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Limitations of cell embedding metrics
assessed using drifting islands
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Biological studies rely on embeddings of single-cell profiles but assessing
the quality of these embeddings is challenging. Here we show that current
evaluation metrics areincomplete by training a three-layer perceptron,

Islander. Islander outperforms all leading embedding methods on a diverse
set of cell atlases but it distorts biological structures, limiting its use for
biological discovery. We then present anew metric, scGraph, to help flag

such distortions.

Embeddings of single-cell profiles are now routinely used as aresearch
tool in biological investigation to characterize cell types and states,
their changes over time and their distinction between conditions,
including diseases, organs or drug treatments?. With a dramatic
growth in single-cell data, including the Human Cell Atlas**, multiple
efforts have focused on learning universal embeddings for diverse
single-cell data, with different integration methods or foundation
models®'°. Given their broad use, it is crucial to scrutinize the quality
ofembeddings to evaluate the performance of the underlyingintegra-
tion methods" " and zero-shot capabilities of the resulting foundation
models*". Thus, development of new successful methods and models
also relies on good evaluation metrics.

Acritical aspectin deriving helpful cellembeddingsis the correc-
tionof nonbiological batch effects that stem from technical variations,
such as sample handling and sequencing protocols. These unwanted
variations can mask biological signals and lead to misleading inter-
pretations. Integration methods, thus, aim to mitigate batch-specific
discrepancies while preserving essential biological variation. The
effectiveness of these integrated cellembeddingsis typically assessed
through two evaluation lenses: how well the cells from various batches
mix together and how closely cells of the same type group together.

Here, we identified an overlooked challenge in the evaluation
metrics used to assess embeddings. To demonstrate the limitations
of current gold-standard metrics for cell profile embeddings", we
developed Islander (Fig. 1a), a model that scores best on established
evaluation metrics but generates biologically problematic embed-
dings. Islander is a three-layer perceptron, directly trained on cell
type annotations with mixup augmentations'®. We tested Islander
across a diverse set of 11 different human tissue cell atlases (brain",
spanning breast’®, eye”, fetal gut*’, heart”, fetal lung?, pancreas" and
skin?), which together cover different strengths of batch effects and
diverse biological systems, overall comprising more than 3.5 million

cells from ten human organ systems (Extended Data Table1). For each
atlas, we trained anIslander model and then compared it with another
13 embeddingbaselines: three dimension reduction methods (princi-
pal component analysis (PCA), uniform manifold approximation and
projection (UMAP) and ¢-distributed stochastic neighbor embedding
(tSNE))*, eight batch integration methods (Harmony*, Scanorama®®,
BBKNN?, fastMNN?®, scVI?’, scANVI*°, scGen®' and scPoli*?) and two
foundation models (Geneformer®and scGPT’) (Methods). Inaddition,
foreachatlas, we compared to the performance of the original authors’
integration, if available.

Across all datasets, Islander consistently outperformed all baseline
strategies across all 12 metrics" (Fig. 1b,c, Extended Data Table 2 and
Supplementary Tables 3-12). This is largely because of the principles
underlying the evaluation metrics”, which focus on assessing the effi-
ciency of cellembeddings in terms of the coherence of cell clustering
structures with cell type labels and the blending of batches within
clusters. Whenlslander explicitly aligns these cell embeddings with cell
type annotations, it forms well-separated cell ‘islands’ (Fig. 1d, right),
with eachisland comprising cells annotated as the same type. This
alignment greatly boosts the biological variance conservation metrics,
leading to top-tier overall performance by these evaluation criteria
(Supplementary Tables 3-12). To explore the impact of supervision sig-
nals, wealsotrained Islander’s model using two semisupervised losses,
contrastive® and triplet*. Both achieved high scIB scores but resulted
indistinctly different structures (Supplementary Information).

While suchstructureis driven by (and complies well) with the most
granular annotation level, it comes at the cost of ignoring any higher
level relationships between cells and, thus, distorts biological struc-
tures, potentially obstructing downstream analyses and future discov-
eries; therefore, this would not be advisable for an actual integration
method. In particular, when annotated cell subsets follow a continuum,
as is the case for fibroblasts, Islander separates its constituent parts
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Fig. 1| Drifting cellislands highlight limitations of current evaluation

metrics. a, Islander overview. b,c, Evaluation of cell embeddings. Normalized
overall score (y axis; Methods) over 12 metrics for each integration method
(xaxis) assessed using the Fetal Lung Cell Atlas (b) or ten other cell atlases (c).
Baseline refers to the best baseline results (Methods). d, Fetal Lung Cell Atlas
embedding space. Single-cell profiles (dots; color-coded by cell type annotation)
from the Fetal Lung Cell Atlas embedded by the authors’ integration method
(left; withzoomed-in view ininset) or Islander (right). Annotations denote the
fibroblast subsets. Adv fibro, adventitial fibroblasts. e, ‘Airway fibroblast’ cell
neighborhood changes across Islander runs. Normalized Euclidean distance
(yaxis) between the centroids of airway fibroblast profiles and those of its five
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(Fig. 1d). In the developing human lung, the original analysis* identi-
fied multiple subtypes of fibroblasts, each distinguished by different
marker genes and spatial locations. While the original embedding
preserves a continuum between these fibroblasts (Fig. 1d, left), they
are fully separated by Islander into separate islands (Fig. 1d, right).
Similarly, the Islander embedding disrupted the developmental con-
tinuum, clearly observed in the original study (Fig. 1f, left) but obscured
by Islander (Fig. 1f, right).

Moreover, the cell islands drifted in different ways across distinct
runs, especially for smaller cell subsets. For example, in three separate
runs with overall similar scores, the composition of the neighborhood of
airway fibroblasts varied substantially, involving as many as 14 distinct cell
types within the five nearest neighbors (Fig. 1e, Extended Data Fig.1and
Extended Data Table 2). Thus, aside from clusteridentity, the embedding
may be largely arbitrary in all other relationships and this arbitrariness
would carry into downstream analysis or the biologist’s interpretation.

Prompted by these limitations of established quality evaluation
criteria, we reasoned that focusing solely on the most granular cell
relationships in evaluation can pose substantial limitations, whereas
preserving relationships between broader cell types (coarser anno-
tations) is an important additional criterion and may also be more
robust to noise. Indeed, when evaluating the same set of embeddings
using broader cell type annotations provided by the authors, Islander
now achieved an overall score of 0.523, inferior to PCA (0.557) or the
top-performing scVI*’ (0.701) (Extended Data Table 3).

Because hierarchical Cell Ontology annotations are often
unavailable’, we next developed scGraph (Methods) as a new evalu-
ation metric to complement and augment exiting metrics for quality
assessment. In this framework, for each set of cell embeddings, an
affinity graphis defined to elucidate the similarities between various
celltypes. scGraph compares each affinity graphto a consensus graph,
derived by aggregatingindividual graphs from different batches on the
basis of batch-wise PCA loadings. We used ablation studies, including
the trimming of outlier cells, to design scGraph (Methods and Extended
DataFig. 2). The framework effectively highlights inherent biological
structures and emphasizes cell type similarities while minimizing
technical variations across batches. Notably, scGraph does not require
any single batch to contain cells of all types, making it suitable for real
datasets with diverse constraints.

Embedding methods differed in their performance according to
the scGraph metric versus established scIB metrics (Extended Data
Table 4).In comparing cellembeddings on this particular fetal lung col-
lection using scGraph (Fig. 1i), BBKNN achieved the highest scores, as it
was the authors’ chosen method for integration and annotation. While
the final authors’ annotations showed midlevel performance overall,
they accurately captured fine details, such as the fibroblast family
(Extended Data Fig. 3 and Extended Data Table 5). In this case, inter-
batch variance is biologically meaningful, as batches correspond to
developmental stages (with multiple batches potentially representing
the same time point) and scGraph effectively preserves key biological
features, including trajectories and subpopulations. In contrast, sclB
promotes interbatch mixing and distinct cell type separation, favoring
models such as Islander, scGen and scANVI but overlooking develop-
mental dynamics. scGraph provided more biologically meaningful
rankings, where PCA and the authors’ annotations excelled in captur-
ing developmental trajectories. However, when interbatch variance
primarily reflects unwanted technical noise (for example, single-cell
RNA sequencing (scRNA-seq) versus single-nucleus RNA-seq), scIB
is advantageous in minimizing these effects. Thus, scGraph and scIB
complement each other and using bothis crucial foracomprehensive
assessment of embeddings. Moreover, because most evaluation met-
rics require harmonized annotations, resources such as the Human
Lung Cell Atlas® and CellHint*® tutorials can be particularly useful.

While designing an alternative ‘null’ algorithm (similar to Islander)
to optimize scGraph is possible, it is more challenging, highlighting its

robustness and reliability as an evaluation metric. However, scGraph has
itsbiases. Like scIB, it tends to favor higher-dimensionalembeddings such
as PCA over PCA-derived UMAP and it is not based on single-cell-level
calculations. Additionally, its assumption that functionally similar cells
should be proximal in the embedding space may not always hold true.
Despite these limitations, scGraph represents astep toward developing
morerobust frameworks for evaluating embeddings by capturing diverse
aspects of biological relevance and structural integrity.

In conclusion, we demonstrated the limitation of current quality
metrics by introducingIslander, a three-layer perceptron, asanull algo-
rithmfor anintegration approach that outperforms all major methods
across diverse cell atlases, eventhoughitintroducesisland-like distor-
tions in the biological structures in cell embedding spaces. Islander
serves as a touchstone for evaluating and refining future evaluation
metrics. To address the limitations Islander highlighted in current
evaluation frameworks, we further propose augmenting those with
scGraph as an additional, complementary metric, designed to assess
how wellembeddings preserve cell-cell relationships at multiple lev-
els of granularity. scGraph specifically focuses on the consistency
of cell relationships before and after integration, rather than on the
closeness of similar types and the mixing of different batches. As a
result, it is effective at detecting artifacts such as drifting cell islands
and ‘zig-zag’ structures (Supplementary Fig. 1), offering a unique per-
spective on the preservation of biological structure across batches.
Both scIB and scGraphrely onthe assumption of a Euclidean distance
withinthe embedding space, which typically favors higher-dimensional
representations. Similarly, their use is constrained to datasets with
harmonized annotations. Furthermore, because scGraph constructs
its reference using PCA-based loadings, it may preferentially favor
embeddings that resemble PCA or those influenced by the authors’
annotations. While scGraphis useful for benchmarking large-scale atlas
integration, it is especially informative for smaller, focused datasets
with finer annotations, where interbatch variance reflects meaningful
biological differences rather than technical noise (for example, sub-
types of fibroblastsin the human fetal lung atlas; Extended Data Fig. 3).
In such cases, scGraph provides deeper insight into the preservation
of continuous cell state transitions, lineage hierarchies and rare sub-
populations that may be masked by overcorrections among batches.
Unlike traditional batch-mixing metrics that emphasize the uniformity
of cell type distributions across batches, scGraph enables the identi-
fication of biologically meaningful structure, such as lineage-specific
divergence patterns or subtle state transitions that remain distinct
across conditions. This makes it a valuable complement to existing
evaluation frameworks, ensuring that integration methods do not
inadvertently distort biologically relevant variation while correcting
for technical effects.

Overall, by capturing aspects of biological structure that scIB
might overlook (and vice versa), scGraph and scIB together form a
more comprehensive evaluation framework for integration methods
and their resulting cell embeddings.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-025-02702-z.
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Methods

Datasets and preprocessing

Raw sequencing data were downloaded from the respective data
providers on October 1, 2023, as detailed in Extended Data Table 1. A
total of 11 cell atlases were analyzed, totaling 3,510,450 cell profiles.
A uniform preprocessing protocol was applied across the datasets.
Cell profiles with fewer than 1,000 reads or fewer than 500 detected
genes were filtered out and genes present in fewer than five cells were
also excluded. Normalization was performed using Scanpy?¥, scaling
eachcell’sread counts toatotal of 10,000 and subsequently applying
aloglp transformation.

Baselines

A total of 13 methods were used for comparison, three dimension-
ality reduction baselines (PCA, tSNE*® and UMAP¥), eight integra-
tion methods (Harmony?*, BBKNN?, Scanorama®®, fastMNN?, scVI”,
SCANVI®’, scGen* and scPoli**) and two pretrained foundation mod-
els (Geneformer® and scGPT?), for both zero-shot and fine-tuned
embedding extraction. For dimensionality reduction methods, the
loglp-transformed raw counts from gene-by-cell matrices were pro-
vided as input. For each integration method, an independent grid
searchwas conducted around the default recommended hyperparame-
ter settings (Supplementary Note). For Geneformer and scGPT, the larg-
est pretrained model weights provided by the authors’ (https://hugging
face.co/ctheodoris/Geneformer/tree/main/) were used. While scANVI,
scGen, scPoli and fine-tuned scGPT use cell type as parts of their com-
putational pipelines, other methods do not require such information.
Thetop 1,000 highly variable genes were identified.

Assessment metrics

Cell embeddings were assessed using established evaluation metrics
as previously described" and implemented in scib-metrics (https://
scib-metrics.readthedocs.io/en/stable/). The following evaluation
metrics were used (abbreviations noted are used in Extended Data
Tables 1-5 and Supplementary Tables 3-12): isolated labels (I-label),
Leiden normalized mutual information (L-NMI), Leiden averaged Rand
index (L-ARI), k-means NMIand ARI (K-NMIand K-ARI), silhouette label
and batch (S-label and S-batch), batch mixing (iLISI) and cell type sepa-
ration (cLISI), graph connectivity (G-Con) and principal component
regression (PCR). Consistent with previous studies, selection of highly
variable genes enhanced the performance of data integration methods.

Islander design

Islanderis athree-layer perceptron with two hiddenlayers of sizes 128
and 16 and an output layer matching the total number of cell types as
annotated. The first hidden layer incorporates rectified linear unit
(ReLU) activation and batch normalization. Cell embeddings are
derived fromthelast hidden layer, which, while trained using one-hot
encoding in the final layer, does not rely on one-hot encoding for the
embeddingitself. The output layer uses a softmax normalization func-
tion. Eachlayer in this extended setup uses ReLU activation and batch
normalization, except for the final linear layer.

Training setup

The model was trained in a manner aligned with scvi-tools*°, with
minibatches of 256 randomly sampled cells from all batches, along with
their cell type annotations. Islander was trained using cross-entropy
loss with mixup'® augmentations (default setting). The Adam optimizer
was used with an initial learning rate of 0.001 over ten epochs and a
cosineannealing scheduler for learning rate decay. All cells were used
for training to maximize overfitting.

Impact of semisupervised loss formats with Islander
Two Islander variants were explored using the same neural architec-
ture but different loss functions: triplet loss (Tri)** and supervised

contrastive loss (SCL)* (Supplementary Note). While bothadhered to
semisupervised learning principles and achieved high scIBscores, they
displayed contrasting behaviors. The SCL variant tended to produce
problematic cell embeddings, detectable by scGraph, while the Tri
variant fostered amore biologically valid embedding space. Strategies
such as encoder regularization with additional losses (for example,
reconstruction or unsupervised large-scale pretraining) emphasize
theimportance of careful metric development and offer guidance for
future computational biology research.

Neighborhood calculation

Neighborhoods of each cell type were identified by the Euclidean dis-
tance between the centroids of cell profiles of each type in the embed-
ding space. Tomitigate the effects of batch variation and measurement
noise, a trimming strategy was applied. The outlying 5% of cells on
both sides were excluded before calculating the centroid coordinates.
This ensures amore accurate representation of cell type proximity by
focusing on the most representative data points. Evidence support-
ing the rationale behind these design choices is provided in Extended
Data Fig. 2.

Design of scGraph

scGraph quantifies the similarity between two graphs that each repre-
sent the closeness between cell types. In these graphs, each entry (x,
y) denotes the proximity of cell type xto cell typey. The goalis to align
the neighborhood graphs from the embeddings with the reference
graph derived fromthe data, indicating that cells with similar profiles
areappropriately clusteredinthe embedding space. The firstgraphis
derived from the provided embeddings, while the second, serving as
areference, is based onbatch-wise PCA loadings from each batch. For
the reference, proximity graphs are initially computed from each batch
using normalized Euclidean distances between centroids of the cell
type profiles. These batch-specific graphs are then amalgamatedintoa
single consensus graph through averaging. The similarity of neighbor-
hoods for each cell type is assessed using weighted Pearson correla-
tion, where the weights are inversely proportional to the distances.
This modification provides aranking similar to simple correlation but
with greater emphasis on closer neighbors (capturing finer structure)
whilereducing theinfluence of more distant cell types. The final score,
reflecting the overall similarity and ranging from -1 to 1 (with higher
valuesindicating greater similarity), is the average across all cell types.
Notably, computing scGraph scores does not require every cell type
to be present in each batch nor does it require the graphs to be fully
connected. Lastly, as scGraph constructsits reference using PCA-based
loadings, it may favor embeddings that resemble PCA or those where
the authors made annotations.

Practical usage considerations of scIB and scGraph
scGraphevaluateshow well cell type relationships are preserved across
batches by computing Euclidean distances between PCA-based cen-
troids and averaging them into a consensus matrix. To assess stability,
the variance-to-mean ratio of these distances across batches can be
measured. Low variance suggests stable biological relationships, while
high variance indicates batch-specific shifts, which could stem from
either technical artifacts or meaningful biological variation. When
batch effects are purely technical, scIB’s emphasis on mixing is more
appropriate, whereas scGraphis more useful wheninterbatch variation
carries biological importance.

Because scGraph scores depend on dataset context, comparing
integration methods relative to each other is often more informative
thaninterpreting absolute values. Differences of 0.05-0.1in scores can
signal meaningfulimprovements or artifacts but no universal threshold
defines ‘good’ performance. For example, in datasets with expected
biological heterogeneity across batches, lower scGraph scores may
reflect true biological differences rather than poor integration.
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Conversely, in cases where batch effects are purely technical, higher
scGraph scores indicate better correction. Thus, scGraph should be
used alongside other metricsto ensure biologically meaningful evalu-
ation of integration quality.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data in this study are publicly available. Statistics, resources and
corresponding studies are listed in Extended Data Table 1.

Code availability

The implementation code for Islander, as well as tutorial notebooks
to reproduce the results in this paper, can be accessed from GitHub
(https://github.com/Genentech/Islander). The standalone scgraph
evaluationtoolkit canbe installed using pip (https://pypi.org/project/
scgraph-eval/).For scIB evaluation pipelines, the implementations by
Gaysoetal. were obtained from GitHub (https://github.com/yoseflab/
scib-metrics).
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Extended Data Table 1| Statistics of cell atlases

Atlas #Gene #Cell #Class # Batch Reference

Brain 59,357 888,263 M 4 Paper", Data source"”
Breast 33,234 703,512 39 126 Paper’®, Data source’®
CovID 33,537 559,517 31 10 Paper®, Data source”'
Eye 36,484 51,645 M 8 Paper', Data source™
Gut (Fetal) 26,328 62,849 21 9 Paper”, Data source®®
Heart 33,234 486,134 27 14 Paper?, Data source”
Lung 28,024 584,444 53 166 Paper®, Data source®
Lung (Fetal, Donor) 26,354 71,752 144 29 Paper?, Data source?
Lung (Fetal, Organoid) 24,653 70,495 28 37 Paper?, Data source®
Pancreas 19,093 16,382 14 9 Paper", Data source®
Skin 30,933 15,457 13 5 Paper?, Data source”

This table provides an overview of each dataset used in the study. For each dataset, we report the total number of unique genes (“# Gene”), cells (“# Cell”), cell types (“# Class”), and batches (“#
Batch”). Additionally, the table includes links to relevant literature and dataset associated with each atlas.
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Extended Data Table 2 | Benchmarking cell embeddings using scIB with default annotations for 144 cell types on the Human
Fetal Lung Cell Atlas, the donor split

Method Bio conservation Batch correction Aggregate score

HVG I-label L-NMI L-ARI K-NMI K-ARI S-label cLISI S-batch iLISI KBET G-Con PCR Batch  Bio Total

PCA 0.571 0.809 0581 0723 0237 0532 1000 0.834 0.043 0620 0821 0000 0464 0636 0.567
PCA v 0.581 0799 0619 0716 0191 0535 0999 0.868 0.059 0640 0797 0.000 0473 0634 0570
TSNE 0583 0762 0318 0720 0160 0499 1000 0.542 0.042 0480 0663 0.000 0345 0577 0.484
TSNE v 0585 0767 0350 0716 0157 0504 1000 0.568 0.059 0509 0693 0.000 0366 0582 0.496
UMAP 0580 0765 0387 0713 0162 0489 0999 0576 0.068 0572 0708 0000 0385 0585 0.505
UMAP v 0548 0771 0404 0713 0162 0524 0999 0.586 0.085 0.560 0707 0000 0388 0589 0.508
Harmony 0544 0720 0339 0648 0203 0490 0929 0.831 0144 0808 0774 0291 0570 0553 0.560
Harmony v 0487 0641 0334 0554 0115 0488 0927 0.831 0150 0675 0671 0597 0585 0507 0.538
Scanorama 0487 0821 0692 0723 0236 0538 1000 0.860 0096 0739 0818 0.000 0503 0643 0.587

Scanorama v 0564 0816 0703 0725 0237 0536 1000 0.865 0.091 0744 0.821 0000 0504 0.654 0594

BBKNN 0.413 0753 0340 0703 0150 0.541 0.927 0.590 0160 0.785 0725 0.000 0.452 0.547 0.509
BBKNN v 0573 0754 0.392 0697 0158 0487 0.931 0.580 0133 0669 0649 0.000 0406 0571 0.505
fastMNN v 0.415 0.251 0060 0228 0040 0.397 0984 0778 0162  0.01 0.067 0616 0345 0.339 0.341
scVI 0552 0709 0369 0636 0136 0522 0927 0.834 0139 0.840 0860 0415 0618 0550 0.577
scVI v 0606 0724 0.407 0663 0.142 0.521 0.923 0.838 0142 0.818 0.849 0.681 0.666 0.569 0.608
scANVI 0.532 0785 0559 0682 0174 0540 1.000 0.818 0137 0850 0862 0154 0.564 0610 0.592
scANVI v 0.597 0.856 0.738 0.736 0.232 0.554 1000 0.829 0121 0.834 0861 0.521 0.633 0.673 0.657
scGen v 0603 0902 0756 0789 0285 0609 0931 0.695 0144 0846 0906 0138 0546 0697 0.636
scPoli 0462 0876 0663 0.802 0.290 0624 1000 0745 0145 0.869 0903 0.000 0532 0674 0617
scPoli v 0.661 0879 0700 0.802 0.313 0.629 1.000 0.739 0143 0867 0899 0.230 0.575 0.712 0.657
Geneformer 0.492 0640 0304 0520 0107 0475 0.996 0.829 om4a 0672 0624 0410 0530 0505 0.515
scGPT v 0.486 0583 0.225 0467 0063 0.445 0.991 0.770 0165 0636 0549 0482 0.521 0466  0.488
scGPT (FT) v 0.517 0717 0342 0658 0156 0518 0998 0.762 0130 0819 0826 0585 0624 0558 0.584
Author’s 0.575 0844 0561 0774 0347 0567 1.000 0.834 0070 0780 0.897 0.000 0516 0667 0.607
Islander (Tri) 0.624 0923 0932 0.822 0315 0724 1.000 0.815 0114 0825 0.838 0.000 0.518 0.763 0.665
Islander (SCL) 0.625 0.854 0.380 0.852 0399 0.785 1.000 0.748 0145 0.792 0.822 0.000 0.501 0.699 0.620
Islander (Run1) 0.818 0.999 1000 0.901 0.449 0.793 1.000 0.854 0124 0.889 0972 0240 0.616 0.851 0.757
Islander 0.824 0999 1.000 0.891 0406 0793 1000 0.853 0123 0.883 0970 0217 0609 0.845 0751
(Run2)

I(s land)er 0.817 0999 1000 0894 0440 0794 1.000 0.854 0123 0888 0.970 0249 0.617 0.849 0.756

Run3

The highest scores for each metric are highlighted in bold. All subsequent tables adhere to the same annotation scheme.
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Extended Data Table 3 | Benchmarking cell embeddings using the scIB framework with a broad annotation of 14 cell types
on the Human Fetal Lung Atlas

Method Bio conservation Batch correction Aggregate score

I-label L-NMI L-ARI K-NMI K-ARI S-label cLISI S-batch iLISI KBET G-Con PCR Batch  Bio Total

PCA 0575 0770 0480 0743 0453 0594 1000 0.849 0.043 0.258 0872 0000 0404 0659 0557
TSNE 0.291 0594 0099 0636 0270 0510 1000 0.625 0.042 0.205 0633 0.000 0301 0486 0412

UMAP 0399 0650 0167 0684 0327 0531 1.000 0.627 0068 0305 0798 0.000 0360 0537 0.466
Harmony 0588 0783 0556 0778 0695 0613 1000 0.748 0.142 0615 0794 0603 0.581 0.716 0.662
Scanorama 0569 0790 0477 0732 0464 0589 1.000 0.869 0.083 0396 0942 0132 0.484 0660 0.590
BBKNN 0901 0682 018 0756 0436 0569 1000 0.570 0155 0513 0895 0079 0442 0647 0.565
scVI 0620 0.886 0.896 0./80 0.567 0571 1000 0.851 0133 0478 0934 0668 0613 0760 0.701

SCANVI 0639 0848 0618 0778 0581 0606 1000 0.830 0.123 0470 0909 0527 0572 0724 0.663
scPoli 0.691 0.751 0390 0.882 0841 0733 1000 0674 0137 0495 0775 0331 0.482 0755 0.646
Geneformer 0506 0759 0550 0547 0319 0527 1.000 0.848 0113 0.403 0.834 0405 0.521 0601 0.569
Author’s 0.713 0.663 0174 0673 0358 0553 1.000 0.590 0.107 0392 0829 0000 0384 0.591 0.508
Islander (Tri) 0614 0758 0377 0679 0362 0600 1000 0.766 0114 0434 0.823 0000 0427 0627 0547
Islander (SCL) 0743 0572 0091 0383 0074 041 1.000 0640 0.145 0.477 0442 0000 0.341 0.468 0.417

Islander (Run1) 0650 0.686 0321 0586 0329 0582 1.000 0748 0.124 0474 0365 0240 0390 0593 0.512
Islander (Run2) 0.678 0686 0.321 0616 0369 0589 1.000 0746 0123 0469 0365 0.217 0.384 0608 0.519
Islander (Run3) 0.695 0687 0.321 0616 0365 0585 1.000 0.747 0123 0485 0364 0249 0394 0610 0523
Islander (UMAP1)  0.328 0.637 0.151 0445 0.271 0.442 1.000 0485 0.149 0462 0385 0360 0368 0468 0428
Islander (UMAP2) 0700 0.635 0147 0430 0.294 0515 1000 0.475 0.149 0.461 0375 0538 0400 0532 0479
Islander (UMAP3) 0.354 0634 0147 0405 0259 0495 1.000 0494 0.152 0473 0375 0312 0.361 0.471 0.427
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Extended Data Table 4 | Benchmarking cell embeddings, using scGraph

Method HVG Brain Breast COoVID Eye Gut (F) Heart Lung (F,.D) Lung(FO) Lung Pancreas Skin
Harmony 0.168 0.739 0.770 0.405 0.538 0.763 0.51 0.284 0.700 0.520 0.465
Harmony v 0.427 0.736 0.804 0.515 0.696 0.552 0.570 0.356 0.781 0.431 0.694
Scanorama 0.239 0.645 0.776 0.522 0.706 0.628 0.594 0.263 0.351 0.439 0.559
Scanorama v 0.250 0.694 0.760 0.534 0.635 0.554 0.622 0.201 0.309 0.291 0.465
BBKNN 0.091 0.644 0.775 0.524 0.596 0.684 0.579 0.314 0.685 0.563 0.626
BBKNN v 0.166 0.658 0771 0.456 0.736 0.627 0.693 0.550 0.689 0.445 0.690
scvl 0.065 0.632 0.719 0.393 0.650 0.316 0.493 0.478 0.704 0.378 0.387
scVI v 0.254 0.690 0.752 0.314 0.649 0.588 0.499 0.453 0.674 0.506 0.567
SCANVI 0116 0.647 0.757 0.408 0.626 0.350 0.567 0.552 0.672 0.390 0.386
sCANVI v 0.396 0.735 0.763 0.517 0.600 0.569 0.585 0.509 0.678 0.394 0.436
scGen v 0.217 0.600 0.779 0.436 0.526 0.606 0.331 0.161 0.337 0.354 0.692
scPoli - - 0.573 0.431 0.588 0.679 0.394 0.572 0.588 0.311 0.462
scPoli v 0.295 0.519 0.672 0.360 0.594 0.706 0.455 0.590 0.518 0.401 0.422
Geneformer - - - 0.524 0.747 0.449 0.604 0.265 0.479 - 0.540
scGPT v - - 0.535 0.256 0.447 0.487 0.552 0.388 0.390 - 0.378
Author’s 0.295 0.689 - 0.284 0.641 0.702 0.500 - 0.640 - 0.472
Islander -0071 -0032 0361 -0.335 0.098 0013 -0.011 0.022 -0.061 0.234 -0.093

“F”,“D” and “O” represents fetal, donor and organoid, respectively. “-” means the embeddings are not available, due to memory limitations (>500 G in RAM) or unavailability of raw counts or
ensembl ids (used in Geneformer and scGPT). We bold the highest and underline the lowest scores for each dataset.
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Extended Data Table 5 | Benchmarking cell embeddings using scIB and scGraph with default annotations for 9 cell subtypes
of fibroblasts, applied to the fibroblast subset of the Human Fetal Lung Cell Atlas. All methods are re-trained on this subset

Method Bio conservation Batch correction scIB aggregate score scGraph
I-label L-NMI  L-ARI K-NMI K-ARI S-label cLISI  S-batch iLISI KBET G-Con PCR Batch  Bio Total

PCA 0.584 0.707 0618 0638 0581 0.554 0.990 0.910 0.004 0189  0.952 0.000 041 0667 0565 0.452

TSNE 0.653 0.510 0160 0567 0445 0.597 1.000 0641 0.021 0182 0748 0.000 0.318 0562 0.464 0.372

UMAP 0.757 0.542 0.203 0635 0490 0.633 1.000 0.663 0.035 0.262 0904 0.000 0.373 0609 0514 0.408

Harmony 0.452 0.232 0.154 0185  0.101 0.491 0.815  0.863 0.139 0770  0.820 0.887 0696 0347 0.487 0.396
Scanorama  0.542 0.670 0.586 0535 0471 0.539 0.994 0914 0.066 0.517  0.920 0.123 0.508 0.620 0.575 0.352

BBKNN 0.659 0.470 0.178 0.527 0.408 0.580 0.994 0.669 0.076 0.388 0.897 0.000 0.406 0.545  0.489 0.075
scVI 0.493 0.251 017 0.265 0180 0.503 0.811 0.860 0.145 0.677 0.813 0936 0.686 0382 0.504 0.339
SCANVI 0.541 0.846 0.824 0663 0629 0.549 0.998 0.858 0.082 0.701 0.926 0.636 0.640 0.721 0.689 0.356
scPoli 0.569 0.440 0.245 0475 0332 0549 0.951 0.800 0.108 0.623 0.970 0.521 0.604 0.509 0.547 0.273

Geneformer  0.486 0.340 0.149 0121 0.082 0.504 0.940 0.892 0.081 0.542 0.677 0.558  0.550 0375  0.445 0.378

scGPT 0.455 0.147 0.046 0110 0.051 0473 0773  0.764 0.161 0.551 0.710 0.589  0.555 0.293  0.398 0.259

scGPT (FT) 0.487 0.338 0.138 0309 0195 0520 0.948 0.739 0.104 0.615  0.921 0723 0.621 0.419 0.500 0.283

Islander 0.822 1.000 1000 1000 1000 0.803 1000 0.896 0.073 0.81 0.943 0.000 0.545 0946 0.786 -0.036

Author’s 0.753 0.569 0220 0723 0615 0.647 1.000 0.683 0.069 0.474  0.946 0.000 0.435 0.647  0.562 0.421
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Extended Data Fig. 2| Design optimization for scGraph using human fetal lung
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and Authors’) and colored by developmental stage (a), cell types (b), or batch
(c). Each method was trained on this subset and evaluated using both scIB and
fibroblast profiles from 9 fibroblast subtypes across 29 batches, generated by the ~ scGraph (Extended Data Table 5). d-e, Rankings of integration methods. scGraph
(d, y axis) and scIB (e, y axis) scores for each of the 9 integration methods (x axis).
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Software and code

Policy information about availability of computer code

Data collection  All used datasets are publicly available. We provide the code to easily download the data: https://github.com/Genentech/Islander/blob/main/
scripts/_download_data.sh

Data analysis Data analysis

The analysis was performed in Python (version 3.9.18). All package versions used in the Python environment are listed in the environment
YAML file: https://github.com/Genentech/Islander/blob/main/env.yml.

Notably, the integration and benchmark suite includes:

scib-metrics==0.4.1 (https://github.com/yoseflab/scib-metrics), pynndescent==0.5.10, pydantic==2.1.1, pydantic-core==2.4.0, pandas==2.1.3,
numba==0.58.1, numpy==1.26.2, jax==0.4.20, jaxlib==0.4.20+cudall.cudnn86, igraph==0.10.8, hSpy==3.10.0, bbknn==1.6.0,
anndata==0.10.3, scgen==2.1.1, scarches==0.5.9, scanorama==1.7.4, scanpy==1.9.6, harmony-pytorch==0.1.7, scvi-tools==1.0.4.

Training Islander involves:
wandb==0.16.0, scikit-learn==1.3.2, pyyaml|==6.0.1, python-json-logger==2.0.7, python-multipart==0.0.6, pytorch-lightning==2.1.2,
torch==2.1.1.

Visualization modules include:
umap-learn==0.5.5, matplotlib==3.8.2, matplotlib-inline==0.1.6, leidenalg==0.10.1, jupyter==1.0.0, seaborn==0.12.2.
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Our own developed evaluation metric toolkit:
scgraph-eval==0.1.2 (https://github.com/Genentech/Islander).
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All datasets used in this study are publicly available. Extended Data Table 1 and the README file in the Github (https://github.com/Genentech/Islander) contain the
download links and relevant literature. All data was accessed on October 1, 2023
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information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.
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Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used full published datasets, so sample size was defined by the studies that generated the data and any relevant post-processing by the
authors. We applied a uniform pre-processing protocol across the datasets. Cell profiles with fewer than 1,000 reads or less than 500
detected genes were filtered out, and genes present in fewer than five cells were also excluded.

For computational experiments, we used three different random seeds to initialize the Islander models' weights and conducted three
independent runs for each baseline method on each dataset. We reported the average performance of each method, as the variance across

distinct runs was not significant.

Data exclusions  No data was excluded from the analyses.
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Replication All computational experiments are repeatable using the code provided. Each model training was independently replicated three times using
different random seeds. Training typically takes 2—5 hours per run. Benchmarking with scIB takes approximately 0.5-5 hours per dataset, and
scGraph benchmarking requires less than 10 minutes. Performance was averaged across runs, and variance was consistently low.

Randomization  Randomization was not required, as our study involved only computational analyses using publicly available datasets. All datasets were pre-
collected and processed uniformly. Model training and evaluation were conducted using fixed pipelines, and variability was addressed
through multiple random seed replications.

Blinding Blinding was not required, as no new wet-lab experiments involving human or animal subjects were conducted. All analyses were

computational and based on publicly available datasets with predefined labels and metadata. Model evaluation was automated and
benchmarked using objective metrics.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedures for-each-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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