

The second operator is the shared scan index-based join. Let q1, q2 ∈ Q and let v be a materialized

view which can answer both queries. Assume that each dimension table has bitmap join indices that map

the join attributes to the relevant tuples of v, and the selectivity of both queries is high so the use of

indices pays off. The evaluation of the join starts by OR-ing the bitmap vectors b1 and b2 which

correspond to the predicates of q1 and q2 respectively. The resulting vector ball≡b1∨b2 is used to find the

set v' of matching tuples for both queries in v. The set v' is fetched in memory and each query uses its

own bitmap to filter and aggregate the corresponding tuples.

The cost of evaluating a set Q of queries, where all queries are processed using index-based join, is

defined as follows: Let Q'⊆Q such as ∀qi∈Q', qi can be answered by v. Let Ri⊆v be the set of tuples that

satisfies the predicates of qi. The selectivity of qi is σi = |Ri|/Size(v). iRR U= is the set of tuples that

satisfy the predicates of all queries in Q'. We define the selectivity of the set as σ = |R|/Size(v). The cost

of including v in the execution plan is:

)()()( _/ vttvSizevt joinindexOI
index
MV +⋅⋅= σ

where tindex_join(v) is the total cost to build ball and access it to select the appropriate tuples from v. Each

query contributes to the total cost:

))(,())(())(,( iiCPUiiii
index
Q qmvqtqmvSizeqmvqt ⋅⋅= σ

Let MV'⊆MV be the set of materialized views which are selected to answer the queries in Q. The total

execution cost is:
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∑∑
∈∈∈
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Again, we want to minimize index
totalt . In addition to an exact exponential method, [12] propose an

approximate polynomial algorithm that delivers a plan whose execution cost is O(|Q|) times the optimal.

The third operator is the shared scan for hash-based and index-based start joins. As the name

implies, this is a combination of the previous two cases. Let Q'⊆Q be a set of queries that can be

answered by v. Q' is partitioned in two disjoint sets Q'1 and Q'2. The queries in Q'1 share the hash-based

star joins. For Q'2 we use the combined bitmap to find the matching tuples for all the queries in the set,

and afterwards the individual bitmaps to filter the appropriate tuples for each query. Observe that v is

scanned only once. Its contribution to the total cost is:

)()()()( __/ vtvttvSizevt joinindexjoinhashOI
comb
MV ++⋅=

The contribution of qi∈Q'1 and qj∈Q'2 are given by ))(,( ii
hash
Q qmvqt and ))(,( jj

index
Q qmvqt respectively.

The combined case is the most interesting one in practice. Nevertheless, it is not possible to use

directly the methods for hash-based-only or indexed-based-only star joins, because there is no obvious

way to decide whether a query should belong to Q’1 or Q’2. In the next section we present the greedy

algorithms that have been proposed for the combined case and analyze their performance under realistic

workloads.

3. Performance of Existing Algorithms

[26] proposes three heuristic algorithms to construct an execution plan, namely Two Phase Local

Optimal algorithm (TPLO), Extended Two Phase Local Greedy algorithm (ETPLG) and Global Greedy

algorithm (GG). TPLO starts by selecting independently for each query q a materialized view v, such that

the cost for q is minimized, and uses the SQL optimizer to generate the optimal plan for q. The second

phase of the algorithm identifies the common subtasks among the individual plans and merges them using

the three shared operators.
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Merging the local optimal plans, does not guarantee a global optimal execution plan. To overcome

this problem, the improved algorithm ETPLG constructs the global plan incrementally by adding queries

in a greedy manner. For each query q, the algorithm evaluates the cost of executing it individually, and

the cost of sharing a view with a query that was previously selected. The plan with the lowest cost is

chosen. Since the order of inserting queries into the plan can greatly affect the total cost, the algorithm

processes the queries in ascending GroupByLevel order (i.e. the queries on the top of the lattice, are

inserted first). The intuition is that the higher the query is in the lattice, more chances exist that the query

can share its view with the subsequent ones.

GG is similar to ETPLG, the only difference being that GG allows the shared view of a group of

queries to change in order to include a new query, if this leads to lower cost. The experimental evaluation

indicates that GG outperforms the other two algorithms. [12] proposes another greedy algorithm based on

the cost of inserting a new query to a global plan (GG-c). The algorithm is similar to ETPLG but in each

step it checks all unassigned queries and adds to the global plan the one that its addition will result to the

minimum increase in the total cost of the solution. Their experiments show that in general the

performance of GG-c is similar to GG, except when there is a large number of materialized views and a

small number of queries. In this case GG-c performs better.

None of the above algorithms scales well when the number of materialized views increases. Next we

present two examples that highlight the scalability problem. We focus on GG and GG-c due to their

superiority; similar examples can be also constructed for TPLO and ETPLG. Figure 3a shows an

instance of the multiple query optimization problem where {v1, v2} is the set of materialized views and

{q1,…, q4} is the set of queries (the same example is presented in [12]). We assume for simplicity that all

queries use hash-based star join. Let 1/ =OIt , 10/)()(_ vSizevt joinhash = and 210),( −=vqtCPU , ∀ q, v.

GG will start by selecting q1, since it has the lower GroupByLevel, and will assign it to v1. Then q2 is

considered. If q2 is answered by v1 the cost is increased by 10000/100 = 100. If v2 is used the cost is

increased by 222. Thus q2 is assigned to v1. In the same way q3 and q4 are also assigned to v1 resulting to
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a total cost of 10000 + 10000/10 + 4⋅10000/100 = 11400. It is easy to verify that the optimal cost is

11326 and is achieved by assigning q1 to v1 and the rest queries to v2.

q1

q3

v1
v2

q4

q2

q2

v2v1

q1

v3

(a) |v1|=10000, |v2|=200 (b) |v1|=100, |v2|=150, |v3|=200
Figure 3: Two instances of the multiple-query optimization problem.

Similar problems are also observed for GG-c. Assume the configuration of figure 3b. GG-c will

search for the combination of queries and views that result to minimum increase of the total cost, so it

will assign q1 to v1. At the next step q2 will be assigned to v2 resulting to a total cost of 277.5. Let v3 be

the fact table of the warehouse and v1, v2 be materialized views. If no materialization were allowed, GG-c

would choose v3 for both queries resulting to a cost of 224.

We observe that by materializing redundant views in the warehouse, we deteriorate, instead of

improving, the performance of the system. Note that this is a drawback of the optimization algorithms

and it is not due to the set of views that were chosen for materialization. To ensure this, assume that no

shared join operator is available. Then, if v1 and v2 do not exist, the total cost is 2⋅222 = 444, but in the

presence of v1 and v2 the cost drops to 277.5.

In order to evaluate this situation under realistic conditions, we employed datasets from the TPC-H

benchmark [24], the APB benchmark [15] and a 10-dimensional synthetic database (SYNTH). We used a

subset of the TPC-H database schema consisting of 14 attributes, as shown in figure 4a. The fact table

contains 6M tuples. For the APB dataset, we used the full schema for the dimensions (figure 4b), but

only one measure. The size of the fact table is 1.3M tuples. SYNTH dataset is a 10-dimensional database

that models supermarket transactions, also used in [11]. The cardinality of each dimension is shown in

table 1. The fact table contains 20M tuples. The sizes of the nodes in the lattice are calculated by the

analytical algorithm of [21]. All experiments were run on an UltraSparc2 workstation (200MHz) with

256MB of main memory.
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(a) The TPC-H database schema (b) The dimensions of APB
Figure 4: Details of the TPC-H and APB datasets

Dimension 1 2 3 4 5 6 7 8 9 10

Cardinality 100K 10K 800 365 54 5 200 1K 1.1K 70

Table 1: Cardinalities of the dimension tables for the SYNTH dataset

Since there is no standard benchmark for MDX, we constructed a set of 100 synthetic MDX queries.

Each of them can be analyzed into 2 sets of 2 related SQL group-by queries (q2_2 query set). Each

dataset (i.e. SYNTH, TPC-H and APB) is represented by a different lattice, so we generated different

query sets. We used this relatively small query set, in order to be able to run an exhaustive algorithm and

compare the cost of the plans with the optimal one.

In our experiments we varied the available space for the materialized views (Smax) from 0.01% to 10%

of the size of the full data cube (i.e. the case where all nodes in the lattice are materialized). For the

SYNTH dataset, 1% of the data cube is around 186M tuples, while for the TPC-H and APB datasets, 1%

of the data cube corresponds to 10M and 0.58M tuples respectively. We did not consider the maintenance

time constraint for the materialized views, since it would not affect the trend of the optimization

algorithms’ performance. Without loss of generality, we used [8] GreedySelect algorithm to select the set

of materialized views. We tested two cases: (i) every node in the lattice has the same probability to be

queried and (ii) there is prior knowledge about the statistical properties of the queries. Although the

output of GreedySelect is slightly different in the two cases, we found that the performance of the

optimization algorithms is not affected considerably. In our experiments we used the second option.
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We employed the shared operators and we compared the plans delivered by the optimization

algorithms, against the optimal plan. All the queries use hash-based star join. We implemented the greedy

algorithm of [26] (GG) and the one of [12] (GG-c). We also implemented the Steiner-tree-based

approximation algorithm of [12] for hash-based queries (Steiner-1). We set ε = 1, since for smaller values

of ε the complexity of the algorithm increases while its performance doesn’t change considerably, as the

experiments of [12] suggest. For obtaining the optimal plan, we used an exhaustive algorithm whose

running time (for Smax = 10%) was 5300, 290 and 91 sec, for the SYNTH, the TPC-H and APB datasets

respectively.

Optimal GG GG-c Steiner-1
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0.01% 0.10% 1% 2% 5% 10%
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0.01% 0.10% 1% 2% 5% 10%

(a) SYNTH dataset (b) TPC-H dataset (c) APB dataset
Figure 5: Total execution cost for q2_2 query set

The behavior of GG, GG-c and Steiner-1 is almost identical as shown in figure 5. Although the query

set is too small to make safe conclusions, we can identify the instability problems. There is a point where

the cost of the execution plan increases although more materialized views are available. Moreover, we

observed that for the SYNTH dataset, when Smax varied from 1% to 5%, the execution cost of the plans

delivered by GG, GG-c and Steiner-1, is higher in the presence of materialized views (i.e. we could

achieve lower cost if we had executed the queries against the base tables). Although this case is highly

undesirable, it does not contradict with the upper bound of the Steiner-1 algorithm since in our

experiments the cost of its plan was no more than 1.7 times worse than the optimal, which is within its

theoretical bound. However, for the SYNTH dataset, if all queries are assigned to the top view, the cost is

at most 1.66 times worse than the optimal.
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The performance of the algorithms is affected by the tightness of the problem. Let AVQ be the

average number of materialized views that can by used to answer each group-by query. We identify three

regions:

1.The high-tightness region where the value of AVQ is small (i.e. very few views can answer each

query). Since the search space is small, the algorithms can easily find a near optimal solution.

2.The low-tightness region where AVQ is large. Here, each query can be answered by many views, so

there are numerous possible execution plans. Therefore there exist many near-optimal plans and there

is a high probability for the algorithms to choose one of them.

3.The hard-region, which is between the high-tightness and the low-tightness regions. The problems in

the hard region have a quite large number of solutions, but only few of them are close to the optimal, so

it is difficult to locate one of these plans.

In figure 6 we draw the cost of the plan for GG and the optimal plan versus AVQ. For the SYNTH

dataset the transition between the three regions is obvious. For the other two datasets, observe that for

small values of AVQ, the solution of GG is identical to the optimal one. We can identify the hard region

at the right part of the diagrams, when the trend for GG moves to the opposite direction of the optimal

plan. Similar results were also observed for other query sets.

GG Optimal
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1.04E+08

6 11 16 21

(a) SYNTH dataset (b) TPC-H dataset (c) APB dataset
Figure 6: Total execution cost versus AVQ

In summary, existing algorithms suffer from scalability problems, when the number of materialized

views is increased. In the next section we will present two novel greedy algorithms, which have better

behavior and outperform the existing ones in most cases.
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4. Improved Algorithms

The intuition behind our first algorithm, named Best View First (BVF), is simple: Instead of

constructing the global execution plan by adding the queries one by one (bottom-up approach), we use a

top-down approach. At each iteration the most beneficial view best_view ∈ MV is selected, based on a

savings metric, and all the queries which are covered by best_view and have not been assigned to another

view yet, are inserted in the global plan. The process continues until all queries are covered. Figure 7

shows the pseudocode of BVF.

The savings metric is defined as follows: Let v∈MV, and let VQ⊆Q be the set of queries that can be

answered by v. Let C(q,ui) be the cost of answering q∈VQ, by using ui∈MV and )),(min()(
||1

min
MVi

iuqCqC
≤≤

=

that of answering q by using the most beneficial materialized view. Then

∑
∈

=
VQq

i
i

qCvcosts )()(_ min

is the best cost of answering all queries in VQ individually (i.e. without using any shared operator). Let
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total

index
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hash
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,

)(

be the cost of executing all queries in VQ against v, by utilizing the shared operators; savings(v) equals to

the difference between s_cost(v) and cost(v).

The complexity of the algorithm is polynomial. To prove this, observe first that Cmin(q) can be calculated

in constant time if we store the relevant information in the lattice during the process of materializing the

set MV. Then s_cost(v) and cost(v) are calculated in O(|VQ|) = O(|Q|) time in the worst case. The inner

part of the for-loop is executed O(|AMV|) = O(|MV|) times. The while-loop is executed O(|Q|) times

because in the worst case, only one query is extracted from AQ in each iteration. Therefore, the

complexity of BVF is O(|Q|2⋅|MV|).
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ALGORITHM BVF(MV, Q)
/* MV:={v1,v2, …,v|MV|} is the set of materialized views */
/* Q:={q1,q2, …,q|Q|} is the set of queries */

AMV:=MV /* set of unassigned materialized views */
AQ:=Q /* set of unassigned queries */
GlobalPlan:=∅
while AQ≠∅

best_savings = -∞
for every vx∈AMV do

VQ:={q∈AQ: q is answered by vx}
s_cost:=Single_Query_Cost(VQ) /* the cost to evaluate each query in VQ

individually */
cost:=Shared_Cost(vx,VQ) /* the cost to evaluate all queries in VQ by vx

using shared join operators */
savings:=s_cost-cost;
if best_savings < savings then

best_savings:=savings
best_view:=vx

endif
endfor

create newSet /* set of queries to be executed by the same shared operator */
newSet.answered_by_view:=best_view
newSet.queries:= {q∈AQ: q is answered by best_view}
GlobalPlan:=GlobalPlan ∪ newSet
AMV:=AMV-best_view
AQ:=AQ-{q∈AQ: q is answered by best_view}

endwhile

return GlobalPlan

Figure 7: Best View First (BVF) greedy algorithm

Let us now apply BVF to the example of figure 3a. If we don’t use any shared operators, the most

beneficial view to answer q1 is v1. Thus, Cmin(q1)=11100. For the other queries, the most beneficial view

is v2. The cost is Cmin(qj)=222, 2 ≤ j ≤4. In the first iteration of the algorithm, the savings metric for both

views is evaluated. For v1, VQ={q1, q2, q3, q4}, s_cost(v1) = 11100 + 3⋅222 = 11766, cost(v1) = 10000 +

10000/10 + 4⋅10000/100 = 11400 and savings(v1) = 11766 - 11400 = 366. For v2, VQ={q2, q3, q4},

s_cost(v2) = 3⋅222 = 666, cost(v2) = 200 + 200/10 + 3⋅200/100 = 226 and savings(v2) = 666 – 226 = 440.

v2 is selected, and {q2, q3, q4} are assigned to it. In the next iteration, q1 is assigned to v1. Thus BVF

produced the optimal execution plan. It is easy to check that BVF also delivers the optimal plan for the

example of figure 3b.

Theorem 1: BVF delivers an execution plan whose cost decreases monotonically when the number of

materialized views increases.
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Proof: We will prove the theorem by induction. We will only present the case where all queries use hash

based star join. The generalization for the other cases is straightforward.

Inductive hypothesis: Let Mi be the set of materialized views and Pi be the plan that BVF produces for

Mi. Let |Mi|=i and for every i ≤ j ⇒ Mi ⊆ Mj. Then cost(Pi) ≥ cost(Pj).

Base Case: Let P0 be the execution plan when no materialized view is available. Then all queries are

answered by top (i.e. the most detailed view) and cost(P0) = cost(top). Assume that v1 is materialized.

BVF constructs a new plan P1. There are two cases: (i) v1 ∉ P1. Then P0≡P1 and the theorem stands. (ii)

v1 ∈ P1. Let |Q|=n. Then k < n queries are assigned to top and the rest (n-k) queries are assigned to v1. If k

= 0 (i.e. all queries are assigned to v2) the proof is trivial, since size(v1) ≤ size(top). So let k >0 and

assume that the theorem does not stand. Then
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By adding (3) and (4) we contradict (2), so the theorem stands.

Inductive case: Without lost of generality, we assume that only one new view vj+1 is materialized in

Mj+1. Then BVF either does not consider vj+1, in which case cost(Pj+1) = cost(Pj), or vj+1 is included to
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Pj+1. Then k queries from the Pj plan will be assigned to the new view. The proof continues in the same

way as the base step.

Lemma 1: From theorem 1, it follows that BVF delivers an execution plan P whose cost is less or equal

to the cost of executing all queries against the most detailed view of the warehouse by using shared star

join.

Theorem 1 together with lemma 1, guarantee that BVF avoids the pitfalls of the previous algorithms.

Note that there is no assurance for the performance of BVF compared to the optimal one, since the cost of

answering all the queries from the base tables can be arbitrary far from the cost of the optimal plan.

Consider again the example of figure 3b, except that there are 100 queries that are answered by {v1, v3}

and 100 queries that are answered by {v2, v3}. savings for v1 and v2 is zero, while savings(v3) = 11100 +

16650 – 620 = 27130, so all queries are assigned to v3. The cost for the plan is 620. However, if we

assign to v1 all the queries that are bellow it and do the same for v2, the cost of the plan is 525. We can

make this example arbitrarily bad, by adding more queries bellow v1 and v2.

In general, BVF tends to construct a small number of sets, where each set contains many queries that

share the same star join. This behavior usually results to high cost plans when there are a lot of queries

and a small number of materialized views. To overcome this problem, we developed a multilevel version

of BVF, called MBVF. The idea is that we can recursively explore the plan delivered by BVF by

assigning some of the queries to views that are lower in the lattice (i.e. less general views) in order to

lower the cost. MBVF works as follows (see figure 8): First it calls BVF to produce an initial plan, called

LowerPlan. Then, it selects from LowerPlan the view v which is higher in the lattice (i.e. the more

general view). It assigns to v the queries that cannot be answered by any other view and calls BVF again

for the remaining views and queries to produce newPlan. v and its assigned queries plus the newPlan

compose the complete plan. If its cost is lower that the original plan, the process continues for newPlan,

else the algorithm terminates. In the worst case, the algorithm will terminate after examining all the

views. Therefore, the complexity is O(|Q|2⋅|MV|2).
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ALGORITHM MBVF(MV, Q)
/* MV:={v1,v2, …,v|MV|} is the set of materialized views */
/* Q:={q1,q2, …,q|Q|} is the set of queries */

UpperPlan:=∅
LowerPlan:=BVF(MV,Q)

exit_cond:=false
do

v:=HigherView(LowerPlan) /* the most general view in LowerPlan */

VQ:={q∈Q: q is answered by v, AND ¬∃u∈MV,u≠v: q is answered by u}
if VQ≠∅ then

if VQ≠Q then
create newSet /* a set of queries that will share the same view */
newSet.answered_by_view:=v
newSet.queries:= VQ
tempPlan:=UpperPlan ∪ newSet

else /* all queries in Q can be answered by views other than v */
tempPlan:=UpperPlan

endif

newPlan:=BVF(MV-{v},Q-VQ)

if Cost(tempPlan ∪ newPlan) < Cost(UpperPlan ∪ LowerPlan) then
MV:=MV-{v}
Q:=Q-VQ
UpperPlan:=tempPlan
LowerPlan:=newPlan

else exit_cond:=true /* newPlan didn’t reduce the cost */
endif

else exit_cond:=true /* only v can answer the queries */
endif

until exit_cond

return UpperPlan ∪ LowerPlan

Figure 8: Multilevel Best View First (MBVF) greedy algorithm

The following lemma can be easily derived from the pseudocode of MBVF:

Lemma 2: The cost of the execution plan delivered by MBVF is in the worst case equal to the cost of the

plan produced by BVF.

Note that lemma 2 does not imply that the behavior of MBVF is monotonic. It is possible that the cost

of the plan derived by MBVF increases when more materialized views are available, but still it will be

less or equal to the cost of BVF’s plan.

5. Experimental Evaluation

In order to test the behavior of our algorithms under realistic conditions, we constructed three families

of synthetic query sets larger than q2_2. Each query set contains 100 MDX queries. An MDX query can
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be analyzed into k sets of |QSET| related SQL group-by queries. We generated the query sets as follows:

For each MDX query we randomly chose k nodes q1, q2, ..., qk in the corresponding lattice. Then, for each

qi, 1 ≤ i ≤ k, we randomly selected |QSET| nodes in the sub-lattice which is rooted in qi. Table 2 contains

details about the query sets. q50_1 captures the case where an MDX expression contains only related

queries, while in q1_50 the group-by queries are totally random; this is a tricky input for the optimization

algorithms.

Number of sets k in
each MDX expression

Number of related
group-by queries
|QSET| in each set

Total number of
group-by queries in an

MDX expression

Total number of MDX
expressions

q2_2 2 2 4 100
q50_1 1 50 50 100
q25_2 2 25 50 100
q1_50 50 1 50 100

Table 2: Details about the query sets

In the first set of experiments, we assume that all queries use hash based star join. Figure 9 presents

the cost of the plan versus Smax. GG and GG-c produced similar results and Steiner-1 outperformed them

in most cases, so we only include the later algorithm in our figures. The results from the SYNTH dataset

are not presented since they were similar. The first row refers to the q50_1 query set which is very

skewed. Therefore it is easy to identify sets of queries that share their star joins. BVF is worse than

Steiner-1 for small values of Smax (i.e. small number of materialized views), but when Smax increases

Steiner-1 goes into the hard-region and its performance deteriorates. There are cases where the cost of its

solution is higher that the Top_Only case (i.e. when only the most detailed view is materialized). BVF on

the other hand, doesn’t suffer from the hard-region problem, due to its monotonic property, so it is

always better that the Top_Only case, and outperforms Steiner-1 when Smax beyond the point that it enters

the hard region.

MBVF was found to be better in all cases. For small values of Smax the algorithm is almost identical to

Steiner-1, but when the later goes into the hard-region, MBVF follows the trend of BVF. Observe that
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MBVF is not monotonic. However, since it is bounded by BVF, it exits the hard region fast, and even

inside the hard region, the cost of the plans does not increase considerably.
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(a) TPC-H dataset (b) APB dataset
Figure 9: Total execution cost versus Smax. All queries use hash based star join. The first row refers to the q50_1

query set, the second to the q25_2 and the third to the q1_50 query set

In the second and the third row of figure 9, we present the results for the q25_2 and q1_50 query sets

respectively. Although the trend is the same, observe that the cost of the plans of both BVF and MBVF

approach the cost of the Top_Only plan. This is more obvious for the q1_50 query set. The reason is that

the group-by queries inside q1_50 are random, so there is a small probability that there exist many sets of
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related queries. Therefore, BVF and MBVF tend to construct plans with one or two sets of queries and

assign them to very detailed views.

We mentioned above that BVF has in general the trend to deliver plans with only a few shared

operators. This is obvious in figure 10, which presents the average number of shared operators per MDX

expression as a function of Smax. Steiner-1, on the other hand, analyses each MDX expression into many

related sets. The poor performance of BVF for small values of Smax is due to the fact that the interrelation

among the group-by queries is not exploited enough. By attempting to break the initial plan into smaller

ones, MBVF constructs plans with more shared operations and outperforms BVF.

Observe that the number of shared operators for MBVF decreases after some point, and the algorithm

converges to BVF. This is due to the fact that some beneficial general view has been materialized, which

can effectively replace two or more of its descendants. The reason the other algorithms enter the hard

region is exactly that they fail to recognize such cases.
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Figure 10: Average number of shared operators in each MDX execution plan, versus Smax

In figure 11 we present the running time of the algorithms in seconds versus Smax for the TPC-H

dataset. When the number of queries is small (q2_2), the running time for BVF is almost the same as for

GG and GG-c, while MBVF is one order of magnitude slower. However it is still faster than Steiner-1.

For a large number of queries, the absolute running time for all algorithms increases. BVF is the fastest,

while the gap from MBVF decreases. GG and Steiner-1 have similar behavior with MBVF and GG-c is

the slowest. The results for the other datasets were similar.
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Figure 11: Total running time (in sec) to generate the plan for 100 MDX queries versus Smax, for the TPC-H dataset

In our last set of experiments, we tested the general case where some of the queries are processed by

hash-based star join, while the rest use index-based hash join. We run experiments where the percentage

of the queries that could use index-based star join was set to 50%, 25% and 10%. The subset of queries

that could use the indices was randomly selected from our previous query sets. The trend in all the tested

cases was the same. In figure 12 we present the cost of the plan versus Smax for the 25% case (only GG-c

is presented in the diagrams, since it delivered the best plans).

The results are similar to the case where only hash-based star joins are allowed. Observe however,

that the distance of the produced plans from the Top_Only case has increased in most cases. This is due

to the fact that the algorithms deliver plans that include shared index-based star joins so they can achieve,

in general, lower execution cost.

6. Conclusions

In this paper we conducted an extensive experimental study on the existing algorithms for optimizing

multiple dimensional queries simultaneously in multidimensional databases, using realistic datasets. We

concluded that the existing algorithms do not scale well if a set of views is materialized to accelerate the

OLAP operations. Specifically, we identified the existence of a hard-region in the process of constructing

an optimized execution plan, which appears when the number of materialized views increases. Inside the
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hard region the behavior of the algorithms is unstable, and the delivered plans that use materialized views

can be worse than executing all queries from the most detailed view.
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Figure 12: Total execution cost versus Smax. 25% of the queries can use index based star join. The first row refers to

the q50_1 query set, the second to the q25_2 and the third to the q1_50 query set.

Motivated by this fact, we developed a novel greedy algorithm (BVF), which is monotonic and its

worst-case performance is bounded by the case where no materialized views are available. Our algorithm

outperforms the existing ones beyond the point that they enter the hard-region. However, BVF tends to

deliver poor plans when the number of materialized views is small. As a solution, we developed a

multilevel variation of BVF. MBVF is bounded by BVF, although it does not have the monotonic
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property. Our experiments indicate that for realistic workloads MBVF outperforms its competitors in

most cases.

Currently our research focuses on distributed OLAP systems. We are planning to extend our methods

for distributed environments, where there may exist multiple replicas of a view. The problem becomes

more complicated since we don’t only need to decide which view will answer a query, but also the site

that will execute the query. Another direction of future work is the efficient cooperation of multi-query

optimization techniques with cache control algorithms. The intuition is that we can advise the

replacement algorithm to evict cached results based not only on the frequency of the queries but also on

the combinations that are posed simultaneously.
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