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ABSTRACT
Mobile health applications, including those that track activities such
as exercise, sleep, and diet, are becoming widely used. Accurately
predicting human actions in the real world is essential for targeted
recommendations that could improve our health and for person-
alization of these applications. However, making such predictions
is extremely difficult due to the complexities of human behavior,
which consists of a large number of potential actions that vary over
time, depend on each other, and are periodic. Previous work has not
jointly modeled these dynamics and has largely focused on item
consumption patterns instead of broader types of behaviors such
as eating, commuting or exercising.

In this work, we develop a novel statistical model, called TIPAS,
for Time-varying, Interdependent, and Periodic Action Sequences.
Our approach is based on personalized, multivariate temporal point
processes that model time-varying action propensities through a
mixture of Gaussian intensities. Our model captures short-term
and long-term periodic interdependencies between actions through
Hawkes process-based self-excitations. We evaluate our approach
on two activity logging datasets comprising 12 million real-world
actions (e.g., eating, sleep, and exercise) taken by 20 thousand users
over 17 months. We demonstrate that our approach allows us to
make successful predictions of future user actions and their timing.
Specifically, TIPAS improves predictions of actions, and their timing,
over existing methods across multiple datasets by up to 156%, and
up to 37%, respectively. Performance improvements are particularly
large for relatively rare and periodic actions such as walking and
biking, improving over baselines by up to 256%. This demonstrates
that explicit modeling of dependencies and periodicities in real-
world behavior enables successful predictions of future actions, with
implications for modeling human behavior, app personalization,
and targeting of health interventions.

1 INTRODUCTION
Activity tracking applications for mobile health have become an
important part of people’s daily lives. A US-nationwide study in
2013 found that 69% of adults keep track of a health indicator, and
21% among them used an app or device to do so [24]. In activity
logging applications such as Fitbit, Under Armour Record, and Ar-
gus, users might take one of many possible actions from a large
and diverse space of potential actions at any point in time. Users
continuously track many actions of their lives including exercise,
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diet, sleep, and commuting behavior with the goal of improving self-
knowledge and personal well-being [6, 7, 45, 46]. User modeling is
critical to making activity logging applications more useful by pro-
viding users with personalized experiences matching their specific
objectives [12, 19, 23, 27, 54]. This has the potential to significantly
improve people’s health, for instance by preventing negative health
outcomes and promoting the adoption and maintenance of healthy
behaviors [4, 25, 42, 49]. However, successful personalization of
systems rests on the ability to predict the user’s next actions and
when they will occur [17, 21, 54].

Predicting actions is important because these predictions facil-
itate personalization of the user interface and user experience in
order to provide users with what they need, without them asking
for it explicitly [41]. For example, in activity logging applications
we can predict when the user will eat dinner and their future loca-
tion in order to provide relevant recommendations [52]. Accurate
and contextualized predictions could further help users to realize
their personal goals by reminding them to measure their weight or
notifying them about the exercise the next morning [46]. Besides
predicting the action itself, it is also critical to predict its timing,
so that recommendations and reminders can be made at the right
time. For instance, diet reminders ideally are delivered just before
meal choices are made [26, 42, 49]. More generally, predicting user
actions also enables digital personal assistants that support users
with relevant information including local recommendations, traffic,
weather, events, and news [19].

However, human behavior is extremely complex, which makes
accurate predictions very challenging. In particular, human behav-
ior is (1) time-varying, (2) interdependent, and (3) periodic. First,
real-world actions vary over time, for example based on time of
day (e.g., spending time with friends in the evenings) and day of
week (e.g., going hiking on weekends) [14, 35]. Second, actions
are also interdependent in the short-term and the long-term (e.g.,
brushing teeth before going to bed, or drinking water after work-
outs). Third, humans are creatures of habit [17] and exhibit periodic
behaviors [5, 16, 18], such as brushing teeth every morning and
evening.

Current user modeling techniques (e.g., [8, 11, 17, 27, 32, 35,
37, 50, 55]) do not jointly model all these key aspects (time varia-
tion, interdependence, periodicity) of real-world action sequences.
However, failing to account for any of them results in decreased pre-
dictive performance. For example, consider the task of predicting
the time of a user’s next meal. When not accounting for periodicity,
one would miss the fact that the user’s early lunch might lead to
an earlier dinner as well. However, this could be a critical mistake
if the user relies on timely diet reminders.

While great advances have been made in modeling specific as-
pects of behavior in narrow application domains, in particular in
the space of recommender systems [35] or information retrieval [2,
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3, 48], these lines of work have largely focused on consumption of
items such as specific videos, songs, or websites [8, 11, 32, 35, 50].
In all these cases, users repeat the same high-level actions such
as watching one video after another. In contrast, we consider pre-
dicting which higher-level action, out of many, the user will take
next; for example, whether they will watch a movie or go for a run
(not which specific movie or run). Furthermore, previous work has
often focused on predicting short-term actions such as the next unix
command [17], web page request [55], or TV episode watched [50].
Instead, we are interested in predicting longer-term actions such
as a commute in the evening or a run the next morning.
This work. We present a new model for the task of predicting
future user actions and their timing. First, we empirically demon-
strate that action sequences exhibit time-varying, interdependent,
and periodic patterns and that modeling them is critical to accurate
predictions of user actions. Our model extends prior work on mul-
tivariate temporal point processes and is the first model to account
for all three key properties. The model addresses (1) time-varying
propensities of actions through mixture of Gaussians, (2) short-
term dependencies between actions through a Hawkes process, and
(3) long-term periodicity with time-dependent Weibull distribu-
tions. We call this model TIPAS referring to Time-varying Interde-
pendent Periodic Action Sequences. TIPAS is personalized to each
user through learning user-specific action preferences. We further
develop an EM-based algorithm to fit this model using maximum
likelihood estimation.

We demonstrate that TIPAS can scale to real-world datasets from
Argus and Under Armour activity logging applications that capture
12 million actions taken by 20 thousand users over 17 months. We
evaluate our model on these two activity logging datasets captur-
ing ten different real-world actions, and demonstrate that we can
predict the user’s next logged activity (e.g., run, eat, or sleep) and
the timing of that activity (continuous, non-discretized timestamp)
based on the user’s previous actions and their timing.

Further, we show that TIPAS accurately captures all three fun-
damental behavioral patterns in real-world data. Using several
domains of real-world actions, we demonstrate that our model out-
performs eleven existing approaches on tasks of predicting actions
by up to 156% as well as predicting when they will occur by up
to 37%. Further, we show that performance improvements over
baselines are particularly large for rare actions, increasing predic-
tion accuracy over baselines by up to 256%. We find that these
performance improvements are crucially enabled by modeling time-
varying propensities of actions and their dependencies, and by
modeling long-term periodicities of actions. Empirically, modeling
time-varying propensities of actions yields 53% and 40% accuracy
on the two activity logging datasets. Modeling short-term depen-
dencies between actions improves this to 59% and 49%, respectively.
Also capturing long-term periodicities of actions further improves
this to 61% and 51%, respectively. Thus, capturing these three prop-
erties is essential to predicting periodic and interdependent human
action sequences.

2 RELATEDWORK
Predicting the next action. Much work has focused on predic-
tions of next actions, including unix commands [17], user interface
actions to enable interface adaption [27], web page requests al-

lowing for prefetching and latency reduction [55], clicks on web
search [3], user behavior anomalies [37], product item preferences
[35, 44], online purchases [34], mobile apps used [10], and future
location-based checkins [9, 13, 38]. Many of these works (e.g., [9, 13,
32, 37]) have formulated the problem as a discrete-time sequence
prediction task and used Markov models. However, Markov models
assume unit time steps and are further unable to capture long-range
dependencies since the overall state-space will grow exponentially
in the number of time steps considered [19]. Other works have used
LSTM models [30], which also assume discrete time steps and are
limited in their interpretability.

In contrast, we also model and predict when the next action will
occur, which is critical to surface recommendations and reminders
at the right time. In addition, instead of specific web queries or item
consumption, we consider a broader set of higher-level actions such
as watching a movie, going for a run, or going to sleep.
Patterns of repeat consumption. Another line of work has stud-
ied repeated actions, in particular in the space of item consumption,
including video binge watching [50], music listening [32], web page
revisitation patterns [2], and repeatedweb search queries [48]. More
recent work has focused on modeling these behaviors and proposed
models based on patterns of boredom [11, 32] and recency [8].

Importantly, patterns of human actions in the real world, which
are modeled in this work, are fundamentally different from pat-
terns of item consumption due to their higher-level notion (e.g.,
watching a movie, not which specific one). For example, patterns of
boredom [11, 32] suggest that the probability of repeating an action
within a short amount of time is unlikely. In contrast, we empiri-
cally observe the opposite in some cases, such as users commuting
one way being extremely likely to commute back in the near future.
More generally, real-world actions are characterized by more com-
plex dynamics including time-varying behavior, interdependence,
and periodicity of actions.
Temporal point processes. Recent work has considered temporal
point processes [15] including Poisson and Hawkes [28] process-
based models to predict the timing of future actions. Temporal point
processes have been used to predict continuously time-varying
item preferences [21], and to model user influence in a social net-
work [31, 47, 53], the co-evolution of information and network
structure [22], competition between products [51], mobility pat-
terns in space and time [19], user return times [33], and temporal
document clustering [20, 40]. Perhaps the closest works to ours are
by Du et al. [19, 21], which also attempt to predict both future user
actions and their timing.

We extend this line of work by explicitly modeling time-varying
action propensities as well as developing a novel combination of
Exponential and Weibull kernels to model short-term and long-
term periodic dependencies between actions. Further, we demon-
strate that these aspects are critical when predicting real-world
user actions and their timing across two real-world activity logging
datasets.

3 TASK DESCRIPTION
The task considered in this work is, given a user and her history,
a timestamped sequence of her actions in the past, to predict the
user’s future actions and the timing of these actions.

Formally, letU be a set of users. Each useru ∈ U has an action se-
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Figure 1: Fraction of events within each time-of-day win-
dow. Notice that action propensity is clearly non-uniform
and sometimes multi-modal.

quence, which we represent as a user history Hu = {(aun , tun )}
Nu
n=1

with a total of Nu events. Each element inHu is an event consisting
of an action and timestamp representing that user u takes action
aun ∈ A at time tun ∈ R+ (0 ≤ tun ≤ T ). T denotes the end of our
observation period. For example, aun could correspond to watching
a movie or going for a run (but not which specific movie or run).
We assume that events are sorted by their timestamps, tun ≤ tun′

for n < n′. We denote the set of events before time t in user history
Hu as Hut = {(a

′, t ′) |(a′, t ′) ∈ Hu and t ′ < t }.
The task of predicting future user actions and when they will

occur can now be formalized as follows. Given user history Hut up
until time t , predict the next K actions the user will take and their
timing {(ak , t ′k )}

K
k=1, where t

′
k > t (i.e., these are the actions with

the smallest t ′k > t among all possible future user actions).
Here, we propose a novel multivariate temporal point process

model for this prediction task and focus on the case of K = 1.

4 EMPIRICAL OBSERVATIONS
Next we make a series of empirical observations about important
properties of real-world action sequences that will provide the basis
for our statistical model TIPAS (Section 5). Accounting for these
observations will lead to superior predictive models (Section 6).

4.1 Dataset Description
To illustrate critical properties of real-world actions we use a dataset
of logged activities from amobile activity logging application, Argus
by Azumio, used in previous work on activity logging [6, 7, 45]. This
smartphone app allows users to track their various daily activities
including drink, sleep, heart rate, running, weight, food, walking,
biking, workout, and stretching actions. For example, the drink
action is logged to keep track of the user’s daily fluid intake and
the workout action is used to log various indoor exercises such
as weightlifting or indoor-cycling. This dataset includes over four
thousand active users taking 1.2 million actions over the course
of seven months (all users logged at least two unique actions per
day on average). Due to the popularity of the app, this set of users
is very diverse in terms of age, gender, health status, country of
origin, and other features [7]. We note that the following properties
of real-world actions also hold in other datasets including Under
Armour activity logging app data (Section 6.1).

4.2 Properties of Real-World Action Sequences
Next, we describe three important properties of real-world action
sequences and present empirical justification for each. TIPAS will
explicitly address all three properties (Section 5).
Time-varying propensities of actions. Human real-world ac-
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Figure 2: Fraction of interarrival times at each time window
(log scale). Figure shows drink, weight, and heart rate mea-
surement actions taken after run (left) and wake-up (right)
actions. Notice that the likelihood of drink, weight, and
heart-rate actions declines quickly after both run and wake-
up actions. However, note that fraction of heart-rate actions
decreases much quicker after wake-up than after runs.

tions vary over time, for example based on time of day (e.g., having
meals in the morning, at mid-day, and in the evening) and day of
week (e.g., working out on the weekends). This dynamic is evident
in real-world data of human activities as illustrated in Figure 1.
The figure shows the distribution of the timing of three types of
actions throughout the day: wake-up (from sleep), food, and bike.
First, we observe that all three distributions are clearly non-uniform
over time. For example, wake-up actions are clustered at around
07:00 hours (7 am). Second, we observe significant differences in the
propensities to take different actions. While for sleep we observe
a uni-modal distribution concentrated in the early morning, we
observe a bi-modal distribution for biking. The two modes in the
morning and evening likely correspond to commute activity where
users log their rides to and from work. We also observe two clear
modes for food during lunch and dinner times. However, breakfast
times seem to varymore widely across users and are more dispersed.
Summarizing, we observe non-uniform, temporal distributions with
varying number of modes that vary across actions.
Short-termdependencies between actions.Certain actionsmake
it more likely that some other actions will follow shortly. For exam-
ple, people might drink water right after exercising or stretch right
before running. In order to examine the short-term correlations
between actions, we extract interarrival times between pairs of
actions (i.e., the elapsed time between the two actions) from a set
of action histories. Figure 2 shows the distribution of interarrival
times for several pairs of user actions after run actions (left) and
sleep actions (right). We make two important observations. First,
the monotonically decreasing curves show that the likelihood of
other actions is largest right after an action has happened. After
this, the likelihood declines very quickly in a monotonic manner
(note the log scale of the Y-axis). This points to a self-excitation dy-
namic of logged human actions. For example, users are very likely
to follow up on runs or waking up from sleep with drinking water
or measuring their heart rate or weight. Specifically, about 50% of
the weight measurements which happen within 6 hours of waking
up occur right within the first 30 minutes. Second, we find that
the action dependency patterns vary across actions. For example,
drinking is more common after runs than after waking up and
heart rate measurements fall off more sharply right after waking up
than after runs. In summary, human actions in the real world often
trigger other actions within a short period but these patterns are
different across actions. We can leverage these correlations among



0
.0

0
0

1
0

.0
1

0
0

1
.0

0
0

0

Interarrival time (hours)

F
ra

c
ti
o
n
 o

f 
e
ve

n
ts

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Time of first bike action

6−12h 12−18h

Figure 3: Density describing when the next biking action
will occur (interarrival time) given that the prior bike ac-
tion occurred between 6-12h (solid black line) or between 12-
18h (red dashed line) after midnight (timing, not duration).
Notice the multiple and different modes of the two distribu-
tions indicating that biking actions recur periodically but
that the period timing depends on the time of day.

actions when predicting future events.
Long-term periodic effects. Humans exhibit periodic behaviors
such as waking up at about the same time every morning or com-
muting back home after about 8 hours of work. Therefore, logged
real-world actions likely follow periodic recurrence patterns in
which the same action tends to recur at certain, regular intervals.
While some of these periodic behaviors are rooted in intrinsic bio-
logical rhythms such as sleep [5], others are dictated by extrinsic
factors (e.g., when does one have to be in the office in the morn-
ing), or based on personal habits [17] (e.g., measuring one’s weight
before breakfast). We illustrate these dynamics using interarrival
times between bike events in real-world data. Figure 3 shows the
distribution of interarrival times up to a maximum of 30h, where
the two curves represent observed dynamics when the first of the
two bike actions occurred during specific times of day (6-12h in
solid black and 12-18h in dashed red line; note that these correspond
to the timing and not the duration of the bike action).

We make two important observations. Previously, we had ob-
served that short-term dependencies between actions exhibit mono-
tonic decay. Here, we observe that this strong monotonic decay
only holds within the first few hours and that we observe multiple
additional peaks for both distributions after this initial phase. Sec-
ond, we observe that these peaks occur at different times based on
when the first action occurred. In the case of the distribution for
bike actions following a 6-12h bike ride, we observe peaks at around
9 and 24 hours (interarrival times), and peaks at around 14 and 24
hours for bike actions following a 12-18h bike ride. This behavior
is not unexpected. When biking in the morning (6-12h), the next
bike ride will likely be a commute back around 9h later. However,
if the bike ride happens in the evening (12-18h), the next bike ride
is likely not during the middle of the night, but after 14 hours or
at around 8:00h in the morning. In addition, both curves exhibit
a daily, 24h, periodicity. Modeling these periodicities allows us to
capture user-specific timing of, for example, a late evening com-
mute signaling a later start the next morning. In conclusion, two
important dynamics could help predicting future real-world actions:
actions display periodic recurrence and the time of recurrence can
depend on the time of day.

5 PROPOSED MODEL
In this section, we operationalize the insights gained from empirical
observations (Section 4) in a probabilistic model based on temporal
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Figure 4: Conceptual model overview. Intensity function of
“food” for user u is modeled by the sum of three types of
influences; time-varying background intensity (A; black),
short-term dependencies (B; green), and long-term periodic
effects (C; red). (A) Time-varying background intensitymod-
els typical times for food (e.g., having lunch around 12:00h).
(B) Events of “walking” and “water” might trigger “food” ac-
tionwithin a short period of time. (C) Due to the early break-
fast (6:00h), we might expect an earlier lunch.

point processes, called TIPAS.

5.1 Background on Temporal Point Processes
A temporal point process is a random process whose realization
consists of a list of discrete events localized in time, {tn }n∈N with
tn ∈ R

+. We introduce univariate temporal point processes for ease
of exposition, though we will be using multivariate point processes
to model the joint occurrence dynamics of multiple different actions
(description inspired by [22]; more background in [1]). Let Ht be
the history of events before time t . Temporal point processes can be
characterized via the conditional intensity function representing a
stochastic model for the time of the next event given all the times of
previous events. Formally, the conditional intensity function λ(t ) is
the conditional probability of observing an event in a small window
[t , t + dt ) given the history Ht ; that is, λ(t )dt = P{event in[t , t +
dt ) |Ht }. The conditional probability that no event happens during
[t , t ′) is S (t ′) = exp(−

∫ t ′
t λ(τ )dτ ) and the conditional density that

an event occurs at time t ′ is f (t ′) = λ(t ′)S (t ′) [1]. Thus, the log-
likelihood of a list of events t1, t2, . . . , tn in an observation window
[0,T ), where T > tn , can be expressed as

L (t1, t2, . . . , tn ) =
n∑
i=1

log λ(ti ) −
∫ T

0
λ(τ )dτ . (1)

The intensity λ can take various functional forms leading to a homo-
geneous Poisson process if λ(t ) is constant, to an inhomogeneous
Poisson process if λ(t ) is time-varying but independent of the event
history Ht , or to a Hawkes process if the intensity models mutual
self-excitations between events [1]. Our TIPAS model is based on
multivariate Hawkes processes [28].

5.2 Model Definition
We model user actions as a multivariate temporal point process
with a time-varying intensity based on three factors based on our
empirical observations (Section 4). The following intensity function
models the rate that action a occurs at time t in user history u,
λu (t ,a)=αua+Timeu (t ,a)+ShortTermu (t ,a)+LongTermu (t ,a). (2)

Here, we use an additive decomposition of the intensity instead
of modeling more complex interaction effects, because this ap-
proach is simple yet powerful and has been proven empirically



successful as well [22, 31, 47]. This model is conceptually visual-
ized in Figure 4. The figure shows how the overall intensity func-
tion λu (t ,a) (blue; here, a = food) is the sum of the time-varying
propensity Timeu (t ,a) (black), short-term dependencies between
actions ShortTermu (t ,a) (green), and long-term periodic effects
LongTermu (t ,a) (red) between actions (for simplicity, we assume no
personalization, i.e. αua = 0). Note that our model does account for
randomness, in the sense that not all actions may strictly conform
to short-term and long-term patterns, through the personalized and
time-varying baserates. In fact, learning model parameters from
real data tries to account for all actions and will adapt distributional
parameters to best explain all occurring actions. Next, we formally
define each of the four factors in turn.
Personalized action preferences: αua . We include personalized
user preferences for specific actions through a constant additive
factor αua ≥ 0 for each action and user. Note that one could also
model user preferences to be time-varying instead. However, this
would lead to a very large number of parameters and we show in
Section 6 that this simple model works well in practice.
Time-varying propensities of actions: Timeu (t ,a). Events can
occur without influence from preceding events according to the
background intensity function Timeu (t ,a). Having observed that
the propensity of actions varies across time of day (Section 4.2),
we model the background intensity of action a as a function of
time-of-day through a Gaussian mixture model. We define:

Timeu (t ,a) =
∑
z∈Z

βaz√
2πσ 2

az

exp
(
−

(
lt − µaz

)2
2σ 2

az

)
, (3)

where z ∈ Z represents the latent class of Gaussian mixture model
(the number ofmixtures can be determined through cross-validation).
For each action a and latent mixture class z, µaz > 0 and σaz > 0
denote the mean and standard deviation of the Gaussian distri-
bution. The importance of that mixture on the overall intensity
function Timeu (t ,a) is captured by βaz ≥ 0. lt corresponds to the
time of day of timestamp t (i.e., elapsed time since midnight). We
show in Section 6.3 that Gaussian mixtures fit temporal variation
in real-world data well.
Short-termdependencies between actions: ShortTermu (t ,a).To
model short-term dependencies between actions, we consider how
the rate at which action a occurs at time t (Equation 2) is influenced
by actions a′ which occurred at previous time t ′ < t . We model
these influences as a Hawkes process exhibiting self-excitations
using Exponential decay functions starting at the time of previous
actions. As demonstrated in Section 4.2, the short-term influence
of previous actions diminishes quickly and monotonically, making
the Exponential distribution a natural choice for the decay function.
We define:

ShortTermu (t ,a) =
∑

(t ′,a′)∈Hut

θa′aωa′a exp(−ωa′a∆t ′t ) , (4)

where Hut = {(t
′,a′) |(t ′,a′) ∈ Hu and t ′ < t } is the set of events

before time t in history u, and ∆t ′t = t − t ′ is the time difference
between time t ′ and time t > t ′. Further, ωa′a ≥ 0 determines how
quickly action a′ triggers action a (shape of Exponential distribu-
tion), and θa′a ≥ 0 determines how likely action a′ triggers action a
(scaling of distribution). We estimate these parameters for each pair
of actions (a′,a). Therefore, this component of the model captures

the interdependencies between different actions (e.g., drinking after
running), as well as the self-exciting effects of actions (e.g., running
after running). We show in Section 6.3 that a Hawkes process with
Exponential decay function fits short-term action dependencies in
real-world data well.
Long-termperiodic effects: LongTermu (t ,a).Wemodel the long-
term periodic effects between identical actions (e.g., run to run)
usingWeibull distributions. TheWeibull distribution is a continuous
distribution with positive support (i.e., for ∆t ′t > 0) that is well
suited to model long-term effect patterns at different points in time
and with different variance around its mean. We model the rate at
which action a occurs at time t influenced by a previous event of
action a at time t ′ as follows:
LongTermu (t ,a)=

∑
(t ′,a′)∈Ha

ut

ϕct ′aγct ′aκct ′a∆
κct ′a−1
t ′t exp(−γct ′a∆

κct ′a
t ′t ) (5)

where Ha
ut = {(t

′,a′) |(t ′,a′) ∈ Hu and t ′ < t and a′ = a} is the
set of events of action a before time t in history u, and ∆t ′t =
t − t ′ is again the time difference between time t ′ and time t >
t ′. As shown in Section 4.2, long-term effects vary based on the
time of day of action a′. This is captured through the parameter
ct ′ ∈ C that represents discretized time-of-day windows (e.g., using
four classes as 0-6h, 6-12h, 12-18h, and 18-24h). This allows us
to learn time-of-day-dependent distributions modeling different
periodicities. Parametrized by this time-of-day category ct ′ and by
action a,γct ′a ≥ 0, ϕct ′a ≥ 0 determine how quickly and how likely
(influence) action a′ (which occurred in time-of-day window ct ′ )
triggered its following event of action a. κct ′a ≥ 0 determines the
shape of the Weibull distribution. In Section 6.3, we demonstrate
that the Weibull distribution closely match periodic dynamics in
real-world data.

5.3 Model Inference
We use maximum likelihood estimation to infer the parameters of
our proposedmodel (Equation 2). The unknown parameters areα =
{{αua }u ∈U }a∈A, β = {{βaz }a∈A}z∈Z , µ = {{µaz }a∈A}z∈Z , σ =
{{σaz }a∈A}z∈Z , Θ = {{θa′a }a∈A}a′∈A, Ω = {{ωa′a }a∈A}a′∈A, Φ =
{{ϕca }c ∈C }a∈A, Γ = {{γca }c ∈C }a∈A, and K = {{κca }c ∈C }a∈A. The
set of all parameters is denoted by Ψ = {α , β, µ,σ ,Θ,Ω,Φ, Γ,K }.

The log-likelihood function (Equation 1), given a set of user
historiesH = {Hu }u ∈U , can be expressed as:

L (Ψ |H ) =
∑
u∈U

Nu∑
n=1

log λu (tun, aun ) −
∑
u∈U

∫ T

0

∑
a∈A

λu (t, a)dt , (6)

where the last term, the expectation function, represents the ex-
pected number of events in the time period from 0 toT . Combining
Equations (2)-(6), the log-likelihood can be written as follows:
L (Ψ |H ) =∑
u∈U

Nu∑
n=1

log


αuaun +

∑
z∈Z

βaunz√
2πσ 2

aunz

exp
(
−

(
ltun − µaunz

)2
2σ 2

aunz

)

+

n−1∑
m=1

θaumaunωaumaun exp(−ωaumaun∆tum tun )

+

n−1∑
l=1

(
I (aul = aun )ϕcul aunγcul aunκcul aun∆

κcul aun −1
tul tun

× exp(−γcul aun∆
κcul aun
tul tun

)
)

−
∑
u∈U

∫ T

0

∑
a∈A

λu (t, a)dt , (7)



where cul ∈ C represents time-of-day category of l-th event of u,
and I (·) is the indicator function. The integral in Equation 7 can be
analytically calculated.

Inspired by previous work [22, 53], we develop an efficient in-
ference algorithm to maximize the log-likelihood based on the EM
algorithm. By iterating the E-step and the M-step until convergence,
we obtain a local optimum solution for Ψ.
E-step. Conceptually, we introduce latent variables p,q,r to cap-
ture why each event was triggered either through user preference,
time-varying background intensity, short-term action interdepen-
dencies, or long-term periodic effects. Let p0,un be the probability
that the n-th event of useru was triggered by user preference, pz,un
be the probability that the n-th event of user u was triggered by
the time-varying background intensity function of latent class z,
qum,un be the probability that then-th event of useru was triggered
by the short-term effect of them-th event of user u, and rul,un be
the probability that the n-th event of user u was triggered by the
long-term effect of the l-th event of user u.

In E-step, k-th estimate of pk0,un , p
k
z,un , qkum,un , and rkul,un are

calculated by:

pk0,un =
αkuaun
Run

, (8)

pkz,un =
1

Run

βkaunz√
2π (σ kaunz )2

exp
(
−

(
ltun − µ

k
aunz

)2
2(σ kaunz )2

)
, (9)

qkum,un =
1

Run
θkaumaunω

k
aumaun exp(−ωk

aumaun∆tum tun ) , (10)

rkul,un =



1
Run

ϕkcul aunγ
k
cul aunκ

k
cul aun

× ∆
κkcul aun −1
tul tun

exp(−γ kcul aun∆
κkcul aun
tul tun

)



, (11)

where Ψk = {αk , βk , µk ,σk ,Θk ,Ωk ,Φk , Γk ,Kk } is the k-th esti-
mate of parameters in the EM procedure, and Run is the normaliza-
tion factor in order to satisfy pk0,un +

∑
z∈Z pkz,un +

∑n−1
m=1 q

k
um,un +∑n−1

l=1 rkul,un = 1.

M-step.We use Jensen’s inequality to provide a lower bound for
the log-likelihood (Equation 7); this lower bound is often called the
Q function. We obtain the next estimate of the parameters by taking
the derivative of theQ function with respect to each parameter and
setting them to zero:

αk+1ua =

∑Nu
n=1 I (aun = a)p

k
0,un

T
, (12)

βk+1az =
2T
|U |T

×

∑
u∈U
∑Nu
n=1 I (aun = a)p

k
z,un

erf ( µkaz√
2σ kaz

) + erf ( T −µ
k
az√

2σ kaz
)

, (13)

θk+1a′a =

∑
u∈U
∑Nu
n=1
∑n−1
m=1 I (aum = a

′, aun = a)qkum,un∑
u∈U
∑Nu
n=1 I (aun = a

′)
(
1 − exp

(
−ωk

a′a (T − tun )
)) , (14)

ϕk+1ca =

∑
u∈U
∑Nu
n=1
∑n−1
l=1 I (aul = a, aun = a, cul = c )rkul,un∑

u∈U
∑Nu
n=1 I (aun = a, cun = c )

(
1 − exp

(
−γ kca (T − tun )κ

k
ca
)) ,

(15)

where T is the time period of a day (i.e., 24 hours), T
T

is the number
of days representation of the observed period T , and where erf
denotes the Gauss error function erf (x ) = 1√

π

∫ x
−x e

−t 2 dt . Because

Dataset Statistics Argus Under Armour

Observation period 7 months 10 months
Jan-July ’15 Jan-Oct ’16

# unique actions 10 8
# total users 4,708 15,221
# total actions 2,140,757 9,733,645
Avg. # actions per user 454.7 639.5
Avg. # unique actions per user 6.3 6.8
Avg. # unique actions per user day 2.7 4.4

Table 1: Basic dataset statistics.

of the exponentials (exp and erf ) within the expectation function
(Equation 7), ωk+1

a′a , γk+1ca , κk+1ca , µk+1az , and σk+1az cannot be solved
in closed form. However, by further considering a lower bound for
these exponentials ωk+1

a′a and γk+1ca can be solved in closed form.
Their update rules are as follows:

ωk+1
a′a =




∑
u∈U

Nu∑
n=1

n−1∑
m=1

I (aum = a′, aun = a)qkum,un




/



∑
u∈U

Nu∑
n=1

n−1∑
m=1

I (aum = a′, aun = a)qkum,un∆tum tun

+
∑
u∈U

Nu∑
n=1

I (aun = a′)θka′a (T − tun ) exp
(
−ωk

a′a (T − tun )
)


, (16)

γ k+1ca =



∑
u∈U

Nu∑
n=1

n−1∑
l=1

I (aul = a, aun = a, cul = c )r
k
ul,un




/



∑
u∈U

Nu∑
n=1

n−1∑
l=1

I (aul = a, aun = a, cul = c )r
k
ul,un∆

κkca
tul tun

+
∑
u∈U

Nu∑
n=1

I (aun = a, cun = c )ϕkca (T − tun )
κkca exp

(
−γ kca (T − tun )

κkca
)

.

(17)

The other three parameters, κk+1ca , µk+1az and σk+1az , are estimated
by maximizing the Q function through the use of a gradient-based
numerical optimization method; we used the Newton method. For
more details on model inference see the Online Appendix [36].

6 EXPERIMENTS
This section evaluates the predictive performance of our proposed
model on two real-world datasets on predicting the next user action
and when it will occur. We compare against eleven different base-
lines on each dataset. However, since many baseline models are
unable to make joint predictions of action and timing, we evaluate
these two tasks separately. Importantly, this process allows us to
identify the individual sources of error that would impact joint pre-
dictions. Our implementation is available at snap.stanford.edu/tipas.

6.1 Datasets
Our experiments use two real-world activity logging datasets. In
total, these datasets comprise 12 millions real-world actions taken
by 20 thousand users over 17 months.
Argus dataset. We use the activity logging data from the Argus
mobile app described in Section 4.1. Users in this dataset can log
10 different actions (drink, sleep, heart rate, running, weight, food,
walking, biking, workout, and stretching) and our goal is to predict
which of these 10 actions a user will take next (and when). Our anal-
yses include users who logged at least two unique actions per day
on average (other users might only use the app to for example track

snap.stanford.edu/tipas


their sleep making predictions of actions and their timing almost
trivial; we find that our results are robust to different choices of this
threshold). We consider 7 months of data from the app in a rolling
window evaluation, where we use one month for training and the
next for testing (i.e., making out-of-sample predictions; without
retraining). As shown in Table 1, the dataset includes 2.1 million
actions by over 4 thousand users within the 7 month observation
period.
Under Armour dataset (UA). We also use activity logging data
from Under Armour mobile apps (i.e., MapMyFitness and MyFit-
nessPal; focusing on users that are active in both apps). Users in
this dataset can log 8 different types of actions (running, walking,
biking, workout, breakfast, lunch, dinner, and snacks). Our analyses
include users who logged at least four unique actions per day on
average, leading to a similar number of unique actions per user
on average compared to the Argus dataset (again, our results are
robust to different choices of this threshold). We consider 10 months
of data from the app and again perform a rolling window evalua-
tion where we train on one month and test on the next. In total,
this dataset comprises 15 thousand users taking 9.8 million actions
(Table 1).

6.2 Model Learning
Note that our model has few core model parameters. In the context
of the datasets described above, we have about 500 core model
parameters (β, µ,σ ,Θ,Ω,Φ, Γ,K ) and about 25 thousand personal-
ization parameters (α ). This small, non-redundant set of parameters
allows us to train the model efficiently and robustly, and explain
model predictions through inspection and visualization of model pa-
rameters (Section 6.6), while performing competitively (Section 6.4).
However, during training time (but not test time) we also have
latent variables (p,q,r ) that allow us to learn the core model pa-
rameters. These latent variables represent which actions trigger
which other actions, leading to O ( |U |(maxu ∈U Nu )

2) variables in
the worst case. On both datasets, inference of both core model and
latent parameters involves solving an optimization problem with
over 200 million total variables (Section 5.3; we randomly initial-
ize all parameters). Using our EM-based inference procedure we
can robustly infer these parameters in less than ten hours using
a single-threaded C++ implementation on a single machine. We
find that one month of training data is enough to reliably train our
model.

6.3 Validating Parametric Assumptions
In Section 5.2 we developed a model consisting of three parts: time
variationmodeled using a mixture of Gaussians (Timeu (t ,a)), short-
term dependencies between actions modeled by a Hawkes process
with Exponential decay function (ShortTermu (t ,a)), and long-term
periodicitymodeled throughWeibull distributions (LongTermu (t ,a)).
Here, we test empirically whether these parametric assumptions
hold true in real data. Using the Argus dataset, we inferred appro-
priate parameters for these distributions.

We demonstrate qualitatively in Figure 5 that the chosen distri-
butions fit real-world dynamics well. Figure 5 (a) shows the time-
varying propensity with superimposed mixture of Gaussian fit and
(b) shows that, collectively, Exponential and Weibull distribution
closely approximate the influence of previous actions (example data

(a) Time-varying propensity (bike)
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Figure 5: Validation of parametric modeling assumptions
(Section 5.2). (a) Mixture of Gaussian closely fits observed
time-varying action propensity (here, for bike action). (b)
Exponential and Weibull distributions collectively well-
approximate short-term dependencies and long-term peri-
odic effects of previous bike actions.

is for bike action as seen in Figure 1).
We have further quantitatively evaluated our parametric assump-

tions and compared our choices to alternative distributions (e.g.,
Rayleigh and Power-law) through goodness-of-fit tests which have
shown that the suggested distributions best fit real-world data.

6.4 Predicting the Next Action
First, we evaluate our proposed model in terms of its accuracy in
predicting actions at a given time. The task is to predict the n+1-st
action aun+1 of user u, given time tun+1 and past user history
Hu = {(au1, tu1), · · · , (aun , tun )}. For each two month period in
both datasets, we use the first month for training and the second
month for testing and perform a rolling window evaluation, where
we predict each test set event given all events that happened before
it (without retraining). We use accuracy, the percentage of correct
predictions, over all test events as our evaluation measure (the
most common measure to evaluate recommender systems [29]). We
also report macro-averaged recall [39] corresponding to averaging
prediction accuracy equally weighted across all action types. This
measure highlights differences in predictive performance on rare
actions that do not affect the standard accuracy measure very much.
We find very similar results using other classification metrics (e.g.,
ROC AUC, F1). The number of mixtures for the time-varying action
propensity (Equation 3) is set via cross-validation. We compare our
proposed model against the following seven baseline models, which
have proven competitive across a wide variety of prediction tasks
and recommender systems:
• CopyModel: Simply repeats the user’s last action. Several repeat
consumption models are variants of this copy model (e.g., [8, 11]).
• Markov Model: Predicts the next action based on the most re-
cent actions of the user. We report first to fifth-order Markov
models (sixth-order models did not significantly improve perfor-
mance). Markov models have been used widely to predict next
actions (e.g., [9, 32]).
• Hidden Markov Model (HMM): This is a Markov model with
hidden (unobserved) states. It predicts the next action based on
the current, inferred state of the action sequence [37].
• Factorizing Personalized Markov Chains (FPMC): This is
based on underlying Markov chains where the transitions ma-
trices are user-specific. Matrix factorization models are used to
address sparsity issues of these user-specific Markov chains [44].
• Recurrent Neural Network (RNN): Feedforward neural net-
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(b) Baseline Comparison (UA)
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Figure 6: Accuracy when predicting actions. Higher is better.
Comparing proposed TIPAS model (red) to baselines (gray).
Error bars in all plots correspond to standard errors.

work structure using outputs from the hidden units at the prior
time step as the inputs as the current time step. Assumes discrete
time steps and no ready-to-use generalizations to continuous
time domain exist.
• PP-Global: A global Poisson process model. The intensity func-
tion is constant over time and defined by λu (t ,a) = αa .
• PP-User: A user-specific Poisson process model. The intensity
function is constant over time and defined by λu (t ,a) = αua .

Note that Hawkes process models (e.g., [20, 22, 28]) are closely re-
lated to the ShortTermu (t ,a) component of our model (Equation 4).
Our proposed model TIPAS uses the intensity function of Eq. 2.
We predict the most likely user action as â = argmaxa λu (tun+1,a).
We also compare the individual model components in an ablation
study below.
Results: Comparison to baseline models. Figure 6 compares
accuracy of next action prediction. We observe that the eleven base-
lines achieve accuracies of 36-57% on the Argus dataset and 20-46%
on the Under Armour dataset with the RNN baseline performing
best in both datasets. The limited predictive performance of these
competitive baselines shows that this prediction task is non-trivial.
TIPAS outperforms all baselines on both Argus (60.9%; 6-69% rel.
improvement) and Under Armour datasets (50.9%; 11-156% rel. im-
provement). The small standard error across multiple dataset splits
in the rolling window evaluation (Figure 6) demonstrates that our
training procedure is robust and consistently shows good perfor-
mance. We note that TIPAS performs particularly well on rare
actions leading to 9-256% relative improvement in macro-averaged
recall over baseline models (Online Appendix [36]).
Results: Comparison of individual model components. Note
that TIPAS has three components (Equation 2): time-varying ac-
tion propensities (Time), short-term interdependencies between
actions (Short), and long-term periodic effects (Long). Here, we eval-
uate the performance of each of these components in an ablation
study by comparing Time, Time+Short, and the full TIPAS model
combining Time+Short+Long (Figure 7; all models include user
personalized preferences αua ). We find that modeling time-varying
action propensities achieves an accuracy of 53% and 40% on the
two datasets, respectively. Further, modeling short-term dependen-
cies between actions improves this to 59% and 49%, and capturing
long-term periodicities of actions further improves this to 61% and

(a) Model components (Argus)
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(b) Model components (UA)
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Figure 7: Ablation study comparing different model compo-
nents on accuracy when predicting actions. Higher is better.

51%, respectively. This demonstrates that capturing all three prop-
erties is essential to predicting actions in both datasets of human
real-world action sequences. Further, we observe a bigger differ-
ence between the full Time+Short+Long model and the Time+Short
model in terms of macro-averaged recall (7% and 5% relative MAR
improvements compared to 3% and 4% in terms of accuracy on the
Argus and Under Armour datasets, respectively). This indicates
that modeling long-term periodicities is especially important for
more rare actions such as walking and biking. In addition, we find
that modeling long-term periodic effects discretized by time of day
(0-6h, 6-12h, 12-18h, 18-24h) performs significantly better than not
discretizing by time of day on both datasets. For example, actions
such as biking and walking are periodic but vary based on time of
day (Figure 3). Our full model captures these time-of-day dependent
long-term effects and relatively improves macro-averaged recall
of predicting biking and walking actions by 491-556% over Time
model and 2-4% over Time+Short model.

6.5 Predicting the Time of the Next Action
We now focus on the second aspect of modeling real-world actions:
Predicting the time of the next action. Specifically, the task is the
predict the n+1-th timestamp tun+1 in history u, given past events
Hu = {(au1, tu1), ..., (aun , tun )} (we do not assume that the next
action aun+1 is given). Mean absolute error (MAE) is used as the
evaluation metric. We use the same train/test paradigm as before
(rolling window evaluation training one month and testing on the
next). We restrict predictions to only events that will occur within
the next 12 hours (i.e., the time interval tun+1 − tun ≤ 12 hours)
because these are the most important and actionable inferences (e.g.,
predicting a sleep time many days from now may have large error,
but it is also less relevant). In order to make time predictions based
on TIPAS, we simulate the multivariate temporal point process
using Ogata’s modified thinning algorithm [43]. We simulate 100
samples and return the average time.

We compare our model to the following five baseline methods:
• Time Copy Model: Predicts the next time, tun+1, based on the
most recent time-interval of useru (tun+1 = tun + (tun −tun−1)).
• Average Time Interval: Predicts the next time tun+1 using the
global average of time-intervals.
• User Average Time Interval: Predicts the next time tun+1 us-
ing the average of time-intervals for user u.
• PP-Global: A global Poisson process model. The intensity func-
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(b) Baseline Comparison (UA)
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Figure 8: Mean absolute error (MAE) when predicting time
of next actions. Lower is better. Comparison to baselines.

(a) Inferred food periodicity
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Figure 9: Visualization of inferred TIPASmodel parameters
for (a) periodicity of food actions and (b) interdependent ac-
tions following food actions. The learned dependencies al-
low to explain why specific actions are being predicted.

tion is constant over time and defined by λu (t ,a) = αa .
• PP-User: A user-specific Poisson process model. The intensity
function is constant over time: λu (t ,a) = αua .
We note that the other baselines (Markov models, HMM, FPMC,

and RNN) used in Section 6.4 are unable to make any time predic-
tions.
Results. Experimental results are shown in Figure 8. We observe
that all baselines perform similarly except the Time Copy model
which performs significantly worse on both datasets. TIPAS signifi-
cantly outperforms all baselines across both datasets by 22-35% in
the Argus dataset and 11-37% in the Under Armour dataset (relative
improvement). Restricting predictions to events within the next
6 hours (instead of 12h as before), TIPAS outperforms the base-
lines even more significantly, improving upon them by 44-58% and
37-41% on the two datasets. TIPAS is able to make better timing
predictions because it is able to leverage three key components.
First, it is aware that certain actions only happen during certain
parts of the day. For example, it will predict longer delays in the
middle of the night when actions are unlikely to occur. Second, the
model can exploit dependencies between actions. For instance, it
might predict a very short time after a run because many users
will drink water or check their heart rate soon after. Third, TIPAS
is able to exploit periodicities in the data. For example, it might
predict an evening time commute because it observed a commute
in the morning. In summary, modeling these three key aspects of
human behavior allows us to make better predictions of actions
and their timing.

6.6 Model Explainability
TIPAS also allows for visualization of model parameters, which
enables explanations of why certain predictions are made. This is
especially important in the mobile health context, where model
predictions may impact users’ real-world health behaviors and
therefore need to be explained and monitored.

The inferred model parameters for Equation 5 are shown in Fig-
ure 9a (specifically, f (∆t ′t ) = γct ′aκct ′a∆

κct ′a−1
t ′t exp(−γct ′a∆

κct ′a
t ′t )

for a = food). These distributions correspond to when food events
likely trigger other food events. The distributions show that meals
are extremely periodic and that meals sharply determine the timing
of the next meal, except for dinners after 18:00h, which do not
precisely determine the timing of the next meal (18-24h, green).
The periodicities vary between 5h after breakfast (6-12h) and 6h
after lunch (12-18h). This is consistent with a typical schedule of
meals at 7:00h, 12:00h, and 18:00h. Importantly, this enables us to
correctly predict that earlier lunches may lead to earlier dinners.
Such predictions are critical for correctly timed interventions, for
instance making sure that diet reminders do not come to late.

Furthermore, TIPAS allows us to explain why an activity was
predicted, based on the relative contributions of model components
to the overall intensity function (Section 5.2). For example, after
food actions users are likely to log other foods and drinks (Figure 9b;
showing f (∆t ′t ) = ωa′a exp(−ωa′a∆t ′t ) fora′ = food). Thismakes
sense as typical meals include both food and drinks, and users may
choose to log parts of each meal separately. Interestingly, users also
often log their weight right after food, indicating that they might
be conscious of how their meal might have impacted their weight.
Lastly, we observe walking actions right after meals. Users may
walk back from a restaurant, or they might attempt to walk off
some of their meal’s calories.

While these results and examples are specific to mobile activity
logging applications, the utility of our model may generalize other
domains where behaviors are time-varying, interdependent, or
periodic. Distributional choices for the individual may vary across
domains but can easily be adapted in our model.

7 CONCLUSION
Accurately predicting the user’s future actions is essential for per-
sonalization, user modeling, and timely interventions in mobile
health applications. In this paper we demonstrated that real-world
user behavior exhibits several complexities including a large num-
ber of potential actions, time-varying action propensities, depen-
dencies between actions, and periodic behaviors. We proposed a
novel statistical model based on multivariate temporal point pro-
cesses that jointly models all these complexities of human behaviors.
Empirically, we demonstrate that our model successfully captures
these dynamics in two real-world datasets and that it significantly
outperforms nine baselines on tasks of predicting the next user
action and when this action will occur. Our model can serve as
a foundation to predict more fine-gained attributes of real-world
actions such as their duration, intensity, or exact location. Our re-
sults further have implications for modeling human behavior, app
personalization, and targeting of health interventions.
Acknowledgments. This research has been supported in part by
NIH BD2K, DARPA NGS2, ARO MURI, IARPA HFC, Stanford Data
Science Initiative, and Chan Zuckerberg Biohub.



REFERENCES
[1] O. Aalen, O. Borgan, and H. Gjessing. Survival and event history analysis: A

process point of view. 2008.
[2] E. Adar, J. Teevan, and S. T. Dumais. Large scale analysis of web revisitation

patterns. In SIGCHI, 2008.
[3] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorpo-

rating user behavior information. In SIGIR, 2006.
[4] T. Althoff. Population-scale pervasive health. IEEE Pervasive Computing, 16(4):75–

79, 2017.
[5] T. Althoff, E. Horvitz, R. W. White, and J. Zeitzer. Harnessing the web for

population-scale physiological sensing: A case study of sleep and performance.
In WWW, 2017.

[6] T. Althoff, P. Jindal, and J. Leskovec. Online actions with offline impact: How
online social networks influence online and offline user behavior. In WSDM,
2017.

[7] T. Althoff, R. Sosic, J. L. Hicks, A. C. King, S. L. Delp, and J. Leskovec. Large-scale
physical activity data reveal worldwide activity inequality. Nature, 2017.

[8] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii. The dynamics of repeat
consumption. In WWW, 2014.

[9] D. Ashbrook and T. Starner. Using GPS to learn significant locations and predict
movement across multiple users. Personal and Ubiquitous computing, 2003.

[10] R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison. Predicting the next app
that you are going to use. In WSDM, 2015.

[11] A. R. Benson, R. Kumar, and A. Tomkins. Modeling user consumption sequences.
In WWW, 2016.

[12] S. Berkovsky, T. Kuflik, and F. Ricci. Mediation of user models for enhanced
personalization in recommender systems. User Modeling and User-Adapted Inter-
action, 2008.

[13] F. Bohnert, I. Zukerman, S. Berkovsky, T. Baldwin, and L. Sonenberg. Using
interest and transition models to predict visitor locations in museums. AI Com-
munications, 2008.

[14] J. Cheng, M. Bernstein, C. Danescu-Niculescu-Mizil, and J. Leskovec. Anyone
can become a troll: Causes of trolling behavior in online discussions. In CSCW,
2017.

[15] D. R. Cox and V. Isham. Point processes. 1980.
[16] A. Das Sarma, S. Gollapudi, R. Panigrahy, and L. Zhajtabar, Yang. Understanding

cyclic trends in social choices. In WSDM, 2012.
[17] B. D. Davison and H. Hirsh. Predicting sequences of user actions. In AAAI/ICML

WS on Predicting the Future, 1998.
[18] A. Drutsa, G. Gusev, and P. Serdyukov. Periodicity in user engagement with a

search engine and its application to online controlled experiments. ACM TWEB,
2017.

[19] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song. Re-
current marked temporal point processes: Embedding event history to vector. In
KDD, 2016.

[20] N. Du, M. Farajtabar, A. Ahmed, A. J. Smola, and L. Song. Dirichlet-hawkes
processes with applications to clustering continuous-time document streams. In
KDD, 2015.

[21] N. Du, Y. Wang, N. He, J. Sun, and L. Song. Time-sensitive recommendation from
recurrent user activities. In NIPS, 2015.

[22] M. Farajtabar, Y. Wang, M. G. Rodriguez, S. Li, H. Zha, and L. Song. Coevolve: A
joint point process model for information diffusion and network co-evolution.
In NIPS, 2015.

[23] G. Fischer. User modeling in human–computer interaction. UMUAI, 2001.
[24] S. Fox and M. Duggan. Tracking for health. Pew Research Center’s Internet &

American Life Project, 2013.
[25] J. Freyne and S. Berkovsky. Intelligent food planning: personalized recipe recom-

mendation. In IUI, 2010.
[26] J. Freyne, J. Yin, E. Brindal, G. A. Hendrie, S. Berkovsky, and M. Noakes. Push

notifications in diet apps: Influencing engagement times and tasks. Int J of
Human–Computer Interaction, 2017.

[27] P. Gorniak and D. Poole. Predicting future user actions by observing unmodified

applications. In AAAI, 2000.
[28] A. G. Hawkes. Spectra of some self-exciting andmutually exciting point processes.

Biometrika, 1971.
[29] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabora-

tive filtering recommender systems. TOIS, 2004.
[30] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

1997.
[31] T. Iwata, A. Shah, and Z. Ghahramani. Discovering latent influence in online

social activities via shared cascade poisson processes. In KDD, 2013.
[32] K. Kapoor, K. Subbian, J. Srivastava, and P. Schrater. Just in time recommendations:

Modeling the dynamics of boredom in activity streams. In WSDM, 2015.
[33] K. Kapoor, M. Sun, J. Srivastava, and T. Ye. A hazard based approach to user

return time prediction. In KDD, 2014.
[34] F. Kooti, K. Lerman, L. M. Aiello, M. Grbovic, N. Djuric, and V. Radosavljevic.

Portrait of an online shopper: Understanding and predicting consumer behavior.
In WSDM, 2016.

[35] Y. Koren. Collaborative filtering with temporal dynamics. In KDD, 2009.
[36] T. Kurashima, T. Althoff, and J. Leskovec. Modeling Interdependent and Periodic

Real-World Action Sequences. 2018. Online Appendix. http://bit.ly/2stjpB4.
[37] T. Lane. Hidden markov models for human/computer interface modeling. In

Proc. IJCAI WS on Learning about Users, 1999.
[38] Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location: A recurrent

model with spatial and temporal contexts. In AAAI, 2016.
[39] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.

2008.
[40] C. Mavroforakis, I. Valera, and M. G. Rodriguez. Modeling the dynamics of online

learning activity. In WWW, 2017.
[41] M. D. Mulvenna, S. S. Anand, and A. G. Büchner. Personalization on the net

using web mining: Introduction. CACM, 43(8):122–125, 2000.
[42] I. Nahum-Shani, S. N. Smith, B. J. Spring, L. M. Collins, K. Witkiewitz, A. Tewari,

and S. A. Murphy. Just-in-time adaptive interventions (JITAIs) in mobile health:
key components and design principles for ongoing health behavior support. Ann
Behav Med, 2016.

[43] Y. Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on
Information Theory, 1981.

[44] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In WWW, 2010.

[45] A. Shameli, T. Althoff, A. Saberi, and J. Leskovec. How gamification affects phys-
ical activity: Large-scale analysis of walking challenges in a mobile application.
In WWW, 2017.

[46] M. Swan. The quantified self: Fundamental disruption in big data science and
biological discovery. Big Data, 1(2):85–99, 2013.

[47] Y. Tanaka, T. Kurashima, Y. Fujiwara, T. Iwata, and H. Sawada. Inferring latent
triggers of purchases with consideration of social effects and media advertise-
ments. In WSDM, 2016.

[48] J. Teevan, E. Adar, R. Jones, and M. Potts. History repeats itself: Repeat queries
in Yahoo’s logs. In SIGIR, 2006.

[49] J. G. Thomas and D. S. Bond. Behavioral response to a just-in-time adaptive
intervention (JITAI) to reduce sedentary behavior in obese adults: Implications
for JITAI optimization. Health Psychology, 2015.

[50] W. Trouleau, A. Ashkan, W. Ding, and B. Eriksson. Just one more: Modeling
binge watching behavior. In KDD, 2016.

[51] I. Valera and M. Gomez-Rodriguez. Modeling adoption and usage of competing
products. In ICDM, 2015.

[52] R. Yu, A. Gelfand, S. Rajan, C. Shahabi, and Y. Liu. Geographic segmentation via
latent poisson factor model. In WSDM, 2016.

[53] K. Zhou, H. Zha, and L. Song. Learning triggering kernels for multi-dimensional
hawkes processes. In ICML, pages 1301–1309, 2013.

[54] I. Zukerman and D. W. Albrecht. Predictive statistical models for user modeling.
User Modeling and User-Adapted Interaction, 2001.

[55] I. Zukerman, D. W. Albrecht, and A. E. Nicholson. Predicting users’ requests on
the WWW. In UM. 1999.

http://bit.ly/2stjpB4

	Abstract
	1 Introduction
	2 Related Work
	3 Task Description
	4 Empirical Observations
	4.1 Dataset Description
	4.2 Properties of Real-World Action Sequences

	5 Proposed Model
	5.1 Background on Temporal Point Processes
	5.2 Model Definition
	5.3 Model Inference

	6 Experiments
	6.1 Datasets
	6.2 Model Learning
	6.3 Validating Parametric Assumptions
	6.4 Predicting the Next Action
	6.5 Predicting the Time of the Next Action
	6.6 Model Explainability

	7 Conclusion
	References

