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ABSTRACT
Dynamic social interaction networks are an important abstrac-
tion to model time-stamped social interactions such as eye contact,
speaking and listening between people. These networks typically
contain informative while subtle patterns that reflect people’s social
characters and relationship, and therefore attract the attentions of a
lot of social scientists and computer scientists. Previous approaches
on extracting those patterns primarily rely on sophisticated expert
knowledge of psychology and social science, and the obtained fea-
tures are often overly task-specific. More generic models based
on representation learning of dynamic networks may be applied,
but the unique properties of social interactions cause severe model
mismatch and degenerate the quality of the obtained representa-
tions. Here we fill this gap by proposing a novel framework, termed
TEmporal network-DIffusion Convolutional networks (TEDIC),
for generic representation learning on dynamic social interaction
networks. We make TEDIC a good fit by designing two compo-
nents: 1) Adopt diffusion of node attributes over a combination
of the original network and its complement to capture long-hop
interactive patterns embedded in the behaviors of people making
or avoiding contact; 2) Leverage temporal convolution networks
with hierarchical set-pooling operation to flexibly extract patterns
from different-length interactions scattered over a long time span.
The design also endows TEDIC with certain self-explaining power.
We evaluate TEDIC over five real datasets for four different social
character prediction tasks including deception detection, domi-
nance identification, nervousness detection and community detec-
tion. TEDIC not only consistently outperforms previous SOTA’s,
but also provides two important pieces of social insight. In ad-
dition, it exhibits favorable societal characteristics by remaining
unbiased to people from different regions. Our project website is:
http://snap.stanford.edu/tedic/.
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1 INTRODUCTION
Social interactions, referring to numerous and complicated actions
among two or more people, have woven themselves into every piece
of daily life [39]. These interactions, such as eye contact, speaking
and listening, physical proximity between people, evolve over time
and can be used to establish dynamic networks, which we term
dynamic social interaction networks later. Dynamic social interac-
tion networks, as a structured way to represent social interactions
over time, have become critical data resources for social scientists
to study the human behavioral patterns and make inferences about
human social characters and relationship [28]. Specifically, where,
when and how people interact with others provide informative cues
for deception detection [2, 12], dominance identification [3, 6], per-
sonality traits characterization [34] and friendship inference [7, 15].

Despite their significance, mining indicative features from dy-
namic social interaction networks introduces great challenges. Such
networks consist of two components that distinguish themselves
from the relationship-based social networks arising typically from
social media: 1) Highly dynamic attributes of individuals when
they make contact, such as facial expressions, gestures and sounds;
2) Complicated and various ways of interactions, such as gazing,
speaking and listening. Indicative features often come from the
subtle interweaving of them and are concealed in a long-term com-
plex interaction background. For instance, a lying person tends to
quickly switch the eye contacts among different people due to low
confidence [37], but such combination of behaviorsmay appear only
a few times in a long conversation among a large group of people.
As a more concrete example, we visualize in Fig. 1 dynamics of peo-
ple’s behavior sampled from a person-to-person social-interaction
game “RESISTANCE” (one of the datasets used in Sec. 5).

Previous works on these social tasks typically focus on designing
hand-crafted features that are task-specific [2, 3, 6, 12, 34] and rely
on domain knowledge in social science and psychology (e.g., visual
dominance ratio [14], emotions and deception [47]). Consider the
above example about inferring who has lied: Bai et al. [2] have
demonstrated that the temporal distribution of the ranks of “gazing”
probabilities among people is an informative feature. However, this
feature has no obvious connection to one’s friend relationship.

Recent works on representation learning of dynamic networks
seem to be a powerful alternative that allows for a generic extraction
of features with little domain knowledge [29]. However, they have
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Figure 1: Visualization of two people's (p0 and p1) various behav-
ioral traits in a social-interaction game �RESISTANCE� among 5
people p0-p5. Their eye focuses are used to built up the dynamic net-
work and their facial expressions are used as node attributes. Both
are interleaved and change over time in a highly dynamic fashion.

been mostly evaluated on generic tasks such as link prediction and
are not directly applicable. The mismatch comes from the unique
patterns of dynamic social interaction networks, as shown in Fig. 1:
1) Social interactions such as �looking at� and �speaking to� have
important duration information; 2) Multiple social interactions may
be concurrent and overlapping in time domain. Previous methods
to process streams of interactions typically focus on the starting
point of each interaction but cannot handle concurrent interactions
and their duration information [9, 27, 33, 45, 54].

A way to handle the concurrent and overlapping problems is to
break dynamic networks into snapshots. However, network snap-
shots in our case should be partitioned in high time resolution to
capture the important duration information of social interactions
and the highly dynamic node attributes, which �nally leads to a
long sequence (& 1000). Moreover, indicative patterns from subtle
interweaving of highly dynamic node attributes and interactions are
typically scattered in long-time. Both facts make previous methods
on generic dynamic networks fail [20, 21, 32, 41, 42].

Present work . In this paper, we propose a neural network based
model,temporal network-di�usion convolutional networks(TEDIC),
to learn node representations of dynamic social interaction net-
works in a rather general manner, which �t into various node-level
prediction tasks. The �rst part of TEDIC is network di�usion of
node attributes that naturally captures the interweaving between
highly dynamic node attributes and interactions. Note that graph
di�usion procedure works in some sense similar to graph convolu-
tional networks (GCN) [24] but without using non-linear activation
neurons. This simpli�cation allows tracking the e�ects of long-hop
interactions and also improves the model's explaining power. The
second part of TEDIC is a temporal convolutional network (TCN)
accompanied with set pooling to aggregate representations of nodes
over a long time span. Due to the locality of temporal convolution
kernels, TCN is able to extract patterns from interactions with vari-
ous durations as these interactions may appear alternatively across
multiple consecutive snapshots, and set-pooling is useful to collect
subtle patterns scattered over a long-time span. Moreover, TEDIC is

end-to-end trainable, and therefore provides an opportunity for so-
cial scientists to automatically process dynamic social interactions
and obtain insights from the data simultaneously.

We evaluate TEDIC over four di�erent node-level prediction
tasks, including identi�cation of people's dominance, nervousness,
lying behavior, as well as underlying community, on �ve di�erent
real social interaction networks. From the perspective of making
inference, TEDIC signi�cantly outperforms previous baselines that
are either based on feature engineering designed for certain tasks
or on neural networks for generic dynamic networks.

We further analyze TEDIC's explaining power and broader soci-
etal implication by examining its learned coe�cients and hidden
embeddings: 1) We �nd that direct interactions (e.g.looking, speak-
ing) among individuals may be more informative for dominance and
nervousness detection, while signals of avoiding direct interactions
are strongly informative for deception detection. This observation
coincides with previous �ndings in psychology via extensive statis-
tical analysis [14, 47]. 2) We also �nd that di�erence between the
quanti�ed attributes of one individual and those of his/her inter-
acted neighbors is a stronger signal to indicate his/her dominance
and nervousness, when compared with his/her own attributes. 3)
We additionally show that TEDIC remains least biased to people
from di�erent regions despite its strong classi�cation power on
given tasks.

The paper is organized as follows: Section 2 reviews related
research. Section 3 introduces notations and problem formulation.
Section 4 introduces the TEDIC model. Section 5 evaluates TEDIC
over extensive experiments and shows model interpretation.

2 RELATED WORK
The research related to our problem spans two broad areas.
Methods to Analyze Social Interactions. Many works have been
conducted to analyze social interactions to identify human behav-
iors and relationship. These works commonly adopt extensively sta-
tistical methods to analyze a combination of social interactions such
as speaking and looking [6], physical proximity [7, 15] with individ-
uals' attributes including facial emotions and action units [2, 12, 13],
voice pitch and energy [6], or combination of multiple types of such
features [3, 15, 22, 34]. Task-speci�c features are extracted and are
then fed into standard classi�ers (e.g. SVM, Random Forest) to make
inference. These engineered features, albeit powerful in their corre-
sponding tasks, often require speci�c domain knowledge in social
science and psychology theories and thus are less general.
Representation Learning for Dynamic Networks. The success
of representation learning for dynamic social interaction networks
strongly depends on extracting the interweaving of highly dynamic
node attributes and interactions. A few works process a sequence
of interactions between nodes, but they are unable to take dynamic
node attributes [9, 17, 20, 27, 33, 38, 44, 45, 51, 54, 55]. Among
them, it is worth mentioning that [17, 38, 51] explicitly look into
the structural patterns on dynamic networks and provide many
insights. However, they are not well-suited for our prediction tasks
as the patterns does not incorporate dynamics of the attributes.
Works that were claimed to digest dynamic node attributes all
work on networks snapshots [21, 23, 32, 41� 43]. [23, 43] study
how to split the network into snapshots based on edge count or
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Figure 2: Temporal Network-Di�usion Convolutional Network (TEDIC). The Graph Di�usion component captures the in-
teraction patterns among people at any given time snapshot; its Set-Temporal Convolution further �lters, transforms, and
aggregates important signals over time in a hierarchical manner.

structural maturity. After obtaining the snapshots, existing works
generally follow the framework by �rst propagating node attributes
of each network snapshot and then aggregating them over time.
The �rst step adopts either graph convolution networks [24] or
graph attention networks [46]. The non-linearity in propagation
therein prevents the model from learning long-hop interweaving
between node attributes and edges (interactions) and is not good
for model interpretation [52]. The second step uses either variants
of RNNs [21, 32, 42] or attention mechanism [41] to aggregate node
representations, which limits the memory capacity and therefore
cannot process a sequence of typically more than 100 snapshots. On
the contrary, our model is robust to process more than 1000 snap-
shots. Moreover, although these works can process dynamic node
attributes, they have not been evaluated in the settings with highly
dynamic node attributes as those in dynamic social interaction
networks.

3 PROBLEM DEFINITION
In this section, we introduce the notation and problem formulation.

Notation. A static network can be represented as a graph� =
¹+• � º where+ denotes the set of nodes and� ¹� + � + º denotes
the set of edges. Let# = j+ j. An edge refers to a pair of vertices
¹D• Eº 2 � . Networks that we discuss may be directed or undirected.
An undirected network can be viewed as a special case of directed
ones given the condition¹D• Eº 2 � , ¹ E•Dº 2 � . In the later
discussion, we implicitly assume� is directed unless speci�ed.
Graph� is associated with adjacency matrix� 2 R# � # . � is
assumed to be positive, normalized, and weighted:� DE 2 ¹0•1¼
if ¹D• Eº 2 � and otherwise� DE= 0. The diagonal degree matrix
is de�ned as� 2 R# � # whoseD-th diagonal component is3D =Í

E2+ � DE.
We use" and" 0 to denote feature's dimensions. Given a multi-

variant multi-dimension time-seriesf - CgC2Z where- C 2 R# � " ,
we de�ne temporal convolutionas. C = - C � � C ,

Í
g2Z - C� g� g,

wheref � CgC2Z are kernels and� C 2 R" � " 0
. Note that for a �nite

length kernel� C, the sum contains �nite terms.

Problem De�nition. Dynamic social interaction networks orig-
inally consist of streams of interactions with duration. In prac-
tice, researchers leverage sensors to sample snapshots of these
networks in high temporal resolution. Therefore, we directly de�ne
our data structures asdynamic graph snapshots: f � Cg1� C� ) where
� C= f+C• � Cg. Note that, in general, the node set+Ccould change
over time. However, in our case,+C (denoting participants) is as-
sumed to be �xed, i.e.8C•+C= + , which comes from the property
of data for social interaction networks of interest: In most cases
network data is collected from sensors pre-allocated among partici-
pants of an experiment, e.g., tracking behaviors of multiple agents
in a game/conference. Increasing the number of sensors during the
experiments is not relevant to the target of the experiment. In con-
trast, the edge set� C, denoting interactions between people could
evolve signi�cantly during the whole time period. In our problem,
the network is associated withdynamic node attributes: f - Cg1� C� ) ,
where the row of- Ccorresponding to nodeD, - C•D, denotes intial
attributes of nodeD.

Our work is to learn the node representations in these networks
to capture important patterns from people's social interaction be-
haviors. Once the representations are learnt, prediction/inference
on certain tasks can be accomplished by feeding these representa-
tions into task-speci�c inference blocks. We claim that our approach
can be used for general node-level prediction tasks that require
patterns from dynamic social interaction networks, while speci�-
cally in this work, we consider the following four tasks: deception
detection, dominance identi�cation, nervousness detection and
community detection. Note that the speci�c inference blocks and
training objectives will be speci�ed in Section 5.

4 PROPOSED MODEL: TEDIC
In this section, we introduce our model,TEmporal network-DIfusion
Convolutional Network (TEDIC). It consists of two main compo-
nents:Network Di�usionof node attributes, andSet-temporal con-
volution-based aggregation over time (Fig. 2) plus a readout layer.
Input to TEDIC is a long sequence of dynamic interaction features
and network snapshots,- Cand� C. TEDIC outputs an embedding
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for each person encoding his/her behavioral traits through the in-
teraction events, which can be directly piped to a simple classi�er
for prediction. Each component of the model is designed to capture
properties of dynamic social interaction networks on a di�erent
aspect.

4.1 Network Di�usion Component
To learn interactive e�ects of people for various social tasks via the
network di�usion process, we parameterize the di�usion process by
two categories of parameters with proper physical meanings. The
�rst category is to distinguish the implications of people making
interactions and avoiding interactions. The second category of
parameters is to characterize the e�ect of interactions with di�erent
hops over dynamic networks.

Parameters V for making or avoiding interactions. One spe-
ciality of social interaction networks is that the behavior to avoid
interactions could be very informative. For example, deceivers tend
to avoid gazing at others [26], and some deceivers may tend to be
abnormally quiet in front of others [47] due to their low-level self-
con�dence. However, di�erent phenomena could happen between
a follower and his leader [48]. So we consider graphs corresponding
to the original interaction networks and their complement graphs
simultaneously. Concretely, for each type of interaction network
with adjacency matrix� , we also consider the corresponding adja-
cency matrix of the complement network�� = 11) � � where11) is
an all-one matrix. Then, we introduce another parameterV 2 »0•1¼
to merge these two networks to obtain a new adjacency matrix via

� 0 = V� ¸ ¹ 1 � Vº �� = ¹2V� 1º� ¸ ¹ 1 � Vº11) ” (1)

Apparently, this parameterV can have implications: a greaterV
suggests making interaction is more informative to a prediction
task, while a smallerVemphasizes that avoiding interaction may be
the key clue. Next, we do graph di�usion of node attributes based
on the random walk matrix, 0 = � 0� 1� 0, where� 0 is the diagonal
degree matrix of� 0.

Parameter � : for di�erent-hop interactions. The model is now
to perform di�erent-step graph di�usion of node attributes based
on the induced random-walk matrix, 0. By assigning a group of
learnable parametersf � : g: � 0, where� : is a diagonal matrix for
the hop: , we consider the transformation of initial node attributes
- C 2 R# � " for network snapshotCbased on network di�usion as

� C=
Õ

: � 0

� ¹: º
C � : =

Õ

: � 0

¹, 0)
C º: � ¹0º

C � : • � ¹0º
C = 5¹- Cº (2)

where 5¹�º : R# � " ! R# � " 0
could be as simple as identity

mapping (" 0 = " ) or as complex as multi-layer perceptrons (MLP)
that properly transform and normalize initial node attributes. Here,
" 0 is the dimension of output channel.� : 2 R" 0� " 0

provides the
weights for the: -hop di�usion. The corresponding@-th diagonal
component, denoted byW:•@, is the weight for@'s output channel. In
practice, typically only the �rst several hops could be informative
so we may set an upper bound to the number of hops:5 � 10steps
provide good enough results in practice.

The Eq.(2)has many implications. Consider the sequencefW:•@g: � 0
for any@and suppose5 is identity mapping. From the perspective
of graph spectral convolution,fW:•@g: � 0 corresponds to weights on

di�erent levels of the smoothness of the@-th node attributes. More-
over, di�erent �xed formulations of W:•@provide di�erent ranks

of nodes:W:•@ / U: corresponds to PageRank [35]; W:•@ / � : •: !
corresponds to heat-kernel PageRank [8]. Extensive feature engi-
neering shows that di�erent formulations of ranks could be impor-
tant signals to detect deceivers or leaders among groups of peo-
ple [2, 3]. Our formulation based on learnable parameters, connect-
ing to generalized PageRank [30], allows for bigger representation
power to cover multiple prediction tasks. Moreover, for model self-
explanation, as, 0) is column stochastic, it will keep the�1-norm
of every column of� ¹: º unchanged (with non-negative features)
and thus naturally hold normalizing property. Therefore, the value
jW:•@j and the sign ofW:•@can be naturally interpreted as the e�ect
of : � hop di�usion of @-th node attribute to the �nal representation.
Even when5 is an MLP, decoupling parameters� : on di�usion and
parameters on pure transformation of node attributes in5¹�º keeps
the e�ect of network di�usion distinguishable, which is useful in
the model self-explanation.

Note that there could be variants of Eq.(2)to further increase
model complexity and representation power. By adding nonlinear
transformation of each step� ¹: º before letting it propagate, one
may get the model GCN [24]. However, adding non-linearity per
step increases the di�culty for training, which limits the steps of
propagation to 2-3, and could simultaneously decrease the model's
self-explaining power. As our experiments do not show any im-
provement based on non-linearity, a simpler model is preferred.
Similar gain by removing non-linearity has also been observed in
many recent literatures on graph neural networks [25, 49]. How-
ever, to our best knowledge, we are the �rst to show the success of
this manner to process dynamic networks. The network di�usion
formula is also relevant to the ChebNet [11] while the ChebNet
was proposed for undirected unweighted graphs and used graph
Laplacians instead of random-walk matrices for weighted graphs
in our setting.

4.2 Set-Temporal Convolution Component
To aggregate node features over time, we propose a method called
Set-TCN (S-TCN) to handle the complex and long-term temporal
social interactions. The input of this block is a sequence of node
featuresf � Cg1� C� ) where� Cdenotes the node features for each
snapshotCobtained via equation (2).

There are two challenges, as aforementioned, in building the
block to aggregate temporal information. First, our model should
be able to handle an extremely long sequence of snapshots. Second,
indicative patterns, such as �switching his/her gaze�, are typically
subtle and scattered randomly and in the whole time span. Their
global orders may not matter so much (e.g.when exactly a person
laughs), but recognition and collection of the local patterns may be
highly important (e.g.who laughs with the person and how many
times do they laugh in total). Our model should also be capable to
deal with such subtleties and complexities of behavior signals.

The S-TCN block is built for this target with two components.
The �rst component consists of multiple TCN layers to capture
local dynamics. The second component is a set pooling to collect
local patterns randomly scattered within the whole long time space.
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Multi-layer Temporal Convolution. There are! layers of tem-
poral convolutions. Kernels of the;-th temporal convolution layer
can be represented by a sequencef� ¹; º

C g1� C� F whereF is its win-
dow length , which transforms the input� C from Eq. (2) via

�/ ¹; º
C = ReLU¹/ ¹; � 1º

C � � ¹; º
C º• f / ¹0º

C g1� C� ) = f � Cg1� C� ) (3)

/ ¹; º
C = max-pool¹f �/ ¹; º

2C� 1•
�/ ¹; º
2C gº• for 1 � ; � ! (4)

, where� is the convolution operator de�ned in Sec. 3. The number
of layers! typically depends on the time scale of interactions we
want to extract patterns from. It is related to the receptive �eld
of convolution networks (See Fig. 3)). The success of TCN in our
setting comes from its clear and �exible receptive �elds. If the size
of max-pooling kernel is two as used in Eq. 4, then neurons in the
last (! -th) convolution layer can perceive the signals with length
2! . The size of receptive �eld is decided by two important points:
(1) Signal Denoising. Convolution kernels are widely known for
their capability to function as low-pass �lters. By stacking di�erent
numbers of convolution layers, we can explicitly tune the capability
of the network for signal smoothing;(2) Temporal feature ex-
traction from well-de�ned "locality". By tuning the number of
layers, one can actively search for the optimal receptive �eld length
to gather meaningful features. Such length is also an important
reference for us to understand individuals' interaction.

Figure 3: Receptive �eld
of temporal convolution:
The interaction happened
at the two blue timestamps
in layer ; is captured by
the blue timestamps in
layers ; ¸ 1 and ; ¸ 2 through
convolution operation.

Given a proper depth of TCN (! 2 »2•4¼), to obtain a proper size
of receptive �eld, the length of the �nal layer could still be long
(� 50) because of the original long time series () & 1000). Thus,
next we leverage set pooling to extract scattered local patterns.

Set Pooling. As opposed to online social networks that often show
seasonal patterns, there are seldom periodical patterns in the of-
�ine social interaction networks we study. Consider eye contact
in conversation/meeting among a group of people. Informative
patterns of interactive behaviors of people are usually randomly
scattered in the long time span. Therefore, with the local patterns
captured by TCN, we use set pooling over the obtained sequence
f / ¹! º

C g1� C� ) ¹! º to extract messages scattered within this long se-
quence. We observe that the following is generally e�ective across
di�erent applications:

/ max = max-pool1� C� ) ¹! º ¹/ 0
Cº• / 0

C = / ¹! º
C (5)

/ out = mean-pool1� C� ) ¹! º ¹ReLU¹/ 0
C� 1 ¸ / max� 2ºº (6)

First, we impose the max pooling Eq.(5) onf / ¹! º
C g1� C� ) ¹! º to em-

phasize the critical local patterns; Then, we linearly merge the out-
put of max pooling into each/ ¹! º

C to let each/ ¹! º
C capture global

information; Finally, after a simple ReLU activation, we obtain the
output via mean pooling.

Note that the max pooling captures the essence of randomly
scattered patterns while the second step based on linear combina-
tion and the mean pooling is found out to be useful to improve
the robustness of feature aggregation. Note that this set-pooling
technique properly tailors Deep Sets [53] for our setting.

4.3 Readout Layer
Up to Eq.(6)we derive for each person a representation that encodes
his/her behavioral patterns throughout the interaction. The pur-
pose of appending an additional readout layer is to further model
the process where the �nal prediction for each person is made by
explicitly considering all people's representations in the interac-
tion event. In other words, the probability of each person being
our target of interest should be conditioned onboththe person's
representationand the whole interaction context which involves
all people's representations. Therefore, we use the readout layer:

/ 8
>DC= / 8

>DC� 3 ¸ mean-pool1� 9� # ¹/ 9
>DCº� 4• 8 1 � 8� #• (7)

where/ 8
>DCis the8-th row of / >DCand� 3•� 4 are learnable weights.

The second part of Eq. (7) models the whole interaction context.

5 EXPERIMENTS
Our proposed model is evaluated over �ve datasets on four node-
level classi�cation social tasks: detecting dominant, deceptive (ly-
ing), and nervous people, as well as people's underlying community.
Table 1 summarizes the task settings and dataset statistics. We will
refer back to this table as we walk through the experiment settings
in Sec. 5.1. Also, since Task 5 holds di�erent properties compared
to Tasks 1� 4 while is a common task to evaluate representation
learning of dynamic networks, we postpone its introduction and
analysis to Sec. 5.5.

5.1 Experimental Setup

Raw data & Preprocessing. The raw data of datasets 1-4 is a
collection of videos. Each video records a group conversation that
ranges from 5 to 40 minutes and contains frontal views of each
individual in the group. The preprocessing of these videos involves
two steps: feature extraction and time coarsening.

To extract numerical behavioral features of people in each video,
we employ several vision-based and audio-based techniques fol-
lowing a similar pipeline of [3]. The extracted features cover many
channels people use to convey messages. We brie�y summarize
them here:I. Emotion: intensity of eight emotionse.g.happiness,
anger, calm, etc. and two facial traits (smile, open eyes), provided
by Amazon Rekognition;II. FAU: intensity of 17 facial action units
extracted by OpenFace [5]; III. MFCC: voice features widely used
in audio analysis [10]; IV. Speak Prob.: probability that a person is
speaking estimated from lip movement [4]; V. Gazing Prob.: proba-
bility that person8looks at person9estimated from [4]. Note that
gazing from person8to himself (9= 8) means that the person looks
at his own camera in the front. The sum of each person8's Gazing
Prob. towards all targets is 1. These features are extracted every
1/3 second from videos. We use FeaturesI � IV as our dynamic
node features, and use FeatureV to construct a densely connected
dynamic interaction network. In the network, the nodes are the
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No. Task Dataset Classi�cation Networks Avg. Time Steps� Group Size Interactionsy

1 Dominance (R) RESISTANCE-D multiclass 956 2•514 5 � 8 4”007� 106

2 Dominance (E) ELEA binary 27 2•545 3 � 4 6”474� 103

3 Deception RESISTANCE-S binary 2•157 2•258 5 � 8 2”439� 107

4 Nervousness RESISTANCE-N multiclass 1•097 2•528 5 � 8 4”910� 107

5 Community CIAW multiclass 1 20 92 2”149� 104

Table 1: Statistics of the dynamic network datasets. � : The time steps are before coarsening (with time granularity � = 0”33s).
y: We count all the interactions with gazing probability � 0”5.

participants and the dynamic edges are weighted by the gazing
probabilities that participants look at each other over time.

With the extracted features, the time coarsening process deals
with another critical aspect of our interaction sequences: the time
resolution. In this step, we smooth both the node attributes and the
edge weights of the snapshot sequence by taking the mean value of
each feature dimension every� seconds along the time axis.� is a
hyperparameter having been extensively tuned for both TEDIC and
all baselines as di�erent models show di�erent sensitivity to the
time granularity. We will provide an in-depth empirical analysis on
the values of di�erent� 's in Sec. 5.2.

Dataset: RESISTANCE-D, -S, -N.These three datasets record peo-
ple's performance in a role-playing party game called the Resistance:
Avalon [16]. Each game has 5 to 8 players secretly split into two
rivaling teams ("spy" and "not spy") before the game starts. In order
to win, people need to collaborate with each other, argue persua-
sively, avoid appearing nervous, and even extensively lie if they
are assigned a "spy" role. The three datasets share about 50% videos
in common. The rest di�ers due to several practical constraints to
collect labels.

Labels for RESISTANCE-D and RESISTANCE-N are generated by
referencing surveys taken by all participants after each game. The
surveys take the form of questionnaires, asking each participant to
rate the dominance and nervousness levels for each other. Based on
these scores, we rank all the people in each game and use the ranks
as ground truth. Since the tasks on these two datasets (i.e. Tasks
1 & 4) is to identify the most outstanding person from the group
(the most dominant person, the most nervous person), we consider
them as amulticlassclassi�cation problem, where the number of
classes is the number of players.

Labels for RESISTANCE-S, which are all people's identity of each
game (i.e.Spy or not), are pre-given by the dataset. We know from
the game's setting that spies have to keep lying and thus regard
those identities as the ground truth labels for deception detection
(i.e. Task 3). Since there can be more than one spy in each game, we
regard this task as abinary classi�cation problem on each person.

Dataset: ELEA. The dataset [40] is a widely used public bench-
mark for modeling and detecting people's dominance [3]. In each
video, 3-4 participants performed a "winter survival task" by having
collaborative discussions. External annotators watch game videos
and assign a dominance score for each player. Then, the generated
dominance labels indicate a slightly di�erent meaning: whether a
person ismore dominantin the group instead ofthe most dominant.
This is done by thresholding dominance scores with the median

dominance score and by assigning binary labels accordingly. The
subtle di�erence is in place to follow the protocols of most previous
works such as [1, 3]. This provides another angle of evaluation
compared tomost dominantperson prediction in RESISTANCE-D.
We treat the task on ELEA (i.e. Task 2) as a person-wisebinary
classi�cation task.

Baselines.Our framework is compared with two groups of base-
lines. The �rst group are task-speci�c baselines which were pro-
posed uniquely for each task by integrating domain knowledge
into handcrafted features. The second group are generic baselines
originally proposed to model generic dynamic network structures.
We brie�y introduce them here.

For task-speci�c baselines, we select for each type of task a
handful of previous methods to compare with:

Dominance Detection. MKL [6] is a method based on hand-
crafted features like voice pitch and speaking rate. GDP [3] is a
method relying on a special kind of handcrafted feature called
DomRank, with two versions: one using random forest classi�er
(GDP-RF), and the other using multi-layer perceptron classi�er
(GDP-MLP). DELF [3] is a method also reported in the same work
as GDP, and uses DomRank in a slightly di�erently way. FacialCues
[19] is a method leveraging the facial action units from [5].

Deception Detection.DDV [50] is a method combining hand-
crafted micro facial expression with NLP features. TGCN-L [31] is
a method based on gazing probabilities. LiarRank [2] is based on all
the features we used but aggregates them in a way so that several
pieces of their domain knowledge get integrated.

Nervousness Detection.This is a new task which, to our best
knowledge, few methods were proposed in a similar problem set-
ting. Among all the previously introduced baselines, we think the
LiarRank and FacialCues are two baselines that will most possi-
bly work to help detect people's nervousness. Therefore, they also
become the baselines for this task.

For generic baselines, the SOTA methods that claim to handle
dynamic networks well are primarily based on various architectures
of temporal GNNs, among which we select three most representa-
tive ones to evaluate across all tasks: CD-GCN [32] is one of the
latest methods on dynamic graph classi�cation tasks. It combines a
skip-connected GCN with a returning sequence LSTM. EvolveGCN
[36] is a latest method on dynamic network sequence modeling
tasks, especially for link prediction and link type classi�cation. It
uses a recurrent module to update the projection weight of a GCN
module. GCRN [42] is another method for modeling dynamic net-
work sequence constructed from images and point clouds, using



TEDIC: Neural Modeling of Behavioral Pa�erns
in Dynamic Social Interaction Networks WWW '21, April 19�23, 2021, Ljubljana, Slovenia

a convolutional module to update the internal weights of a LSTM
module that deals with sequential node features.

To ensure fair comparison, all baselines share with our proposed
model the same readout layer and loss function.

Training and Evaluation. We randomly partition our data into K
folds, reserving 1/K for testing and the rest for training. Following
[2, 3], we use = 10for all RESISTENCE datasets, and = 27
for ELEA. To compute the logits, we add a single-layer NN plus a
sigmoid or softmax nonlinearity on top of the readout layer (see
Section 4.3). We use the cross entropy loss and use Adam to opti-
mize all the models. To evaluate our method as well as baselines,
Mean Accuracy over the K folds is reported. There are several hy-
perparameters related to the tuning process, including the time
resolution� in data preprocessing, the number of layers for set-
temporal pooling, etc. All hyperparameters, both for our model
and all baselines (except DDV whose code is not available), are ex-
tensively tuned and the best performance is reported. Please refer
to the supplementary material for the detailed search ranges of
hyperparameters.

5.2 Experimental Results
Table 2 compares the performance all models on Tasks 1� 4. Here
for brevity we only report the top 2 results of our task-speci�c
baselines, and leave the complete evaluation table to the supplement.
From the comparison, we observe that TEDIC consistently shows
high performance across all the tasks: it signi�cantly outperforms
the strongest baselines in Tasks 2� 4 and also achieves better
result on Tasks 1. Interestingly, we also see that our model has most
statistically signi�cant gain in most challenging Tasks 3, 4 . Both are
scenarios where the interacting participants purposely conceal the
indicative signals of their labels because they do not want others to
know that they are lying or nervous We attribute such success to
the fact that TEDIC e�ectively captures the temporal cues. While
almost all the baselines come with proper graph convolution or
careful feature engineering work, their ways to process temporal
information are insu�cient by simply using mean pooling (TGCN
[31]), Fisher Vector (FacialCues [19]), histogram encoding (DELF
[3]), or many-to-one LSTM (GCRN [42]). In particular, the generic
baseline's failure on Tasks 1 & 4 implies the lack of robustness
with temporal sequence modeling techniques based on recurrent
structures.

Ablation study. We further demonstrate the usefulness of each TE-
DIC building block by conducting ablation study on RESISTANCE-
D. Results are shown in Table 3. In the table, Ab. 2� 3 further verify
RNN's insu�ciency on handling both extremely long time sequence
and weak local dynamics. Interestingly, the simple mean pooling
can outperform RNNs. Ab. 4� 8 focus on graph-level techniques by
replacing the network di�usion module. Ab. 4 shows the importance
of using network for prediction. Ab. 5� 8 indicates the usability
of GCN despite its serious decay because of over-smoothing when
going deep. In contrast, our network di�usion can propagate as
long as 10 hops without signi�cant performance decay.

E�ect of Time Resolution. The time resolution of input interac-
tion sequence is a hyperparameter that controls the level of tempo-
ral smoothing in preprocessing stage. Data with high time resolu-
tion betters the opportunity to capture subtle short-time interaction
patterns while introducing more noise. In that regard, we attribute
the failure of RNN-based baselines [32, 36, 42] to their sensitivity
to such noise. To validate this understanding, we conduct further
experiments by adjusting the original time resolution� = 0”33B
that is the highest time resolution to collect the data. Speci�cally,
we averaged input feature sequence and edge weights for every
few seconds (� = 1B•3B•15B•60B) to change the time resolution.

Fig.4 plots the performance of our model and the generic base-
lines on all datasets. The competing e�ect previously mentioned
is clearly demonstrated by the trend of the lines: the accuracy of
each method usually peaks at a certain time resolution and drops
sideways. Also note that on three out of the four datasets our
method's performance peaks with high time resolution compared
with baselines. This indicates that our model does well in extracting
knowledge from more detailed and subtle behavioral patterns, while
also staying robust to the adverse e�ect introduced by varying the
sequence lengths and noise levels.

Figure 4: Accuracy as a function of time resolution of the
interaction sequence.

5.3 Model Interpretation
The linear dependence on the parametersVandf � : gin network dif-
fusion provides certain self-explaining power that further induces
some social insights.

Interpretation I: Balancing Weight V. Recall thatV (Eq. ) is the
learnable parameter that directly controls the relative importance
of proactive interaction versus avoidance of interaction. Fig. 5 dis-
plays how theV converges during the training (initialized to 0.5,
i.e. neutral). For each task we ran multiple times by introducing
small perturbation toV's initialization. The �gure shows that the
parameter exhibits very di�erent convergence behavior across dif-
ferent tasks. For the deception detection task,Vsigni�cantly drops
to around0”2, which indicates that avoidance of interaction may
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