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ABSTRACT

Developing algorithms that are able to generalize to a novel task given only a few
labeled examples represents a fundamental challenge in closing the gap between
machine- and human-level performance. The core of human cognition lies in
the structured, reusable concepts that help us to rapidly adapt to new tasks and
provide reasoning behind our decisions. However, existing meta-learning methods
learn complex representations across prior labeled tasks without imposing any
structure on the learned representations. Here we propose COMET, a meta-learning
method that improves generalization ability by learning to learn along human-
interpretable concept dimensions. Instead of learning a joint unstructured metric
space, COMET learns mappings of high-level concepts into semi-structured metric
spaces, and effectively combines the outputs of independent concept learners.
We evaluate our model on few-shot tasks from diverse domains, including fine-
grained image classification, document categorization and cell type annotation
on a novel dataset from a biological domain developed in our work. COMET
significantly outperforms strong meta-learning baselines, achieving 6–15% relative
improvement on the most challenging 1-shot learning tasks, while unlike existing
methods providing interpretations behind the model’s predictions.

1 INTRODUCTION

Deep learning has reached human-level performance on domains with the abundance of large-scale
labeled training data. However, learning on tasks with a small number of annotated examples is still
an open challenge. Due to the lack of training data, models often overfit or are too simplistic to
provide good generalization. On the contrary, humans can learn new tasks very quickly by drawing
upon prior knowledge and experience. This ability to rapidly learn and adapt to new environments is
a hallmark of human intelligence.

Few-shot learning (Miller et al., 2000; Fei-Fei et al., 2006; Koch et al., 2015) aims at addressing this
fundamental challenge by designing algorithms that are able to generalize to new tasks given only a
few labeled training examples. Meta-learning (Schmidhuber, 1987; Bengio et al., 1992) has recently
made major advances in the field by explicitly optimizing the model’s ability to generalize, or learning
how to learn, from many related tasks (Snell et al., 2017; Vinyals et al., 2016; Ravi & Larochelle,
2017; Finn et al., 2017). Motivated by the way humans effectively use prior knowledge, meta-learning
algorithms acquire prior knowledge over previous tasks so that new tasks can be efficiently learned
from a small amount of data. However, recent works (Chen et al., 2019b; Raghu et al., 2020) show
that simple baseline methods perform comparably to existing meta-learning methods, opening the
question about which components are crucial for rapid adaptation and generalization.

Here, we argue that there is an important missing piece in this puzzle. Human knowledge is structured
in the form of reusable concepts. For instance, when we learn to recognize new bird species we
are already equipped with the critical concepts, such as wing, beak, and feather. We then focus on
these specific concepts and combine them to identify a new species. While learning to recognize new
species is challenging in the complex bird space, it becomes remarkably simpler once the reasoning
is structured into familiar concepts. Moreover, such a structured way of cognition gives us the ability
to provide reasoning behind our decisions, such as “ravens have thicker beaks than crows, with more
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Figure 1: Along each concept dimension, COMET learns concept embeddings using independent
concept learners and compares them to concept prototypes. COMET then effectively aggregates
information across concept dimensions, assigning concept importance scores to each dimension.

of a curve to the end”. We argue that this lack of structure is limiting the generalization ability of the
current meta-learners. The importance of compositionality for few-shot learning was emphasized in
(Lake et al., 2011; 2015) where hand-designed features of strokes were combined using Bayesian
program learning.

Motivated by the structured form of human cognition, we propose COMET, a meta-learning method
that discovers generalizable representations along human-interpretable concept dimensions. COMET
learns a unique metric space for eachconcept dimensionusing concept-speci�c embedding functions,
namedconcept learners, that are parameterized by deep neural networks. Along each high-level
dimension, COMET de�nesconcept prototypesthat re�ect class-level differences in the metric space
of the underlying concept. To obtain �nal predictions, COMET effectively aggregates information
from diverse concept learners and concept prototypes. Three key aspects lead to a strong generaliza-
tion ability of our approach: (i) semi-structured representation learning, (ii) concept-speci�c metric
spaces described with concept prototypes, and (iii) ensembling of many models. The latter assures
that the combination of diverse and accurate concept learners improves the generalization ability
of the base learner (Hansen & Salamon, 1990; Dvornik et al., 2019). Remarkably, the high-level
universe of concepts that are used to guide our algorithm can be discovered in a fully unsupervised
way, or we can use external knowledge bases to de�ne concepts. In particular, we can get a large
universe of noisy, incomplete and redundant concepts and COMET learns which subsets of those
are important by assigning local and global concept importance scores. Unlike existing methods
(Snell et al., 2017; Vinyals et al., 2016; Sung et al., 2018; Gidaris & Komodakis, 2018), COMET's
predictions are interpretable—an advantage especially important in the few-shot learning setting,
where predictions are based only on a handful of labeled examples making it hard to trust the model.
As such, COMET is the �rst domain-agnostic interpretable meta-learning approach.

We demonstrate the effectiveness of our approach on tasks from extremely diverse domains, including
�ne-grained image classi�cation in computer vision, document classi�cation in natural language pro-
cessing, and cell type annotation in biology. In the biological domain, we conduct the �rst systematic
comparison of meta-learning algorithms. We develop a new meta-learning dataset and de�ne a novel
benchmark task to characterize single-cell transcriptome of all mouse organs (Consortium, 2018;
2020). Additionally, we consider the scenario in which concepts are not given in advance, and test
COMET's performance with automatically extracted visual concepts. Our experimental results show
that on all domains COMET signi�cantly improves generalization ability, achieving6–15%relative
improvement over state-of-the-art methods in the most challenging1-shot task. Furthermore, we
demonstrate the ability of COMET to provide interpretations behind the model's predictions, and
support our claim with quantitative and qualitative evaluations of the generated explanations.

2 PROPOSED METHOD

Problem formulation. In few-shot classi�cation, we assume that we are given a labeled training
setDtr , an unlabeled query setDqr , and a support setS consisting of a few labeled data points that
share the label space with the query set. Label space between training and query set is disjoint,i.e.,
f Ytr g \ f Yqr g = ; , wheref Ytr g denotes label space of training set andf Yqr g denotes label space of
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query set. Each labeled data point(x ; y) consists of aD-dimensional feature vectorx 2 RD and a
class labely 2 f 1; :::; K g. Given a training set of previously labeled tasksDtr and the support setS
of a few labeled data points on a novel task, the goal is to train a model that can generalize to the
novel task and label the query setDqr .

2.1 PRELIMINARIES

Episodic training. To achieve successful generalization to a new task, training of meta-learning
methods is usually performed using sampled mini-batches called episodes (Vinyals et al., 2016).
Each episode is formed by �rst sampling classes from the training set, and then sampling data points
labeled with these classes. The sampled data points are divided into disjoint sets of: (i) a support set
consisting of a few labeled data points, and (ii) a query set consisting of data points whose labels are
used to calculate a prediction error. Given the sampled support set, the model minimizes the loss on
the sampled query set in each episode. The key idea behind this meta-learning training scheme is
to improve generalization of the model by trying to mimic the low-data regime encountered during
testing. Episodes with balanced training sets are usually referred to as “N-way, k-shot” episodes
whereN indicates number of classes per episode (“way”), andk indicates number of support points
(labeled training examples) per class (“shot”).

Prototypical networks. Our work is inspired by prototypical networks (Snell et al., 2017), a simple
but highly effective metric-based meta-learning method. Prototypical networks learn a non-linear
embedding functionf � : RD ! RM parameterized by a convolutional neural network. The main
idea is to learn a functionf � such that in theM -dimensional embedding space data points cluster
around a single prototype representationpk 2 RM for each classk. Class prototypepk is computed
as the mean vector of the support set labeled with the classk:

pk =
1

jSk j

X

(x i ;y i )2S k

f � (x i ); (1)

whereSk denotes the subset of the support setS belonging to the classk. Given a query data point
xq, prototypical networks output distribution over classes using the softmax function:

p� (y = kjxq) =
exp(� d(f � (xq); pk ))

P
k 0 exp(� d(f � (xq); pk 0))

; (2)

whered : RM ! R denotes the distance function. Query data pointxq is assigned to the class with
the minimal distance between the class prototype and embedded query point.

2.2 META-LEARNING VIA CONCEPT LEARNERS

Our main assumption is that input dimensions can be separated into subsets of related dimensions
corresponding to high-level, human-interpretable concepts that guide the training. Such sets of
potentially overlapping, noisy and incomplete human-interpretable dimensions exists in many real-
world scenarios. For instance, in computer vision concepts can be assigned to image segments; in
natural language processing to semantically related words; whereas in biology we can use external
knowledge bases and ontologies. In many problems, concepts are already available as a prior domain
knowledge (Ashburner et al., 2000; Murzin et al., 1995; Wah et al., 2011; Mo et al., 2019; Miller
et al., 2000), or can be automatically generated using existing techniques (Blei et al., 2003; Zhang
et al., 2018; Jakab et al., 2018). Intuitively, concepts can be seen as part-based representations of
the input and re�ect the way humans reason about the world. Importantly, we do not assume these
concepts are clean or complete. On the contrary, we show that even if there are thousands of concepts,
which are noisy, incomplete, overlapping, or redundant, they still provide useful guidance to the
meta-learning algorithm.

Formally, letC = f c( j ) gN
j =1 denote a set ofN concepts given/extracted as a prior knowledge, where

each conceptc( j ) 2 f 0; 1gD is a binary vector such thatc( j )
i = 1 if i -th dimension should be used

to describe thej -th concept andD denotes the dimensionality of the input. We do not impose any
constraints onC, meaning that the concepts can be disjoint or overlap. Instead of learning single
mapping functionf � : RD ! RM across all dimensions, COMET separates original space into
subspaces of prede�ned concepts and learns individual embedding functionsf ( j )

� : RD ! RM
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for each conceptj (Figure 1). Concept embedding functionsf ( j )
� , namedconcept learners, are

non-linear functions parametrized by a deep neural network. Each concept learnerj produces its own
concept prototypesp ( j )

k for classk computed as the average of concept embeddings of data points in
the support set:

p ( j )
k =

1
jSk j

X

(x i ;y i )2S k

f ( j )
� (x i � c( j ) ); (3)

where� denotes Hadamard product. As a result, each classk is represented with a set ofN concept
prototypesf p ( j )

k gN
j =1 .

Given a query data pointxq, we compute its concept embeddings and estimate their distances to the
concept prototypes of each class. We then aggregate the information across all concepts by taking
sum over distances between concept embeddings and concept prototypes. Speci�cally, for each
concept embeddingf ( j )

� (xq � c( j ) ) we compute its distance to concept prototypep ( j )
k of a given class

k, and sum distances across all concepts to obtain a distribution over support classes. The probability
of assigning query pointxq to k-th class is then given by:

p� (y = kjxq) =
exp(�

P
j d(f ( j )

� (xq � c( j ) ); p ( j )
k ))

P
k 0 exp(�

P
j d(f ( j )

� (xq � c( j ) ); p ( j )
k 0 ))

: (4)

The loss is computed as the negative log-likelihoodL � = � logp� (y = kjxq) of the true class, and
COMET is trained by minimizing the loss on the query samples of training set in the episodic fashion
(Snell et al., 2017; Vinyals et al., 2016). In equation (4), we use euclidean distance as the distance
function. Experimentally, we �nd that it outperforms cosine distance (Appendix B), which agrees
with the theory and experimental �ndings in (Snell et al., 2017). We note that in order for distances
to be comparable, it is crucial to normalize neural network layers using batch normalization (Ioffe &
Szegedy, 2015).

2.3 INTERPRETABILITY

Local and global concept importance scores. In COMET, each class is represented withN
concept prototypes. Given a query data pointxq, COMET assigns local concept importance scores by
comparing concept embbeddings of the query to concept prototypes. Speci�cally, for a conceptj in a
classk the local importance score is obtained by inverted distanced(f ( j )

� (xq � c( j ) ); p ( j )
k ). Higher

importance score indicates higher contribution in classifying query point to the classk. Therefore,
explanations for the query pointxq are given by local concept importance scores, and directly provide
reasoning behind each prediction. To provide global explanations that can reveal important concepts
for a set of query points of interest or an entire class, COMET computes average distance between
concept prototype and concept embeddings of all query points of interest. Inverted average distance
re�ects global concept importance score and can be used to rank concepts, providing insights on
important concepts across a set of examples.

Discovering locally similar examples. Given a �xed conceptj , COMET can be used to rank data
points based on the distance of their concept embeddings to the concept prototypep ( j )

k of classk. By
ranking data points according to their similarity to the concept of interest, COMET can �nd examples
that locally share similar patterns within the same class, or even across different classes. For instance,
COMET can reveal examples that well re�ect a concept prototype, or examples that are very distant
from the concept prototype.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We apply COMET to four datasets from three diverse domains: computer vision, natural
language processing (NLP) and biology. In the computer vision domain, we consider �ne-grained
image classi�cation tasks. We use bird classi�cation CUB-200-2011 (Wah et al., 2011) and �ower
classi�cation Flowers-102 (Nilsback & Zisserman, 2008) datasets, referred to as CUB and Flowers
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hereafter. To de�ne concepts, CUB provides part-based annotations, such as beak, wing, and tail of
a bird. Parts were annotated by pixel location and visibility in each image. The total number of15
parts/concepts is available; however concepts are incomplete and only a subset of them is present
in an image. In case concept is not present, we rely on the prototypical concept to substitute for a
missing concept. Based on the part coordinates, we create a surrounding bounding box with a �xed
length to serve as the concept maskc( j ) . On both CUB and Flowers datasets, we test automatic
concept extraction. In NLP domain, we apply COMET to benchmark document classi�cation dataset
Reuters (Lewis et al., 2004) consisting of news articles. To de�ne concepts, we use all hypernyms
of a given word based on the WordNet hiearchy (Lewis et al., 2004). On all datasets, we include a
concept that captures the whole input, corresponding to a binary mask of all ones.

In the biology domain, we introduce a new cross-organ cell type classi�cation task (Brbić et al.,
2020) together with a new dataset. We develop a novel single-cell transcriptomic dataset based
on the Tabula Muris dataset (Consortium, 2018; 2020) that comprises105; 960cells of124cell
types collected across23 organs of the mouse model organism. The features correspond to the gene
expression pro�les of cells. Out of the23; 341genes, we select2; 866genes with high standardized
log dispersion given their mean. We de�ne concepts using Gene Ontology (Ashburner et al., 2000;
Consortium, 2019), a resource which characterizes gene functional roles in a hierarchically structured
vocabulary. We select Gene Ontology terms at level3 that have at least64assigned genes, resulting
in the total number of190terms that de�ne our concepts. We propose the evaluation protocol in
which different organs are used for training, validation, and test splits. Therefore, a meta-learner
needs to learn to generalize to unseen cell types across organs. This novel dataset along with the
cross-organ evaluation splits is publicly available athttps://snap.stanford.edu/comet .
To our knowledge, this is the �rst meta-learning dataset from the biology domain.

Baselines. We compare COMET's performance to seven baselines, including FineTune/Baseline++
(Chen et al., 2019b), Matching Networks (MatchingNet) (Vinyals et al., 2016), Model Agnostic
Meta-Learning (MAML) (Finn et al., 2017), Relation Networks (Sung et al., 2018), MetaOptNet
(Lee et al., 2019), DeepEMD (Zhang et al., 2020) and Prototypical Networks (ProtoNet) (Snell et al.,
2017). DeepEMD is only applicable to image datasets.

We provide more details on evaluation and implementation in Appendix A. Code is publicly available
athttps://github.com/snap-stanford/comet .

3.2 RESULTS

Performance comparison. We report results on CUB, Tabula Muris and Reuters datasets with
concepts given as a prior domain knowledge in Table 1. COMET outperforms all baselines by a
remarkably large margin on all datasets. Speci�cally, COMET achieves9:5% and9:3% average
improvements over the best performing baseline in the1-shot and5-shot tasks across datasets. Notably,
COMET improves the result of the ProtoNet baseline by19–23%in the1-shot tasks across datasets.
COMET's substiantial improvement are retained with the deeper Conv-6 backbone (Appendix C). To
con�rm that the improvements indeed come from concept learners and not from additional weights,
we compare COMET to ensemble of prototypical networks, and further evaluate performance of
COMET with shared weights across all concepts. Results shown in Table 2 demonstrate that COMET
achieves signi�cantly better performance than the ensemble of ProtoNets even when the weights
across concepts are shared. Of note, COMET's performance is only slightly affected with shared
weights across concepts. More experimental details are provided in Appendix D.

Effect of number of concepts. We systematically evaluate the effect of the number of concepts on
COMET's performance on CUB and Tabula Muris datasets (Figure 2). In particular, we start from
ProtoNet's result that can be seen as using a single concept in COMET that covers all dimensions
of the input. We then gradually increase number of concepts and train and evaluate COMET with
the selected number of concepts. For the CUB dataset, we add concepts based on their visibility
frequency, whereas on the Tabula Muris we are not limited in the coverage of concepts so we
randomly select them. The results demonstrate that on both domains COMET consistently improves
performance when increasing the number of concepts. Strikingly, by adding just one most frequent
concept corresponding to a bird's beak on top of the whole image concept, we improve ProtoNet's
performance on CUB by10%and5% in 1-shot and5-shot tasks, respectively. On the Tabula Muris,
with just 8 concepts COMET signi�cantly outperforms all baselines and achieves7% and17%
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Table 1: Results on1-shot and5-shot classi�cation on the CUB and Tabula Muris datasets. We report
average accuracy and standard deviation over600randomly sampled episodes.

CUB Tabula Muris Reuters
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Finetune 61:4 � 1:0 80:2 � 0:6 65:3 � 1:0 82:1 � 0:7 48:2 � 0:7 64:3 � 0:4
MatchingNet 61:0 � 0:9 75:9 � 0:6 71:0 � 0:9 82:4 � 0:7 55:9 � 0:6 70:9 � 0:4
MAML 52:8 � 1:0 74:4 � 0:8 50:4 � 1:1 57:4 � 1:1 45:0 � 0:8 60:5 � 0:4
RelationNet 62:1 � 1:0 78:6 � 0:7 69:3 � 1:0 80:1 � 0:8 53:8 � 0:7 68:3 � 0:3
MetaOptNet 62:2 � 1:0 79:6 � 0:6 73:6 � 1:1 85:4 � 0:9 62:1 � 0:8 77:8 � 0:4
DeepEMD 64:0 � 1:0 81:1 � 0:7 NA NA NA NA

ProtoNet 57:1 � 1:0 76:1 � 0:7 64:5 � 1:0 82:5 � 0:7 58:3 � 0:7 75:1 � 0:4
COMET 67.9 � 0.9 85.3� 0.5 79.4� 0.9 91.7� 0.5 71.5� 0.7 89.8� 0.3

Table 2: Comparison to the ensemble of prototypical networks and COMET with shared weights
across concepts. On the CUB dataset weights are always shared.

CUB Tabula Muris Reuters
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNetEns 64:0 � 0:8 82:3 � 0:5 67:2 � 0:8 83:6 � 0:5 62:4 � 0:7 79:3 � 0:4
COMET shared w 67:9 � 0:9 85:3 � 0:5 78:2 � 1:0 91:0 � 0:5 69:8 � 0:8 88:6 � 0:3
COMET 67:9 � 0:9 85:3 � 0:5 79:4 � 0:9 91:7 � 0:5 71:5 � 0:7 89:8 � 0:3

improvement over ProtoNet in1-shot and5-shot tasks, respectively. To demonstrate the robustness
of our method to a huge set of overlapping concepts, we extend the number of concepts to1500by
capturing all levels of the Gene Ontology hierarchy, therefore allowing many redundant relationships.
Even in this scenario, COMET slightly improves the results compared to190concepts obtained from
a single level. These results demonstrate that COMET outperforms other methods even when the
number of concepts is small and annotations are incomplete, as well as with many overlapping and
redundant concepts.

Figure 2: The effect of number of concepts on COMET's performance. COMET consistently
improves performance when we gradually increase number of concept terms.

Unsupervised concept annotation. While COMET achieves remarkable results with human-
validated concepts given as external knowledge, we next investigate COMET's performance on
automatically inferred concepts. In addition to CUB dataset, we consider Flowers dataset for �ne-
grained image classi�cation. To automatically extract visual concepts, we train the autoencoding
framework for landmarks discovery proposed in (Zhang et al., 2018). The encoding module outputs
landmark coordinates that we use as part coordinates. We generate a concept mask by creating a
bounding box with a �xed length around landmark coordinates. Although extracted coordinates are
often noisy and capture background (Appendix F), we �nd that COMET outperforms all baselines
on both CUB and Flowers �ne-grained classi�cation datasets (Table 3). This analysis shows that
the bene�ts of our method are expected even with noisy concepts extracted in a fully automated and
unsupervised way.

To test unsupervised concept annotation on Tabula Muris and Reuters datasets, we randomly select
subsets of features for concept de�nition. Since COMET is interpretable and can be used to �nd
important concepts, we use validation set to select concepts with the highest importance scores. Even
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in this case, COMET signi�cantly outperforms all baselines, achieving only2% lower accuracy on
the Tabula Muris dataset and1%on the Reuters dataset on both 1-shot and 5-shot tasks compared
to human-de�ned concepts. This additionally con�rms COMET's effectiveness with automatically
extracted concepts. We provide more results in Appendix E .

Table 3: Results on1-shot and5-shot classi�cation with automatically extracted concepts. We report
average accuracy and standard deviation over600randomly sampled episodes. We show the average
relative improvement of COMET over the best and ProtoNet baselines.

Accuracy CUB: 1-shot CUB: 5-shot Flowers: 1-shot Flowers: 5-shot

COMET 64:8 � 1:0 82:0 � 0:5 70:4 � 0:9 86:7 � 0:6

Improvement of COMET...
over best baseline 1:3% 1:1% 4:8% 4:6%
over ProtoNet 13:5% 7:8% 6:0% 8:1%

3.3 INTERPRETABILITY

We analyze the reasoning part of COMET by designing case studies aiming to answer the following
questions: (i) Which concepts are the most important for a given query point (i.e., local explanation)?
Which concepts are the most important for a given class (i.e., global explanation)?; (iii) Which
examples share locally similar patterns?; (iv) Which examples re�ect well concept prototype? We
perform all analyses exclusively on classes from the novel task that are not seen during training.

Concept importance. Given a query point, COMET ranks concepts based on their importance
scores, therefore identifying concepts highly relevant for the prediction of a single query point.
We demonstrate examples of local explanations in Appendix G. To quantitatively evaluate global
explanations that assign concept importance scores to the entire class, we derive ground truth
explanations on the Tabula Muris dataset. Speci�cally, using the ground truth labels on the test set, we
obtain a set of genes that are differentially expressed for each class (i.e., cell type). We then �nd Gene
Ontology terms that are signi�cantly enriched (false discovery rate correctedp-value< 0:1) in the set
of differentially expressed genes of a given class, and use those terms as ground-truth concepts. We
consider only cell types that have at least two assigned terms. To obtain COMET's explanations, we
rank global concept importance scores for each class and report the number of relevant terms that are
successfully retrieved in top20concepts with the highest scores in the5-shot setting (Figure 3 left).
We �nd that COMET's importance scores agree extremely well with the ground truth annotations,
achieving0:71average recall@20across all cell types. We further investigate global explanations
on the CUB dataset by computing the frequency of the most relevant concepts across the species
(Figure 3 right). Beak, belly and forehead turn out to be the most relevant features, supporting

Figure 3: (Left) Quantitatively, on the Tabula Muris dataset COMET's global importance scores agree
well with the ground truth important Gene Ontology terms estimated using differentially expressed
genes. (Right) Qualitatively, on the CUB dataset importance scores correctly re�ect the most relevant
bird features.
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common-sense intuition. For instance, `beak' is selected as the most relevant concept for `parakeet
auklet' known for its nearly circular beak; `belly' for `cape may warbler' known for its tiger stripes
on the belly; while `belted king�sher' indeed has characteristic `forehead' with its shaggy crest on
the top of the head. This con�rms that COMET correctly identi�es important class-level concepts.

Locally similar patterns. Given a �xed concept of interest, we apply COMET to sort images with
respect to the distance of their concept embedding to the concept prototype (Figure 4). COMET �nds
images that locally resemble the prototypical image and well express concept prototype, correctly
re�ecting the underlying concept of interest. On the contrary, images sorted using the whole image as
a concept often re�ect background similarity and can not provide intuitive explanations. Furthermore,
by �nding most distant examples COMET can aid in identifying misannotated or non-visible concepts
(Appendix H) which can be particularly useful when the concepts are automatically extracted. These
analyses suggest that COMET can be used to discover, sort and visualize locally similar patterns,
revealing insights on concept-based similarity across examples.

Figure 4: Top row shows images with beak concept embeddings most similar to the prototypical beak.
Bottom row shows images ranked according the global concept that captures whole image. COMET
correctly re�ects local similarity in the underlying concept of interest, while global concept often
re�ects environmental similarity.

4 RELATED WORK

Our work draws motivation from a rich line of research on meta-learning, compositional representa-
tions, and concept-based interpretability.

Meta-learning. Recent meta-learning methods fall broadly into two categories. Optimization-based
methods (Finn et al., 2017; Rusu et al., 2019; Nichol & Schulman, 2018; Grant et al., 2018; Antoniou
et al., 2019) aim to learn a good initialization such that network can be �ne-tuned to a target task
within a few gradient steps. On the other hand, metric-based methods (Snell et al., 2017; Vinyals
et al., 2016; Sung et al., 2018; Gidaris & Komodakis, 2018) learn a metric space shared across
tasks such that in the new space target task can be solved using nearest neighbour or simple linear
classi�er. DeepEMD (Zhang et al., 2020) learns optimal distance between local image representations.
Prototypical networks (Snell et al., 2017) learn a metric space such that data points cluster around a
prototypical representation computed for each category as the mean of embedded labeled examples.
It has remained one of the most competitive few-shot learning methods (Trianta�llou et al., 2019),
resulting in many follow-up works (Sung et al., 2018; Oreshkin et al., 2018; Ren et al., 2018; Liu
et al., 2019; Xing et al., 2019). Two recent works (Hou et al., 2019; Zhu et al.) proposed to learn
local discriminative features with attention mechanisms in image classi�cation tasks. Our work
builds upon prototypical networks and extends the approach by introducing concept-based prototypes.
Prototypical networks were extended by learning mixture prototypes in (Allen et al., 2019); however
prototypes in this work share the same metric space. In contrast, COMET de�nes human-interpretable
concept-speci�c metric spaces where each prototype re�ects class-level differences in the metric
space of the corresponding concept.

Compositionality. The idea behind learning from a few examples using compositional represen-
tations originates from work on Bayesian probabilistic programs in which individual strokes were
combined for the handwritten character recognition task (Lake et al., 2011; 2015). This approach
was extended in (Wong & Yuille, 2015) by replacing hand designed features with symmetry axis as
object descriptors. Although these early works effectively demonstrated that compositionality is a
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