
Relational Graph Transformer

Vijay Prakash Dwivedi1 Sri Jaladi1 Yangyi Shen1 Federico López2
Charilaos I. Kanatsoulis1 Rishi Puri3 Matthias Fey2 Jure Leskovec1,2

1Stanford University, 2Kumo.AI, 3NVIDIA
{vdwivedi,jure}@cs.stanford.edu

Abstract

Relational Deep Learning (RDL) is a promising approach for building state-of-
the-art predictive models on multi-table relational data by representing it as a
heterogeneous temporal graph. However, commonly used Graph Neural Network
models suffer from fundamental limitations in capturing complex structural pat-
terns and long-range dependencies that are inherent in relational data. While Graph
Transformers have emerged as powerful alternatives to GNNs on general graphs,
applying them to relational entity graphs presents unique challenges: (i) Traditional
positional encodings fail to generalize to massive, heterogeneous graphs; (ii) exist-
ing architectures cannot model the temporal dynamics and schema constraints of
relational data; (iii) existing tokenization schemes lose critical structural informa-
tion. Here we introduce the Relational Graph Transformer (RELGT), the first graph
transformer architecture designed specifically for relational tables. RELGT em-
ploys a novel multi-element tokenization strategy that decomposes each node into
five components (features, type, hop distance, time, and local structure), enabling
efficient encoding of heterogeneity, temporality, and topology without expensive
precomputation. Our architecture combines local attention over sampled subgraphs
with global attention to learnable centroids, incorporating both local and database-
wide representations. Across 21 tasks from the RelBench benchmark, RELGT
consistently matches or outperforms GNN baselines by up to 18%, establishing
Graph Transformers as a powerful architecture for Relational Deep Learning1.

1 Introduction

Real-world enterprise data, such as financial transactions, supply chain data, e-commerce records,
product catalogs, customer interactions, and electronic health records, are predominantly stored
in relational databases [8]. These databases typically consist of multiple tables, each dedicated
to different entity types, interconnected through primary and foreign key links. This abstraction
underpins large quantities of complex, dynamically updated data that scale with business volume,
storing potentially immense, unexploited knowledge [13]. However, extracting predictive patterns
from such data has traditionally depended on manual feature engineering within complex machine
learning pipelines, requiring the transformation of multi-table records into flat feature vectors suitable
for models like deep neural networks and decision trees [6].

Relational Deep Learning. To enable end-to-end deep learning, relational databases can be rep-
resented as relational entity graphs [13], where nodes correspond to entities and edges capture
primary-foreign key relationships. This graph-based representation allows Graph Neural Networks
(GNNs) to learn abstract features directly from the underlying data structure, effectively modeling
complex dependencies for various downstream prediction tasks. With this setup, which is termed as
Relational Deep Learning (RDL), GNNs reduce or eliminate the need for manual feature engineering
and often lead to improved performance [42], at a fraction of the traditional model development cost.

1https://github.com/snap-stanford/relgt

Preprint.

ar
X

iv
:2

50
5.

10
96

0v
1

 [
cs

.L
G

]
 1

6
M

ay
 2

02
5

https://github.com/snap-stanford/relgt

3

Relational Entity Graph Tokenization Transformer Network Prediction Heads

Local Tokens Global Centroids

Attention

x L layers
Seed Node

Local Context

? user churn

item sales$

Figure 1: Overview of the RELGT architecture. First, the input relational entity graph (REG) is
converted into tokens where each training seed node (such as the customer node in this example)
gets a fixed number of neighboring nodes, which are encoded with a multi-element tokenization
strategy. These tokens are then passed through a Transformer network that builds both local and
global representations, which are then fed to downstream prediction layers.

Existing gaps. Despite their effectiveness, standard message-passing GNN architectures [15, 29, 18,
48] have notable limitations, such as insufficient structural expressiveness [52, 37, 34] and restricted
long-range modeling capabilities [1]. For example, consider an e-commerce database with three
tables: customers, transactions, and products, which can be represented as a relational entity graph as
in Figure 1. In a standard GNN, transactions are always two hops away from each other, connected
only through shared customers. This creates an information bottleneck: transaction-to-transaction
patterns require multiple layers of message passing, while product relationships remain entirely
indirect in shallow networks. Furthermore, products would never directly interact in a two-layer
GNN [42], as their messages must pass through both a transaction and a customer, highlighting the
inherent structural constraints of GNN architectures that restrict capturing long-range dependencies.

Graph Transformers (GTs) have emerged as more expressive models for graph learning, utilizing
self-attention in the full graph to increase the range of information flow and additionally, incorpo-
rating positional and structural encodings (PEs/SEs) to better capture graph topology [9, 53, 41].
These advances have produced strong results across domains [38], including foundation models for
molecular graphs [46]. However, many GT designs are limited to non-temporal, homogeneous, and
small-scale graphs, assumptions that do not hold for relational entity graphs (REGs) [13], which are
typically (i) heterogeneous, with different tables representing distinct node types; (ii) temporal, with
entities often associated with timestamps and requiring careful handling to prevent data leakage; (iii)
large-scale, containing millions or more records across multiple interconnected tables. In particular,
existing PEs often require precomputation, depend on graph size, and typically do not scale well to
large, heterogeneous, or dynamic graphs [3, 26]. For instance, node2vec [17], while more efficient
than Laplacian or random walk PEs, can become prohibitively expensive and impractical to compute
on massive graphs [40]. These limitations, along with the inability to capture the multi-dimensional
complexity of relational structures, render current GTs inadequate for relational databases.

Present work. We introduce the Relational Graph Transformer (RELGT), the first Graph
Transformer specifically designed for relational entity graphs. RELGT addresses key gaps in existing
methods by enabling effective graph representation learning within the RDL framework. It is a unified
model that explicitly captures the temporality, heterogeneity, and structural complexity inherent to
relational graphs. We summarize the architecture as follows (Figure 1):

• Tokenization: We develop a multi-element tokenization scheme that converts each node into
structurally enriched tokens. By sampling fixed-size subgraphs as local context windows and
encoding each node’s features, type, hop distance, time, and local structure, RELGT captures
fine-grained graph properties without expensive precomputation at the subgraph or graph level.

• Attention: We develop a transformer network that combines local and global representations,
adapting existing GT architectures [41]. The model extracts features from the local tokens while
simultaneously attending to learnable global tokens that act as soft centroids, effectively balancing
fine-grained structural modeling with database-wide patterns [30].

• Validation: We showcase RELGT’s effectiveness through a comprehensive evaluation on 21 tasks
from RelBench [42]. RELGT consistently outperforms GNN baselines, with gains of up to 18%,
establishing transformers as a powerful architecture for relational deep learning. Compared to HGT
[20], a strong GT baseline for heterogeneous graphs, RELGT achieves better results without added
computational cost, even when HGT uses Laplacian eigenvectors for positional encoding.

2

2 Background

2.1 Relational Deep Learning

Relational Deep Learning (RDL) is an end-to-end representation learning framework that converts
relational databases into graph structures, enabling neural networks to be applied directly and
eliminating the need for manual feature extraction in multi-table data pipelines [13].

Definitions. Formally, we can define a relational database as the tuple (T,R) comprising a
collection of tables T = {T1, . . . , Tn} connected through inter-table relationshipsR ⊆ T ×T . A link
(Tfkey, Tpkey) ∈ R denotes a foreign key in one table referencing a primary key in another. Each table
contains entities (rows) {v1, . . . , vnT

}, with each entity typically consisting of: (1) a unique identifier
(primary key), (2) references to other entities (foreign keys), (3) entity-specific attributes, and (4)
timestamp information indicating when the entity was created or modified. The structure of relational
databases inherently forms a graph representation, called as relational entity graphs (REGs). An
REG is formally defined as a heterogeneous temporal graph G = (V,E, ϕ, ψ, τ), where nodes V
represent entities from the database tables, edges E represent primary-foreign key relationships, ϕ
maps nodes to their respective types based on source tables, ψ assigns relation types to edges, and τ
captures the temporal dimension through timestamps [13].

Challenges. Relational entity graphs exhibit three distinctive properties that set them apart from
conventional graph data. First, their structure is fundamentally schema-defined, with topology
shaped by primary-foreign key relationships rather than arbitrary connections, creating specific
patterns of information flow that require specialized modeling approaches. Second, they incorporate
temporal dynamics, as relational databases track events and interactions over time, necessitating
techniques like time-aware neighbor sampling to prevent future information from leaking into past
predictions. Third, they display multi-type heterogeneity, as different tables correspond to different
entity types with diverse attribute schemas and data modalities, presenting challenges in creating
unified representations that effectively integrate information across diverse node and edge types
[44, 49]. These characteristics create both challenges and opportunities for GNN architectures,
requiring models that can simultaneously address temporal evolution, heterogeneous information,
and schema-constrained structures while processing potentially massive multi-table datasets.

2.2 RDL Methods

The baseline GNN approach introduced by [42] for RDL uses a heterogeneous GraphSAGE [18]
model with temporal-aware neighbor sampling, which demonstrates significant improvements com-
pared to traditional tabular methods like LightGBM [27] across all tasks in the RelBench benchmark.
This baseline architecture leverages PyTorch Frame’s multi-modal feature encoders [19] to transform
diverse entity attributes into initial feature embeddings that serve as input to the GNN. Several
specialized architectures have been developed to address specific challenges in relational entity
graphs. RelGNN [5] introduces composite message-passing with atomic routes to facilitate direct
information exchange between neighbors of bridge and hub nodes, commonly found in relational
structures. Similarly, ContextGNN [55] employs a hybrid approach, combining pair-wise and
two-tower representations, specifically optimized for recommendation tasks in RelBench.

Beyond pure GNN approaches, retrieval-augmented generation techniques [51] and hybrid tabular-
GNN methods [32] have also demonstrated comparable or slightly superior performance to the
standard GNN baseline, while showing the use of LLMs [16] and inference speedups, respectively.
These approaches confirm the effectiveness of graph, tabular, and LLM-based methods for down-
stream predictions in relational databases. However, these methods typically optimize specific aspects
of the problem, failing to incorporate broader advances from GTs in general graph learning.

2.3 Graph Transformers

Graph Transformers extend the self-attention mechanism from sequence modeling [47] to graph-
structured data, offering powerful alternatives to traditional GNNs [9]. These models typically restrict
attention to local neighborhoods, functioning as message-passing networks with attention-based
aggregation [24, 2], while positional encodings are developed based on Laplacian eigenvectors [10].
Subsequent Graph Transformers incorporate global attention mechanisms, allowing all nodes to

3

attend to one another [53, 36, 31]. This moves beyond the local neighborhood limitations of standard
GNNs [1], albeit at the cost of significantly increased computational complexity.

Modern GT architectures have improved the aforementioned early works by creating effective
structural encodings and ensuring scalability to medium and large-scale graphs. For structural
expressiveness of the node tokens, several positional and structural encoding methods have been
developed [12, 3, 33, 22, 26] to inject the input graph topology. For scalability, various strategies have
emerged including hierarchical clustering that coarsens graphs [57, 59], sparse attention mechanisms
that reduce computational cost [41, 45], and neighborhood sampling techniques for processing
massive graphs [58, 4, 30, 11]. Models like GraphGPS [41] combine these advances through hybrid
local-global designs that maintain Transformers’ global context advantages while ensuring practical
efficiency when scaling to medium and large graph datasets. However, these approaches exhibit
several key limitations: they are largely confined to static graphs, and lack mechanisms to handle
multiple node and edge types. While specialized Transformers for heterogeneous graphs exist
[20, 35, 59, 56], integrating them, alongside other aforementioned methods, into the RDL pipeline
remains challenging. This is primarily because adapting positional encodings under precomputation
constraints is difficult, compounded by the complexity of modeling large-scale, temporal, and
heterogeneous relational entity graphs (REGs).

3 RELGT: Relational Graph Transformer

3.1 Tokenization

Traditional Transformers in natural language processing represent text through tokens with two
primary elements: (i) token identifiers (or features) that denotes the token from a vocabulary set and
(ii) positional encodings that represent sequential structure [47]. For example, a token can correspond
to a word and its positional encoding can correspond to its order in the input sentence. Similarly,
Graph Transformers generally adapt this two-element representation to graphs, where nodes are tokens
with features, and graph positional encodings provide structural information [9, 28, 41]. Although
this two-element approach works well for homogeneous static graphs, it becomes computationally
inefficient when trying to encode multiple aspects of graph structural information for REGs.

In particular, capturing heterogeneity, temporality, and schema-defined structure (as defined in
Section 2.1) through a single positional encoding scheme would either require complex, multi-stage
encoding or result in significant information loss about the rich relational context. For instance, if we
were to extend existing PEs for REGs, several practical challenges emerge: (i) standard Laplacian
or random walk-based PEs would need significant modification to differentiate between multiple
node types (e.g., customers vs. products vs. transactions), (ii) these encodings lack mechanisms to
incorporate temporal dynamics critical for time-sensitive predictions (e.g., capturing that a user’s
recent purchases are more relevant than older ones), and (iii) the scale of relational databases makes
global PE computation in REGs prohibitively expensive. With millions of records across tables,
precomputation would only be feasible on small subgraphs, resulting in incomplete structural context.

3.1.1 Proposed Approach

RELGT overcomes these limitations through a multi-element token representation approach, without
any computational overhead concerning the dependency on the number of nodes in the input REG.
Rather than trying to compress all structural information into a single positional encoding, we
decompose the token representation into distinct elements that explicitly model different aspects of
relational data. This decoupled design allows each component to capture a specific characteristic of
REGs: node features represent entity attributes, node types encode table-based heterogeneity, hop
distance preserves relative distances among nodes in a local context, time encodings capture temporal
dynamics, and GNN-based positional encodings preserve local graph structure.

Sampling and token elements. The tokenization process in RELGT converts a REG G =
(V,E, ϕ, ψ, τ) into sets of tokens suitable for processing by the Transformer network. Specifi-
cally, as shown in Figure 2, for each training seed node vi ∈ V , we first sample a fixed set of K
neighboring nodes vj from within 2 hops of the local neighborhood using temporal-aware sampling2,

2When fewer than K neighbors are available within 2 hops, we use randomly selected nodes as fallback
tokens to maintain the fixed size K, ensuring consistent computational complexity regardless of local structure.

4

encoders applied to each token
w/ their graph structural information

node feature node type hop distance time subgraph

MultiModal
Encoder Type Encoder Hop Encoder Time Encoder GNN PE

Encoder

tokens fed to
Transformer Network

seed nodes
local tokens

relational entity
graph

sampling

seed nodes with local neighbors

local subgraph
for a seed node

Figure 2: The tokenization procedure. A temporal-aware subgraph sampling step extracts a fixed set
of local tokens for each training seed node, denoted by the node in black. Each token incorporates its
respective graph structure information, which are element-wise transformed to a common embedding
space and combined to form the effective token representation to be fed to the Transformer network.

ensuring that only nodes with timestamps τ(vj) ≤ τ(vi) are included to prevent temporal leakage.
Each token in this set is represented by a 5-tuple: (xvj , ϕ(vj), p(vi, vj), τ(vj)− τ(vi),GNN-PEvj),
where, (i) node features (xvj) denotes the raw features derived from entity attributes in the database,
(ii) node type (ϕ(vj)) is a categorical identifier corresponding to the entity’s originating table, (iii)
relative hop distance (p(vi, vj)) captures the structural distance between the seed node vi and the
neighbor node vj , (iv) relative time (τ(vj)− τ(vi)) represents the temporal difference between the
neighbor and seed node, and (v) finally, subgraph based PE (GNN-PEvj) provides a graph positional
encoding for each node within the sampled subgraph, generated by applying a lightweight GNN to
the subgraph’s adjacency matrix with random node feature initialization [43, 26].

Encoders. Each element in the 5-tuple is processed by a specialized encoder before being combined
into the final token representation, as illustrated in Figure 2.

1. Node Feature Encoder. The node features xvj , representing the columnar attributes of the node
vj in REG (which corresponds to a table row in a database), are encoded into a d-dimensional
embedding. Each modality, such as numerical, categorical, multi-categorical, text, and image data, is
encoded separately using modality-specific encoders following [19], and the resulting representations
are then aggregated into a unified d-dimensional embedding.

hfeat(vj) = MultiModalEncoder(xvj) ∈ Rd (1)

where MultiModalEncoder(·) is unified feature encoder adapted from [19].

2. Node Type Encoder. The node type encoding steps converts each table-specific entity type ϕ(vj)
to a d-dimensional representation, incorporating the heterogeneous information from the input data.

htype(vj) =Wtype · onehot(ϕ(vj)) ∈ Rd (2)

where ϕ(vj) is the node type of vj , Wtype ∈ Rd×|T | is the learnable weight matrix, |T | is the number
of node types, and onehot(·) is the one-hot encoding function.

3. Hop Encoder. The relative hop distance p(vi, vj), that captures the structural proximity between
the seed node vi and a neighbor node vj , is encoded into a d-dimensional embedding as:

hhop(vi, vj) =Whop · onehot(p(vi, vj)) ∈ Rd (3)

with p(vi, vj) being the relative hop distance between seed node vi and neighbor node vj , and
Whop ∈ Rd×hmax the learnable matrix mapping hop distances (up to hmax).

4. Time Encoder. The time encoder linearly transforms the time difference τ(vj)− τ(vi) between a
neighbor node vj and the seed node vi:

htime(vi, vj) =Wtime · (τ(vj)− τ(vi)) ∈ Rd (4)

where τ(vj)− τ(vi) is the relative time difference, and Wtime ∈ Rd×1 are learnable parameters.

5

pooling
per seed

nodeLocal Tokens

Global Centroids
Local

Features

+

x L layers

all-pair attention

Transformer Network
Output
Nodes

Input
Nodes

Global
Features

Attention

Figure 3: The Transformer network which processes the input tokens by first building local represen-
tations using the local tokens, then incorporating global context by attending to centroids that are
dynamically updated during training. The final node representations combine both local structural
details and global database context, enabling effective prediction across downstream tasks.

5. Subgraph PE Encoder. Finally, for capturing local graph structure that can otherwise not be
represented by other elements of the token, we apply a light-weight GNN to the subgraph. This
GNN encoder effectively preserves important structural relationships, such as complex cycles and
quasi-cliques between entities [25], as well as parent-child relationships (e.g., a product node within
the local subgraph corresponding to specific transactions), and can be written as:

hpe(vj) = GNN(Alocal, Zrandom)j ∈ Rd (5)
where GNN(·, ·)j is a light-weight GNN applied to the local subgraph yielding the encoding for
node vj , Alocal ∈ RK×K is the adjacency matrix of the sampled subgraph of K nodes, and Zrandom ∈
RK×dinit are randomly initialized node features for the GNN (with dinit as the initial feature dimension).

One key advantage of using random node features in this GNN encoder is that it breaks structural
symmetries between the subgraph topology and node attributes, thereby increasing the expressive
power of GNN layers [43]. However, a fixed random initialization would destroy permutation
equivariance which is a critical property for generalization. To address this challenge, we resample
Zrandom independently at every training step. This ‘stochastic initialization’ approach can be viewed
as a relaxed version of the learnable PE method described in [26], thus approximately preserving
permutation equivariance while retaining the expressivity gains afforded by the randomization.

At last, the effective token representation is formed by combining all encoded elements:
htoken(vj) = O · [hfeat(vj) ||htype(vj) ||hhop(vi, vj) ||htime(vi, vj) ||hpe(vj)] (6)

where || denotes the concatenation of the individual encoder outputs, and O ∈ R5d×d is a learnable
matrix to mix the embeddings. This multi-element approach provides a comprehensive token
representation that explicitly captures node features, type information, structural position, temporal
dynamics, and local topology without requiring expensive computation on the graph structure.

3.2 Transformer Network

The Transformer network in RELGT, shown in Figure 3, processes the tokenized relational entity
graph using a combination of local and global attention mechanisms, following the successful design
components used in modern GTs [41, 50, 30, 11].

Local module. The local attention mechanism allows each seed node to attend to its K local tokens
selected during tokenization, capturing the fine-grained relationships defined by the database schema.
This mechanism is different from a GNN used in RDL [42] in two key aspects: self-attention is used
as the message-passing scheme and the attention is all-pair, i.e., all nodes in the local K set attend to
each other. This is implemented using an L layer Transformer network [47] and provides a broader
structural coverage compared to a baseline GNN [42]. A practical application of this improvement
can be seen in the e-commerce example introduced in Section 1, where the proposed full-attention
mechanism can directly connect seemingly unrelated products by identifying relationships through
shared transactions or customer behaviors. This capability enables the model to capture subtle
associations, such as customers frequently purchasing unexpected combinations of items.

The local node representation hlocal(vi) is obtained as:

hlocal(vi) = Pool(FFN(Attention(vi, {vj}Kj=1))L) (7)

6

where, L denotes the layers, FFN and Attention are standard components in a Transformer [47], and
Pool denotes the aggregation of {vj}Kj=1 and vi using a learnable linear combination.

Global module. The global attention mechanism enables each seed node to attend to a set of B
global tokens representing centroids of all nodes in the graph, conceptually and is adapted from prior
works [30, 11]. These centroids are updated during training using an Exponential Moving Average
(EMA) K-Means algorithm applied to seed node features in each mini-batch, providing a broader
contextual view beyond the local neighborhood. The global representation is formulated as:

hglobal(vi) = Attention(vi, {cb}Bb=1) (8)

The final output representation of each node vi is obtained by combining local and global embeddings:

houtput(vi) = FFN([hlocal(vi) ||hglobal(vi)]) (9)

with FFN being a feed forward network. The components of the Transformer in all stages follow
standard instantiations with normalization and residual connections.

For downstream prediction, the combined representation of the seed node is passed through a task-
specific prediction head. The model is trained end-to-end using suitable task specific loss functions.
By leveraging multi-element token representations within a hybrid local-global Transformer ar-
chitecture, RELGT effectively addresses the challenges of heterogeneity, temporal dynamics, and
schema-defined structures inherent in relational entity graphs.

4 Experiments

RELGT is evaluated on the recently introduced Relational Deep Learning Benchmark (RelBench)
[42]. RelBench consists of 7 datasets from diverse relational database domains, including e-commerce,
clinical records, social networks, and sports, among others. These datasets are curated from their
respective source domains and consist a wide range of sizes, from 1.3K to 5.4M records in the training
set for the prediction tasks, with a total of 47M training records. For each dataset, multiple predictive
tasks are defined, such as predicting a user’s engagement with an advertisement within the next four
days or determining whether a clinical trial will achieve its primary outcome within the next year. In
total, RelBench has 30 tasks across the 7 datasets, covering entity classification, entity regression, and
recommendation. For our evaluation, we focus on 21 tasks on entity classification and regression 3.

4.1 Setup and Baselines

We implement RELGT within the RDL pipeline [42] by replacing the original GNN component,
while preserving the learning mechanisms, database loaders, and task evaluators. The model has
between 10-20 million parameters, and we use a learning rate of 1e−4. For tasks with fewer than one
million training nodes, we tune the number of layers L ∈ 1, 4, 8 and use dropout rates of 0.3, 0.4, 0.5.
For tasks with more than one million training nodes, we fix the number of layers to L = 4 due
to compute budgets. For the sampling during the token preparation stage, we use K = 300 local
neighbors and set B = 4096 as the number of tokens for global centroids. For smaller datasets (under
one million training nodes), we use a batch size of 256 to ensure sufficient training steps. For larger
datasets, we use a batch size of 1024. We do not perform exhaustive hyperparameter tuning; rather,
our goal is to showcase the benefits of using RELGT in place of GNNs within the RDL framework.
As shown in our ablation of the multi-element tokenization and global module in RELGT (Table 2),
and context size (Figure 4), careful tuning may further improve performance across different tasks.

In addition to the HeteroGNN baseline used in RDL, we report results for two variants of the
Heterogeneous Graph Transformer (HGT) [20] to highlight the advantages of RELGT over existing
GT models. Notably, many GTs, such as GraphGPS [41], are not directly applicable to heterogeneous
graphs. Therefore, we adopt HGT and an enhanced version, HGT+PE, which incorporates Laplacian
positional encodings (LapPE). These positional encodings are computed on the sampled subgraphs
rather than the entire graph. Additional implementation details are included in Appendix A.3.

3We exclude recommendation tasks in this work since they involve specific considerations, such as identifying
target nodes [54] or using pair-wise learning architectures [55] and using RELGT trivially in RDL is sub-optimal.

7

Table 1: Test set results on the entity regression and classification tasks in RelBench. Best values are
in bold. RDL: HeteroGNN baseline [42], HGT: Heterogeneous GT [20], PE: Laplacian Positional
Encodings [10]. Relative gains are expressed as percentage improvement over RDL baseline.

(a) MAE for entity regression. Lower is better

Dataset Task RDL HGT HGT
+PE

RelGT
(ours)

% Rel.
Gain

rel-f1 driver-position 4.022 4.1598 4.2358 3.9170 2.61

rel-avito ad-ctr 0.041 0.0441 0.0494 0.0345 15.85

rel-event user-attendance 0.258 0.2635 0.2562 0.2502 2.79

rel-trial study-adverse 44.473 43.3253 42.4622 43.9923 1.08
site-success 0.400 0.4374 0.4431 0.3263 18.43

rel-amazon user-ltv 14.313 15.3804 15.9296 14.2665 0.32
item-ltv 50.053 56.1384 55.6211 48.9222 2.26

rel-stack post-votes 0.065 0.0679 0.0680 0.0654 -0.62

rel-hm item-sales 0.056 0.0655 0.0641 0.0536 4.29

(b) AUC for entity classification. Higher is better.

Dataset Task RDL HGT HGT
+PE

RelGT
(ours)

% Rel.
Gain

rel-f1 driver-dnf 0.7262 0.7142 0.7109 0.7587 4.48
driver-top3 0.7554 0.6389 0.8340 0.8352 10.56

rel-avito user-clicks 0.6590 0.6584 0.6387 0.6830 3.64
user-visits 0.6620 0.6426 0.6507 0.6678 0.88

rel-event user-repeat 0.7689 0.6717 0.6590 0.7609 -1.04
user-ignore 0.8162 0.8348 0.8161 0.8157 -0.06

rel-trial study-outcome 0.6860 0.5679 0.5691 0.6861 0.01

rel-amazon user-churn 0.7042 0.6608 0.6589 0.7039 -0.04
item-churn 0.8281 0.7824 0.7840 0.8255 -0.31

rel-stack user-engagement 0.9021 0.8898 0.8852 0.9053 0.35
user-badge 0.8986 0.8652 0.8518 0.8632 -3.94

rel-hm user-churn 0.6988 0.6773 0.6491 0.6927 -0.87

4.2 Results and Discussion

RELGT improves over GNN in RDL. The experimental results in Tables 1a and 1b demonstrate
that RELGT consistently matches or outperforms the standard GNN baseline used in RDL [42] across
multiple datasets and tasks. We observe the largest improvements in rel-trial site-success
(18.43%), rel-avito ad-ctr (15.85%), and rel-f1 driver-top3 (10.56%), while on rel-stack
user-badge, RELGT performs below the RDL baseline by a margin of -3.94%. For all other tasks,
RELGT consistently improves or matches the performance of the baseline GNN. We attribute the
overall performance improvement to two key factors: (i) the broader structural coverage enabled
by RELGT’s attention mechanisms as described in Section 3.2, and (ii) the fine-grained encodings
employed in our tokenization scheme, which are further studied as follows and presented in Table 2.

Subgraph GNN PE is critical in RELGT. In Table 2, we highlight the importance of several
components in RELGT by conducting ablation studies. We remove one component at a time while
preserving all others, and report the relative performance drop compared to the full RELGT model.
Our results show that removing the subgraph GNN (PE), which encodes local subgraph structure
(Section 3.1), leads to consistent performance degradation across all tasks. This component proves
critical for disambiguating parent-child relationships when full-attention is applied, thanks to the
random node features initialization [43, 26]. For instance, without the GNN (PE), products belonging
to specific transactions (Figure 1) cannot be effectively captured, even when other encodings remain.

Global module can bring gains depending on the task. In the same Table 2, our results of removing
the global attention to the learnable centroids (Section 3.2) reveal task-dependent patterns that align
with the findings reported in [30, 11]. For some tasks, such as rel-trial site-success, removing
the attention to the centroids tokens leads to a substantial performance drop (-19.08%), indicating
that the global database-wide context provides crucial information beyond the local neighborhood.
However, for certain tasks such as rel-avito user-clicks, removing the global module actually
improves performance (7.79% relative gain), suggesting that for some prediction targets, local
information is sufficient, and the global context might introduce noise. These mixed results highlight
the complementary nature of local and global information in relational graphs, with the latter being
optional depending on the task.

Ablation of other encodings. The remaining ablations in Table 2 reveal mixed results across different
components. While removing explicit fine-grained encodings (node type, hop distance, and relative
time) degrades performance on some tasks, it improves performance on others. For tasks with specific
temporal dependencies (as detailed in the Appendix A.1), our current temporal encodings may
inadvertently introduce noise. Similarly, for node type and hop distance encodings, their information
might already be partially captured by other model components. Despite these variations, the full
RELGT model still shows consistently superior results when averaged across all tasks. However, our
findings suggest that RELGT’s performance could be further enhanced by careful tuning of these
encoding components based on their task-specific importance. In particular, additional improvements
can be achieved by incorporating more effective temporal encoding methods [7, 21, 23].

HGT, a GT baseline, underperforms with significant computational overhead. As shown in
Tables 1a and 1b, HGT [20] underperforms compared to the HeteroGNN baseline of RDL [42] across

8

Table 2: Relative drop (%) in performance in RELGT after removing a model component. Negative
scores suggest the component is critical in RELGT, and vice-versa. Full results in Table 7.

Dataset Task No Global
Module

No GNN
PE

No Node
Type

No Hop
Distance

No Relative
Time

rel-avito ad-ctr −6.00 −1.14 −7.14 −3.43 −9.14
rel-avito user-clicks 7.85 −15.15 5.01 5.77 8.37
rel-avito user-visits −0.35 −2.38 −0.11 0.39 −0.75
rel-event user-ignore −1.30 0.12 −0.11 0.66 −0.09
rel-trial study-outcome −2.14 −1.72 3.74 −0.43 2.48
rel-trial site-success −19.01 −9.17 −2.88 −21.49 −0.71
rel-amazon user-churn −0.64 −0.78 0.16 0.06 −2.20
rel-hm item-sales −9.33 −17.35 −12.69 0.93 −77.24

Average −3.87 −5.95 −1.75 −2.19 −9.91

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e

(re
la

tiv
e

to
 H

GT
)

rel-amazon
item-

ltv

rel-trial
study-

adverse

rel-hm
user-
churn

rel-amazon
item-
churn

rel-stack
user-

engagement

rel-avito
user-
clicks

rel-avito
user-
visits

rel-avito
ad-
ctr

1.50× 1.54× 1.63×

2.01× 2.03×
2.22×

2.33×
2.45×

Runtime Comparison: HGT vs HGT+PE
HGT (Baseline) Additional time for PE

rel-avito
ad-
ctr

rel-avito
user-
clicks

rel-avito
user-
visits

rel-event
user-

ignore

rel-trial
site-

success

rel-trial
study-

outcome

rel-hm
item-
sales

rel-amazon
user-
churn

90

95

100

105

110

%
 P

er
fo

rm
an

ce
 (r

el
at

iv
e

to
 K

=3
00

 w
hi

ch
 is

 1
00

%
) Ablation of Context Size K

K = 100
K = 300
K = 500

Figure 4: Left: Epoch runtime comparison of HGT [20] and HGT+PE, with Laplacian PE (see
Figure 5 for all tasks). The red portion shows the additional time consumed by the precomputation
of Laplacian PE against the base HGT time (blue). Right: Ablation for different K values as the
local context size in RELGT. Results using K = 300 serve as the baseline (100% performance), with
K = 100 and K = 500 runs measured as % of performance relative to K = 300.

most tasks, with only two exceptions: rel-trial study-adverse and rel-event user-ignore.
Notably, the integration of Laplacian eigenvectors as PEs in HGT improves performance in just
5 out of 21 tasks. Moreover, as illustrated in Figure 4, the computational overhead required for
precomputing the Laplacian PEs substantially increases per-epoch runtime across various tasks.
These empirical findings clearly reveal the difficulties of directly applying existing GT architectures
to relational entity graphs, emphasizing the importance and need for our contributions with RELGT.

Local context size K. In our main RELGT experiments, we set the local context size at 300 nodes
(Section 3.1), however, we study its variability in Figure 4 for context sizes K ∈ {100, 300, 500}. Al-
though K = 300 generally produces the best results, optimal values vary across specific tasks. For in-
stance, rel-avito ad-ctr benefits from a larger context size, whereas rel-trial study-outcome
achieves better performance with a smaller context window. These findings suggest that RELGT’s
performance could be further enhanced by task-specific tuning of the context size, allowing for better
model expressivity based on the structural characteristics of each dataset.

5 Conclusion

In this work, we introduce the first Graph Transformer designed specifically for relational entity
graphs: the Relational Graph Transformer RELGT. It addresses key challenges faced by existing mod-
els, such as incorporating heterogeneity, temporality, and comprehensive structural modeling within a
unified GT framework. RELGT represents nodes as multi-element tokens enriched with fine-grained
graph context and combines local attention over sampled subgraph tokens with global attention
to learnable centroids, enabling effective representation learning on relational data. Experiments
on the RelBench benchmark show that RELGT consistently outperforms GNN and GT baselines
across multiple tasks. Moreover, our analysis highlights the critical role of subgraph-based positional
encodings as a lightweight and effective alternative to traditional graph positional encodings. This
work establishes RELGT as a powerful architecture for relational deep learning and opens new
avenues for advancing and scaling such architectures toward foundation models tailored for relational
data.

9

Acknowledgments and Disclosure of Funding

We thank Eric Chen, Shenyang Huang and Fang Wu for their helpful feedbacks and members of the
Stanford SNAP group for their suggestions during the project. We also gratefully acknowledge the
support of NSF under Nos. OAC-1835598 (CINES), CCF-1918940 (Expeditions), DMS-2327709
(IHBEM), IIS-2403318 (III); Stanford Data Applications Initiative, Wu Tsai Neurosciences Institute,
Stanford Institute for Human-Centered AI, Chan Zuckerberg Initiative, Amazon, Genentech, Hitachi,
and SAP. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the funding entities.

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. arXiv preprint arXiv:2006.05205, 2020.

[2] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[3] Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Do-
minique Beaini, and Ladislav Rampášek. Graph positional and structural encoder. arXiv
preprint arXiv:2307.07107, 2023.

[4] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph
transformer for node classification in large graphs. In The Eleventh International Conference
on Learning Representations, 2022.

[5] Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. Relgnn: Composite message passing
for relational deep learning. arXiv preprint arXiv:2502.06784, 2025.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[7] Aaron Clauset and Nathan Eagle. Persistence and periodicity in a dynamic proximity network.
arXiv preprint arXiv:1211.7343, 2012.

[8] Edgar F Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970.

[9] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

[10] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. arXiv:2003.00982, 2020.

[11] Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
Graph transformers for large graphs. arXiv preprint arXiv:2312.11109, 2023.

[12] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

[13] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning-graph repre-
sentation learning on relational databases. In Forty-first International Conference on Machine
Learning, 2024.

[14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[15] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

10

[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[17] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[19] Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jinu Sunil,
Jure Leskovec, and Matthias Fey. Pytorch frame: A modular framework for multi-modal tabular
learning. arXiv preprint arXiv:2404.00776, 2024.

[20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pages 2704–2710, 2020.

[21] Shenyang Huang, Farimah Poursafaei, Reihaneh Rabbany, Guillaume Rabusseau, and Emanuele
Rossi. Utg: Towards a unified view of snapshot and event based models for temporal graphs.
arXiv preprint arXiv:2407.12269, 2024.

[22] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graphs. In The Twelfth International
Conference on Learning Representations.

[23] Xiangjian Jiang and Yanyi Pu. Exploring time granularity on temporal graphs for dynamic link
prediction in real-world networks. arXiv preprint arXiv:2311.12255, 2023.

[24] Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 12:17, 2020.

[25] Charilaos Kanatsoulis and Alejandro Ribeiro. Counting graph substructures with graph neural
networks. In The twelfth international conference on learning representations, 2024.

[26] Charilaos I Kanatsoulis, Evelyn Choi, Stephanie Jegelka, Jure Leskovec, and Alejandro Ribeiro.
Learning efficient positional encodings with graph neural networks. In The Thirteenth Interna-
tional Conference on Learning Representations.

[27] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[28] Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Se-
unghoon Hong. Pure transformers are powerful graph learners. Advances in Neural Information
Processing Systems, 35:14582–14595, 2022.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[30] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein.
Goat: A global transformer on large-scale graphs. In International Conference on Machine
Learning, 2023.

[31] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618–21629, 2021.

[32] Veronica Lachi, Antonio Longa, Beatrice Bevilacqua, Bruno Lepri, Andrea Passerini, and Bruno
Ribeiro. Over 100x speedup in relational deep learning via static gnns and tabular distillation.
2024.

[33] Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
In The Eleventh International Conference on Learning Representations, 2022.

11

[34] Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

[35] Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. Hinormer: Representation learning
on heterogeneous information networks with graph transformer. In Proceedings of the ACM
web conference 2023, pages 599–610, 2023.

[36] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

[37] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: higher-order graph neural networks.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, pages 4602–4609, 2019.

[38] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

[39] A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[40] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao Tian, Silvio
Lattanzi, and Bryan Perozzi. Instantembedding: Efficient local node representations. arXiv
preprint arXiv:2010.06992, 2020.

[41] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[42] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark
for deep learning on relational databases. Advances in Neural Information Processing Systems,
37:21330–21341, 2024.

[43] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM),
pages 333–341. SIAM, 2021.

[44] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The semantic
web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018,
proceedings 15, pages 593–607. Springer, 2018.

[45] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. arXiv preprint arXiv:2303.06147, 2023.

[46] Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip
Fradkin, and Dominique Beaini. On the scalability of gnns for molecular graphs. Advances in
Neural Information Processing Systems, 37:19870–19906, 2024.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[48] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[49] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Het-
erogeneous graph attention network. In The world wide web conference, pages 2022–2032,
2019.

[50] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao
Bian, and Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph
representations. Advances in Neural Information Processing Systems, 36:64753–64773, 2023.

12

[51] Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling prediction tasks in relational
databases with llms. arXiv preprint arXiv:2411.11829, 2024.

[52] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[53] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
Neural Information Processing Systems, 34:28877–28888, 2021.

[54] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 10737–10745, 2021.

[55] Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan
Shah, Shenyang Huang, Blaž Stojanovič, Alan Krumholz, et al. Contextgnn: Beyond two-tower
recommendation systems. arXiv preprint arXiv:2411.19513, 2024.

[56] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong,
Fangda Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential
transducers for generative recommendations. arXiv preprint arXiv:2402.17152, 2024.

[57] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022.

[58] Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie,
and Yanfang Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint
arXiv:2110.13094, 2021.

[59] Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer
for scalable graph learning. arXiv preprint arXiv:2305.02866, 2023.

13

Table 3: Dataset and task statistics from RelBench used for our evaluation.

Dataset Task Task type #Rows of training table #Unique %train/test
Train Validation Test Entities Entity Overlap

rel-amazon

user-churn classification 4,732,555 409,792 351,885 1,585,983 88.0
item-churn classification 2,559,264 177,689 166,842 416,352 93.1
user-ltv regression 4,732,555 409,792 351,885 1,585,983 88.0
item-ltv regression 2,707,679 166,978 178,334 427,537 93.5

rel-avito

user-clicks classification 59,454 21,183 47,996 66,449 45.3
user-visits classification 86,619 29,979 36,129 63,405 64.6
ad-ctr regression 5,100 1,766 1,816 4,997 59.8

rel-event
user-repeat classification 3,842 268 246 1,514 11.5
user-ignore classification 19,239 4,185 4,010 9,799 21.1
user-attendance regression 19,261 2,014 2,006 9,694 14.6

rel-f1
driver-dnf classification 11,411 566 702 821 50.0
driver-top3 classification 1,353 588 726 134 50.0
driver-position regression 7,453 499 760 826 44.6

rel-hm
user-churn classification 3,871,410 76,556 74,575 1,002,984 89.7
item-sales regression 5,488,184 105,542 105,542 105,542 100.0

rel-stack

user-engagement classification 1,360,850 85,838 88,137 88,137 97.4
user-badge classification 3,386,276 247,398 255,360 255,360 96.9
post-votes regression 2,453,921 156,216 160,903 160,903 97.1

rel-trial

study-outcome classification 11,994 960 825 13,779 0.0
study-adverse regression 43,335 3,596 3,098 50,029 0.0
site-success regression 151,407 19,740 22,617 129,542 42.0

A Appendix

A.1 Benchmark Details

In this section, we include the details on the datasets and the tasks in RelBench [42] which we use for
our evaluation. RelBench consists of 7 datasets from diverse relational database domains, including
e-commerce, clinical records, social networks, and sports, among others. These datasets are curated
from their respective source domains and consist a wide range of sizes, from 1.3K to 5.4M records in
the training set for the prediction tasks, with a total of 47M training records. For each dataset, multiple
predictive tasks are defined, such as predicting a user’s engagement with an advertisement within the
next four days or determining whether a clinical trial will achieve its primary outcome within the
next year. In total, RelBench has 30 tasks across the 7 datasets, covering entity classification, entity
regression, and recommendation. For our evaluation, we focus on 21 tasks on entity classification and
regression as RELGT primarily serves as a node representation learning model in RDL. We exclude
recommendation tasks in this work since they involve specific considerations, such as identifying
target nodes [54] or using pair-wise learning architectures [55] and using RELGT trivially in RDL is
sub-optimal. We detail the dataset and task statistics in Table 3.

A.1.1 Datasets

rel-amazon. The Amazon E-commerce dataset consists of product details, user information, and
review interactions from Amazon’s platform, including metadata like pricing and categories, along
with review ratings and content.

rel-avito. Avito’s marketplace dataset contains search queries, advertisement characteristics, and
contextual information from this major online trading platform that facilitates transactions across
various categories including real estate and vehicles.

rel-event. The Event Recommendation dataset from Hangtime mobile app tracks users’ social
planning, capturing interactions, event details, demographic data, and social connections to reveal
how relationships impact user behavior.

rel-f1. The F1 dataset provides comprehensive Formula 1 racing information since 1950, doc-
umenting drivers, constructors, manufacturers, and circuits with detailed records of race results,
standings, and specific data on various racing sessions and pit stops.

14

rel-hm. H&M’s dataset contains customer-product interactions from their e-commerce platform,
featuring customer demographics, product descriptions, and purchase histories.

rel-stack. The Stack Exchange dataset documents activity from this network of Q&A websites,
including user biographies, posts, comments, edits, votes, and question relationships where users
earn reputation through contributions.

rel-trial. The clinical trial dataset from the AACT initiative has study protocols and outcomes,
containing trial designs, participant information, intervention details, and results metrics, serving as a
key resource for medical research.

A.1.2 Tasks

The following entity classification and regression tasks are defined in RelBench for the above datasets.

1. rel-amazon

(a) user-churn: Predict whether a user will discontinue reviewing products within the
next three months.

(b) item-churn: Predict if a product will have no reviews in the next three months.
(c) user-ltv: Estimate the total monetary value of merchandise in dolloar that a user will

purchase and review within the next three months.
(d) item-ltv: Estimate the total monetary value of purchases and reviews a product will

receive during the next three months.

2. rel-avito

(a) user-visits: Predict if a user will engage with several (advertisements) ads within
the upcoming four days.

(b) user-clicks: Predict whether a user will interact with multiple ads through clicking
within the upcoming four days.

(c) ad-ctr: Estimate the interaction probability for an ad, assuming it receives an interac-
tion within four days.

3. rel-event

(a) user-attendance: Estimate the number of of events a user will confirm attendance
to (RSVP yes or maybe) within the upcoming seven days.

(b) user-repeat: Predict whether a user will join an event (RSVP yes or maybe) within
the upcoming seven days, provided they attended in an event during the previous
fourteen days.

(c) user-ignore: Predict whether a user will disregard or ignore more than two events
invitations within the upcoming seven days.

4. rel-f1

(a) driver-dnf: Predict if a driver will not finish a race within the upcoming month.
(b) driver-top3: Determine if a driver will achieve a top-three qualifying position in a

race within the upcoming month.
(c) driver-position: Estimate a driver’s average finishing placement across all races in

the upcoming two months.

5. rel-hm

(a) user-churn: Predict whether a customer will not perform any transactions in the
upcoming week.

(b) item-sales: Estimate total revenue generated by a product in the upcoming week.

6. rel-stack

(a) user-engagement: Predict whether a user will contribute through voting, posting, or
commenting within the upcoming three months.

(b) user-badge: Predict whether a user will secure a new badge within the upcoming
three months.

15

Table 4: Study of node initialization in Subgraph GNN PE. Relative drop is expressed as percentage
drop of using ZLapPE vs. Zrandom and runtime ratio compares the time for ZLapPE vs. Zrandom.

Performance Epoch time (m)

Dataset Task (# train) MAE ↓ Zrandom ZLapPE
% Rel
Drop Zrandom ZLapPE

Runtime
Ratio

rel-avito ad-ctr Test 0.035 0.0369 -5.43 0.76 2.57 3.38
Val 0.0314 0.0314

rel-trial site-success Test 0.326 0.3452 -5.89 32.88 36.09 1.1
Val 0.359 0.3683

rel-hm item-sales Test 0.0536 0.0573 -6.9 49.26 53.8 1.09
Val 0.0627 0.0667

Dataset Task (# train) AUC ↑ Zrandom ZLapPE
% Rel
Drop Zrandom ZLapPE

Runtime
Ratio

rel-avito
user-clicks Test 0.607 0.583 -3.95 6.42 7.43 1.16

Val 0.656 0.6564

user-visits Test 0.664 0.6626 -0.21 9.26 10.50 1.13
Val 0.699 0.7002

rel-event user-ignore Test 0.8 0.7988 -0.15 1.85 2.77 1.5
Val 0.881 0.8916

rel-trial study-outcome Test 0.674 0.6532 -3.09 1.41 1.52 1.08
Val 0.689 0.6719

rel-amazon user-churn Test 0.7039 0.7044 0.07 168.00 170.55 1.02
Val 0.7036 0.7036

(c) post-votes: Estimate the number of votes a user’s post will accumulate over the
upcoming three months.

7. rel-trial
(a) study-outcome: Predict whether a clinical trial will achieve its principal outcome

within the upcoming year.
(b) study-adverse: Estimate the number of patients who will experience significant

adverse effects or mortality in a clinical trial over the upcoming year.
(c) site-success: Estimate the success rate of a clinical trial site in the upcoming year.

A.2 Node initialization for Subgraph GNN PE in RELGT

As described in Section 3.1, we employ a lightweight GNN PE to capture local graph structures
that cannot be represented by other elements of the token, particularly the parent-child relationships
among nodes in the local subgraph. The GNN is implemented as:

hpe(vj) = GNN(Alocal, Zrandom)j ∈ Rd (10)

where GNN(·, ·)j is a lightweight GNN applied to the local subgraph, yielding the encoding for node
vj . Here, Alocal ∈ RK×K represents the adjacency matrix of the sampled subgraph containing K
nodes, and Zrandom ∈ RK×dinit denotes randomly initialized node features for the GNN (with dinit as
the initial feature dimension). In RELGT, we set dinit = 1.

The randomly initialized node features (Zrandom) provide enhanced properties as discussed in Section
3.1. We investigate the alternative approach of using Laplacian PE (ZLapPE) computed over the
subgraph instead of random initialization and report these results in Table 4. For these results, we
utilized a positional encoding dimension size of 4. Our findings indicate that ZLapPE consistently
underperforms compared to Zrandom, while also introducing additional computational overhead
ranging from 1.02× to 3.38× across the 8 selected tasks in our study. This shows the challenges of
using existing PEs such as Laplacian PE in relational entity graphs and signify the use of GNN PE as
part of RELGT’s tokenization strategy.

A.3 HGT Baseline

In the main experiments (Section 4), we use the Heterogeneous Graph Transformer (HGT) [20] as a
graph transformer (GT) baseline, and report results for two variants to demonstrate the advantages
of RELGT over existing GT models. Specifically, we consider the standard HGT model and an

16

0

1

2

3

4

5

6

7

8

9

Ru
nt

im
e

(re
la

tiv
e

to
 H

GT
)

trial
study-

outcome

stack
user-

badge

trial
site-

success

hm
item-
sales

amazon
user-
ltv

amazon
user-
churn

amazon
item-

ltv

trial
study-

adverse

hm
user-
churn

amazon
item-
churn

stack
user-

engagement

avito
user-
clicks

avito
user-
visits

avito
ad-
ctr

f1
driver-

dnf

stack
post-
votes

f1
driver-

position

f1
driver-
top3

event
user-

repeat

event
user-

attendance

1.18×
1.38× 1.39× 1.43× 1.44× 1.47× 1.50× 1.54× 1.63×

2.01× 2.03×
2.22× 2.33× 2.45×

2.69× 2.76×
3.10×

3.63×
3.82×

8.62×
Runtime Comparison: HGT vs HGT+PE

HGT (Baseline) Additional time for PE

Figure 5: Runtime Comparison of HGT and HGT+PE baseline. Adding the Laplacian Positional
Encoding increases computational overhead, with penalties on average training time per epoch. The
overhead for PE reaches up to 761% relative to the training time of HGT on the same dataset.

enhanced version, HGT+PE, which incorporates Laplacian positional encodings (LapPE). These
positional encodings are computed on sampled subgraphs rather than the full graph.

For implementation, we use the HGTConv layer from PyTorch Geometric [14] and integrate it into the
RDL pipeline [42] by replacing the default GNN module. Both variants use 4 attention heads and 2
layers, similar to the configuration of the GNN module in RDL, with residual connections and layer
normalization applied between layers. For the HGT+PE variant, we use LapPE of dimension 4 for
all tasks, except for rel-amazon item-ltv and rel-hm item-sales, where we use dimension 2.
Notably, because the relational entity graphs are heterogeneous, the Laplacian positional encodings
is computed multiple times for each node type, unlike the original homogeneous setting for which
LapPE was designed [10].

In addition to the main results in Table 1, we report per-epoch runtimes in Figure 5 and Table 5. We
observe a significant computational overhead from precomputing Laplacian positional encodings,
with slowdowns ranging from 1.8× to 8.62×, highlighting the challenge of directly applying existing
graph PE techniques as is to relational entity graphs, and signifying the contributions of RELGT.

A.4 Detailed Results

In Table 6, we report the full results of different configurations we tuned for RELGT, particularly
on the smaller datasets with lesser than a million training nodes. Table 7 provides the full scores for
the RELGT component study in Table 2, while Table 8 provides the supporting results for Figure 4.
Finally, we provide the elaborated version of the Tables 1a and 1b in Tables 9 and 9, respectively.

A.5 Resource Information.

We implement RELGT using PyTorch framework [39], PyTorch Geometric framework [14] and adapt
the codebase of relational deep learning [42] https://github.com/snap-stanford/relbench.
All our experiments are conducted on an NVIDIA A100 GPU server with 8 GPU nodes.

17

https://github.com/snap-stanford/relbench

Table 5: Relative performance drop (%) when position encoding (PE) is removed from HGT+PE
models and average training time per epoch of HGT and HGT+PE. Negative scores suggest the PE is
critical, and vice-versa. HGT+PE consistently requires more training time per epoch compared to
HGT without PE across all datasets.

Dataset Task No PE HGT(s) HGT+PE(s)
rel-f1 driver-position 1.79 1.47 4.56
rel-avito ad-ctr 10.73 1.63 4.00
rel-event user-attendance −2.85 4.36 37.57
rel-trial study-adverse −2.03 9.72 15.02
rel-trial site-success 1.29 45.73 63.41
rel-amazon user-ltv 3.45 73.59 106.21
rel-amazon item-ltv −0.93 73.68 110.33
rel-stack post-votes 0.15 191.23 528.25
rel-hm item-sales −2.18 94.66 135.05
rel-f1 driver-dnf 0.46 2.54 6.84
rel-f1 driver-top3 −23.39 0.38 1.38
rel-avito user-clicks 3.08 11.09 24.66
rel-avito user-visits −1.24 17.16 40.07
rel-event user-repeat 1.93 1.35 5.16
rel-event user-ignore 2.29 4.49 651.10
rel-trial study-outcome −0.21 4.09 4.83
rel-amazon user-churn 0.29 78.56 115.53
rel-amazon item-churn −0.20 75.51 152.06
rel-stack user-engagement 0.52 175.16 356.07
rel-stack user-badge 1.57 153.68 212.21
rel-hm user-churn 4.34 77.73 127.04

Average −0.05 52.28 128.64

Table 6: RELGT results using L ∈ 1, 4, 8 and dropout ∈ 0.3, 0.4, 0.5 for the smaller datasets with
less than a million training nodes.

Dataset Task (# train) MAE ↓ L1
0.3

L1
0.4

L1
0.5

L4
0.3

L4
0.4

L4
0.5

L8
0.3

L8
0.4

L8
0.5

rel-f1 driver-position (7k) Test 4.942 5.6431 3.917 4.6316 4.0851 4.0042 5.5273 5.5569 4.6085
Val 3.1897 3.1817 3.3257 3.1046 3.3352 3.1276 3.1589 3.2907 3.1843

rel-avito ad-ctr (5k) Test 0.0358 0.0352 0.0345 0.035 0.0366 0.038 0.0354 0.0358 0.0356
Val 0.0322 0.0313 0.0314 0.0314 0.0322 0.0335 0.0317 0.0322 0.0324

rel-event user-attendance (19k) Test 0.2635 0.2595 0.2635 0.2502 0.2543 0.2584 0.2635 0.2637 0.2635
Val 0.2618 0.2558 0.2618 0.2548 0.2534 0.253 0.2618 0.2599 0.2618

rel-trial
study-adverse (43k) Test 44.8553 44.2260 44.848 44.8893 44.4310 43.9923 44.2245 44.5878 44.5013

Val 46.3538 46.3193 46.2056 46.1031 45.9498 46.2148 46.1804 46.1381 46.4332

site-success (151k) Test 0.3490 0.3652 0.3830 0.4019 0.386 0.3262 0.3783 0.3431 0.3644
Val 0.3493 0.3455 0.3550 0.3771 0.392 0.3593 0.3848 0.3643 0.3669

Dataset Task (# train) AUC ↑ L1
0.3

L1
0.4

L1
0.5

L4
0.3

L4
0.4

L4
0.5

L8
0.3

L8
0.4

L8
0.5

rel-f1
driver-dnf (11k) Test 0.7434 0.7587 0.7521 0.7587 0.745 0.6957 0.7349 0.7393 0.741

Val 0.6877 0.6761 0.6896 0.6804 0.6762 0.6768 0.6702 0.6803 0.6865

driver-top3 (1k) Test 0.7845 0.8203 0.8 0.8171 0.8157 0.8352 0.7871 0.8217 0.8222
Val 0.7775 0.783 0.7764 0.7841 0.79 0.7958 0.7893 0.7847 0.7829

rel-avito
user-clicks (59k) Test 0.6524 0.6233 0.6212 0.6067 0.5893 0.596 0.6245 0.683 0.6507

Val 0.6649 0.6616 0.6501 0.6564 0.6608 0.6579 0.6587 0.6649 0.6648

user-visits (86k) Test 0.6627 0.6663 0.665 0.6615 0.6584 0.6642 0.6647 0.6678 0.664
Val 0.7005 0.6993 0.7001 0.6954 0.6958 0.699 0.6995 0.7024 0.7011

rel-event
user-repeat (3k) Test 0.6981 0.7403 0.7452 0.7563 0.7236 0.7432 0.7609 0.7316 0.7418

Val 0.7172 0.7386 0.7319 0.7245 0.7207 0.736 0.7285 0.7209 0.7064

user-ignore (19k) Test 0.8006 0.802 0.7986 0.799 0.787 0.8002 0.7956 0.8076 0.8157
Val 0.8739 0.8721 0.8729 0.878 0.8731 0.881 0.8757 0.8801 0.8868

rel-trial study-outcome (11k) Test 0.6808 0.6753 0.6837 0.6488 0.6818 0.6744 0.6861 0.6562 0.6649
Val 0.6815 0.6792 0.6751 0.6737 0.676 0.689 0.6678 0.6746 0.6768

18

Table 7: Relative drop (%) in performance in RELGT after removing a model component. Negative
scores suggest the component is critical in RELGT, and vice-versa.

Dataset Task (# train) MAE ↓ RelGT
(Full)

RelGT
(No Global)

% Rel.
Drop

RelGT
(No GNN)

% Rel.
Drop

RelGT
(No Type)

% Rel.
Drop

RelGT
(No Hop)

% Rel.
Drop

RelGT
(No Time)

% Rel.
Drop

rel-avito ad-ctr Test 0.0350 0.0371 -6.0 0.0354 -1.14 0.0375 -7.14 0.0362 -3.43 0.0382 -9.14
Val 0.0314 0.0323 0.0315 0.0328 0.0322 0.0337

rel-trial site-success Test 0.3262 0.3882 -19.01 0.3561 -9.17 0.3356 -2.88 0.3963 -21.49 0.3285 -0.71
Val 0.3593 0.3342 0.3637 0.3655 0.3614 0.3615

rel-hm item-sales Test 0.0536 0.0586 -9.33 0.0629 -17.35 0.0604 -12.69 0.0531 0.93 0.095 -77.24
Val 0.0627 0.0676 0.073 0.0696 0.0623 0.1025

Dataset Task (# train) AUC ↑ RelGT
(Full)

RelGT
(No Global)

% Rel.
Drop

RelGT
(No GNN)

% Rel.
Drop

RelGT
(No Type)

% Rel.
Drop

RelGT
(No Hop)

% Rel.
Drop

RelGT
(No Time)

% Rel.
Drop

rel-avito
user-clicks Test 0.6067 0.6543 7.85 0.5148 -15.15 0.6371 5.01 0.6417 5.77 0.6575 8.37

Val 0.6564 0.6496 0.6551 0.6559 0.6482 0.6579

user-visits Test 0.6642 0.6619 -0.35 0.6484 -2.38 0.6635 -0.11 0.6668 0.39 0.6592 -0.75
Val 0.699 0.6892 0.6879 0.6991 0.7016 0.7005

rel-event user-ignore Test 0.8002 0.7898 -1.3 0.8012 0.12 0.7993 -0.11 0.8055 0.66 0.7995 -0.09
Val 0.881 0.8575 0.8637 0.8873 0.8852 0.8789

rel-trial study-outcome Test 0.6744 0.66 -2.14 0.6628 -1.72 0.6996 3.74 0.6715 -0.43 0.6911 2.48
Val 0.689 0.664 0.6775 0.6728 0.6705 0.6578

rel-amazon user-churn Test 0.7039 0.6994 -0.64 0.6984 -0.78 0.705 0.16 0.7043 0.06 0.6884 -2.2
Val 0.7036 0.6994 0.6994 0.7042 0.704 0.6882

Table 8: Ablation of context size K in RELGT.

Dataset Task (# train) MAE ↓ RELGT
K=100

RELGT
K=300

RELGT
K=500

rel-avito ad-ctr Test 0.0375 0.0374 0.0351
Val 0.0329 0.0319 0.031

rel-trial site-success Test 0.3739 0.3674 0.3842
Val 0.3708 0.372 0.376

rel-hm item-sales Test 0.055 0.0532 0.052
Val 0.0643 0.0619 0.061

Dataset Task (# train) AUC ↑ RelGT
K=100

RelGT
K=300

RelGT
K=500

rel-avito
user-clicks Test 0.6628 0.6491 0.6334

Val 0.6437 0.6622 0.6632

user-visits Test 0.6664 0.6653 0.6627
Val 0.7013 0.701 0.7005

rel-event user-ignore Test 0.7674 0.8105 0.8068
Val 0.8682 0.8853 0.8843

rel-trial study-outcome Test 0.7078 0.6526 0.666
Val 0.6575 0.663 0.6877

rel-amazon user-churn Test 0.7038 0.7054 0.7043
Val 0.7033 0.7044 0.7042

19

Table 9: Results on the entity regression tasks in RelBench. Lower is better. Best values are in bold.
Relative gains are expressed as percentage improvement over RDL baseline.

Dataset Task MAE ↓ RDL
Baseline HGT HGT

+PE
RelGT
(ours)

% Rel.
Gain

rel-f1 driver-position Test 4.022 4.1598 4.2358 3.9170 2.61
Val 3.193 3.3517 2.9894 3.3257

rel-avito ad-ctr Test 0.041 0.0441 0.0494 0.0345 15.85
Val 0.037 0.0409 0.0456 0.0314

rel-event user-attendance Test 0.258 0.2635 0.2562 0.2502 2.79
Val 0.255 0.2617 0.2574 0.2548

rel-trial
study-adverse Test 44.473 43.3253 42.4622 43.9923 1.08

Val 46.290 45.9957 45.7966 46.2148

site-success Test 0.400 0.4374 0.4431 0.3263 18.43
Val 0.401 0.4198 0.4245 0.3593

rel-amazon
user-ltv Test 14.313 15.3804 15.9296 14.2665 0.32

Val 12.132 13.1017 13.5599 12.1151

item-ltv Test 50.053 56.1384 55.6211 48.9222 2.26
Val 45.1401 51.2139 50.3468 43.8161

rel-stack post-votes Test 0.065 0.0679 0.0680 0.0654 -0.62
Val 0.059 0.0617 0.0618 0.0592

rel-hm item-sales Test 0.056 0.0655 0.0641 0.0536 4.29
Val 0.065 0.0749 0.0735 0.0627

Table 10: Results on the entity classification tasks in RelBench. Higher is better. Best values are in
bold. Relative gains are expressed as percentage improvement over RDL baseline.

Dataset Task AUC ↑ RDL
Baseline HGT HGT

+PE
RelGT
(ours)

% Rel.
Gain

rel-f1
driver-dnf Test 0.7262 0.7142 0.7109 0.7587 4.48

Val 0.7136 0.7678 0.7318 0.6804

driver-top3 Test 0.7554 0.6389 0.8340 0.8352 10.56
Val 0.7764 0.6659 0.6079 0.7958

rel-avito
user-clicks Test 0.6590 0.6584 0.6387 0.6830 3.64

Val 0.6473 0.5977 0.5656 0.6649

user-visits Test 0.6620 0.6426 0.6507 0.6678 0.88
Val 0.6965 0.6696 0.6732 0.7024

rel-event
user-repeat Test 0.7689 0.6717 0.6590 0.7609 -1.04

Val 0.7125 0.6247 0.5974 0.7285

user-ignore Test 0.8162 0.8348 0.8161 0.8157 -0.06
Val 0.9170 0.8896 0.8940 0.8868

rel-trial study-outcome Test 0.6860 0.5679 0.5691 0.6861 0.01
Val 0.6818 0.5985 0.5925 0.6678

rel-amazon
user-churn Test 0.7042 0.6608 0.6589 0.7039 -0.04

Val 0.7045 0.6639 0.6622 0.7036

item-churn Test 0.8281 0.7824 0.7840 0.8255 -0.31
Val 0.8239 0.7845 0.7846 0.8220

rel-stack
user-engagement Test 0.9021 0.8898 0.8852 0.9053 0.35

Val 0.9059 0.8914 0.8847 0.9033

user-badge Test 0.8986 0.8652 0.8518 0.8632 -3.94
Val 0.8886 0.8760 0.8691 0.8741

rel-hm user-churn Test 0.6988 0.6773 0.6491 0.6927 -0.87
Val 0.7042 0.6814 0.6502 0.6988

20

	Introduction
	Background
	Relational Deep Learning
	RDL Methods
	Graph Transformers

	RelGT: Relational Graph Transformer
	Tokenization
	Proposed Approach

	Transformer Network

	Experiments
	Setup and Baselines
	Results and Discussion

	Conclusion
	Appendix
	Benchmark Details
	Datasets
	Tasks

	Node initialization for Subgraph GNN PE in RelGT
	HGT Baseline
	Detailed Results
	Resource Information.

