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Abstract

The global economy relies on the flow of goods over sup-
ply chain networks, with nodes as firms and edges as trans-
actions between firms. While we may observe these external
transactions, they are governed by unseen production func-
tions, which determine how firms internally transform the in-
put products they receive into output products that they sell.
In this setting, it can be extremely valuable to infer these pro-
duction functions, to improve supply chain visibility and to
forecast future transactions more accurately. However, exist-
ing graph neural networks (GNNs) cannot capture these hid-
den relationships between nodes’ inputs and outputs. Here,
we introduce a new class of models for this setting by com-
bining temporal GNNs with a novel inventory module, which
learns production functions via attention weights and a spe-
cial loss function. We evaluate our models extensively on real
supply chains data and data generated from our new open-
source simulator, SupplySim. Our models successfully in-
fer production functions, outperforming the strongest base-
line by 6%—50% (across datasets), and forecast future trans-
actions, outperforming the strongest baseline by 11%—-62%.

Code — https://github.com/snap-stanford/supply-chains
Extended Version — https://arxiv.org/pdf/2407.18772

1 Introduction

Supply chains form the backbone of the global economy
and disruptions can have enormous consequences, costing
trillions of dollars (Baumgartner, Malik, and Padhi 2020)
and risking national security (The White House 2021). Thus,
modeling supply chains and how they evolve, especially un-
der shocks, is essential. Prior models of supply chains have
been mainly mechanistic and struggle to fit even highly ag-
gregated measures, such as country-level production (Inoue
and Todo 2019). As a result, recent literature has called
for integration of machine learning (ML) into supply chain
modeling (Baryannis, Dani, and Antoniou 2019; Brintrup
et al. 2020; Younis, Sundarakani, and Alsharairi 2022).
Graph neural networks (GNNs) serve as a particularly
promising ML methodology, as supply chains are natu-
rally represented as graphs, with nodes as firms and edges
as transactions between firms. A few works have explored
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static GNNs for supply chains (Aziz et al. 2021; Kosasih
and Brintrup 2021; Wasi, Islam, and Akib 2024), but these
static models miss crucial dynamic aspects of supply chains,
such as the propagation of shocks. Thus, there is a need to
develop temporal GNNs that can capture the unique dynam-
ics and mechanisms of supply chain graphs.

One key feature of these graphs is that they are gov-
erned by underlying production functions: firms receive in-
put products (e.g., wheels) from other firms, internally trans-
form those inputs into outputs (e.g., cars) via production
functions, then sell those output products to other firms or
consumers (Carvalho and Tahbaz-Salehi 2019). These pro-
duction functions dictate which firms are connected to each
other, as well as the timing of transactions across the net-
work. For example, if a firm experiences a shortage in an
input, its production of outputs that rely on that input will
be disrupted, but it can continue to produce other outputs
for some time. However, existing temporal GNNs (Huang
et al. 2023) are not designed to learn these hidden produc-
tion functions or to incorporate them into link prediction.

The present work. Here, we are among the first to de-
velop temporal GNNs for supply chains, demonstrating their
ability to learn rich, dynamic representations of firms and
products. Furthermore, by introducing supply chains to tem-
poral GNNs, we identify a challenging setting unexplored
by prior models: temporal graphs governed by produc-
tion functions, which we term temporal production graphs
(TPGs). Beyond supply chains, TPGs also appear in bio-
logical domains, such as enzymes producing metabolites
within metabolic pathways, or in organizations, where teams
rely on inputs from other teams to produce their outputs.
TPGs introduce new challenges compared to other temporal
graphs, such as the need to infer production functions. Fur-
thermore, even standard tasks, like link prediction, may be
complicated under TPGs. For example, while standard tem-
poral GNNs might capture disruptions generally propagat-
ing across connected firms, they will miss the specific con-
nections between each firm’s inputs and outputs and, under
a shortage of inputs, not be able to precisely predict which
outputs will be affected.

Since existing GNNs cannot handle TPGs, we introduce
a new class of GNNs designed for TPGs, focusing on two
objectives: (1) learning the graph’s production functions,
(2) predicting its future edges. Prior temporal GNNs have



focused primarily on the second objective, but are not de-
signed for the first. Our models support both objectives, by
combining temporal GNNs with a novel inventory module,
which learns production functions by explicitly represent-
ing each firm’s inventory and updating it based on attention
weights that map external supply to internal consumption.
Our module can be combined with any GNN; to demonstrate
this, here we combine it with two popular models, Temporal
Graph Network (Rossi et al. 2020) and GraphMixer (Cong
et al. 2023), which we also extend in important ways.

We demonstrate the utility of our models on real and
synthetic supply chains data. We have rare access to real
transaction-level supply chains data, which allows us to
evaluate our GNNs’ abilities to predict individual transac-
tions. However, since we cannot release the proprietary data,
we also build a new open-source simulator, SupplySim,
which generates realistic supply chain data that matches the
real data on key characteristics. Our simulator enables us to
share data, test models under controlled settings (e.g., sup-
ply shocks, missing data), and encourage future research in
this area. In summary, our contributions are:

1. Problem: a new graph ML problem setting, temporal
production graphs (TPGs), where each node’s edges are

related via unobserved production functions,

. Models: a new class of models for TPGs, which combine
temporal GNNs with a novel inventory module to jointly
learn production functions and forecast future edges,

. Data: an open-source simulator, SupplySim, which
generates realistic supply chain data and enables model
testing under controlled and varied settings,

. Results: experiments on real and synthetic data, show-
ing that our models effectively learn production functions
(outperforming baselines by 6-50%) and forecast future
edges (outperforming baselines by 11-62%).

Our work both contributes to the supply chains domain, by
developing temporal GNNss for supply chains, and advances
graph ML, by introducing a new type of real-world graph
and developing new methods to handle them.

Social impact. Our work is a collaboration with Hitachi
America, Ltd., a multinational conglomerate that produces
a wide range of products, each involving a complex global
supply chain. Our project was initiated by their need for ML
solutions to supply chain problems, and together, we iden-
tified two ML objectives grounded in real business needs.
Our first objective of learning production functions aims to
improve supply chain visibility, so that firms can better un-
derstand the entire production process through which their
products are produced (instead of only their immediate sup-
pliers) and find more efficient solutions (Aigner and Chu
1968; Coelli et al. 2005). Our second objective of forecast-
ing future transactions supports critical industry tasks, such
as demand forecasting, early detection of risks, and inven-
tory optimization. Additionally, our collaboration provides
access to transactions-level data, which enables us to rigor-
ously evaluate our ML models and build a realistic simulator
so that, despite the data sharing constraints of this domain,
we can still encourage future ML research on supply chains.
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2 Related Work

Many real-world systems can be represented as temporal
graphs, such as transportation systems (Jiang and Luo 2022),
human mobility (Chang et al. 2023), and biological net-
works (Prill, Iglesias, and Levchenko 2005). While most
GNNs are designed for static graphs, there has been growing
interest recently in developing GNNs for temporal graphs
(Huang et al. 2023; Skarding, Gabrys, and Musial 2021;
Longa et al. 2023). However, to the best of our knowledge,
GNNs have not yet been designed for temporal production
graphs (TPGs), as described in this work. Furthermore, only
a handful of works have explored GNNs for supply chains,
all in static settings, such as to predict hidden links between
firms (Aziz et al. 2021; Kosasih and Brintrup 2021), classify
a firm’s industry (Wu, Wang, and Olson 2023), recommend
suppliers (Tu et al. 2024), and predict product relations (e.g.,
same product group) (Wasi, Islam, and Akib 2024).

Within the supply chains domain, our work builds on prior
literature that represents supply chains as networks (Fuji-
wara and Aoyama 2010) and models the propagation of
shocks over these networks (Acemoglu et al. 2012; Zhao,
Zuo, and Blackhurst 2019; Li et al. 2020; Carvalho et al.
2021). Our work is unique in two key ways: first, much of
the prior work relies on theoretical models and synthetic net-
works, and, even among empirical studies, the data used is
typically industry-level or, at best, firm-level with static re-
lations between firms (Carvalho and Tahbaz-Salehi 2019).
In contrast, we have access to transaction-level data, which
reveals essential time-varying information. Second, integra-
tion of ML into supply chains has been limited, with calls for
further exploration (Baryannis, Dani, and Antoniou 2019;
Brintrup et al. 2020; Younis, Sundarakani, and Alsharairi
2022). Most prior models for modeling supply chains are
mechanistic (Hallegatte 2008; Guan et al. 2020; Inoue and
Todo 2020; Li et al. 2021) and limited in their ability to even
fit aggregate counts (Inoue and Todo 2019). In contrast, by
combining our inventory module with GNNs, we can accu-
rately forecast individual transactions, while maintaining the
interpretability of the inventory module.

This theme of combining deep learning with domain-
specific principles also appears in physics simulation (Wang,
Walters, and Yu 2021) and epidemiological forecasting (Liu
et al. 2024). Our work also has connections to temporal
causal discovery (Nauta, Bucur, and Seifert 2019; Lowe
et al. 2022; Assaad, Devijver, and Gaussier 2022) and in-
ferring networks from node marginals (Kumar et al. 2015;
Maystre and Grossglauser 2017; Chang et al. 2024).

3 Learning on Temporal Production Graphs
3.1 Problem Definition

We define a new graph ML setting called temporal pro-
duction graphs (TPGs), illustrated in Figure la. TPGs are
directed graphs with time-varying edges and potentially a
time-varying set of nodes. What differentiates TPGs from
other temporal graphs is that, in a TPG, each node’s in-edges
represent inputs to some internal production function, which
are transformed into outputs, represented by the node’s out-
edges. In this work, we focus on supply chain networks, as
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Figure 1: (a) Illustration of our problem setting: we observe time-varying transactions between firms and do not observe pro-
duction functions within firms. Our goals are to learn the production functions and predict future transactions. (b) Example of
our model architecture, combining our inventory module with our extended version of TGN, SC-TGN.

a canonical example of TPGs. We are given a set of transac-
tions 7 between firms where, for each transaction, we know
its timestamp, supplier firm, buyer firm, product sold, and
amount sold. We represent this data as a heterogeneous tem-
poral graph, Gins = {N,E}, where the nodes A consist
of n firm nodes and m product nodes and the edges are
E := {e(s,b,p,t)}, where e(s,b,p,t) is a hyperedge be-
tween supplier firm s, buyer firm b, and product p, repre-
senting a transaction between them at time ¢.

In this setting, production functions define how firms in-
ternally transform the products that they buy into products
that they supply. Specifically, the function F,, : Ry — R
for product p defines how much of each product is necessary
to make £ amount of p (e.g., one car requires four wheels).
The set of production functions define a production graph,
Goprod> Which is a directed acyclic graph where there is an
edge from products p; to po if p; is required to make po.!
Given the set of transactions 7, and the resulting temporal
graph G, our goals are two-fold: (1) to infer Gproq, which
is entirely unobserved, (2) to predict future transactions, i.e.,
future hyperedges in Gxps.

3.2 Model Architecture

To learn from TPGs, we introduce a new class of models
that combine temporal GNNs with a novel inventory mod-
ule to jointly learn production functions and predict future
edges. First, we describe our inventory module, which can
either operate as a stand-alone model or be attached to any
GNN. Second, we describe extended versions of two popu-
lar temporal GNNs, Temporal Graph Network (Rossi et al.
2020) and GraphMixer (Cong et al. 2023), which we refer
to as SC-TGN (shown in Figure 1b) and SC-GraphMixer,
respectively, with SC standing for supply chain.

Inventory module. The basic idea of our inventory mod-
ule is that it explicitly represents each firm’s inventory of
products, and it adds and subtracts from the inventory based
()

S

on products bought and consumed, respectively. Let x;

'For simplicity, we assume in this work that there is one way to
make each product, but future work may consider extensions, such
as firm-specific product graphs or substitute products.
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R’" represent firm 4’s inventory at time ¢. We compute the
total amount of product p bought by firm 7 at time ¢ as

>

e(s,i,p,t)EE

bUY(i7P7 t) = amt(s,i,p,t), (D

where amt(s, 4, p, t) represents the amount of the product in
the transaction indexed by s, 7, p, t. The amount bought per
product is computed directly from the data, since we observe
the products that a firm buys through its transactions. On the
other hand, we cannot observe the products that a firm con-
sumes from their inventory; only the finished products that
they supply to others. So, we need to learn the function map-
ping from products externally supplied to products internally
consumed from the inventory. We estimate the total amount
of product p consumed by firm ¢ at time ¢ as

>

e(i,b,ps,t)EE

cons(i,p, t) ap,p - amt(i, b, ps,t), (2)

where o, , € R, is a learned attention weight represent-
ing how much of product p is needed to make one unit of
the product supplied, ps. In other words, each product at-

tends to its parts. Finally, let bgt) represent the vector over

all products of amount bought by firm ¢ at time ¢, and let cl(.t)

be defined analogously for consumption. Then the firm’s up-
dated inventory is
X,Et+1) = max(0, th) + bgt) — CZ(-t)).

3)

We take the elementwise max with O to ensure that the in-
ventory stays non-negative, but we also penalize whenever
consumption exceeds the current inventory amounts (5).
Attention weights. If the inventory module is standalone,
then we directly learn the pairwise weights «,, p, for all
product pairs pi, po. If the inventory module has access to
product embeddings (e.g., from a GNN), we can use prod-
uct embedding z,, € R? to inform the attention weights as

“)

where W, € R¥4 and v,,,,,, € R are learned parameters,
and we apply ReLU to ensure that the attention weights are

Qpipy = RGLU(Zpl Wattzpz + Vplpz)v



non-negative. Compared to directly learning the attention
weights, here we treat z,, W,z,,, as the base rate and v, ,,,
as adjustments, which we encourage to be small in magni-
tude with Lo regularization (6). By using the embeddings
to form the base rate, instead of learning each pair indepen-
dently, we can share information across product pairs, which
is especially useful given sparse real-world data where we
rarely observe most pairs.

Inventory loss. To train the inventory module, we intro-
duce a special loss function. For a given firm ¢ at time ¢, its
inventory loss is

liny (7, 1) = Adent Z max (0, cons(i, p, t)

pE[m]

— Acons Z cons(i,p, t).

pem]

)

[p]) (5

That is, we penalize inventory debt, i.e., whenever consump-
tion exceeds the current inventory, but otherwise reward con-
sumption. We penalize inventory debt since firms should not
be able to consume products that they never received. Fur-
thermore, penalizing inventory debt results in sparse atten-
tion weights, since for most firms, we do not observe it buy-
ing most products, so for any of those products that it does
not buy, it would prefer to never consume those products
since it would immediately go into inventory debt if so. On
the other hand, we need the consumption reward in order to
prevent trivial solutions. Without it, the model could learn
Oip, .p, = 0 for all product pairs, and it would never experi-
ence inventory debt. We use hyperparameters Age and Acons
to control the relative weight between penalizing inventory
debt and rewarding consumption, and in practice, we find
that choosing Agepe around 25% larger than Acq,s works well
(Table 5). All together, the inventory loss is

1 .
ginv(t) == E Z Einv(zv t) + >‘L2 Z V1%1P2' (6)
p1,p2€[m]

i€[n]

SC-TGN. The first GNN we explore is Temporal Graph
Network (TGN) (Rossi et al. 2020), which is one of the most
established GNNs for dynamic link prediction, outperform-
ing other models in the Temporal Graph Benchmark (Huang
et al. 2023). In our work, we have extended TGN to SC-
TGN, by enabling it to (1) perform message passing over
hypergraphs, since we represent each transaction as an edge
between three nodes, (2) predict edge weights (i.e., transac-
tion amounts) in addition to edge existence. We also modi-
fied TGN in other ways that improved performance; we doc-
ument these changes in Appendix A.l. In SC-TGN, each
node ¢ has a time-varying memory mgt). Each transaction
e(s, b, p, t) sends three messages: to supplier s, buyer b, and
product p. At the end of each timestep, each node aggregates
the messages it received and updates its memory, using a re-
current neural network (RNN). To produce node embedding
zl(-t), we apply a GNN to the node memories, so that nodes
can also learn from their neighbors’ memories.

SC-GraphMixer. We also explore GraphMixer (Cong
et al. 2023), a recent model that showed that temporal GNN's
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do not always need complicated architectures, such as RNNs
or self-attention (both of which are used by TGN), and
strong performance can sometimes be achieved with simpler
models that only rely on multi-layer perceptrons (MLPs).
We similarly extend GraphMixer to SC-GraphMixer, so that
it can handle hypergraphs and predict edge weight in addi-
tion to edge existence (Appendix A.2). In SC-GraphMixer,
each node’s embedding zgt) is a concatenation of its node
encoding and link encoding. The node encoding is simply
a sum of the node’s features and mean-pooling over its 1-
hop neighbors’ features. The link encoding summarizes the
recent edges that the node participated in, by applying an
MLP to the time encodings and features of the recent edges.

Decoder. Both models, SC-TGN and SC-GraphMixer, use
the same decoder architecture, and we use the same archi-
tecture (although separate decoders) for predicting edge ex-
istence and weight. We model these as a two-step process:
first, predicting whether an edge exists; second, conditioned
on the edge existing, predicting its weight. The decoder is a
two-layer MLP over the concatenated supplier firm’s, buyer
firm’s, and product’s embeddings, producing y € R:

(7

Real values are natural for both tasks, since for edge exis-
tence, we apply a softmax and evaluate the probability of
the positive transaction compared to negative samples, and
for edge weight, we preprocess the transaction amounts with
log-scaling, so negative predicted amounts are valid.

When the inventory module is attached, we may also al-
low it to inform edge prediction. For edge existence, the in-
ventory module penalizes impossible transactions, i.e., some
(s,b,p,t) where supplier s does not have the parts required
to make product p in its inventory at time ¢, and sub-
tracts the penalty (14) from the model’s original ¢ (7). For
edge weight, the inventory module computes the maximum
amount of product p that supplier s could produce, based on
its inventory, and caps ¢ based on the computed maximum
(15). Thus, as shown in Figure 1b, the inventory module and
GNN help each other, with the GNN’s embeddings inform-
ing the inventory module’s attention weights, and the inven-
tory module’s penalties affecting future edge prediction.

§(s,b,p,t) = MLP([2)|2." 2(1]).

3.3

Learning production functions. Our model does not
have access to any production functions during training,
but the goal is for the model to learn production func-
tions via the inventory module and its specialized loss. For
each product p, we have the set of its attention weights
{appys Appys -+, Qpp,, +, and we compute the ranking over
all products from highest to lowest weight. We compare this
ranking to the product’s ground-truth parts and use aver-
age precision (17) to quantify performance. Then, we com-
pute the mean average precision (MAP) over all products for
which we have ground-truth parts.

Model Training and Evaluation

Edge existence and negative sampling. We perform neg-
ative sampling such that each positive transaction e(s, b, p, t)



is paired with a set of negative transactions that did not ac-
tually occur at time ¢. Following Temporal Graph Bench-
mark (Huang et al. 2023), we sample two types of hard neg-
atives: first, randomly perturbing one of the three nodes; sec-
ond, sampling a historical negative, meaning a transaction
that appeared in training but not at time t. For each posi-
tive transaction, we sample 9 perturbation negatives and 9
historical negatives. To evaluate performance, we use mean
reciprocal rank (MRR), which evaluates the rank of the posi-
tive transaction among the negatives (21). However, MRR is
non-differentiable, so during training, we use softmax cross-
entropy as a strong proxy loss for MRR (Bruch et al. 2019).

Edge weight. Since we model edge prediction as a two-
stage process, we only predict edge weight (i.e., transaction
amount) conditioned on the edge existing. Thus, training and
test edge weight prediction is simple: we only consider the
positive transactions and we compare the model’s predicted
amount to the true amount using root mean squared error
(RMSE) (22). Unlike MRR, RMSE is differentiable, so we
also use it in the model loss during training.

4 Supply Chains Data
4.1 Real-World Supply Chains Data

We acquired transactions data from TradeSparq, a third-
party data provider which aggregates data from authorized
government sources across 60+ countries. Their data sources
include bills of lading, receipts of reported transactions, and
customs declarations. Each product is described with a Har-
monized System (HS) code, an internationally recognized
system for classifying products. Along with HS codes, the
transactions data also includes the supplier firm, buyer firm,
timestamp of the transaction, cost in USD, and more. Using
the TradeSparq API, we constructed two datasets:

1. Our Tesla dataset focuses on electric vehicles (EV)
and EV parts supplied by Tesla. We identified Tesla EV
makers, their direct suppliers and buyers, and their sup-
pliers’ suppliers, and included all transactions between

these firms from January 1, 2019, to December 31, 2022.

. Our industrial equipment dataset (IED) focuses on mi-
croscopes along with other specialized analytical and
inspection equipment and their manufacturers. We in-
cluded makers of these products and their direct suppliers
and buyers, and included all transactions between these
firms in 2023. For this dataset, we have also estimated
the ground-truth parts of microscopes in terms of their
HS codes, which we use to test our inventory module’s
ability to infer production functions from transactions.

4.2 Supply Chains Simulator, SupplySim

The TradeSparq data offers a rare opportunity to test models
on real transactions data, but it also has shortcomings: we
cannot release the data, it does not include most production
functions, and, even though it provides more detailed infor-
mation than most supply chains datasets, its transactions are
still incomplete (e.g., missing domestic transactions). Thus,
we design a simulator, SupplySim, that addresses these
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Figure 2: SupplySim generates data matching real data on
key characteristics: (a) power law degree distribution, (b)
community structure, (¢) low clustering, (d) time-varying
transactions, with possible shocks or missing data.

shortcomings and enables us to test the model under con-
trolled settings (e.g., how much data is missing). To ensure
realism, our simulator incorporates many real-world aspects
of supply chains: for example, firms specialize in certain
tiers of products and time-varying transactions are generated
based on the commonly used ARIO model from economics
(Hallegatte 2008), which describes how firms complete or-
ders from buyers and place orders to suppliers. We also show
that our synthetic data matches real supply chain networks
on key characteristics (Figure 2). For example, there is com-
munity structure but fewer triangles (thus, lower average
clustering coefficient) since, unlike social networks, a firm’s
supplier’s supplier is unlikely to also be this firm’s supplier
(Fujiwara and Aoyama 2010; Zhao, Zuo, and Blackhurst
2019). Our synthetic data also exhibits power law degree
distributions, known to appear in real networks, and time-
varying transactions with possible shocks or missing data.
Below, we briefly describe the steps of our simulator, with
details in Appendix B.2 and B.3.

Constructing the production graph, Gprq. First, we
partition the products into tiers (e.g., products 0-4 in tier 0, 5-
14 in tier 1, 15-24 in tier 2, etc.) and sample a 2-dimensional
position for each product from Uniform(0, 1). For each tier,
we assign the products in the tier to parts from the previous
tier, with probability proportional to the inverse distance be-
tween their positions. For each part-product pair, we sample
U0, the number of units of part p; needed to make one unit
of product p,. The tier structure imitates tiers in real sup-
ply chains, from raw materials in the first tier to consumer
products in the final tier. The products’ positions capture the
product type, e.g., its industry, and assigning parts based on
positions reflects how parts should be similar to their prod-
ucts and naturally results in commonly co-occurring parts.

Constructing supplier-buyer graph. For each firm, we
also sample a 2-dimensional position from Uniform(0, 1),
and we restrict it to two consecutive tiers, meaning it can
only produce products in those tiers. Then, for each prod-
uct, we select its suppliers from the set of firms that are al-



| ss-std | sS-shocks | SS-missing | 1ED
Random baseline 0.124 (0.009) 0.124 (0.009) 0.124 (0.009) 0.060 (0.002)
Temporal correlations 0.745 0.653 0.706 0.128
PMI 0.602 0.602 0.606 0.175
node2vec 0.280 0.280 0.287 0.127
Inventory module (direct) 0.771 (0.005) 0.770 (0.006) 0.744 (0.006) 0.143 (0.004)
Inventory module (emb) 0.790 (0.005) 0.778 (0.011) 0.755 (0.007) 0.262 (0.005)

Table 1: Results for production learning, evaluated with mean average precision (MAP 7). For the models with randomness, we

report mean and standard deviation (in parentheses) over 10 seeds.

lowed to produce that product, again with probability pro-
portional to inverse distance. Now, each firm has a set of
products that it is supplying, which means, based on G o4,
we know which input parts it needs to buy. For each pair
(b, p), where firm b needs to buy product p, we assign it to a
supplier of p with probability proportional to the number of
buyers that the supplier already has. This assignment mech-
anism, known as preferential attachment (Newman 2001),
yields power law degree distributions (Figure 2a) known to
appear in real supply chain networks (Fujiwara and Aoyama
2010; Zhao, Zuo, and Blackhurst 2019).

Generating transactions. We generate transactions based
on the ARIO model, an agent-based model widely used in
economics to simulate propagation over supply chains (Hal-
legatte 2008; Inoue and Todo 2019; Guan et al. 2020). At
each timestep of the simulation, each firm completes as
many of its incomplete orders as it can until it runs out of
inventory. At the end of the timestep, the firm places or-
ders to its suppliers, based on what it needs to complete
its remaining orders. Finally, the reported transactions are
the completed orders in each timestep. The simulator also
keeps track of the exogenous supply for products in the first
tier, which do not require parts, and of exogenous demand
for products in the final tier, which are only bought by con-
sumers and not by other firms. By manipulating the exoge-
nous supply, we can model shocks in the supply chain.

S Experiments

We run experiments on the two real supply chain datasets
and three synthetic datasets from SupplySim: a standard
setting with high supply (“SS-std”), a setting with shocks
to supply (“SS-shocks”), and a setting with missing trans-
actions (“SS-missing”), where we sampled 20% of firms
uniformly at random and dropped all of their transactions
(Figure 2d). In all experiments, we order the transactions
chronologically and split them into train (the first 70%), val-
idation (the following 15%), and test (the last 15%). Here
we describe our results on these datasets, with additional ex-
perimental details and results in Appendix C.

5.1 Learning Production Functions

We try three baselines, which each compute scores for out-
put product p, and potential input p;:

1. Temporal correlations: we expect that inputs and out-
puts are temporally correlated, so this method computes
the maximum correlation, with possible lags, between
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the buying timeseries of p; and supplying timeseries of
Do, averaged over all firms that buy p; and supply p,.

. Pointwise Mutual Information (PMI): we expect that
input-output pairs appear with greater frequency in the
firm-product graph,” so this method computes the proba-
bility that a firm buys p; and supplies p,, divided by the
product of their individual probabilities (29).

. node2vec: we expect that inputs are close to outputs, so
this method computes the cosine similarity of p; and p,’s
node2vec embeddings from the firm-product graph.

The three baselines capture the usefulness of temporal infor-
mation, 1-hop neighbors in the graph, and the entire graph,
respectively. In contrast, our inventory module captures both
temporal and structural information. We try two versions of
the inventory module, one that learns the attention weights
directly and one that uses product embeddings, as described
in (4). We also report a random baseline, which produces
uniform random rankings of parts for each product.

We summarize the production learning results in Table 1.
We find that the inventory module significantly outperforms
the baselines, with especially large margins on the real-
world data (IED) and in the synthetic data when there are
shocks in supply. In the standard synthetic data, when supply
is plentiful, temporal correlations are a strong predictor since
firms place orders for inputs, receive them promptly, then
supply their own outputs shortly after. However, once there
are shocks, the firm will receive inputs at different times, due
to delays, and since they cannot produce their outputs until
all inputs have arrived, the correlation in time of buying in-
puts and supplying outputs is seriously worsened. On the
other hand, the inventory module is robust to such delays,
since it does not rely on similarity in timeseries; simply that
an input must go into the inventory before the output comes
out. The inventory module is also remarkably robust to miss-
ing data: the MAP only drops by 3.5 points (4.4%) when we
drop 20% of firms in the synthetic data. We also see that
using product embeddings, instead of learning the attention
weights directly, consistently helps the inventory module.

Figure 3 visualizes our results, showing that the inventory
module effectively learns the true production functions. The
inventory module also learns attention weights of similar
magnitude as the true production functions, while the other
baselines are not comparable on magnitude, only ranking.

The firm-product graph is a static bipartite graph of firm and
product nodes, where an edge between a firm and product indicates
that the firm buys or supplies the product.



SS-std SS-shocks SS-missing Tesla IED
Edgebank (binary) 0.174 0.173 0.175 0.131 0.164
Edgebank (count) 0.441 0.415 0.445 0.189 0.335
Static 0.439(0.001) | 0.392(0.002) | 0.442(0.001) || 0.321(0.001) | 0.358 (0.001)
Graph transformer 0.431 (0.003) | 0.396(0.024) | 0.428 (0.003) || 0.507 (0.020) | 0.613 (0.045)
SC-TGN 0.522(0.003) | 0.449 (0.004) | 0.494 (0.004) || 0.820(0.007) | 0.842 (0.004)
SC-TGN+inv 0.540 (0.003) | 0.461 (0.009) | 0.494 (0.004) || 0.818 (0.004) | 0.841 (0.008)
SC-GraphMixer 0.453 (0.005) | 0.426(0.004) | 0.446(0.003) || 0.690(0.027) | 0.791 (0.009)
SC-GraphMixer+inv 0.497 (0.004) | 0.448 (0.004) | 0.446(0.002) || 0.681(0.014) | 0.791 (0.008)

Table 2: Results for predicting existence of future edges, evaluated with mean reciprocal rank (MRR 7). We report mean and
standard deviation (in parentheses) over 10 seeds. Edge weight results are provided in the Appendix (Table 4).

Inventory module

-i4
3
2
1
0

10 20 30 40
Predicted parts

. True production functions

True parts

Figure 3: True production functions (left) and predictions
from inventory module (right), trained on SS-std.

While only ranking matters for MAP, magnitude is essen-
tial if using the inventory module to inform edge prediction
with penalties and caps. Finally, in Figure 5, we show that
our inventory module’s loss function (6) is well-correlated
with MAP, which is why it can effectively learn production
functions without observing any of them.

5.2 Predicting Future Edges

For edge existence, where we seek to predict whether future
transaction (s, b, p, t) exists, we compare our models to the
following baselines:

1. Edgebank: “binary” predicts 1 if (s, b, p, *) appeared be-
fore in the train set; 0 otherwise. “count” predicts the
number of times that (s, b, p, *) appeared in the train set.

2. Static: learns a static vector to represent each node.

3. Graph transformer: learns a static embedding to repre-
sent each node, using the graph transformer model called
UniMP from Shi et al. (2021).

While Edgebank simply memorizes the train set, it serves
as a strong baseline, as the Temporal Graph Benchmark
(Huang et al. 2023) found that even the binary version out-
performed some GNNs on dynamic link prediction. The lat-
ter two baselines test two types of static node embeddings,
which allow us to isolate the benefit of temporal GNNs. For
each of our models (SC-TGN and SC-GraphMixer), we try
them alone and with the inventory module (+inv).

In Table 2, we summarize results for predicting edge ex-
istence; results for predicting edge weight tell a very simi-
lar story (Table 4). First, we find that our models, SC-TGN
and SC-GraphMixer, outperform the baselines on both tasks
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and all five datasets, by 11-62% on edge existence and 1-
13% on edge weight. Second, we find that SC-TGN consis-
tently outperforms SC-GraphMixer; we hypothesize this is
because of SC-TGN’s sophisticated updating of node memo-
ries, while SC-GraphMixer only captures changes over time
through its link encoder, which encodes the features and
timestamps of the node’s recent edges (Appendix A.2). Sup-
porting this hypothesis is the fact that the static methods
perform poorly, demonstrating the need for temporal GNNs
for supply chains. Since we find that SC-TGN outperforms
SC-GraphMixer, we also compared SC-TGN to ablated ver-
sions: the original TGN, to test the value of our extensions
(which we document in Appendix A.l), and to SC-TGN
where the node memory is directly used as the embedding,
instead of applying a GNN to the memories. We find that
the full SC-TGN outperforms both ablations substantially,
by 34-45% and 53-100%, respectively (6).

We also find that, in the synthetic data experiments,
the setting with shocks is the hardest for all models.
This demonstrates how shocks complicate prediction, since
shocks both delay firms’ abilities to complete their orders
and limit them to producing smaller amounts, thus affect-
ing both edge existence and edge weight. However, adding
the inventory module significantly improves both SC-TGN
and SC-GraphMixer’s MRRs under shocks. In general, even
though adding the inventory module introduces an addi-
tional loss so that we can learn production functions (16),
we find that it does not hurt edge prediction performance,
and in several cases, improves performance.

6 Discussion

In this work, we have formalized temporal production
graphs (TPGs), with supply chains as a canonical example,
and developed a new class of GNNs that can handle TPGs.
We also release a new open-source simulator, SupplySim,
which enables rigorous model testing and future research
development in this area. Our models successfully achieve
two essential objectives—inferring production functions and
predicting future edges—while preexisting GNNs focused
on the latter. Our models can be used in a wide variety of
real-world scenarios, such as demand forecasting, early risk
detection, and inventory optimization. To concretely illus-
trate these possibilities, we provide a case study in the ex-
tended version of our paper, where we show how the model
can be used to predict which firms will be affected by an
emerging supply chain disruption. In future work, we hope



to explore other potential use cases in supply chains, apply
our model to TPGs in other domains, and develop theoretical
results for our inventory module, such as establishing iden-
tifiability conditions and connecting it to causal inference.
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