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Limitations of cell embedding metrics  
assessed using drifting islands
 

Hanchen Wang    1,2, Jure Leskovec    2   & Aviv Regev    1 

Biological studies rely on embeddings of single-cell profiles but assessing 
the quality of these embeddings is challenging. Here we show that current 
evaluation metrics are incomplete by training a three-layer perceptron, 
Islander. Islander outperforms all leading embedding methods on a diverse 
set of cell atlases but it distorts biological structures, limiting its use for 
biological discovery. We then present a new metric, scGraph, to help flag 
such distortions.

Embeddings of single-cell profiles are now routinely used as a research 
tool in biological investigation to characterize cell types and states, 
their changes over time and their distinction between conditions, 
including diseases, organs or drug treatments1,2. With a dramatic 
growth in single-cell data, including the Human Cell Atlas3,4, multiple 
efforts have focused on learning universal embeddings for diverse 
single-cell data, with different integration methods or foundation 
models5–10. Given their broad use, it is crucial to scrutinize the quality 
of embeddings to evaluate the performance of the underlying integra-
tion methods11–13 and zero-shot capabilities of the resulting foundation 
models14,15. Thus, development of new successful methods and models 
also relies on good evaluation metrics.

A critical aspect in deriving helpful cell embeddings is the correc-
tion of nonbiological batch effects that stem from technical variations, 
such as sample handling and sequencing protocols. These unwanted 
variations can mask biological signals and lead to misleading inter-
pretations. Integration methods, thus, aim to mitigate batch-specific 
discrepancies while preserving essential biological variation. The 
effectiveness of these integrated cell embeddings is typically assessed 
through two evaluation lenses: how well the cells from various batches 
mix together and how closely cells of the same type group together.

Here, we identified an overlooked challenge in the evaluation 
metrics used to assess embeddings. To demonstrate the limitations 
of current gold-standard metrics for cell profile embeddings11, we 
developed Islander (Fig. 1a), a model that scores best on established 
evaluation metrics but generates biologically problematic embed-
dings. Islander is a three-layer perceptron, directly trained on cell 
type annotations with mixup augmentations16. We tested Islander 
across a diverse set of 11 different human tissue cell atlases (brain17, 
spanning breast18, eye19, fetal gut20, heart21, fetal lung22, pancreas11 and 
skin23), which together cover different strengths of batch effects and 
diverse biological systems, overall comprising more than 3.5 million 

cells from ten human organ systems (Extended Data Table 1). For each 
atlas, we trained an Islander model and then compared it with another 
13 embedding baselines: three dimension reduction methods (princi-
pal component analysis (PCA), uniform manifold approximation and 
projection (UMAP) and t-distributed stochastic neighbor embedding 
(tSNE))24, eight batch integration methods (Harmony25, Scanorama26, 
BBKNN27, fastMNN28, scVI29, scANVI30, scGen31 and scPoli32) and two 
foundation models (Geneformer6 and scGPT9) (Methods). In addition, 
for each atlas, we compared to the performance of the original authors’ 
integration, if available.

Across all datasets, Islander consistently outperformed all baseline 
strategies across all 12 metrics11 (Fig. 1b,c, Extended Data Table 2 and 
Supplementary Tables 3–12). This is largely because of the principles 
underlying the evaluation metrics11, which focus on assessing the effi-
ciency of cell embeddings in terms of the coherence of cell clustering 
structures with cell type labels and the blending of batches within 
clusters. When Islander explicitly aligns these cell embeddings with cell 
type annotations, it forms well-separated cell ‘islands’ (Fig. 1d, right), 
with each island comprising cells annotated as the same type. This 
alignment greatly boosts the biological variance conservation metrics, 
leading to top-tier overall performance by these evaluation criteria 
(Supplementary Tables 3–12). To explore the impact of supervision sig-
nals, we also trained Islander’s model using two semisupervised losses, 
contrastive33 and triplet34. Both achieved high scIB scores but resulted 
in distinctly different structures (Supplementary Information).

While such structure is driven by (and complies well) with the most 
granular annotation level, it comes at the cost of ignoring any higher 
level relationships between cells and, thus, distorts biological struc-
tures, potentially obstructing downstream analyses and future discov-
eries; therefore, this would not be advisable for an actual integration 
method. In particular, when annotated cell subsets follow a continuum, 
as is the case for fibroblasts, Islander separates its constituent parts 
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Fig. 1 | Drifting cell islands highlight limitations of current evaluation  
metrics. a, Islander overview. b,c, Evaluation of cell embeddings. Normalized 
overall score (y axis; Methods) over 12 metrics for each integration method  
(x axis) assessed using the Fetal Lung Cell Atlas (b) or ten other cell atlases (c). 
Baseline refers to the best baseline results (Methods). d, Fetal Lung Cell Atlas 
embedding space. Single-cell profiles (dots; color-coded by cell type annotation) 
from the Fetal Lung Cell Atlas embedded by the authors’ integration method 
(left; with zoomed-in view in inset) or Islander (right). Annotations denote the 
fibroblast subsets. Adv fibro, adventitial fibroblasts. e, ‘Airway fibroblast’ cell 
neighborhood changes across Islander runs. Normalized Euclidean distance 
(y axis) between the centroids of airway fibroblast profiles and those of its five 

nearest neighbor clusters (x axis) in the 50-dimensional (authors’ integration) 
and 16-dimensional (Islander’s integration) embedding space. Non-cla. mono., 
non-classical monocytes; SMC, smooth muscle cells; NK, natural killer cells; 
Pro. Schwann, progenitor Schwann cells. f,g, Cell islands distort developmental 
stage structure and cell–cell relationships. Cell embeddings are as in d, colored 
by developmental week (f; color bar) or coarse cell type annotations (g). PNS, 
peripheral nervous system cells; T & ILC, T lymphocytes and innate lymphoid 
cells. h,i, scGraph, an evaluation metric for cell embedding using learned cell 
similarity graphs: method overview (h) and scGraph score (y axis, where higher is 
better) for each method (x axis) assessed using the Fetal Lung Cell Atlas (i).
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(Fig. 1d). In the developing human lung, the original analysis22 identi-
fied multiple subtypes of fibroblasts, each distinguished by different 
marker genes and spatial locations. While the original embedding 
preserves a continuum between these fibroblasts (Fig. 1d, left), they 
are fully separated by Islander into separate islands (Fig. 1d, right). 
Similarly, the Islander embedding disrupted the developmental con-
tinuum, clearly observed in the original study (Fig. 1f, left) but obscured 
by Islander (Fig. 1f, right).

Moreover, the cell islands drifted in different ways across distinct 
runs, especially for smaller cell subsets. For example, in three separate 
runs with overall similar scores, the composition of the neighborhood of 
airway fibroblasts varied substantially, involving as many as 14 distinct cell 
types within the five nearest neighbors (Fig. 1e, Extended Data Fig. 1 and 
Extended Data Table 2). Thus, aside from cluster identity, the embedding 
may be largely arbitrary in all other relationships and this arbitrariness 
would carry into downstream analysis or the biologist’s interpretation.

Prompted by these limitations of established quality evaluation 
criteria, we reasoned that focusing solely on the most granular cell 
relationships in evaluation can pose substantial limitations, whereas 
preserving relationships between broader cell types (coarser anno-
tations) is an important additional criterion and may also be more 
robust to noise. Indeed, when evaluating the same set of embeddings 
using broader cell type annotations provided by the authors, Islander 
now achieved an overall score of 0.523, inferior to PCA (0.557) or the 
top-performing scVI29 (0.701) (Extended Data Table 3).

Because hierarchical Cell Ontology annotations are often 
unavailable7, we next developed scGraph (Methods) as a new evalu-
ation metric to complement and augment exiting metrics for quality 
assessment. In this framework, for each set of cell embeddings, an 
affinity graph is defined to elucidate the similarities between various 
cell types. scGraph compares each affinity graph to a consensus graph, 
derived by aggregating individual graphs from different batches on the 
basis of batch-wise PCA loadings. We used ablation studies, including 
the trimming of outlier cells, to design scGraph (Methods and Extended 
Data Fig. 2). The framework effectively highlights inherent biological 
structures and emphasizes cell type similarities while minimizing 
technical variations across batches. Notably, scGraph does not require 
any single batch to contain cells of all types, making it suitable for real 
datasets with diverse constraints.

Embedding methods differed in their performance according to 
the scGraph metric versus established scIB metrics (Extended Data 
Table 4). In comparing cell embeddings on this particular fetal lung col-
lection using scGraph (Fig. 1i), BBKNN achieved the highest scores, as it 
was the authors’ chosen method for integration and annotation. While 
the final authors’ annotations showed midlevel performance overall, 
they accurately captured fine details, such as the fibroblast family 
(Extended Data Fig. 3 and Extended Data Table 5). In this case, inter-
batch variance is biologically meaningful, as batches correspond to 
developmental stages (with multiple batches potentially representing 
the same time point) and scGraph effectively preserves key biological 
features, including trajectories and subpopulations. In contrast, scIB 
promotes interbatch mixing and distinct cell type separation, favoring 
models such as Islander, scGen and scANVI but overlooking develop-
mental dynamics. scGraph provided more biologically meaningful 
rankings, where PCA and the authors’ annotations excelled in captur-
ing developmental trajectories. However, when interbatch variance 
primarily reflects unwanted technical noise (for example, single-cell 
RNA sequencing (scRNA-seq) versus single-nucleus RNA-seq), scIB 
is advantageous in minimizing these effects. Thus, scGraph and scIB 
complement each other and using both is crucial for a comprehensive 
assessment of embeddings. Moreover, because most evaluation met-
rics require harmonized annotations, resources such as the Human 
Lung Cell Atlas35 and CellHint36 tutorials can be particularly useful.

While designing an alternative ‘null’ algorithm (similar to Islander) 
to optimize scGraph is possible, it is more challenging, highlighting its 

robustness and reliability as an evaluation metric. However, scGraph has 
its biases. Like scIB, it tends to favor higher-dimensional embeddings such 
as PCA over PCA-derived UMAP and it is not based on single-cell-level 
calculations. Additionally, its assumption that functionally similar cells 
should be proximal in the embedding space may not always hold true. 
Despite these limitations, scGraph represents a step toward developing 
more robust frameworks for evaluating embeddings by capturing diverse 
aspects of biological relevance and structural integrity.

In conclusion, we demonstrated the limitation of current quality 
metrics by introducing Islander, a three-layer perceptron, as a null algo-
rithm for an integration approach that outperforms all major methods 
across diverse cell atlases, even though it introduces island-like distor-
tions in the biological structures in cell embedding spaces. Islander 
serves as a touchstone for evaluating and refining future evaluation 
metrics. To address the limitations Islander highlighted in current 
evaluation frameworks, we further propose augmenting those with 
scGraph as an additional, complementary metric, designed to assess 
how well embeddings preserve cell–cell relationships at multiple lev-
els of granularity. scGraph specifically focuses on the consistency 
of cell relationships before and after integration, rather than on the 
closeness of similar types and the mixing of different batches. As a 
result, it is effective at detecting artifacts such as drifting cell islands 
and ‘zig-zag’ structures (Supplementary Fig. 1), offering a unique per-
spective on the preservation of biological structure across batches. 
Both scIB and scGraph rely on the assumption of a Euclidean distance 
within the embedding space, which typically favors higher-dimensional 
representations. Similarly, their use is constrained to datasets with 
harmonized annotations. Furthermore, because scGraph constructs 
its reference using PCA-based loadings, it may preferentially favor 
embeddings that resemble PCA or those influenced by the authors’ 
annotations. While scGraph is useful for benchmarking large-scale atlas 
integration, it is especially informative for smaller, focused datasets 
with finer annotations, where interbatch variance reflects meaningful 
biological differences rather than technical noise (for example, sub-
types of fibroblasts in the human fetal lung atlas; Extended Data Fig. 3). 
In such cases, scGraph provides deeper insight into the preservation 
of continuous cell state transitions, lineage hierarchies and rare sub-
populations that may be masked by overcorrections among batches. 
Unlike traditional batch-mixing metrics that emphasize the uniformity 
of cell type distributions across batches, scGraph enables the identi-
fication of biologically meaningful structure, such as lineage-specific 
divergence patterns or subtle state transitions that remain distinct 
across conditions. This makes it a valuable complement to existing 
evaluation frameworks, ensuring that integration methods do not 
inadvertently distort biologically relevant variation while correcting 
for technical effects.

Overall, by capturing aspects of biological structure that scIB 
might overlook (and vice versa), scGraph and scIB together form a 
more comprehensive evaluation framework for integration methods 
and their resulting cell embeddings.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-025-02702-z.

References
1.	 de Sande, B. V. et al. Applications of single-cell RNA sequencing 

in drug discovery and development. Nat. Rev. Drug Discov. 22, 
496–520 (2023).

2.	 Zhang, M. J. et al. Polygenic enrichment distinguishes disease 
associations of individual cells in single-cell RNA-seq data.  
Nat. Genet. 54, 1572–1580 (2022).

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-025-02702-z


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-025-02702-z

3.	 Rood, J. E. et al. Impact of the Human Cell Atlas on medicine.  
Nat. Med. 28, 2486–2496 (2022).

4.	 Rood, J. E. et al. The Human Cell Atlas from a cell census to a 
unified foundation model. Nature 637, 1065–1071 (2025).

5.	 Hao, Y. et al. Integrated analysis of multimodal single-cell data. 
Cell 184, 3573–3587.e29 (2021).

6.	 Theodoris, C. V. et al. Transfer learning enables predictions in 
network biology. Nature 618, 616–624 (2023).

7.	 Heimberg, G. et al. A cell atlas foundation model for scalable 
search of similar human cells. Nature 638, 1085–1094 (2025).

8.	 Rosen, Y. et al. Universal cell embeddings: a foundation model for 
cell biology. Preprint at bioRxiv https://doi. 
org/10.1101/2023.11.28.568918 (2023).

9.	 Cui, H. et al. scGPT: toward building a foundation model for 
single-cell multi-omics using generative AI. Nat. Methods 21, 
1470–1480 (2024).

10.	 Hao, M. et al. Large-scale foundation model on single-cell 
transcriptomics. Nat. Methods 21, 1481–1491 (2024).

11.	 Luecken, M. D. et al. Benchmarking atlas-level data integration in 
single-cell genomics. Nat. Methods 19, 41–50 (2022).

12.	 Tran, H. T. N. et al. A benchmark of batch-effect correction 
methods for single-cell RNA sequencing data. Genome Biol. 21, 12 
(2020).

13.	 Wang, H. et al. Scientific discovery in the age of artificial 
intelligence. Nature 620, 47–60 (2023).

14.	 Liu, T., Li, K., Wang, Y., Li, H. & Zhao, H. Evaluating the utilities of 
foundation models in single-cell data analysis. Preprint at bioRxiv 
https://doi.org/10.1101/2023.09.08.555192 (2023).

15.	 Kedzierska, K. Z., Crawford, L., Amini, A. P. & Lu, A. X. Zero-shot 
evaluation reveals limitations of single-cell foundation models. 
Genome Biol. 26, 101 (2025).

16.	 Zhang, H., Cisse, M., Dauphin, Y. N. & Lopez-Paz, D. mixup: beyond 
empirical risk minimization. Preprint at https://arxiv.org/ 
abs/1710.09412 (2018).

17.	 Siletti, K. et al. Transcriptomic diversity of cell types across the 
adult human brain. Science 382, eadd7046 (2023).

18.	 Kumar, T. et al. A spatially resolved single-cell genomic atlas of 
the adult human breast. Nature 620, 181–191 (2023).

19.	 Wang, S. K. et al. Single-cell multiome of the human retina and 
deep learning nominate causal variants in complex eye diseases. 
Cell Genom. 2, 100164 (2022).

20.	 Elmentaite, R. et al. Single-cell sequencing of developing human 
gut reveals transcriptional links to childhood Crohn’s disease. 
Dev. Cell 55, 771–783.e5 (2020).

21.	 Knight-Schrijver, V. R. et al. A single-cell comparison of adult and 
fetal human epicardium defines the age-associated changes in 
epicardial activity. Nat. Cardiovasc. Res. 1, 1215–1229 (2022).

22.	 He, P. et al. A human fetal lung cell atlas uncovers proximal–distal 
gradients of differentiation and key regulators of epithelial fates. 
Cell 185, 4841–4860.e25 (2022).

23.	 Solé-Boldo, L. et al. Single-cell transcriptomes of the human skin 
reveal age-related loss of fibroblast priming. Commun. Biol. 3, 188 
(2020).

24.	 Heumos, L. et al. Best practices for single-cell analysis across 
modalities. Nat. Rev. Genet. 24, 550–572 (2023).

25.	 Korsunsky, I. et al. Fast, sensitive and accurate integration of 
single-cell data with harmony. Nat. Methods 16, 1289–1296  
(2019).

26.	 Hie, B., Bryson, B. & Berger, B. Efficient integration of 
heterogeneous single-cell transcriptomes using scanorama.  
Nat. Biotechnol. 37, 685–691 (2019).

27.	 Polański, K. et al. BBKNN: fast batch alignment of single cell 
transcriptomes. Bioinformatics 36, 964–965 (2020).

28.	 Haghverdi, L. et al. Batch effects in single-cell rna-sequencing 
data are corrected by matching mutual nearest neighbors.  
Nat. Biotechnol. 36, 421–427 (2018).

29.	 Lopez, R. et al. Deep generative modeling for single-cell 
transcriptomics. Nat. Methods 15, 1053–1058 (2018).

30.	 Xu, C. et al. Probabilistic harmonization and annotation of 
single-cell transcriptomics data with deep generative models. 
Mol. Syst. Biol. 17, e9620 (2021).

31.	 Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts  
single-cell perturbation responses. Nat. Methods 16, 715–721 
(2019).

32.	 De Donno, C. et al. Population-level integration of single-cell 
datasets enables multi-scale analysis across samples.  
Nat. Methods 20, 1683–1692 (2023).

33.	 Khosla, P. et al. Supervised contrastive learning. In Advances in 
Neural Information Processing Systems 33 (eds Larochelle, H. 
et al.) 18661–18673 (NeurIPS, 2020).

34.	 Hoffer, E. & Ailon, N. Deep metric learning using triplet network. In 
Similarity-Based Pattern Recognition: SIMBAD 2015 (eds Feragen, A. 
et al.) 84–92 (Springer, 2015).

35.	 Sikkema, L. et al. An integrated cell atlas of the human lung in 
health and disease. Nat. Med. 29, 1563–1577 (2023).

36.	 Xu, C. et al. Automatic cell-type harmonization and integration 
across Human Cell Atlas datasets. Cell 186, 5876–5891.e20 
(2023).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, 
Inc. 2025

http://www.nature.com/naturebiotechnology
https://doi.org/10.1101/2023.11.28.568918
https://doi.org/10.1101/2023.11.28.568918
https://doi.org/10.1101/2023.09.08.555192
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1710.09412


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-025-02702-z

Methods
Datasets and preprocessing
Raw sequencing data were downloaded from the respective data 
providers on October 1, 2023, as detailed in Extended Data Table 1. A 
total of 11 cell atlases were analyzed, totaling 3,510,450 cell profiles. 
A uniform preprocessing protocol was applied across the datasets. 
Cell profiles with fewer than 1,000 reads or fewer than 500 detected 
genes were filtered out and genes present in fewer than five cells were 
also excluded. Normalization was performed using Scanpy37, scaling 
each cell’s read counts to a total of 10,000 and subsequently applying 
a log1p transformation.

Baselines
A total of 13 methods were used for comparison, three dimension-
ality reduction baselines (PCA, tSNE38 and UMAP39), eight integra-
tion methods (Harmony25, BBKNN27, Scanorama26, fastMNN28, scVI29, 
scANVI30, scGen31 and scPoli32) and two pretrained foundation mod-
els (Geneformer6 and scGPT9), for both zero-shot and fine-tuned 
embedding extraction. For dimensionality reduction methods, the 
log1p-transformed raw counts from gene-by-cell matrices were pro-
vided as input. For each integration method, an independent grid 
search was conducted around the default recommended hyperparame-
ter settings (Supplementary Note). For Geneformer and scGPT, the larg-
est pretrained model weights provided by the authors9 (https://hugging 
face.co/ctheodoris/Geneformer/tree/main/) were used. While scANVI, 
scGen, scPoli and fine-tuned scGPT use cell type as parts of their com-
putational pipelines, other methods do not require such information. 
The top 1,000 highly variable genes were identified.

Assessment metrics
Cell embeddings were assessed using established evaluation metrics 
as previously described11 and implemented in scib-metrics (https:// 
scib-metrics.readthedocs.io/en/stable/). The following evaluation 
metrics were used (abbreviations noted are used in Extended Data 
Tables 1–5 and Supplementary Tables 3–12): isolated labels (I-label), 
Leiden normalized mutual information (L-NMI), Leiden averaged Rand 
index (L-ARI), k-means NMI and ARI (K-NMI and K-ARI), silhouette label 
and batch (S-label and S-batch), batch mixing (iLISI) and cell type sepa-
ration (cLISI), graph connectivity (G-Con) and principal component 
regression (PCR). Consistent with previous studies, selection of highly 
variable genes enhanced the performance of data integration methods.

Islander design
Islander is a three-layer perceptron with two hidden layers of sizes 128 
and 16 and an output layer matching the total number of cell types as 
annotated. The first hidden layer incorporates rectified linear unit 
(ReLU) activation and batch normalization. Cell embeddings are 
derived from the last hidden layer, which, while trained using one-hot 
encoding in the final layer, does not rely on one-hot encoding for the 
embedding itself. The output layer uses a softmax normalization func-
tion. Each layer in this extended setup uses ReLU activation and batch 
normalization, except for the final linear layer.

Training setup
The model was trained in a manner aligned with scvi-tools40, with 
minibatches of 256 randomly sampled cells from all batches, along with 
their cell type annotations. Islander was trained using cross-entropy 
loss with mixup16 augmentations (default setting). The Adam optimizer 
was used with an initial learning rate of 0.001 over ten epochs and a 
cosine annealing scheduler for learning rate decay. All cells were used 
for training to maximize overfitting.

Impact of semisupervised loss formats with Islander
Two Islander variants were explored using the same neural architec-
ture but different loss functions: triplet loss (Tri)34 and supervised 

contrastive loss (SCL)33 (Supplementary Note). While both adhered to 
semisupervised learning principles and achieved high scIB scores, they 
displayed contrasting behaviors. The SCL variant tended to produce 
problematic cell embeddings, detectable by scGraph, while the Tri 
variant fostered a more biologically valid embedding space. Strategies 
such as encoder regularization with additional losses (for example, 
reconstruction or unsupervised large-scale pretraining) emphasize 
the importance of careful metric development and offer guidance for 
future computational biology research.

Neighborhood calculation
Neighborhoods of each cell type were identified by the Euclidean dis-
tance between the centroids of cell profiles of each type in the embed-
ding space. To mitigate the effects of batch variation and measurement 
noise, a trimming strategy was applied. The outlying 5% of cells on 
both sides were excluded before calculating the centroid coordinates. 
This ensures a more accurate representation of cell type proximity by 
focusing on the most representative data points. Evidence support-
ing the rationale behind these design choices is provided in Extended 
Data Fig. 2.

Design of scGraph
scGraph quantifies the similarity between two graphs that each repre-
sent the closeness between cell types. In these graphs, each entry (x, 
y) denotes the proximity of cell type x to cell type y. The goal is to align 
the neighborhood graphs from the embeddings with the reference 
graph derived from the data, indicating that cells with similar profiles 
are appropriately clustered in the embedding space. The first graph is 
derived from the provided embeddings, while the second, serving as 
a reference, is based on batch-wise PCA loadings from each batch. For 
the reference, proximity graphs are initially computed from each batch 
using normalized Euclidean distances between centroids of the cell 
type profiles. These batch-specific graphs are then amalgamated into a 
single consensus graph through averaging. The similarity of neighbor-
hoods for each cell type is assessed using weighted Pearson correla-
tion, where the weights are inversely proportional to the distances. 
This modification provides a ranking similar to simple correlation but 
with greater emphasis on closer neighbors (capturing finer structure) 
while reducing the influence of more distant cell types. The final score, 
reflecting the overall similarity and ranging from −1 to 1 (with higher 
values indicating greater similarity), is the average across all cell types. 
Notably, computing scGraph scores does not require every cell type 
to be present in each batch nor does it require the graphs to be fully 
connected. Lastly, as scGraph constructs its reference using PCA-based 
loadings, it may favor embeddings that resemble PCA or those where 
the authors made annotations.

Practical usage considerations of scIB and scGraph
scGraph evaluates how well cell type relationships are preserved across 
batches by computing Euclidean distances between PCA-based cen-
troids and averaging them into a consensus matrix. To assess stability, 
the variance-to-mean ratio of these distances across batches can be 
measured. Low variance suggests stable biological relationships, while 
high variance indicates batch-specific shifts, which could stem from 
either technical artifacts or meaningful biological variation. When 
batch effects are purely technical, scIB’s emphasis on mixing is more 
appropriate, whereas scGraph is more useful when interbatch variation 
carries biological importance.

Because scGraph scores depend on dataset context, comparing 
integration methods relative to each other is often more informative 
than interpreting absolute values. Differences of 0.05–0.1 in scores can 
signal meaningful improvements or artifacts but no universal threshold 
defines ‘good’ performance. For example, in datasets with expected 
biological heterogeneity across batches, lower scGraph scores may 
reflect true biological differences rather than poor integration. 

http://www.nature.com/naturebiotechnology
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Conversely, in cases where batch effects are purely technical, higher 
scGraph scores indicate better correction. Thus, scGraph should be 
used alongside other metrics to ensure biologically meaningful evalu-
ation of integration quality.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data in this study are publicly available. Statistics, resources and 
corresponding studies are listed in Extended Data Table 1.

Code availability
The implementation code for Islander, as well as tutorial notebooks 
to reproduce the results in this paper, can be accessed from GitHub 
(https://github.com/Genentech/Islander). The standalone scgraph 
evaluation toolkit can be installed using pip (https://pypi.org/project/ 
scgraph-eval/). For scIB evaluation pipelines, the implementations by 
Gayso et al. were obtained from GitHub (https://github.com/yoseflab/ 
scib-metrics).
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Extended Data Table 1 | Statistics of cell atlases

Atlas # Gene # Cell # Class # Batch Reference

Brain 59,357 888,263 11 4 Paper17, Data source17

Breast 33,234 703,512 39 126 Paper18, Data source18

COVID 33,537 559,517 31 10 Paper41, Data source41

Eye 36,484 51,645 11 8 Paper19, Data source19

Gut (Fetal) 26,328 62,849 21 9 Paper20, Data source20

Heart 33,234 486,134 27 14 Paper21, Data source21

Lung 28,024 584,444 53 166 Paper35, Data source35

Lung (Fetal, Donor) 26,354 71,752 144 29 Paper22, Data source22

Lung (Fetal, Organoid) 24,653 70,495 28 37 Paper22, Data source22

Pancreas 19,093 16,382 14 9 Paper11, Data source42

Skin 30,933 15,457 13 5 Paper23, Data source23

This table provides an overview of each dataset used in the study. For each dataset, we report the total number of unique genes (“# Gene”), cells (“# Cell”), cell types (“# Class”), and batches (“# 
Batch”). Additionally, the table includes links to relevant literature and dataset associated with each atlas.
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Extended Data Table 2 | Benchmarking cell embeddings using scIB with default annotations for 144 cell types on the Human 
Fetal Lung Cell Atlas, the donor split

Method Bio conservation Batch correction Aggregate score

HVG I-label L-NMI L-ARI K-NMI K-ARI S-label cLISI S-batch iLISI KBET G-Con PCR Batch Bio Total

PCA 0.571 0.809 0.581 0.723 0.237 0.532 1.000 0.834 0.043 0.620 0.821 0.000 0.464 0.636 0.567

PCA ✓ 0.581 0.799 0.619 0.716 0.191 0.535 0.999 0.868 0.059 0.640 0.797 0.000 0.473 0.634 0.570

TSNE 0.583 0.762 0.318 0.720 0.160 0.499 1.000 0.542 0.042 0.480 0.663 0.000 0.345 0.577 0.484

TSNE ✓ 0.585 0.767 0.350 0.716 0.157 0.504 1.000 0.568 0.059 0.509 0.693 0.000 0.366 0.582 0.496

UMAP 0.580 0.765 0.387 0.713 0.162 0.489 0.999 0.576 0.068 0.572 0.708 0.000 0.385 0.585 0.505

UMAP ✓ 0.548 0.771 0.404 0.713 0.162 0.524 0.999 0.586 0.085 0.560 0.707 0.000 0.388 0.589 0.508

Harmony 0.544 0.720 0.339 0.648 0.203 0.490 0.929 0.831 0.144 0.808 0.774 0.291 0.570 0.553 0.560

Harmony ✓ 0.487 0.641 0.334 0.554 0.115 0.488 0.927 0.831 0.150 0.675 0.671 0.597 0.585 0.507 0.538

Scanorama 0.487 0.821 0.692 0.723 0.236 0.538 1.000 0.860 0.096 0.739 0.818 0.000 0.503 0.643 0.587

Scanorama ✓ 0.564 0.816 0.703 0.725 0.237 0.536 1.000 0.865 0.091 0.744 0.821 0.000 0.504 0.654 0.594

BBKNN 0.413 0.753 0.340 0.703 0.150 0.541 0.927 0.590 0.160 0.785 0.725 0.000 0.452 0.547 0.509

BBKNN ✓ 0.573 0.754 0.392 0.697 0.158 0.487 0.931 0.580 0.133 0.669 0.649 0.000 0.406 0.571 0.505

fastMNN ✓ 0.415 0.251 0.060 0.228 0.040 0.397 0.984 0.778 0.162 0.101 0.067 0.616 0.345 0.339 0.341

scVI 0.552 0.709 0.369 0.636 0.136 0.522 0.927 0.834 0.139 0.840 0.860 0.415 0.618 0.550 0.577

scVI ✓ 0.606 0.724 0.407 0.663 0.142 0.521 0.923 0.838 0.142 0.818 0.849 0.681 0.666 0.569 0.608

scANVI 0.532 0.785 0.559 0.682 0.174 0.540 1.000 0.818 0.137 0.850 0.862 0.154 0.564 0.610 0.592

scANVI ✓ 0.597 0.856 0.738 0.736 0.232 0.554 1.000 0.829 0.121 0.834 0.861 0.521 0.633 0.673 0.657

scGen ✓ 0.603 0.902 0.756 0.789 0.285 0.609 0.931 0.695 0.144 0.846 0.906 0.138 0.546 0.697 0.636

scPoli 0.462 0.876 0.663 0.802 0.290 0.624 1.000 0.745 0.145 0.869 0.903 0.000 0.532 0.674 0.617

scPoli ✓ 0.661 0.879 0.700 0.802 0.313 0.629 1.000 0.739 0.143 0.867 0.899 0.230 0.575 0.712 0.657

Geneformer 0.492 0.640 0.304 0.520 0.107 0.475 0.996 0.829 0.114 0.672 0.624 0.410 0.530 0.505 0.515

scGPT ✓ 0.486 0.583 0.225 0.467 0.063 0.445 0.991 0.770 0.165 0.636 0.549 0.482 0.521 0.466 0.488

scGPT (FT) ✓ 0.517 0.717 0.342 0.658 0.156 0.518 0.998 0.762 0.130 0.819 0.826 0.585 0.624 0.558 0.584

Author’s 0.575 0.844 0.561 0.774 0.347 0.567 1.000 0.834 0.070 0.780 0.897 0.000 0.516 0.667 0.607

Islander (Tri) 0.624 0.923 0.932 0.822 0.315 0.724 1.000 0.815 0.114 0.825 0.838 0.000 0.518 0.763 0.665

Islander (SCL) 0.625 0.854 0.380 0.852 0.399 0.785 1.000 0.748 0.145 0.792 0.822 0.000 0.501 0.699 0.620

Islander (Run1) 0.818 0.999 1.000 0.901 0.449 0.793 1.000 0.854 0.124 0.889 0.972 0.240 0.616 0.851 0.757

Islander 
(Run2)

0.824 0.999 1.000 0.891 0.406 0.793 1.000 0.853 0.123 0.883 0.970 0.217 0.609 0.845 0.751

Islander 
(Run3)

0.817 0.999 1.000 0.894 0.440 0.794 1.000 0.854 0.123 0.888 0.970 0.249 0.617 0.849 0.756

The highest scores for each metric are highlighted in bold. All subsequent tables adhere to the same annotation scheme.
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Extended Data Table 3 | Benchmarking cell embeddings using the scIB framework with a broad annotation of 14 cell types 
on the Human Fetal Lung Atlas

Method Bio conservation Batch correction Aggregate score

I-label L-NMI L-ARI K-NMI K-ARI S-label cLISI S-batch iLISI KBET G-Con PCR Batch Bio Total

PCA 0.575 0.770 0.480 0.743 0.453 0.594 1.000 0.849 0.043 0.258 0.872 0.000 0.404 0.659 0.557

TSNE 0.291 0.594 0.099 0.636 0.270 0.510 1.000 0.625 0.042 0.205 0.633 0.000 0.301 0.486 0.412

UMAP 0.399 0.650 0.167 0.684 0.327 0.531 1.000 0.627 0.068 0.305 0.798 0.000 0.360 0.537 0.466

Harmony 0.588 0.783 0.556 0.778 0.695 0.613 1.000 0.748 0.142 0.615 0.794 0.603 0.581 0.716 0.662

Scanorama 0.569 0.790 0.477 0.732 0.464 0.589 1.000 0.869 0.083 0.396 0.942 0.132 0.484 0.660 0.590

BBKNN 0.901 0.682 0.186 0.756 0.436 0.569 1.000 0.570 0.155 0.513 0.895 0.079 0.442 0.647 0.565

scVI 0.620 0.886 0.896 0.780 0.567 0.571 1.000 0.851 0.133 0.478 0.934 0.668 0.613 0.760 0.701

scANVI 0.639 0.848 0.618 0.778 0.581 0.606 1.000 0.830 0.123 0.470 0.909 0.527 0.572 0.724 0.663

scPoli 0.691 0.751 0.390 0.882 0.841 0.733 1.000 0.674 0.137 0.495 0.775 0.331 0.482 0.755 0.646

Geneformer 0.506 0.759 0.550 0.547 0.319 0.527 1.000 0.848 0.113 0.403 0.834 0.405 0.521 0.601 0.569

Author’s 0.713 0.663 0.174 0.673 0.358 0.553 1.000 0.590 0.107 0.392 0.829 0.000 0.384 0.591 0.508

Islander (Tri) 0.614 0.758 0.377 0.679 0.362 0.600 1.000 0.766 0.114 0.434 0.823 0.000 0.427 0.627 0.547

Islander (SCL) 0.743 0.572 0.091 0.383 0.074 0.411 1.000 0.640 0.145 0.477 0.442 0.000 0.341 0.468 0.417

Islander (Run1) 0.650 0.686 0.321 0.586 0.329 0.582 1.000 0.748 0.124 0.474 0.365 0.240 0.390 0.593 0.512

Islander (Run2) 0.678 0.686 0.321 0.616 0.369 0.589 1.000 0.746 0.123 0.469 0.365 0.217 0.384 0.608 0.519

Islander (Run3) 0.695 0.687 0.321 0.616 0.365 0.585 1.000 0.747 0.123 0.485 0.364 0.249 0.394 0.610 0.523

Islander (UMAP1) 0.328 0.637 0.151 0.445 0.271 0.442 1.000 0.485 0.149 0.462 0.385 0.360 0.368 0.468 0.428

Islander (UMAP2) 0.700 0.635 0.147 0.430 0.294 0.515 1.000 0.475 0.149 0.461 0.375 0.538 0.400 0.532 0.479

Islander (UMAP3) 0.354 0.634 0.147 0.405 0.259 0.495 1.000 0.494 0.152 0.473 0.375 0.312 0.361 0.471 0.427
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Extended Data Table 4 | Benchmarking cell embeddings, using scGraph

Method HVG Brain Breast COVID Eye Gut (F) Heart Lung (F,D) Lung (F,O) Lung Pancreas Skin

Harmony 0.168 0.739 0.770 0.405 0.538 0.763 0.511 0.284 0.700 0.520 0.465

Harmony ✓ 0.427 0.736 0.804 0.515 0.696 0.552 0.570 0.356 0.781 0.431 0.694

Scanorama 0.239 0.645 0.776 0.522 0.706 0.628 0.594 0.263 0.351 0.439 0.559

Scanorama ✓ 0.250 0.694 0.760 0.534 0.635 0.554 0.622 0.201 0.309 0.291 0.465

BBKNN 0.091 0.644 0.775 0.524 0.596 0.684 0.579 0.314 0.685 0.563 0.626

BBKNN ✓ 0.166 0.658 0.771 0.456 0.736 0.627 0.693 0.550 0.689 0.445 0.690

scVI 0.065 0.632 0.719 0.393 0.650 0.316 0.493 0.478 0.704 0.378 0.387

scVI ✓ 0.254 0.690 0.752 0.314 0.649 0.588 0.499 0.453 0.674 0.506 0.567

scANVI 0.116 0.647 0.757 0.408 0.626 0.350 0.567 0.552 0.672 0.390 0.386

scANVI ✓ 0.396 0.735 0.763 0.517 0.600 0.569 0.585 0.509 0.678 0.394 0.436

scGen ✓ 0.217 0.600 0.779 0.436 0.526 0.606 0.331 0.161 0.337 0.354 0.692

scPoli - - 0.573 0.431 0.588 0.679 0.394 0.572 0.588 0.311 0.462

scPoli ✓ 0.295 0.519 0.672 0.360 0.594 0.706 0.455 0.590 0.518 0.401 0.422

Geneformer - - - 0.524 0.747 0.449 0.604 0.265 0.479 - 0.540

scGPT ✓ - - 0.535 0.256 0.447 0.487 0.552 0.388 0.390 - 0.378

Author’s 0.295 0.689 - 0.284 0.641 0.702 0.500 - 0.640 - 0.472

Islander -0.071 -0.032 0.361 -0.335 0.098 0.013 -0.011 0.022 -0.061 0.234 -0.093

“F”, “D” and “O” represents fetal, donor and organoid, respectively. “-” means the embeddings are not available, due to memory limitations (>500 G in RAM) or unavailability of raw counts or 
ensembl ids (used in Geneformer and scGPT). We bold the highest and underline the lowest scores for each dataset.
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Extended Data Table 5 | Benchmarking cell embeddings using scIB and scGraph with default annotations for 9 cell subtypes 
of fibroblasts, applied to the fibroblast subset of the Human Fetal Lung Cell Atlas. All methods are re-trained on this subset

Method Bio conservation Batch correction scIB aggregate score scGraph 
-

I-label L-NMI L-ARI K-NMI K-ARI S-label cLISI S-batch iLISI KBET G-Con PCR Batch Bio Total

PCA 0.584 0.707 0.618 0.638 0.581 0.554 0.990 0.910 0.004 0.189 0.952 0.000 0.411 0.667 0.565 0.452

TSNE 0.653 0.510 0.160 0.567 0.445 0.597 1.000 0.641 0.021 0.182 0.748 0.000 0.318 0.562 0.464 0.372

UMAP 0.757 0.542 0.203 0.635 0.490 0.633 1.000 0.663 0.035 0.262 0.904 0.000 0.373 0.609 0.514 0.408

Harmony 0.452 0.232 0.154 0.185 0.101 0.491 0.815 0.863 0.139 0.770 0.820 0.887 0.696 0.347 0.487 0.396

Scanorama 0.542 0.670 0.586 0.535 0.471 0.539 0.994 0.914 0.066 0.517 0.920 0.123 0.508 0.620 0.575 0.352

BBKNN 0.659 0.470 0.178 0.527 0.408 0.580 0.994 0.669 0.076 0.388 0.897 0.000 0.406 0.545 0.489 0.075

scVI 0.493 0.251 0.171 0.265 0.180 0.503 0.811 0.860 0.145 0.677 0.813 0.936 0.686 0.382 0.504 0.339

scANVI 0.541 0.846 0.824 0.663 0.629 0.549 0.998 0.858 0.082 0.701 0.926 0.636 0.640 0.721 0.689 0.356

scPoli 0.569 0.440 0.245 0.475 0.332 0.549 0.951 0.800 0.108 0.623 0.970 0.521 0.604 0.509 0.547 0.273

Geneformer 0.486 0.340 0.149 0.121 0.082 0.504 0.940 0.892 0.081 0.542 0.677 0.558 0.550 0.375 0.445 0.378

scGPT 0.455 0.147 0.046 0.110 0.051 0.473 0.773 0.764 0.161 0.551 0.710 0.589 0.555 0.293 0.398 0.259

scGPT (FT) 0.487 0.338 0.138 0.309 0.195 0.520 0.948 0.739 0.104 0.615 0.921 0.723 0.621 0.419 0.500 0.283

Islander 0.822 1.000 1.000 1.000 1.000 0.803 1.000 0.896 0.073 0.811 0.943 0.000 0.545 0.946 0.786 -0.036

Author’s 0.753 0.569 0.220 0.723 0.615 0.647 1.000 0.683 0.069 0.474 0.946 0.000 0.435 0.647 0.562 0.421
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Extended Data Fig. 1 | Drifting Cell Islands, different runs of Islander on fetal lung atlas (donor).
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Extended Data Fig. 2 | Design optimization for scGraph using human fetal lung 
atlas22. a, b, Distribution of raw (a) and log1p-transformed (b) scRNA-seq counts. 
c, scGraph scores using log- 1p counts do not effectively flag distortions caused 
by drifting cell islands. scGraph scores (y axis) for embeddings generated with 
each method (x axis) using log-1p counts. d,e Effect of trim rate on PCA centroid 
locations and scGraph scores. d, Normalized mean square error between 

centroids (MSE, y-axis) at different trimming rates (x-axis), with centroids at 
49% trimming as reference. e, Percentage difference (y-axis) between scGraph 
scores at various trimming rates (x-axis) compared to the score at 49% trimming. 
While small trim rates lead to larger changes in centroid coordinates, the 
corresponding changes in scGraph scores are relatively minor. Based on these 
observations, we selected a trim rate of 5% per side (10% total).
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Extended Data Fig. 3 | Scoring human fetal lung fibroblast22 embeddings 
by scIB and scGraph metrics. a-c, Embeddings of 31,020 human fetal lung 
fibroblast profiles from 9 fibroblast subtypes across 29 batches, generated by the 
top scoring methods based on scIB (scANVI and Is- lander) or scGraph (Harmony 

and Authors’) and colored by developmental stage (a), cell types (b), or batch 
(c). Each method was trained on this subset and evaluated using both scIB and 
scGraph (Extended Data Table 5). d-e, Rankings of integration methods. scGraph 
(d, y axis) and scIB (e, y axis) scores for each of the 9 integration methods (x axis).

http://www.nature.com/naturebiotechnology
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