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Abstract

Generating social networks is essential for many applica-
tions, such as epidemic modeling and social simulations. The
emergence of generative AI, especially large language mod-
els (LLMs), offers new possibilities for social network gener-
ation: LLMs can generate networks without additional train-
ing or need to define network parameters, and users can flex-
ibly define individuals in the network using natural language.
However, this potential raises two critical questions: 1) are the
social networks generated by LLMs realistic, and 2) what are
risks of bias, given the importance of demographics in form-
ing social ties? To answer these questions, we develop three
prompting methods for network generation and compare the
generated networks to a suite of real social networks. We find
that more realistic networks are generated with “local” meth-
ods, where the LLM constructs relations for one persona at
a time, compared to “global” methods that construct the en-
tire network at once. We also find that the generated networks
match real networks on many characteristics, including den-
sity, clustering, connectivity, and degree distribution. How-
ever, we find that LLMs emphasize political homophily over
all other types of homophily and significantly overestimate
political homophily compared to real social networks.

Code —
https://github.com/snap-stanford/llm-social-network

1 Introduction
The ability to generate realistic social networks is crucial
for many applications, when the true social network can-
not be observed (e.g., for privacy reasons) or a realistic net-
work is desired between hypothetical individuals. For exam-
ple, in epidemic modeling, synthetic social networks are fre-
quently used so that researchers can model the spread of dis-
ease based on who has come into contact with whom (Bar-
rett et al. 2009; Block et al. 2020). Synthetic networks are
also useful for simulating and analyzing social media plat-
forms (Pérez-Rosés and Sebé 2015; Sagduyu, Grushin, and
Shi 2018) and social phenomena, such as polarization and
opinion dynamics (Dandekar, Goel, and Lee 2013; Das, Gol-
lapudi, and Munagala 2014).

*These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Deep learning approaches to network generation typically
require training on many domain-specific networks (You
et al. 2018), making it difficult to generalize to new set-
tings where networks are not yet observed. On the other
hand, some classical network models require far less or no
training, since they only have a few parameters, but in ex-
change for this simplicity, they make rigid and unrealistic
assumptions about how social networks form. For example,
Erdős–Rényi models only take in two inputs, n (the num-
ber of nodes) and p, and they assume each edge forms with
uniform probability p (Erdős and Rényi 1959).

In contrast, LLMs balance these challenges: they can gen-
erate social networks in a zero-shot fashion, without any ad-
ditional training or need to define network parameters, but
they can also take in rich, flexible inputs describing individu-
als in natural language and use those inputs to generate a net-
work between those individuals. A key question, however,
is whether the social networks generated by LLMs are re-
alistic. On one hand, LLMs have demonstrated capabilities
to realistically simulate human responses and interactions
(Aher, Arriaga, and Kalai 2023; Park et al. 2023; Argyle
et al. 2023), suggesting that they may be able to generate
realistic social networks as well. On the other hand, LLMs
sometimes struggle with reasoning over graphs (Wang et al.
2023; Fatemi, Halcrow, and Perozzi 2024) and it is unclear if
their language abilities generalize to structured objects like
networks, so that they can reproduce structural characteris-
tics of social networks such as low density and long-tailed
degree distributions.

Furthermore, a central concern with using LLMs in so-
cial settings is bias. Prior works have shown that LLMs pro-
duce stereotyped descriptions of individuals based on their
demographics (Cheng, Durmus, and Jurafsky 2023; Cheng,
Piccardi, and Yang 2023) and skew towards the liberal opin-
ions (Santurkar et al. 2023). These demographics, such as
gender and political affiliation, play essential roles in the
formation of real-world social networks, resulting in well-
documented demographic homophily (McPherson, Smith-
Lovin, and Cook 2001; Kossinets and Watts 2009; Halber-
stam and Knight 2016). Thus, we cannot evaluate whether
LLMs’ social network generation is realistic without incor-
porating demographics into our experiments; at the same
time, we need to analyze how LLMs reason about these de-
mographic features and investigate potential signs of bias.
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The goal of this work is to study these two issues—
realism and bias—in the context of social network gener-
ation with LLMs. Our research questions are as follows:
• RQ1: Can LLM-generated networks match real-world

social networks on structural characteristics? How do dif-
ferent prompting methods result in different structures?

• RQ2: Can LLMs capture demographic homophily? How
do levels of homophily vary across demographic vari-
ables, and are there signs of bias?

• RQ3: How does incorporating interests, beyond demo-
graphics, affect LLM-generated networks?

To answer these questions, we propose three zero-shot
prompting methods for social network generation (Figure 1).
First, we find that “local” methods, where the LLM takes on
the perspective of one person at a time, yield more realistic
networks than “global” methods, where the LLM constructs
the entire network at once, even though the LLM receives
less information in the local setting. The LLM is able to
generate networks that match real networks on many struc-
tural characteristics, including density, clustering, connec-
tivity, and degree distribution. The LLM also exhibits clear
demographic homophily, across gender, age, race/ethnicity,
religion, and political affiliation. However, the LLM con-
sistently emphasizes homophily in political affiliation above
all other demographic variables, and overestimates levels of
political homophily compared to reported levels in real on-
line and offline social networks. Finally, we find that incor-
porating LLM-generated interests does not reduce political
homophily, since the interests themselves encode political
stereotypes. Overall, our work demonstrates the promise of
using LLMs for social network generation while calling at-
tention to challenges around integrating demographics.

2 Related Work
Social simulation with LLMs. Prior work has demon-
strated LLMs’ abilities to realistically simulate human re-
sponses and interactions (Aher, Arriaga, and Kalai 2023;
Park et al. 2023; Argyle et al. 2023) and studied the dy-
namics of LLM agents interacting in a population, such as
how conventions or consensus arise (Ashery, Aiello, and
Baronchelli 2024; Marzo, Castellano, and Garcia 2024).
However, while simulating interactions over social net-
works, existing work focuses less on using LLMs to generate
the networks themselves, either making simplistic assump-
tions about the network structure such as sampling agents
randomly to interact (Park et al. 2022; Chuang et al. 2023;
Ashery, Aiello, and Baronchelli 2024) or assuming fully
connected networks (Marzo, Castellano, and Garcia 2024),
or requiring human involvement in building the network
(Gao et al. 2023; Zhou et al. 2024). To improve the real-
ism and usability of these simulations, it is essential to also
explore LLMs’ abilities to generate the network structure, a
prerequisite to simulating interactions over networks.

A few contemporaneous works have explored LLMs for
social network generation, with different focuses from ours.
Marzo, Pietronero, and Garcia (2023) focus on degree dis-
tribution, showing that scale-free networks emerge from in-
teractions between LLMs. He et al. (2023) focus on content

homophily, analyzing a simulated society powered by LLM
chatbots. The most similar work to ours is Papachristou and
Yuan (2024), who analyze whether LLMs demonstrate net-
work formation principles, such as preferential attachment
and homophily. While their work establishes the existence
of general network principles, our work compares generated
networks to real social networks directly, computing many
network metrics, and shows that all metrics can be matched
at once, while their experiments primarily explore one prin-
ciple at a time, with a different prompt for each principle.
Also, to test homophily, they consider hobby, favorite color,
and location, while we explore key demographic features.

LLM social biases. Using LLMs in social contexts raises
concerns of biases and stereotyping (Cheng, Durmus, and
Jurafsky 2023; Cheng, Piccardi, and Yang 2023; Wang,
Morgenstern, and Dickerson 2024). When responding to
public opinion or political questions, LLMs’ answers often
skew liberal (Santurkar et al. 2023; Hartmann, Schwenzow,
and Witte 2023). When assigned a persona, LLMs show
worse reasoning capabilities when assigned certain demo-
graphics (Gupta et al. 2024) and produce more toxic content
under certain personas (Deshpande et al. 2023). However,
bias in the context of social network generation remains un-
explored. In this work, we investigate such biases by study-
ing the effects of demographic variables on LLM-generated
social networks.

Graph generation. Deep learning approaches aim to
learn graph generation directly from observed data, resulting
in realistic generated networks (You et al. 2018; Simonovsky
and Komodakis 2018; Guo and Zhao 2023). However, these
models require a set of training graphs, and typically have
fixed feature sets, so they cannot be applied in situations
without access to real-world network data, and cannot be
easily extended to incorporate new features, while LLMs
can be. In contrast, some simple classical models can gen-
erate networks with only 1-2 parameters, which means they
can generate networks without requiring training and with
minimal need to define parameters. However, their simplic-
ity often results in unrealistic network structures. For exam-
ple, Erdős–Rényi models assume that each edge forms with
uniform probability (Erdős and Rényi 1959), Watts–Strogatz
models (Watts and Strogatz 1998) generate small-world net-
works but struggle to produce realistic degree distributions,
and Barabási–Albert models (Barabási and Albert 1999)
capture power-law degree distributions but miss community
structure and clustering.

LLMs & graphs. The use of LLMs has been explored for
various graph tasks (Li et al. 2024; Jin et al. 2024), such as
graph reasoning (Wang et al. 2023; Fatemi, Halcrow, and
Perozzi 2024), node classification (Zhao et al. 2023; Chen
et al. 2024; Ye et al. 2024), or tasks on knowledge graphs
(Pan et al. 2024). These works have shown that LLMs pos-
sess preliminary graph reasoning capabilities, but struggle
on larger graphs or harder tasks, such as finding a Hamilton
path (Wang et al. 2023). Yao et al. (2024) is one of the first
to explore LLMs for graph generation, but they explore it in
the context of molecule generation, not social networks.
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Global
Make entire network at once

Provide a list of friendship pairs in the 
format ID, ID.

1. Woman, Asian, 54, Hindu, Independent
2. Man, White, 18, Protestant, Republican
3. Woman, Black, 39, Unreligious, Democrat
…

You are a Woman, Asian, age 54, Hindu, 
Independent. Which of these people will 
you become friends with?

2. Man, White, 18, Protestant, Republican
3. Woman, Black, 39, Unreligious, Democrat
…

You are a Woman, Asian, age 54, Hindu, 
Independent. Which of these people will 
you become friends with?

2. Man, White, 18, Protestant, Republican; 
friends with IDs 4, 8
3. Woman, Black, 39, Unreligious, Democrat; 
friends with IDs 8, 13, 34
…

Local
Assign one persona at a time,

no network info
Assign one persona at a time,

with current network

Sequential

Figure 1: Our three prompting methods to generate social networks with LLMs. See full prompts in Figures C3-C5.

3 Generating Social Networks
Our process for generating social networks involves two
steps: first, constructing a set of personas, and second, hav-
ing the LLM generate networks over those personas. Here,
we summarize the two steps, with details in Appendix C.

3.1 Persona Construction
For each persona, we include their gender, age, race/ethnic-
ity, religion, and political affiliation, which are salient di-
mensions of homophily in real social networks (McPher-
son, Smith-Lovin, and Cook 2001; Halberstam and Knight
2016). We sample these characteristics based on the distribu-
tion of the US population. Using US Census data (US Cen-
sus Bureau 2023), we acquire the joint distribution for gen-
der, age, and race/ethnicity. Then, we sample the persona’s
religion, conditioned on their race/ethnicity (Statista 2016;
PRRI Staff 2021), and political affiliation, conditioned on
their gender and race/ethnicity (Pew Research Center 2024;
Sanchez and Foxworth 2022). In Section 5.3, we also exper-
iment with including interests for each persona, instead of
only demographic variables.

3.2 Network Generation
We design three prompting methods for generating social
networks, which we summarize in Figure 1.

Global. In our first method, which we call “Global”, we
provide the LLM with the entire list of personas, and prompt
it to construct the network between them, in the form of edge
pairs (referring to each persona’s ID).

Local. In our second method, which we call “Local”, we
have the LLM take on the identity of one persona at a time,
e.g., by saying, “You are a Woman, Asian, age 54, Hindu,
Independent.” We provide the LLM with the list of all other
personas (in the same format) and prompt it to pick friends
for the persona it is currently assigned. To construct the en-
tire network, we iterate through all personas in a random
order, and we keep an edge between personas A and B if the
LLM selects B when acting as A or vice versa (so we do not
require both to select each other). This method is inspired
by techniques in machine learning that similarly model the
graph generation process by iterating through nodes and se-
lecting edges for each node at a time (You et al. 2018).

Sequential. In our third method, we also assign the LLM
one persona at a time, but in addition to providing the list
of all other personas, we also provide information about the
constructed graph so far. We experiment with providing each
persona’s full list of current friends versus only their degree
(i.e., total number of friends). These variations are similar
to the preferential attachment experiments in Papachristou
and Yuan (2024), where they also experimented with provid-
ing neighborhood information versus only degree, although
their experiments only considered the network and no demo-
graphic features. In contrast, our experiments—and in par-
ticular, the comparison of the Local to Sequential methods—
reveal how providing demographic and network information
compare to only providing demographic information.

4 Comparison to Real Networks
To evaluate the realism of our generated networks, we gather
a set of real social networks from the CASOS (CASOS
2024) and KONECT (KONECT 2024) repositories. We kept
networks that described friendships between individuals,
which filtered out other types of networks, such as work-
related interactions or visiting ties between families. We in-
cluded eight real networks, which capture friendships within
diverse communities, such as among physicians, students,
and prisoners (see Appendix C.3 for details).

We extract graph-level and node-level metrics from the
real networks and our generated networks, and compare
their distributions. For consistency, we treat all networks as
undirected. Since the number of nodes varies across net-
works, we focus on network metrics that are comparable
across graphs of different sizes, and scale those that are de-
pendent on network size based on how they are expected
to scale in an Erdös-Rényi random graph (Erdős and Rényi
1959). Below, we define and motivate the network metrics
that we evaluate on.

Density. A basic property of a network is its density of
edges, and social networks tend to be sparse, meaning lower
density (Wong, Pattison, and Robins 2006). Density com-
puted as the number of observed edges divided by the total
number of possible edges in the network, which comes out
to 2E

N(N−1) , where N is the number of nodes and E is the
number of edges in the network.
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Average clustering coefficient. Social networks are
known to exhibit clustering, where one’s friends are likely
to be friends with each other (Alizadeh 2017). For a node i,
its clustering coefficient is 2Ei

Ni(Ni−1) , where Ni is its num-
ber of neighbors and Ei is the number of edges between its
neighbors. The average clustering coefficient computes the
average over nodes.

Largest connected component (LCC). Social networks
are known to be well-connected (Ugander et al. 2011), with
the vast majority (over 99%) of the nodes in the largest con-
nected component (LCC), i.e., the largest subgraph where
all nodes within the subgraph are reachable by each other.
Thus, as a metric, we compute the proportion of all nodes in
the network that are in the LCC, NLCC

N .

Average shortest path. Social networks are not only well-
connected, meaning nodes can reach each other, but also
they can reach each other in relatively short paths (Alizadeh
2017). So, we measure the average shortest path over all
pairs of nodes in the LCC, divided by logNLCC , since short-
est paths scale with logN in Erdös-Rényi graphs (Watts and
Strogatz 1998). We compute shortest paths within the LCC
instead of the entire network, since the distance between two
disconnected nodes is infinite.

Community structure. Social networks exhibit strong
community structure, with more edges within communities
and fewer edges across communities (Newman 2004). To
measure community structure, first we use the Louvain al-
gorithm (Blondel et al. 2008) to partition the network into
communities, then we assess the quality of the partition with
modularity (Eq. 5). Higher levels of community structure
correspond to higher modularity.

Degree distribution. Social networks are said to follow
a power law degree distribution, where P (k) ∼ k−γ , for
degree k and constant γ (Barabási and Albert 1999). This
results in long-tailed degree distributions with a few people
having far more friends than most others. To measure de-
gree distribution, we compute the degree of each node in the
network, and to make degree comparable across graphs, we
divide degree by N . To summarize degree distribution from
a set of networks, we pool all of the (normalized) degrees of
nodes in the networks in the set, and compute the distribu-
tion over the pooled degrees in bins of 0.05, from 0 to 1.

Homophily. Finally, social networks are known to exhibit
homophily, where “birds of a feather flock together”, i.e.,
people with similar traits are likelier to be friends (McPher-
son, Smith-Lovin, and Cook 2001). To measure homophily,
we use a common metric adopted in prior work (McPher-
son, Smith-Lovin, and Cook 2001; Easley and Kleinberg
2010; Smith, McPherson, and Smith-Lovin 2014): the ra-
tio of observed-to-expected cross-group edges. Specifically,
first we compute the observed proportion of edges that are
cross-group (e.g., different gender), then we compute the ex-
pected proportion of edges that are cross-group (based on
the number of nodes that belong to each group), then we

Figure 2: Examples of social networks generated by our
three prompting methods: Global (top), Local (middle), and
Sequential (bottom).

take the ratio of these two proportions. We define this as

H =
Cobs

Cexp
=

∑
ij Aij ·1[gi ̸=gj ]

E∑
g

∑
g′ ̸=g NgNg′

N(N−1)

, (1)

where Aij , as the adjacency matrix, is 1 if nodes i and j are
connected and 0 otherwise; gi indicates node i’s group; and
Ng is the number of nodes in group g.1 If the ratio is be-
low 1, this indicates homophily, since there are fewer cross-
group edges than expected, while ratios above 1 indicate het-
erophily (e.g., this appears in heterosexual dating networks).

5 Results
Experimental set-up. We experiment with the following
LLMs: OpenAI’s GPT-3.5 Turbo and GPT-4o (Brown et al.
2020; OpenAI et al. 2023), Meta’s Llama 3.1 (8B and 70B)
(Touvron et al. 2023), and Google’s Gemma 2 (9B and 27B)
(Gemma Team et al. 2024). These six models represent a
range across companies, different model sizes, and propri-
etary (the GPT models) versus open-source (the Llama and
Gemma models). We find that GPT-3.5 Turbo performs the
best at matching the real social networks, so we report re-
sults from GPT-3.5 Turbo in the main text, but we report
results from all models in Appendix A. We show that our
main results about political homophily being most empha-
sized and overestimated hold for all six models. We also in-
clude sensitivity analyses, with different temperatures (Fig-
ure B5) and minor changes to the prompt (Figure B6), and
show that results are stable.

We sample N = 50 personas and we use the same set of
personas for all LLM experiments. In Table C1, we report
the demographic make-up of these 50 sampled personas.
For each prompting method, we generate 30 networks, to

1For age, we use the average age difference in observed edges
divided by the expected age difference (i.e., average difference over
all possible pairs of nodes).
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Figure 3: Graph-level metrics over real and generated social networks. We visualize mean and standard error (in black) and
individual data points corresponding to each network.
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Figure 4: Degree distributions over real and generated social
networks. For each set of networks, we pool degrees over
nodes in the networks (Section 4).

capture variation in prompting (e.g., order of personas) and
model response. For the graph-level metrics (all metrics in
Section 4 besides degree distribution), we visualize their
mean and standard error, along with individual data points
(Figures 3 and 5). Visualizing both the standard error and in-
dividual data points capture inferential uncertainty and out-
come variability, as recommended by Zhang et al. (2023).
For degree (Figure 4), we visualize the pooled degree distri-
bution over nodes in the networks, as described in Section 4.

5.1 Evaluating Network Structure
Here, we describe our main results from evaluating the struc-
ture of the generated networks.

Local and Sequential are more realistic than Global.
First, we find that the prompting methods produce visu-
ally different network structures, as shown in Figure 2. Fur-
thermore, the networks produced by the Global method are
far less realistic than those produced by Local and Sequen-
tial. As shown in Figures 3-4, Global has unrealistically low
density, clustering, and connectivity, too much community
structure, and misses the long tail of the degree distribu-
tion. In comparison, Local and Sequential overlap with the

real distributions for all graph-level metrics and show much
greater variation in node degrees.

Thus, LLMs produce more realistic social networks when
we assign the LLM to act as one persona at a time, instead of
prompting it to produce the entire network at once. This is
interesting, since the LLM has strictly less information un-
der the one-persona setting: in the Local setting, it has no
access to any network information, only making local de-
cisions per persona based on demographics, and in the Se-
quential setting, it only knows the network based on pre-
vious personas’ choices without any ability to see into the
future. In comparison, the Global method allows the LLM
to take into account the entire network at once, along with
all personas’ demographic information, so that it can theo-
retically consider dependencies between all these pieces of
information. However, the LLM is not able to effectively
leverage all of these dependencies and instead produces far
less realistic networks.

Sequential captures long-tail degree distribution. By
comparing Local and Sequential, we can isolate the impact
of incorporating network information, on top of providing
demographic information. The main difference between the
two methods is the degree distribution: as shown in Figure 4,
Sequential gets much closer to the real degree distribution,
in terms of exhibiting a long tail, while Local approximately
matches the mode without matching the tail. We also find
that Sequential exhibits slightly less community structure
and less homophily than Local, which makes sense since Lo-
cal only matches on demographic similarity while Sequen-
tial also takes into account network information.

Thus, the Sequential method is able to match real social
networks on many structural characteristics. In Table B1,
we quantify how well each LLM method matches the real
networks, and compare to classical network models with
few parameters, including random graph models (Erdős
and Rényi 1959), small-world models (Watts and Strogatz
1998), and preferential attachment models (Barabási and
Albert 1999). Even in the best case—when we allow the
classical models to choose parameters based on the real
networks—these models cannot match all of the charac-
teristics as well as our Local or Sequential methods can.
For example, when using the Kolmogorov-Smirnov statis-
tic (Eq. 7) to measure the distance between the generated
versus real networks’ distributions per structural character-
istic, Sequential achieves an average distance of 0.330, while
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Figure 5: Rates of homophily in our generated networks, per demographic variable. Ratios below 1 (marked by the grey
line) indicate homophily, with lower ratios indicating more homophily. We visualize mean and standard error (in black) and
individual data points corresponding to each network.

the best classical model (small-world) yields an average dis-
tance of 0.499, 51% higher than Sequential. Thus, the LLM
achieves better realism than these classical network models
when generating social networks, while maintaining their
advantages of requiring no additional training or minimal
need to define parameters.

5.2 Evaluating Homophily
We measure homophily for gender, age, race/ethnicity, reli-
gion, and political affiliation, using the ratio of observed-to-
expected proportion of cross-group edges (Eq. 1).

LLMs capture homophily, with greatest emphasis on pol-
itics. In Figure 5, we show that, across all prompting meth-
ods and demographic variables, the ratio is significantly be-
low 1, indicating that the generated networks clearly ex-
hibit homophily. Furthermore, we see different levels of ho-
mophily for different demographic variables. For the more
realistic Local and Sequential methods, homophily is by far
the strongest for political affiliation: observed cross-party re-
lations are 82% less frequent than expected under Local and
66% less frequent than expected under Sequential. Rates of
political homophily are even stronger for the other LLMs
that we test, most extremely for GPT-4o and Llama 3.1 70B,
where none of the edges are cross-party and the network
fractures into two disconnected components (Appendix A).

Does this mean that LLMs actually pay the most atten-
tion to political affiliation when choosing social ties? De-
spite political homophily being the strongest, this could be
due to correlations between political affiliation and other de-
mographics; for example, hypothetically, if all Democrats
had the same gender and race, and all Republicans had the
same gender and race, then apparent homophily in political
affiliation could actually be due to similarity in other de-
mographics. To test this, we try shuffling the demographics,
so that, while maintaining the same numbers of each group

Demographic Reason %
Political affiliation 86.7%

Religion 43.0%
Age 21.8%

Race/ethnicity 12.1%
Gender 7.3%

Table 1: Frequency that each demographic is part of the
LLM’s reason for choosing a persona as a friend.

per demographic, each persona is randomly assigned to a
group, thus removing correlations between demographics.
When we run Sequential with these shuffled personas, we
find that political homophily remains by far the strongest
(Figure 5), demonstrating that the LLM is, in fact, paying
most attention to political affiliation when choosing social
ties. As an additional test, we also try ablations of the demo-
graphics, where we present the LLM with only one demo-
graphic variable at a time, or with two variables, one being
political affiliation and the other being one of the four others.
Here, we also find that political affiliation continues to be the
dominant factor: when only one variable is presented, levels
of homophily increase for all demographics but it remains
the highest for political affiliation; when two variables are
presented, political homophily is always stronger than the
other demographic’s homophily (Figure B2).

Finally, we directly test what the LLM is paying atten-
tion to by prompting it to generate a short reason for each
friend that it selects. Then, given the reason, we use GPT-
4o to classify the reason, e.g., “I’m a woman too and we
share the same religion and political affiliation” is classi-
fied as [gender, religion, political affiliation]. We allow the
LLM to generate free-text reasons during network genera-
tion since we do not want to constrain its response (e.g., if
it is using other information, such as degree or ID). We find
that political affiliation strongly dominates here as well: it is
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Measure Local Sequential Source Description Value
Cross-group ratio
(Eq. 1) ↓

0.180
(0.015)

0.340 (0.022) Halberstam and Knight
(2016)

Twitter 0.528

Same-group ratio
(Eq. 8) ↑

1.851
(0.016)

1.685 (0.023) Halberstam and Knight
(2016)

Twitter 1.404

Isolation index
(Eq. 9) ↑

0.729
(0.020)

0.530 (0.027) Halberstam and Knight
(2016)

Twitter 0.403

Gentzkow and Shapiro (2011) Voluntary associations 0.145
Work 0.168
Neighborhood 0.187
Family 0.243
People you trust 0.303
Political discussants 0.394

Polarization
(Eq. 10) ↑

0.639
(0.037)

0.515 (0.041) Garimella and Weber (2017) Twitter, follow 0.33-0.42

Twitter, retweet 0.37-0.41

Table 2: Comparing political homophily in our generated networks to real-world networks. We consider different measures of
homophily and indicate with ↓ or ↑ the direction that indicates greater homophily for that measure. For Local and Sequential,
we report the mean and standard error (in parentheses) over each method’s 30 generated networks.

part of the reason 86.7% of the time, while the next most-
mentioned demographic, religion, is only mentioned 43.0%
of the time (Table 1). As a caveat, prior work has shown that
we cannot always trust an LLM’s own explanation for its
choices (Agarwal, Tanneru, and Lakkaraju 2024). However,
given the alignment of these results with our other results,
there is strong evidence that LLMs pay the most attention to
political affiliation when generating social relations.

LLMs overestimate political homophily. Given the
LLM’s emphasis on political homophily, we seek to com-
pare its level of political homophily to reported levels from
real-world social networks. We are not able to compare to
the eight social networks from Section 5.1 here since we
do not have demographic features per node. However, we
are able to find reported political homophily in several pa-
pers, covering both online and offline social networks. In
Table 2, we summarize these comparisons, showing that Lo-
cal and Sequential consistently overestimate political ho-
mophily across different measures of homophily. For ex-
ample, Halberstam and Knight (2016) analyze political ho-
mophily on Twitter. In their data, cross-party relations ap-
pear 47% less often than expected, which indicates ho-
mophily, but not as strong as what the LLM predicts. In
addition to the cross-group ratio, we can also compute a
same-group ratio, using the ratio of observed-to-expected
proportion of same-group edges, where a higher ratio indi-
cates more homophily (Eq. 8). Using this measure, we find
that same-party relations only appear 40% more often than
expected in the Twitter data, while same-party relations are
85% and 68% more frequent than expected for Local and
Sequential, respectively.

Halberstam and Knight (2016) also compute the isolation
index, which is the difference in average conservative expo-
sure between conservatives and liberals (Eq. 9), with larger
indices indicating greater isolation. They find an isolation in-
dex of 0.403, while the LLM’s is far higher, at 0.720 for Lo-
cal and 0.530 for Sequential. Furthermore, the authors note
that homophily could be overestimated in their data, since

they selected users who follow politicians, which “may tend
to disproportionately include individuals with strong prefer-
ences for linking to like-minded users.” Even though their
homophily results could be overestimates, the LLM’s esti-
mates still significantly exceed theirs.

Isolation indices are even lower in Gentzkow and Shapiro
(2011), who study ideological segregation in social net-
works. In face-to-face interactions, the highest isolation in-
dices they report are 0.243 (family), 0.303 (people you
trust) and 0.394 (among people who discuss politics). Fi-
nally, we also compare to Garimella and Weber (2017),
who study political polarization on Twitter and define it as
pi = 2 · |0.5 − α/(α + β)|, where α and β indicate how
many left-leaning and right-learning users, respectively, are
followed by user i, and they take the average pi over users
(Eq. 10). Their measure captures the difference between ob-
served leaning and a balanced leaning of 0.5, with higher
numbers indicating greater polarization. They report polar-
ization levels of 0.33-0.42 for following relations and 0.37-
0.41 for retweets (increasing over time), while we find sig-
nificantly higher levels in the LLM’s generated networks,
with 0.639 for Local and 0.515 for Sequential.

We hypothesize that the LLM overestimates political ho-
mophily partially due to high levels of polarization in its on-
line pretraining data and frequent discussions of such polar-
ization, although future work is needed to carefully study
this phenomenon. These results also have important impli-
cations if one seeks to run experiments over social networks
generated by LLMs. For example, overestimated political
homophily may result in unrealistically high levels of po-
larization, potentially leading to incorrect conclusions and
interventions.

Homophily between pairs of groups. As described in
Eq. 1, we measure homophily as the ratio of observed-to-
expected proportion of cross-group edges. Now, we extend
this definition to compute an observed-to-expected ratio for
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Figure 6: Ratio of observed-to-expected proportion of edges, for all pairs of demographic groups (Eq. 2). All subfigures share
the same colormap (right). Groups with at least 10 nodes are kept.

any pair of groups, A and B (where A could equal B):

HAB =

∑
ij Aij ·1[gi=A]·1[gj=B]

E
NA(NB−1[A=B])

N(N−1)

. (2)

This measures the observed proportion of edges that are be-
tween nodes in groups A and B divided by the expected pro-
portion of edges between nodes in these groups. In Figure 6,
we visualize HAB for all pairs, for each of the five demo-
graphic variables. For each variable, we keep all groups with
at least 10 personas in our set of 50 personas (Table C1), and
compute HAB for each pair of groups, reporting the mean
ratio over the 30 generated networks from Sequential.

We find, as expected, that the diagonal (i.e., same-group
ratios) tends to be above 1, although notably it is not for
relations between men, with a ratio of 0.99, while relations
between women have a ratio of 1.43. Thus, even within one
demographic variable, the LLM’s levels of homophily vary
for different groups, such as homophily within women be-
ing stronger than homophily within men. Variability across
groups is present for all demographic variables: most ex-
tremely, for religion, relations between Catholics occur 89%
more frequently than expected, while relations are only 5%
more frequent for personas that identify as Unreligious. This
plot also reveals that not all cross-group relations are equally
unlikely: for example, when we divide age into three age
groups, the adjacent age groups have higher cross-group ra-
tios (0.98 for under 30 and 30-59 and 0.97 for 30-59 and
60+) compared to the non-adjacent age groups (0.87 for un-
der 30 and 60+). Finally, this plot reiterates that political af-
filiation has the lowest cross-group ratio, at 0.34, and reveals
that it also has among the highest same-group ratios, al-
though the LLM gives Democrats stronger same-group pref-
erences, with a same-group ratio of 1.85, than Republicans,
with a same-group ratio of 1.54.

5.3 Incorporating Interests
A natural question is whether demographic homophily is ex-
aggerated because we only give the LLM demographic in-
formation, without other important details such as the per-
son’s interests. Thus, we run an additional set of experiments
where we allow the LLM to also generate interests for each
persona. To generate interests, we prompt the LLM with, “In
8-12 words, describe the interests of someone with the fol-
lowing demographics” (full prompt in Figure C2). In Table

Figure 7: Embeddings of interests, with T-SNE projection to
2D. Each dot is a persona, colored by its gender (left) or its
political affiliation (right).

3, we provide examples of the generated interests, with the
full list of personas with interests available online.

Effect of interests on networks. As shown in Figure 5,
by comparing Sequential vs. Sequential with interests, we
find that incorporating interests strengthens homophily for
some demographics (clearly for gender and age and slightly
for political affiliation) and weakens homophily for the oth-
ers (race/ethnicity and religion). Notably, after these adjust-
ments, political homophily remains the strongest across the
demographic variables. Thus, our finding that LLMs priori-
tize political homophily is robust to incorporating interests.

In fact, the interests themselves strongly encode political
homophily, with evidence of political stereotyping. For ex-
ample, among the Democrat personas, the most common in-
terests are “social justice” (62.5% of Democrats vs. 0.2%
of Republicans), “community service” (29.3% vs. 13.9%),
and “progressive policies” (18.6% vs. 0%). In contrast,
among the Republican personas, the most common interests
are “conservative politics” (41.6% of Republicans vs. 0%
of Democrats), “church activities” (32.1% vs. 13.2%), and
“gardening” (23.2% vs 16.4%). We provide the complete
list of top 10 interests per demographic group in Table B4.
We also analyze interests by mapping them to text embed-
dings, using OpenAI’s text-embedding-3-small model. In
Figure 7, we visualize the embeddings, coloring them by
their persona’s gender (left) and political affiliation (right).
We compare these two demographic variables, since both
have two, approximately equally sized groups in our sam-
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Gender Race / Ethnicity Age Religion Political Af-
filiation

Interests

Man White 47 Protestant Republican Hunting, fishing, classic rock, church activities, patri-
otic events, home improvement

Woman Black 69 Unreligious Republican History, gardening, community service, classic jazz
music, financial news, travel

Man Hispanic 75 Unreligious Democrat Historical documentaries, community events, family
gatherings, literature on social justice

Man American Indian /
Alaska Native

30 Protestant Republican Outdoor activities, traditional crafts, conservative pol-
itics, music, community service, history

Woman Asian 58 Catholic Democrat Volunteering, social justice, culinary arts, family ac-
tivities, church community involvement

Table 3: Examples of LLM-generated interests for personas with different demographics.

ple of 50 personas. From this comparison, we can see how
much more distinct the political groups are than the gender
groups, demonstrating the level of political homophily en-
coded in the interests. Finally, we conduct a supplementary
experiment where we try network generation with only in-
terests and no demographics. Homophily decreases across
all demographic variables, but political homophily remains
by far the strongest (Figure B4).

These results demonstrate how the LLM’s emphasis on
political affiliation also appears in interest generation, and,
as a result, incorporating LLM-generated interests cannot
help to reduce overestimated political homophily. These re-
sults build on prior results showing that LLM sometimes ex-
hibit bias in political settings (Cheng, Piccardi, and Yang
2023; Santurkar et al. 2023; Wang, Morgenstern, and Dick-
erson 2024), exploring these issues through a novel lens of
homophily and social network generation.

6 Discussion
Our work has established several findings. First, with the
right prompting method, the LLM is able to simultane-
ously match many structural characteristics of real social
networks, outperforming classical network models with few
parameters. Second, “local” prompting methods produce
more realistic networks than “global” methods and, within
local methods, adding network information (i.e., Sequen-
tial) helps the LLM capture long-tailed degree distributions.
Third, the LLM exhibits clear homophily across five key de-
mographic variables, but political homophily dominates, to
the extent that it is overestimated relative to real-world mea-
sures. Finally, incorporating LLM-generated interests does
not reduce these overestimates, since the interests them-
selves encode strong political homophily.

Future directions. Our findings demonstrate the promise
of generating social networks with LLMs, as they are
zero-shot, flexible, and structurally realistic. However, more
needs to be done to address potential biases, especially with
regards to political homophily. One possibility could be to
incorporate more information per persona: we found in our
ablations that the LLM tends to produce stronger homophily
per variable when fewer variables are provided (Figure B2),
so we might see political homophily reduce if more variables
or richer descriptions (such as interests) are provided per

personas. However, given our findings on LLM-generated
interests, researchers may want to handcraft interests with
fewer political stereotypes, although other methods would
be needed to scale such efforts to large social networks. Fur-
thermore, while we focus in this work on how LLMs over-
estimate political homophily compared to real-world mea-
sures, in the Appendix we discuss real-world measures of
homophily for the other demographic variables and find
that the LLM, in fact, seems to underestimate homophily
for race/ethnicity and religion (Table B2), calling for future
work that thoroughly investigates potential biases along the
other demographic dimensions.

There are also other limitations to LLM social network
generation: for example, while we have shown that Sequen-
tial can approximately match the means of the real net-
works’ metrics, its generated networks consistently demon-
strate less variance than the real networks (Figure 3), reflect-
ing known issues of LLMs to flatten demographic groups
(Wang, Morgenstern, and Dickerson 2024) and lack output
diversity (Kirk et al. 2023). Furthermore, all of our methods
require listing N personas per prompt, which becomes in-
feasible with larger networks, due to context windows and
cost. In Table C2, we conduct a big-O analysis of how the
number of tokens scales with network size, revealing a trade-
off between the improved realism of Sequential and Local
versus the lower costs of Global. To address this tradeoff,
future work could explore how to make the Sequential or
Local methods more scalable: for example, instead of listing
N personas per prompt, where each persona chooses from
the full list of all other personas, one could provide a subset
of the other personas. In Appendix C.2, we discuss a simple
implementation of this idea where the subsets are sampled
uniformly at random, and show how this extension enables
us to generate networks with 300 personas (sampling 30 per-
sonas per prompt). These larger networks are similar to our
smaller networks in terms of homophily and some structural
characteristics, although density and clustering drop due to
the subsampling (Figure C6).

In future work, we hope to further extend these methods
to make them both scalable and realistic, as well as gener-
ate networks with greater variance. We also hope to study
whether our results on political homophily generalize out-
side of the US, and to explore methods to mitigate the polit-
ical biases we observe in this work.

349



Acknowledgments
We thank Joon Sung Park and Marios Papachristou for
helpful comments. S.C. was supported in part by a Meta
PhD Fellowship and NSF Graduate Research Fellowship.
We also gratefully acknowledge the support of NSF under
Nos. OAC-1835598 (CINES), CCF-1918940 (Expeditions),
DMS-2327709 (IHBEM); Stanford Data Applications Ini-
tiative, Wu Tsai Neurosciences Institute, Stanford Institute
for Human-Centered AI, Chan Zuckerberg Initiative, Ama-
zon, Genentech, GSK, Hitachi, SAP, and UCB.

References
Agarwal, C.; Tanneru, S. H.; and Lakkaraju, H. 2024. Faith-
fulness vs. Plausibility: On the (Un)Reliability of Expla-
nations from Large Language Models. arXiv preprint
arXiv:2402.04614.
Aher, G.; Arriaga, R. I.; and Kalai, A. T. 2023. Using large
language models to simulate multiple humans and replicate
human subject studies. In Proceedings of the 40th Interna-
tional Conference on Machine Learning (ICML’23).
Alizadeh, M. 2017. Generating and analyzing spatial social
networks. Computational and Mathematical Organization
Theory, 23: 362–390.
Argyle, L. P.; Busby, E. C.; Fulda, N.; Gubler, J. R.; Ryt-
ting, C.; and Wingate, D. 2023. Out of One, Many: Using
Language Models to Simulate Human Samples. Political
Analysis, 31(3): 337–351.
Ashery, A. F.; Aiello, L. M.; and Baronchelli, A. 2024.
The Dynamics of Social Conventions in LLM populations:
Spontaneous Emergence, Collective Biases and Tipping
Points. arXiv preprint arXiv:2410.08948.
Barabási, A.-L.; and Albert, R. 1999. Emergence of scaling
in random networks. Science, 286(5439): 509–512.
Barrett, C. L.; Beckman, R. J.; Khan, M.; Kumar, V. S. A.;
Marathe, M. V.; Stretz, P. E.; Dutta, T.; and Lewis, B. 2009.
Generation and analysis of large synthetic social contact net-
works. In Proceedings of the 2009 Winter Simulation Con-
ference (WSC’09), 1003–1014.
Block, P.; Hoffman, M.; Raabe, I. J.; Dowd, J. B.; Rahal,
C.; Kashyap, R.; and Mills, M. C. 2020. Social network-
based distancing strategies to flatten the COVID-19 curve in
a post-lockdown world. Nature Human Behaviour, 4: 588–
596.
Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefeb-
vre, E. 2008. Fast unfolding of communities in large net-
works. Journal of statistical mechanics: theory and experi-
ment, 2008(10): P10008.
Brown, A. 2022. About 5% of young adults in the U.S. say
their gender is different from their sex assigned at birth. Pew
Research Center. https://pewrsr.ch/3Qi2Ejd.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; et al.
2020. Language Models are Few-Shot Learners. arXiv
preprint arXiv:2005.14165.
CASOS. 2024. Public Datasets. http://www.casos.cs.cmu.
edu/tools/datasets/external/index.php. Accessed June 30,
2024.

Chen, Z.; Mao, H.; Li, H.; Jin, W.; Wen, H.; Wei, X.; Wang,
S.; Yin, D.; Fan, W.; Liu, H.; et al. 2024. Exploring the
potential of large language models (LLMs) in learning on
graphs. ACM SIGKDD Explorations Newsletter, 25(2): 42–
61.
Cheng, M.; Durmus, E.; and Jurafsky, D. 2023. Marked Per-
sonas: Using Natural Language Prompts to Measure Stereo-
types in Language Models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguis-
tics (ACL’23), 1504–1532.
Cheng, M.; Piccardi, T.; and Yang, D. 2023. CoMPosT:
Characterizing and Evaluating Caricature in LLM Simula-
tions. In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP’23),
10853–10875.
Chuang, Y.-S.; Goyal, A.; Harlalka, N.; Suresh, S.; Hawkins,
R.; Yang, S.; Shah, D.; Hu, J.; and Rogers, T. T. 2023. Sim-
ulating Opinion Dynamics with Networks of LLM-based
Agents. arXiv preprint arXiv:2311.09618.
Coleman, J.; Katz, E.; and Menzel, H. 1957. The Diffu-
sion of an Innovation Among Physicians. Sociometry, 20(4):
253–270.
Dandekar, P.; Goel, A.; and Lee, D. T. 2013. Biased as-
similation, homophily, and the dynamics of polarization.
Proceedings of the National Academy of Sciences (PNAS),
110(15): 5791–5796.
Das, A.; Gollapudi, S.; and Munagala, K. 2014. Modeling
Opinion Dynamics in Social Networks. In Proceedings of
the 7th ACM international conference on Web search and
data mining (WSDM’14), 403–412.
Deshpande, A.; Murahari, V.; Rajpurohit, T.; Kalyan, A.;
and Narasimhan, K. 2023. Toxicity in chatgpt: Analyzing
persona-assigned language models. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023, 1236–
1270.
Easley, D.; and Kleinberg, J. 2010. Networks, crowds, and
markets: Reasoning about a highly connected world, vol-
ume 1. Cambridge university press Cambridge. Available at
https://www.cs.cornell.edu/home/kleinber/networks-book/.
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Paper Checklist
1. For most authors...

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying disre-
spect to societies or cultures? Yes, our work generates
synthetic networks over hypothetical individuals, so it
does not violate privacy norms, and we specifically an-
alyze potential social harms, such as stereotyping or
exacerbating segregation.

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes, the claims in the abstract and introduction are sup-
ported by our main results in Section 5, which are fur-
ther tested with robustness checks in our Appendices.

(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes, to an-
alyze LLMs’ social network generation, we need to
both provide methods for generating social networks
with LLMs (Section 3) and an evaluation framework
(Section 4).

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? Yes, we
specify how we sample persona demographics follow-
ing the US distribution (Section 3 and Appendix C.1),
and we describe which populations are captured in the
real social networks (Section 4 and Appendix C.3).
The rest of the data is generated by LLMs, i.e., the gen-
erated social networks, which are our object of study,
so we study their artifacts closely.

(e) Did you describe the limitations of your work? Yes,
we discuss limitations in the Discussion (Section 6),
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with additional results and discussion referred to in the
Appendices.

(f) Did you discuss any potential negative societal im-
pacts of your work? Yes, we discuss potential negative
impacts of generating social networks with LLMs, par-
ticularly related to bias and stereotyping. We discuss
related work on bias in social settings (Section 2) and
investigate such biases in our work, documenting po-
litical biases in the generated networks and generated
interests (Section 5).

(g) Did you discuss any potential misuse of your work?
Yes, we point out that it would be risky to simulate
politically-related social phenomena, such as polariza-
tion or opinion dynamics, over networks generated by
LLMs, since we find that they overestimate political
homophily.

(h) Did you describe steps taken to prevent or mitigate po-
tential negative outcomes of the research, such as data
and model documentation, data anonymization, re-
sponsible release, access control, and the reproducibil-
ity of findings? Yes, we have carefully documented the
risks of generating social networks with LLMs, such
as overestimated political homophily, underestimated
variance, and LLM costs. Our code, data, and gener-
ated networks are available at https://github.com/snap-
stanford/llm-social-network. This includes all code to
run our experiments and reproduce our results.

(i) Have you read the ethics review guidelines and en-
sured that your paper conforms to them? Yes, we have.

2. Additionally, if your study involves hypotheses testing...
(a) Did you clearly state the assumptions underlying all

theoretical results? NA, we do not have theoretical re-
sults.

(b) Have you provided justifications for all theoretical re-
sults? Yes, we have provided evidence to support all
claims, see Section 5 and Appendices.

(c) Did you discuss competing hypotheses or theories that
might challenge or complement your theoretical re-
sults? Yes. For example, we test whether the fact that
political homophily is the highest can be explained by
correlations between demographics, so we try shuf-
fling demographics, and we find that political ho-
mophily is still the highest. We also test six different
LLMs, to test how broadly our results generalize. Fi-
nally, we test minor changes to the experimental set-up
(e.g., temperature and prompt), and we show that our
main results are not sensitive to these changes.

(d) Have you considered alternative mechanisms or expla-
nations that might account for the same outcomes ob-
served in your study? Yes, see above.

(e) Did you address potential biases or limitations in your
theoretical framework? NA, we do not have a theoret-
ical framework.

(f) Have you related your theoretical results to the exist-
ing literature in social science? Yes, we discuss re-
lated work from sociology (Watts and Strogatz 1998;
Krackhardt 1999; McPherson, Smith-Lovin, and Cook

2001; Kossinets and Watts 2009; Smith, McPher-
son, and Smith-Lovin 2014), sociometry (Coleman,
Katz, and Menzel 1957; MacRae Jr. 1960), economics
(Gentzkow and Shapiro 2011; Halberstam and Knight
2016), and political science (Argyle et al. 2023).

(g) Did you discuss the implications of your theoretical re-
sults for policy, practice, or further research in the so-
cial science domain? Yes, we discuss the implications
in Section 6 and the Appendices.

3. Additionally, if you are including theoretical proofs...

(a) Did you state the full set of assumptions of all theoret-
ical results? NA, we do not have theoretical proofs.

(b) Did you include complete proofs of all theoretical re-
sults? NA, we do not have theoretical proofs.

4. Additionally, if you ran machine learning experiments...

(a) Did you include the code, data, and instructions
needed to reproduce the main experimental results (ei-
ther in the supplemental material or as a URL)? Yes,
all code, data, and instructions are available at https://
github.com/snap-stanford/llm-social-network, which
is included on the first page.

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? We do not
train models, but we do describe experimental parame-
ters, such as LLM temperature, the number of personas
sampled, the number of networks sampled, randomiza-
tion in the prompts, etc.

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
Yes, we generate 30 networks per prompting method
and report mean, standard error, and individual data
points.

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes, we describe the APIs
we used—OpenAI API and Llama API—that we used
to call the models. In our GitHub repository, we also
describe our version of Python (3.10) and list the re-
quired Python packages and versions.

(e) Do you justify how the proposed evaluation is suffi-
cient and appropriate to the claims made? Yes, in Sec-
tion 4, we describe our evaluation framework, includ-
ing the real networks that we compare against and the
network characteristics that we measure.

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? NA, we do not have a classifi-
cation problem.

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets,

(a) If your work uses existing assets, did you cite the cre-
ators? Yes, we cited our data sources, which included
statistics to sample demographics following the US
population and the real social networks.

(b) Did you mention the license of the assets? NA, these
data sources are all publicly available.
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(c) Did you include any new assets in the supplemental
material or as a URL? Yes, we provide our code (with
methods to generate social networks) and generated
networks in our GitHub repository.

(d) Did you discuss whether and how consent was ob-
tained from people whose data you’re using/curating?
NA, we are generating synthetic networks over hypo-
thetical individuals.

(e) Did you discuss whether the data you are using/cu-
rating contains personally identifiable information or
offensive content? Yes, we describe that the real net-
works do not contain node features, so they are not per-
sonally identifiable, and the population statistics are
aggregated over the entire US population.

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR
(see FORCE11 (2020))? NA, we are not releasing new
datasets.

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset (see Gebru et al.
(2021))? NA, we are not releasing new datasets.

6. Additionally, if you used crowdsourcing or conducted re-
search with human subjects,

(a) Did you include the full text of instructions given to
participants and screenshots? NA, our work does not
involve crowdsourcing or research with human sub-
jects.

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? NA, our work does not involve crowdsourc-
ing or research with human subjects.

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? NA, our work does not involve crowd-
sourcing or research with human subjects.

(d) Did you discuss how data is stored, shared, and deiden-
tified? NA, our work does not involve crowdsourcing
or research with human subjects.

Appendix
In Appendix A, we compare results across GPT, Llama, and
Gemma models. In Appendix B, we describe additional ex-
periments and findings. In Appendix C, we provide details
on methods and experimental set-up.

A Comparison Between LLMs
We experiment with the following LLMs: OpenAI’s GPT-
3.5 Turbo and GPT-4o (Brown et al. 2020; OpenAI et al.
2023), Meta’s Llama 3.1 (8B and 70B) (Touvron et al. 2023),
and Google’s Gemma 2 (9B and 27B) (Gemma Team et al.
2024). These six models represent a range across compa-
nies, different model sizes, and proprietary (the GPT mod-
els) versus open-source (the Llama and Gemma models).
Llama 3.1 in particular includes some of the best-performing
open-source models on holistic benchmarks.2. For the Ope-

2https://crfm.stanford.edu/helm/lite/latest/#/leaderboard

nAI models, we use the OpenAI API,3 and for the other
models, we use the Llama API,4 which also includes other
open-source models. We report our main results on GPT-
3.5 Turbo since we find that it best matches the structure of
the real-world social networks (discussed below), but here,
we discuss results from all other models. For these exper-
iments, we generate networks with the Sequential method,
using the same experimental settings as before (same set of
50 personas, prompt, temperature of 0.8, etc.). For these ex-
periments, we generate 10 instead of 30 networks per model,
but we find that standard errors are small. We visualize re-
sults for GPT-4o in Figure A1, Llama 3.1 8B and 70B in
Figure A2, and Gemma 2 9B and 27B in Figure A3.

Structural characteristics. We find that GPT-3.5 Turbo
best matches the structure of the real networks, most no-
tably matching the real-world density. All of the other mod-
els have much higher densities, which also contributes to
unrealistically high clustering and low shortest paths. Due to
density’s outsized effect, we wanted to see if providing the
model a bit of help on density might be all that it needs to
match the other characteristics as well. Thus, we try a variant
of the Sequential method where we specify n, i.e., how many
friends should be chosen (instead of only asking “Which of
these people will you become friends with?”, see full prompt
in Figure C5). We sample n from Exponential(λ = 0.2),
with mean 1/λ = 5, independently for each persona. Note
that specifying each persona’s number of choices does not
predetermine the exact density or degree distribution of the
network, since a persona’s total set of friends at the end of
the network generating process is the union of its chosen
friends along with anyone who chose it. However, specify-
ing these numbers can help to guide the models to lower
densities.

With this variant, which we call “+λ”, all models’ densi-
ties are brought down to a reasonable range. Llama 3.1 8B
+λ is also able to approximately match the real networks
and GPT-3.5 Turbo on all other characteristics now (Fig-
ure A2). However, even with +λ, GPT-4o and Llama 3.1
70B still generate networks that are often disconnected into
two components; this is due to extreme political segregation,
which we discuss below. With Gemma 2 27B, the networks
are almost always fully connected, but even with +λ, clus-
tering and modularity remain slightly too high.5

Homophily. We find that all six models exhibit clear ho-
mophily, with ratios above 1 for gender, age, race/ethnicity,
religion, and political affiliation. We also find, consistently
across the models, that political homophily remains by far
the strongest form of homophily and it is always overesti-
mated compared to real-world measures. In fact, the mod-
els we test in this section all produce levels of political ho-
mophily even higher than GPT-3.5 Turbo, which we dis-
cussed were overestimates in the main text (Table 2).

The emphasis on political homophily is particularly ex-

3https://platform.openai.com/docs/api-reference
4https://www.llama-api.com/
5We were not able to add +λ to Gemma 2 9B, since it could

not consistently follow instructions to choose exactly n friends.
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Figure A1: Evaluating results from GPT-4o, compared to GPT-3.5 Turbo. Top: structural network metrics. Bottom: homophily,
where ratios below 1 (marked by the grey line) indicate homophily and lower ratios indicate more homophily. In both plots, we
visualize mean and standard error (in black) and individual data points corresponding to each network.
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Figure A2: Evaluating results from Llama 3.1 8B and 70B, compared to GPT-3.5 Turbo. Top: structural network metrics. Bot-
tom: homophily, where ratios below 1 (marked by the grey line) indicate homophily and lower ratios indicate more homophily.
In both plots, we visualize mean and standard error (in black) and individual data points corresponding to each network.
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Figure A3: Evaluating results from Gemma 2 9B and 27B, compared to GPT-3.5 Turbo. Top: structural network metrics. Bot-
tom: homophily, where ratios below 1 (marked by the grey line) indicate homophily and lower ratios indicate more homophily.
In both plots, we visualize mean and standard error (in black) and individual data points corresponding to each network.
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treme for GPT-4o and Llama 3.1 70B: they show complete
segregation between Republicans and Democrats, such that
there are no cross-group edges and the cross-group ratio is
around 0 (Figures A1 and A2). Furthermore, as a result of
the complete segregation, their networks fracture into two
disconnected components, one for Republicans and one for
Democrats, which is why we see that the proportion of nodes
in the largest connected component is often around 50% for
these two models. This is highly unrealistic, as it is well-
known that social networks, despite having strong commu-
nity structure and homophily, are also characterized by hav-
ing a giant connected component that contains the vast ma-
jority of the nodes (Ugander et al. 2011). Splitting a syn-
thetic network into two disconnected components has im-
portant implications for downstream modeling and use cases
of these generated networks: for example, an epidemic out-
break started in one component would never reach the other
component, or opinions could not spread, greatly altering the
trajectory of dynamic network processes.

B Additional Results
In this section, all experiments are run with GPT-3.5 Turbo,
unless otherwise specified.

Comparing to classical network models. In the main
text, we showed that the LLM can match many structural
characteristics of real social networks, including density,
clustering, connectivity, and degree distribution (Figures 3
and 4). However, how does this compare to existing mod-
els for network generation? Here, we consider three classi-
cal network models: (1) Erdős–Rényi random graph models
(Erdős and Rényi 1959), (2) Barabási-Albert preferential at-
tachment models (Barabási and Albert 1999), and (3) Watts-
Strogatz small-world models (Watts and Strogatz 1998). We
choose these models to compare to since they only have 1-
2 parameters, and we are interested in LLM’s capabilities
to generate networks without additional training and with
minimal need to defined parameters. In contrast, we do not
compare to stochastic block models (Holland, Laskey, and
Leinhardt 1983), which require edge probabilities between
all pairs of blocks and block assignments, or machine learn-
ing models for graph generation, since they have many pa-
rameters and require a substantial set of observed graphs for
training to fit those parameters (You et al. 2018; Simonovsky
and Komodakis 2018; Guo and Zhao 2023).

To quantify how well a network metric is matched, we
extract the metric from each real social network, using the
same eight social networks as in our main experiments (Sec-
tions 5.1 and C.3), and from each generated network, with
30 generated networks per model. To compare the two dis-
tributions of the metric, we report both the difference in the
means, normalized by the real networks’ standard deviation
(Eq. 6), and the two-sample Kolmogorov–Smirnov statis-
tic (Eq. 7), which measures the distance between two em-
pirical distributions. As we show in Table B1, even in the
best case—when we allow the models to choose parame-
ters based on the real social networks—these models can-
not match all of the real network metrics as well as our Lo-
cal or Sequential methods can. Thus, being able to match

the structural characteristics of real social networks is non-
trivial, adding significance to our finding that LLMs can
match many structural characteristics at once.

Real-world homophily for other demographics. In the
main text, we showed that levels of political homophily pre-
dicted by the LLM are unrealistically high, compared to re-
ported levels of homophily in real-world social networks
(Table 2). What about real-world levels of homophily for the
other demographic variables? Data from Thelwall (2009),
who studies connections on MySpace, suggests cross-group
ratios of 0.44 for race/ethnicity, 0.69 for religion, and 1.04
for gender. Data from Laniado et al. (2016), who study con-
nections on Tuenti (a Spanish social network platform), sug-
gests cross-gender ratios of 0.96 when measuring friend-
ship networks and 0.88 when measuring interaction net-
works. Smith, McPherson, and Smith-Lovin (2014), using
data from the US General Social Survey (GSS), finds cross-
group ratios of 0.17 for race/ethnicity, 0.45 for religion, 0.59
for age, and 0.81 for gender in 1985 and ratios of 0.25 for
race/ethnicity, 0.44 for religion, 0.60 for age, and 0.88 for
gender in 2004.

These numbers, which we summarize in Table B2, reveal
how much variation there is in levels of homophily across
studies and over time, making it difficult to evaluate whether
the LLM’s levels of homophily are realistic or not. However,
some trends emerge: gender homophily tends to be weaker,
race/ethnicity homophily tends to be stronger, and religion
and age are somewhere in between. Quotes from summary
papers on homophily support this ordering: McPherson,
Smith-Lovin, and Cook (2001) say, “By the time that they
are adults, people have friendship and confidant networks
that are relatively sex-integrated (at least when compared to
other dimensions like race, age, and education),” and Thel-
wall (2009) says, “For U.S. friendship in the last century, the
key factors, in decreasing order, seem to be race and ethnic-
ity, age, religion, educational level, occupation, and gender.”

In contrast, in our LLM experiments, the Sequential
method predicts similar levels of homophily for gender,
race/ethnicity, and religion—all around 0.8—and less ho-
mophily for age (0.9) (Table B2). The Local method pre-
dicts slightly more homophily for all variables, but a simi-
lar ranking: gender, race/ethnicity, and religion have cross-
group ratios around 0.75 and age still has less homophily
(0.89). While these levels of homophily seem realistic for
gender, it seems that the LLM seriously underestimates ho-
mophily for race/ethnicity and religion (and likely for age as
well, although this is inconclusive since we only have age
homophily from one study and age homophily is less com-
parable to the others since it is not a categorical variable).
It is possible that LLMs, due to their guardrails and instruc-
tion fine-tuning, have been guided away from using sensitive
attributes like race or religion to influence their generation;
however, future work is needed to thoroughly investigate ev-
idence of underestimation and probe for possible reasons.

Age homophily. Age is our only non-categorical demo-
graphic variable, which slightly complicates our definition
of homophily, which assumes well-defined groups. We are
able to measure an approximately analogous cross-group ra-
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Model Density Avg CC % LCC Avg SP Mod. Degree Avg
Random graph 0.013† 2.286 0.378 1.156 1.149 0.154 1.025

Preferential attachment 0.113† 1.363 0.378 1.081 1.160 0.053 0.807
Small world 0.054† 0.041† 0.378 0.808 0.404 0.188 0.444

GPT-3.5 Turbo, Global 1.311 3.399 17.740 6.547 2.959 0.914 5.478
GPT-3.5 Turbo, Local 0.207 0.012 0.378 0.383 0.316 0.023 0.220

GPT-3.5 Turbo, Sequential 0.394 0.363 0.378 0.596 0.088 0.174 0.332
Random graph 0.625 1.000 0.125 0.750 0.750 0.465 0.619

Preferential attachment 0.625 0.750 0.125 0.750 0.750 0.416 0.569
Small world 0.625 0.375 0.125 0.750 0.500 0.617 0.499

GPT-3.5 Turbo, Global 0.967 0.933 0.833 0.900 0.967 0.740 0.890
GPT-3.5 Turbo, Local 0.525 0.250 0.125 0.500 0.500 0.265 0.361

GPT-3.5 Turbo, Sequential 0.375 0.325 0.125 0.625 0.342 0.190 0.330

Table B1: Quantitative results on structural characteristics. The top six rows indicate difference in means, normalized by the
real networks’ standard deviation (Eq. 6). † indicates that the model parameters were fitted on the real-world mean value for
this characteristic, so the mean difference should be ignored, and it is left out of the average. The bottom six rows represent the
two-sample Kolmogorov–Smirnov statistic, which measures the distance between two empirical distributions (Eq. 7). For both
measures, lower is better.
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Figure B1: Observed (left) vs. expected (right) distribution
of age gaps in the generated social networks, under the Se-
quential method.

tio (Eq. 1) for age by comparing the observed-to-expected
average age gaps between connected nodes, as described in
the main text. As a more detailed measure, we can also plot
the distribution of observed age gaps vs. expected age gaps,
which we show in Figure B1. The observed distribution con-
sists of the age gaps for all observed edges pooled over the
30 networks generated by the Sequential method. The ex-
pected distribution consists of the age gaps between all pos-
sible pairs of nodes among the 50 personas. Compared to
the expected distribution, the observed distribution is clearly
shifted to the left (i.e., smaller gaps), with more edges than
expected with age gaps of 0-10.

Ablations of demographic variables. Here, we explore
how the LLM’s generated networks change when we pro-
vide subsets of the original set of five demographic vari-
ables (gender, age, race/ethnicity, religion, and political affil-

iation). First, we try providing one variable at a time. When
only one variable is provided, we find that homophily for
that variable gets stronger, compared to when all five vari-
ables are provided (Figure B2, top). This is not entirely sur-
prising: when the LLM is only provided this variable, then
it forms the social network based entirely on that variable.
For example, if the LLM is only given gender, the LLM is
unlikely to connect a woman and a man since they do not
have any listed demographics in common, but if more de-
mographics were provided, they might now have a demo-
graphic in common. However, this result is not guaranteed:
the LLM could have learned the joint distribution of these
variables during pretraining, so theoretically it could have
added the missing demographics to each persona by sam-
pling from that joint distribution. Given that the LLM does
not seem to do this on its own, it would be interesting in
future work to explore this capability: adding greater vari-
ance in the generated networks by augmenting each persona
with additional traits, generated by the LLM. However, one
would have to be careful about exacerbating biases with this
technique, as we saw with LLM-generated interests.

Second, we try providing two variables at a time: politi-
cal affiliation and one of the four other variables. For each
variable, its level of homophily when in a pair tends to be
between its level of homophily when alone versus with all
five variables (Figure B2, bottom). We also find in both of
these experiments that political affiliation continues to be
the dominant factor. In the single-variable experiments, po-
litical homophily is the strongest when political affiliation
is provided, compared to homophily for any other variable
when it is the only variable provided. In the two-variable ex-
periments where political affiliation and one other variable
is provided, political homophily is always stronger than the
other variable’s homophily.

Degree per demographic group. In the main text, we dis-
cussed and visualized degree distributions over all nodes
in the network (Figure 4), but degree could also differ
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Figure B2: Evaluating homophily per demographic variable, when providing subsets of the demographics. Top: providing one
variable at a time. Bottom: providing two variables at a time, political affiliation (PA) and one of the other four. Ratios below
1 (marked by the grey line) indicate homophily and lower ratios indicate more homophily. In both plots, we visualize mean
and standard error (in black) and individual data points corresponding to each network. All model results shown here use the
Sequential method and GPT-3.5-Turbo.
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Figure B3: Degree distribution per demographic group, pooled over the 30 networks generated by the Sequential method.
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Study / LLM Method Demographic Cross-group ratio (Eq. 1) ↓
Thelwall (2009), MySpace Gender 1.04

Race/ethnicity 0.44
Religion 0.69

Laniado et al. (2016), Tuenti, friendship Gender 0.96
Laniado et al. (2016), Tuenti, interaction Gender 0.88

Smith, McPherson, and Smith-Lovin (2014), GSS in 1985 Gender 0.81
Age 0.59

Race/ethnicity 0.17
Religion 0.45

Smith, McPherson, and Smith-Lovin (2014), GSS in 2004 Gender 0.88
Age 0.60

Race/ethnicity 0.25
Religion 0.44

Local Gender 0.774 (0.015)
Age 0.894 (0.010)

Race/ethnicity 0.796 (0.013)
Religion 0.755 (0.013)

Sequential Gender 0.779 (0.017)
Age 0.900 (0.013)

Race/ethnicity 0.804 (0.018)
Religion 0.810 (0.016)

Table B2: Comparing levels of homophily in real-world vs. LLM-generated networks, for the demographic variables besides
political affiliation. For Local and Sequential, we report the mean and standard error (in parentheses) over each method’s 30
generated networks.

n Mean degree Gini coef. GS Index
Overall 50 0.149 (0.002) 0.347 (0.005) –

Man 24 0.131 (0.003) 0.281 (0.009) 0.368 (0.011)
Woman 26 0.166 (0.004) 0.370 (0.008) 0.299 (0.009)

Under 30 14 0.147 (0.005) 0.321 (0.010) 0.524 (0.009)
30-59 19 0.150 (0.004) 0.336 (0.009) 0.543 (0.007)

60+ 17 0.150 (0.005) 0.328 (0.009) 0.541 (0.006)
Hispanic 10 0.114 (0.004) 0.259 (0.013) 0.426 (0.017)

White 33 0.160 (0.003) 0.335 (0.008) 0.330 (0.008)
Catholic 11 0.157 (0.006) 0.354 (0.013) 0.511 (0.009)

Protestant 19 0.163 (0.004) 0.352 (0.010) 0.475 (0.011)
Unreligious 20 0.132 (0.004) 0.276 (0.008) 0.487 (0.009)

Democrat 24 0.157 (0.004) 0.355 (0.009) 0.189 (0.011)
Republican 26 0.143 (0.005) 0.313 (0.007) 0.210 (0.014)

Table B3: Degree distribution and Gini-Simpson (GS) di-
versity index per demographic group, for all groups with at
least 10 personas in our set of 50 personas. For each statis-
tic, we compute its value per network, and report the mean
value and standard error (in parentheses) over the 30 net-
works generated by the Sequential method.

across demographic groups. In Figure B3, we visualize each
group’s degree distribution, for all groups with at least 10
personas in our set of 50 personas. As in Figure 4, the distri-
bution consists of degrees for all nodes in the group, pooled
over the 30 networks generated by the Sequential method.
We see minor differences between groups: for example, in
the generated networks, women have slightly higher degree
on average than men (0.166 vs. 0.131, Table B3). This could
be explained by two factors: first, there are slightly more
women (n=26) than men (n=24) in our set of 50 personas,
and second, women show higher levels of same-group pref-
erence, as discussed in the main text (same-group ratios of
1.43 vs 0.99, Figure 6). We also find that White personas
have slightly higher average degree than Hispanic personas
(0.160 vs 0.114), which could also be explained by there
being more White personas (n=33) vs. Hispanic personas
(n=10), and higher same-group ratios among White per-
sonas compared to Hispanic personas (1.20 vs. 1.02).

Beyond using the mean to describe the degree distribu-
tion, we can also use the Gini coefficient as a measure of the
inequality in degree. For a set of values x1, x2, · · · , xn, the
Gini coefficient is defined as

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x̄

, (3)

where x̄ is the mean of the values. First, when we compute
the Gini coeffient over all nodes, we find a higher coeffi-
cient (more inequality) when using the Sequential method
(G = 0.347), compared to the Local method (G = 0.261)
or Global method (G = 0.255). This aligns with our ear-
lier results showing that Sequential can better capture the
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long-tailed degree distribution of real social networks. Per
group, we find similar results to what we found for degree
distribution: higher average degree tends to correspond to
higher Gini coefficient, since the higher average tends to be
driven by longer tails, which results in greater inequality.
As described in Table B3, women compared to men, White
compared to Hispanic, Protestant and Catholic compared to
Unreligious, and Democrat compared to Republican all have
slightly higher average degrees and Gini coefficients.

Diversity per demographic group. We can also measure
rates of homophily and diversity per group. In Figure 6,
we visualized observed-to-expected ratios to capture same-
group preferences (the diagonal) and cross-group prefer-
ences (the off-diagonal). This analysis revealed that not all
cross-group relations are equally unlikely; for example, ad-
jacent age groups were likelier to have cross-group relations.
It also revealed that not all same-group preferences were
equally strong; for example, we saw stronger preferences
within women compared to men or within Catholic com-
pared to Unreligious.

Related to homophily, we can also measure the diversity
in a persona’s 1-hop neighbors (i.e., their friends). We use
the Gini-Simpson (GS) index to measure diversity, which is
defined in terms of a set of groups, G = {g1, g2, · · · , gk},
and the proportion pg of values that belong to each group:

GS = 1−
∑
g∈G

pg. (4)

For a given node i, we define its 1-hop diversity with re-
spect to a demographic variable by computing the GS index
over their friends’ group identities for that variable. In Ta-
ble B3, we report the average 1-hop diversity for members
in a group, with respect to that group’s demographic vari-
able (e.g., the average 1-hop gender diversity for men). As
expected, groups with higher diversity correspond to those
with lower same-group ratios in Figure 6: men compared
to women, Hispanic compared to White, Catholic compared
to Protestant and Unreligious, and Republican compared to
Democrat. The three age groups are similar to each other for
both measures.

Individuals and intersections of group identities. We
found that LLMs overemphasize political homophily over-
all and that each political group, Democrats and Republi-
cans, shows strong same-group preferences (Figure 6) and
low diversity in 1-hop neighbors (Table B3). However, how
does political preference and diversity vary over individu-
als, as their other group identities intersect with their politi-
cal affiliation? To analyze this, we use individual-level met-
rics: the GS index to measure individual-level diversity in
1-hop neighbors and an individual’s“Democrat lean”, i.e.,
the proportion of the individual’s 1-hop neighbors who are
Democrats, as an easily interpretable measure.

We find large within-group variability over individu-
als: for example, the persona with the lowest 1-hop po-
litical diversity (measured by GS index) is a woman,
age 75, White, Unreligious, and Democrat (mean=0.111,
SE=0.032), while the persona with the highest 1-hop po-
litical diversity is a woman, age 38, White, Protestant, and

Democrat (mean=0.353, SE=0.028). Relatedly, we find that
the lowest-diversity persona has a very high Democrat lean
(mean=0.908, SE=0.030), while the highest-diversity per-
sona’s lean is less extreme (mean=0.722, SE=0.028). Since
both individuals are women, White, and Democrat, we can
attribute their differences to their age and religion. From
pure numbers, we would not expect religion to play a major
role in their differences, since the share of Democrats vs. Re-
publicans is about the same for personas that identify as Un-
religious (10 vs. 10) and as Protestant (10 vs. 9). However, it
is possible that the LLM expects that an Unreligious Demo-
crat’s preference for befriending Democrats is stronger than
a Protestant Democrat’s preference. Age could also partially
explain their differences: among personas within 10 years of
75 (65-85), there are 6 Democrats and 3 Republicans, but
among personas within 10 years of 38 (28-48), there are 8
Republicans and 5 Democrats, which could help to explain
why the former persona has a stronger Democrat lean and
less political diversity in friends.

These results reveal that, even though we see strong polit-
ical homophily and low political diversity overall, the LLM
generates some variability across individuals, due to the
intersection of their political affiliation with other demo-
graphic identities, such as religion or age.

Incorporating interests. In Figure B4, we visualize de-
mographic homophily under three versions of the Sequential
method: when only demographic information is provided,
when demographic information and interests are provided,
and when only interests are provided. In all cases, the LLM
places the largest emphasis on political homophily.

In Table B4, we report the top interests per demographic
group. The LLM generates interests as a comma-separated
list (see examples in Table 3), which makes it straightfor-
ward to separate the list into individual interests and com-
pute, for each group and interest, what percentage of per-
sonas in that group have that interest. For this experiment,
we use 1,000 personas, instead to our usual set of 50 per-
sonas, so that we can estimate percentages over larger pop-
ulations. We report percentages for all groups with at least
30 personas (see the counts per group in Table C1). We find
that “social justice” is a common interest across groups since
it dominates Democrats’ interests (62.5%) and Democrats
account for a large portion of every other group besides Re-
publicans. We can also see the result of correlations between
demographic identities: for example, men, White, and reli-
gious populations are likelier to be Republicans, resulting in
higher percentages for “conservative politics”.

Sensitivity analyses. In our experiments, we use a default
temperature of 0.8. In Figure B5, we show that our main re-
sults do not significantly change if we use a temperature of
0.6 or 1.0 instead. Since the LLM overemphasizes political
homophily, we also try adding “Pay attention to all demo-
graphics” to the system prompt. We include GPT-4o in this
study as well due to its extreme levels of political homophily
(Figure A1). In Figure B6, we show that adding this prompt
does not significantly change results for GPT-3.5 Turbo or
GPT-4o. Finally, as mentioned before, we also find that re-
sults do not significantly change if we prompt the LLM to
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Figure B4: Visualizing demographic homophily under three methods: “Seq.” (only demographic information), “Seq. w inter-
ests” (demographic information and interests), and “Seq. only interests” (only interests). The LLM places the largest emphasis
on political homophily in all cases. Ratios below 1 (marked by the grey line) indicate homophily, with lower ratios indicating
more homophily. We visualize mean and standard error (in black) and individual data points corresponding to each network.
All model results shown here use the Sequential method and GPT-3.5-Turbo.

generate a short reason for each friend that it selects. Thus,
our results are robust to these perturbations in temperature
and prompt.

C Methodological Details
C.1 Persona Construction
As described in the main text, we include gender, age,
race/ethnicity, religion, and political affiliation. In Table C1,
we list the number of personas in each demographic group
for the sample of 50 personas we used in most of our ex-
periments, as well as the sample of 1,000 personas we used
for evaluating top interests per demographic (Table B4). In
Figure C1, we visualize the distribution of ages in the sam-
ple of 1,000 personas. Below, we explain how we sampled
demographic variables per persona.

Gender, race/ethnicity, and age. First, we use data from
the US Census (US Census Bureau 2023), who provide
monthly population estimates for sex, race/ethnicity, and age
(individual years, from 0 to 100 years old). Specifically, we
downloaded nc-est2023-alldata-r-file07.csv
from US Census datasets archived online6 and used the data
for June 2023. We use these estimates to calculate joint dis-
tributions of gender, race/ethnicity, and age. Additionally,
using data from Pew Research Center (Brown 2022), we
sample from the age-dependent distribution of those who
identify as non-binary.

Religion. We sample religion conditioned on the persona’s
race/ethnicity. Statista (Statista 2016) provides distributions
of religious identity for adults in the US in 2016, for most

6https://www2.census.gov/programs-surveys/popest/datasets/
2020-2023/national/asrh/

race/ethnicities. Additionally, using data from 2020 PRRI
Census of American Religion (PRRI Staff 2021), we acquire
the distribution for Native Americans.

Political affiliation. Finally, we sample political affilia-
tion conditioned on the persona’s race/ethnicity and gender.
We primarily use data from Pew Research Center (Pew Re-
search Center 2024), using the 2023 numbers from their fig-
ure, “Partisan identification by gender among racial and eth-
nic groups,” which cover most race/ethnicities. Additionally,
we use data from Brookings (Sanchez and Foxworth 2022),
who report Native Americans’ distribution of political sup-
port in 2022.

Interests. In Figure C2, we provide the prompt that we
use to generate interests. We randomize the order of demo-
graphics provided, since we find that the LLM seems to pay
special attention to the first listed demographic when gen-
erating interests. We use GPT-4o to generate interests, since
we find that it follows the required format a little better.

C.2 Network Generation
In Figures C3-C5, we provide the full basic prompts for each
of our network generation methods: Global, Local, and Se-
quential. These are the prompts that are used when only de-
mographic variables are provided per persona. When inter-
ests are provided, we add “interests include: ...” per persona.
In variants of the Sequential prompt, discussed in Appen-
dices A and B, we experiment with specifying the number of
friends that should be chosen; prompting the LLM to gener-
ate a short reason for each selected friend; and adding “Pay
attention to all demographics” to the prompt.

For the Global method, the entire list of personas is given
in one prompt, while in the Local and Sequential methods,

363



Density Avg clustering coef Prop nodes LCC Avg shortest path Modularity
Network metric

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Real
Seq. (temp=0.8)
Seq. (temp=0.6)
Seq. (temp=1.0)

gender age race/ethnicity religion political affiliation
Demographic variable

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
bs

/e
xp

ec
te

d 
cr

os
s-

gr
ou

p 
ed

ge
s

Figure B5: In our experiments, we use a default temperature of 0.8. Our main results do not change significantly if we use a
temperature of 0.6 or 1.0 instead. Top: structural network metrics. Bottom: homophily, where ratios below 1 (marked by the
grey line) indicate homophily and lower ratios indicate more homophily. In both plots, we visualize mean and standard error
(in black) and individual data points corresponding to each network. All model results shown here use the Sequential method
and GPT-3.5-Turbo.
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Figure B6: Our results do not change siginificantly with minor changes to the prompt. We try adding “Pay attention to all
demographics” (+“all”) and prompting the LLM to give a short reason for each friend that it selects (+“reason”). Top: structural
network metrics. Bottom: homophily, where ratios below 1 (marked by the grey line) indicate homophily and lower ratios
indicate more homophily. In both plots, we visualize mean and standard error (in black) and individual data points corresponding
to each network. All model results shown here use the Sequential method.
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Demographic
group

Top interests

Man social justice (29.1%), church activities (23.8%), conservative politics (23.4%), sports (17.1%),
community service (16.7%), technology (15.7%), golf (14.0%), history (13.6%), video games
(12.6%), progressive policies (11.2%)

Woman social justice (35.3%), gardening (31.5%), community service (27.7%), reading (21.6%),
church activities (20.8%), conservative politics (16.2%), volunteering (12.8%), family gath-
erings (11.6%), travel (10.8%), cooking (9.2%)

White gardening (27.4%), conservative politics (25.8%), church activities (24.0%), social justice
(23.0%), community service (15.9%), reading (15.6%), outdoor activities (12.0%), history
(11.0%), volunteering (11.0%), golf (10.7%)

Hispanic social justice (46.0%), community service (35.8%), family gatherings (27.3%), church activities
(18.2%), cultural heritage (16.0%), music (13.4%), progressive policies (12.3%), conservative
politics (12.3%), family (10.7%), soccer (10.7%)

Black social justice (58.6%), community service (33.1%), church activities (21.1%), gospel music
(17.3%), progressive policies (15.8%), community activism (14.3%), music (14.3%), reading
(13.5%), jazz music (11.3%), sports (11.3%)

Asian social justice (27.9%), travel (24.6%), technology (23.0%), church activities (16.4%), com-
munity service (14.8%), conservative politics (14.8%), yoga (13.1%), fitness (11.5%), en-
trepreneurship (11.5%), gardening (11.5%)

Protestant church activities (36.1%), social justice (33.2%), community service (25.2%), gardening
(22.0%), conservative politics (21.4%), reading (13.9%), sports (10.9%), volunteering (9.5%),
history (9.3%), outdoor activities (8.9%)

Catholic community service (37.7%), social justice (35.2%), family gatherings (25.5%), church activi-
ties (24.3%), conservative politics (21.5%), gardening (16.2%), reading (10.1%), sports (9.3%),
volunteering (8.9%), progressive policies (8.5%)

Unreligious social justice (28.3%), technology (22.8%), gardening (21.0%), travel (18.8%), fitness (16.3%),
conservative politics (15.9%), reading (13.0%), outdoor activities (13.0%), progressive policies
(12.7%), entrepreneurship (9.4%)

Republican conservative politics (41.6%), church activities (32.1%), gardening (23.2%), outdoor activities
(15.0%), golf (14.3%), community service (13.9%), sports (13.5%), family gatherings (12.7%),
history (12.2%), hunting (11.4%)

Democrat social justice (62.5%), community service (29.3%), progressive policies (18.6%), gardening
(16.4%), reading (15.6%), church activities (13.2%), volunteering (12.4%), music (11.0%),
travel (10.4%), technology (10.0%)

Table B4: Top 10 interests per demographic group.

the LLM is assigned one persona at the time and all other
personas are listed. We generate 30 networks per method
where, for each generated network, we randomize the order
that the personas are listed, and, for the Local and Sequential
methods, we also randomize the order in which personas are
assigned (using different orders for listing and assignment).
For the Sequential method, we experiment with providing
each persona’s list of friends versus only their degree. We
find that the model performs better with only degree, while
listing friends results in unrealistically high densities. Fur-
thermore, fewer tokens are used with only degree, so we use
this version of Sequential.

In Figure 2, we visualize examples of networks generated
by each of the three methods. The networks are visualized
using networkx, with a spring layout and fixed seed for
the visualization. The visualizations primarily reveal differ-
ences in the generated networks across methods, but they
also reveal differences between networks generated by the
same method. Since the visualization method is fixed, these
differences should be attributed to variation in actual net-
works, driven by the randomization in persona ordering (for
listing and assignment) and randomness in LLM outputs (us-
ing a default temperature of 0.8).

Model costs and comprehension. In this work, we focus
primarily on realism and bias to evaluate the generated net-
works. However, when using LLMs, measures such as token
costs and model comprehension are also very important. We
measure token cost as the number of input tokens and output
tokens, summed over generating the entire network. We also
conduct a big-O analysis of how the input tokens scale with
network size, based on N (the number of nodes in the net-
work), E (the number of edges), D (the number of tokens
to describe a persona’s demographics), and I (the number of
tokens to describe a persona’s interests). To measure model
comprehension, we consider the expected number of turns
(prompt and response) to generate the entire network, com-
pared to the actual number of turns. The actual exceeds the
expected if we could not parse the model’s response (e.g., it
gave an ID that does not exist in the network). So that we
can measure the concepts of cost and model comprehension
independently, we only add to the number of input/output
tokens on successful turns.

We report results in Table C2, with all measures aver-
aged over the 30 networks generated per method. The Global
method requires, by far, the fewest number of input to-
kens, since we only need to list all personas once. How-
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Demographic Group Count in 50 Count in 1,000
Gender Woman 26 499

Man 24 492
Nonbinary 0 9

Race/ethnicity White 33 609
Hispanic 10 187

Black 4 133
Asian 2 61

American Indian/Alaska Native 1 9
Native Hawaiian/Pacific Islander 0 1

Religion Protestant 19 440
Unreligious 20 276

Catholic 11 247
Jewish 0 12
Hindu 0 9

Buddhist 0 8
Muslim 0 6

Other Christian 0 2
Political affiliation Democrat 24 501

Republican 26 474
Independent 0 25

Table C1: Marginal distributions of personas’ demographics. Count in 50 indicates the number of personas belonging to each
group in the sample of 50 personas we used for most experiments. Count in 1,000 indicates their number in the sample of 1,000
personas we used for evaluating top interests per demographic group (Table B4)

Method O(input) # input to-
kens

# output to-
kens

Expected #
turns

Actual #
turns

Global, demos O(ND) 607 95.267 1 1.133
Local, demos O(N2D) 30450 196.767 50 50
Sequential (friend
list), demos

O(N2D +NE) 42601.233 335.633 50 50

Sequential (degree),
demos

O(N2D) 37735 200.300 50 50.033

Sequential (degree),
interests

O(N2I) 37035 257.967 50 50.033

Sequential (degree),
demos + interests

O(N2(D + I)) 57385 190.733 50 50.067

Table C2: Comparing model costs and comprehension over different LLM methods for social network generation. For Sequen-
tial, we consider two versions: listing each persona’s current friend list vs. only their current degree. N is the number of nodes
in the network, E is the number of edges, and D and I are the number of tokens needed to describe all demographics and
interests, respectively.
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Figure C1: Age distribution in sample of 1,000 personas.

ever, Global has the highest rate of errors, resulting in an
actual number of turns that is 13% higher than the expected
number of turns. The Local method and Sequential method
scale similarly, since they both require iterating through all
N personas, and for each persona, presenting them with in-
formation about the other N − 1 personas. Their main dif-
ference is what information is provided about each persona:
Local only provides D demographics, while Sequential also
provides network information, which can be each persona’s
friend list (resulting in an additional E per iteration) or only
each persona’s degree (resulting in D+1 per persona). Both
Local and Sequential have good model comprehension, with
the models rarely failing and actual turns being only 0-6.7%
above expected turns. Overall, this table lays out tradeoffs,
since the Global method requires far fewer tokens, but as we
saw in the main text (Figures 2-4), it produces much less
realistic networks, and it is more prone to invalid responses.

Scalability. To address these tradeoffs, we propose a sim-
ple extension of the Local and Sequential methods to make
them more scalable. Previously, when we queried a given
persona, we presented it with information about the N − 1
other personas. Instead, we could provide it a subset of the
other personas, with a fixed subset size k. As a result, instead
of scaling on the order of O(N2D), Local and Sequential
would scale on the order of O(ND), which is the same as
the Global method.

To demonstrate how this could be done, we implement a
simple version of this extension, where the subset is sampled
uniformly at random. Then, using the Sequential method, we
generate networks with 300 personas, sampling 30 random
personas per query. Compared to the smaller 50-node net-
works we generated before, these larger networks show sim-
ilar levels of homophily across the five demographic vari-
ables, and political homophily remains by far the strongest
(Figure C6, bottom). In terms of structural characteristics,
the larger networks match the smaller ones (and the real
networks) on average shortest paths and modularity, but the
larger networks have lower density and clustering (Figure
C6, top). This is expected, due to the sampling: previously,

Network # nodes # edges
Galesburg 31 63

Hi-tech 36 91
Karate 34 78
Prison 67 142

Tailor 1 39 158
Tailor 2 39 223

Moreno freshmen 31 218
Moreno high school 70 274

Table C3: Summary statistics of the eight real social net-
works that we use.

each persona would select friends from 100% of all other
personas, but now each persona selects friends from only
10% of other personas. Future work could explore methods
of non-uniform sampling that can correct for these lower lev-
els of density and clustering, such as using a recommender
system-like model (potentially powered by a graph neural
network) to choose the subset of other personas that each
persona sees.

C.3 Evaluating Network Structure
In this section, we provide more details about the real social
networks that we compared against and define various mea-
sures we used to characterize the networks. In Table C3, we
provide basic statistics about the real networks.

Real networks. We use the following six networks from
the CASOS repository (CASOS 2024):

Galesburg (Coleman, Katz, and Menzel 1957). This net-
work describes friendship ties between physicians, where
they were asked to name three doctors whom they consid-
ered personal friends and to nominate three doctors with
whom they would discuss medical matters. The goal of this
study was to analyze the diffusion of a new drug in terms of
when physicians first prescribed it, studied in the context of
their social network.

Hi-tech (Krackhardt 1999). This network describes
friendship ties between employees of a small hi-tech firm.
In a survey, they answered the question, “Who do you con-
sider to be a personal friend?” Most friendship nominations
were reciprocated, and an edge is kept only if both people
nominated each other.

Karate (Zachary 1977). This network describes friend-
ships between members of a karate club at a US university.
Due to a schism where the club split into two, this network
has often been used to study community structure.

Prison (MacRae Jr. 1960). This network describes friend-
ship ties between prison inmates. All were asked, “What fel-
lows on the tier are you closest friends with?” Each respon-
dent could choose as many or as few friends as he desired.

Tailor (Kapferer 1972). This network describes relations
between workers at a tailor shop in Zambia (then North-
ern Rhodesia). The dataset includes both “instrumental” ties
(work-related), which we leave out, and “sociational” ties
(friendship, socioemotional), which we include. Networks
were recorded twice, seven months apart, so we have two
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User: In 8-12 words, describe the interests of someone with the following demographics:
race/ethnicity: White
age: 72
gender: Man
political affiliation: Republican
religion: Catholic
Answer by providing ONLY their interests. Do not include filler like “She enjoys” or “He has a keen
interest in”.

Figure C2: Prompt to generate interests for persona.

System: Your task is to create a realistic social network. You will be provided a list of people in the
network, where each person is described as “ID. Gender, Age, Race/ethnicity, Religion, Political affilia-
tion”. Provide a list of friendship pairs in the format ID, ID with each pair separated by a newline. Do
not include any other text in your response. Do not include any people who are not listed below.

User: 28. Man, age 48, Hispanic, Protestant, Democrat
11. Man, age 31, White, Protestant, Democrat
10. Man, age 58, Hispanic, Catholic, Democrat
41. Woman, age 41, White, Catholic, Republican
...

Figure C3: Prompt for Global method.

System: You are a Man, age 48, Hispanic, Protestant, Democrat. You are joining a social network. You
will be provided a list of people in the network, where each person is described as “ID. Gender, Age,
Race/ethnicity, Religion, Political affiliation”. Which of these people will you become friends with?
Provide a list of *YOUR* friends in the format ID, ID, ID, etc. Do not include any other text in your
response. Do not include any people who are not listed below.

User: 11. Man, age 31, White, Protestant, Democrat
10. Man, age 58, Hispanic, Catholic, Democrat
41. Woman, age 41, White, Catholic, Republican
2. Woman, age 20, White, Catholic, Republican
...

Figure C4: Prompt for Local method.

System: You are a Man, age 48, Hispanic, Protestant, Democrat. You are joining a social network. You
will be provided a list of people in the network, where each person is described as “ID. Gender, Age,
Race/ethnicity, Religion, Political affiliation”, followed by their current number of friends. Which of
these people will you become friends with? Provide a list of *YOUR* friends in the format ID, ID,
ID, etc. Do not include any other text in your response. Do not include any people who are not listed
below.

User: 11. Man, age 31, White, Protestant, Democrat; has 4 friends
10. Man, age 58, Hispanic, Catholic, Democrat; has 2 friends
41. Woman, age 41, White, Catholic, Republican; has 0 friends
2. Woman, age 20, White, Catholic, Republican; has 7 friends
...

Figure C5: Prompt for Sequential method, when only degree is provided. We also have a version where each persona’s current
list of friends (in the form of ID) is provided.
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Figure C6: Comparing original generated networks with 50 personas to generated networks with 300 personas, where 30
personas are sampled uniformly at random per query. Top: structural network metrics. Bottom: homophily, where ratios below
1 (marked by the grey line) indicate homophily and lower ratios indicate more homophily. In both plots, we visualize mean
and standard error (in black) and individual data points corresponding to each network. All model results shown here use the
Sequential method and GPT-3.5-Turbo.

networks from this dataset.
We also include two networks from the KONECT reposi-

tory (KONECT 2024):
Moreno freshmen. This network describes friendship rat-

ings between university freshmen. The edge weights range
from -1 (risk of getting into conflict) to +3 (best friend). We
keep all edges with strictly positive weight.

Moreno high school. This network describes friendship
ratings between high school boys. The edge weights range
from -1 (risk of getting into conflict) to +3 (best friend). We
keep all edges with strictly positive weight.

Network metrics. Most of the network metrics that we
compare against are straightforward, such as density or av-
erage clustering coefficient, which are defined in the main
text (Section 4). The one more involved metric is modularity,
which assesses the quality of a community partition. Modu-
larity measures the number of edges within the community,
compared to how many edges are expected, and it is defined

as

Q =
1

2E

∑
ij

(Aij − γ
NiNj

2E
)1[ci = cj ], (5)

where γ is the resolution parameter (set by default to 1) and
ci indicates node i’s community in the partition. As in the
main text, E is the total number of edges in the network; Aij ,
as the adjacency matrix, is 1 if nodes i and j are connected
and 0 otherwise; and Ni is i’s number of neighbors.

We also need to define how we quantified the distance
between the generated networks and real networks in Ta-
ble B1. Let x1, · · · , xm represent the values of a metric
(e.g., density) from the real networks (where m = 8), and
let y1, · · · , yn represent the values of the metric from the
generated networks (where n = 30). First, we compute the
difference in their mean, divided by the standard deviation
of the real network distribution:

D =
| 1m

∑m
i=1 xi − 1

n

∑n
j=1 yj |

σreal
. (6)
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We normalize by standard deviation to make differences
comparable across metrics. We only normalize by the real
networks’ standard deviation since normalizing by the gen-
erated networks’ standard deviation would arbitrarily reward
higher variance methods. Second, we use the two-sample
Kolmogorov–Smirnov (KS) statistic, which measures the
distance between two empirical distributions by comparing
their cumulative distribution functions (Hodges Jr. 1958):

Freal(u) =
1

m

m∑
i=1

1[xi ≤ u]

Fgen(u) =
1

n

n∑
j=1

1[yj ≤ u]

DKS = sup
u

|Freal(u)− Fgen(u)|. (7)

Comparing to classical models. We compare to several
classical models for social network generation, which we
describe below, along with how we chose their parameters.
For all models, we set the number of nodes, N , to 50, to
mimic our LLM experiments with 50 personas. We use the
networkx implementation for all three models.7

Erdős–Rényi random graph (Erdős and Rényi 1959). We
use the GN,p random graph model, which has N nodes and
each edge is included with independent probability p. In our
experiments, we simply set p to the average density of the
eight real social networks.

Barabási-Albert preferential attachment (Barabási and
Albert 1999). In this model, one node is added to the graph at
each step, and it forms m edges with existing nodes, where
each neighbor is sampled with probability proportional to
its current degree. The networkx implementation starts by
default with a star graph on m + 1 nodes, then adds the re-
maining N −m − 1 nodes one at a time. Thus, the number
of edges in the graph is always m+ ((N −m− 1) ·m). We
choose m = 5, which minimizes the difference between the
generated graph’s density and the average density of the real
social networks.

Watts-Strogatz small world (Watts and Strogatz 1998). In
this model, first a ring is created over N nodes, then each
node is joined to its k nearest neighbors, forming a lattice.
Then, with independent probability p, each edge (i, j) is
rewired, meaning it is replaced with (i, j′), where j′ is se-
lected from all nodes (aside from i and i’s existing neigh-
bors) uniformly at random. Since each node is joined to its
k nearest neighbors, the number of edges in this graph is al-
ways nk

2 . So, we choose k = 10, which also minimizes the
difference between the generated and real networks’ aver-
age density. Then, with N = 50 and k = 10, we sweep over
possible values of p in {0.01, 0.02, · · · , 0.5} to minimize the
difference between the generated and real networks’ average
clustering coefficient, resulting in p = 0.15.

C.4 Evaluating Homophily
To evaluate the LLM’s level of homophily, we typically
use the cross-group ratio in this work (Eq. 1), which mea-

7https://networkx.org/documentation/stable/reference/
generators.html

sures the ratio of observed-to-expected proportion of cross-
group edges. We also use a closely related measure, the
same-group ratio, which measures the ratio of observed-to-
expected proportion of same-group edges:

H =
Sobs

Sexp
=

∑
ij Aij ·1[gi=gj ]

E∑
g Ng(Ng−1)

N(N−1)

. (8)

To compare the LLM’s level of political homophily to
prior work, we needed to use their measures of homophily.
First, we define the isolation index, used in Halberstam and
Knight (2016) and Gentzkow and Shapiro (2011). We define
it following Halberstam and Knight (2016) (Appendix, p. 5).
First, for voter j ∈ J (they refer to all nodes in their network
as voters), let vjC and vjL indicate their number of conser-
vative and liberal followers, respectively. Then, isolation is
defined as

share-Cj =
vjC

vjC + vjL

C-exposurei =
1∑

j∈J Aij

∑
j∈J

Aij · share-Cj

C-exposuret =
1

Nt

∑
i∈It

C-exposurei

isolation = C-exposureC − C-exposureL (9)

Thus, C-exposurei for a voter i is the average share-Cj over
the voters that they follow, C-exposuret is the average con-
servative exposure for voters in group t, and isolation is the
difference in average conservative exposure for conservative
versus liberal voters.

We also use the polarization measure from Garimella and
Weber (2017). First, they compute the user’s leaning, l,
which is

l =
α

α+ β
,

where α and β indicate how many left-leaning and right-
leaning users, respectively, are followed by this user. Specif-
ically, they begin with a uniform prior, α = β = 1, then
every follow/retweet of a user on each side adds one to that
side’s parameter (α for left, β for right). Note that their defi-
nition of leaning is very similar to the definition of share-Cj

in Halberstam and Knight (2016), with the addition of the
uniform prior. Then, their definition of polarization p is

p = 2 · |0.5− l|, (10)

which lies between 0 and 1, representing how much the user
deviates from a balanced leaning of 0.5. They report average
p over users, which is what we measure on our networks.
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