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Countrywide natural experiment links built 
environment to physical activity

Tim Althoff1 ✉, Boris Ivanovic2, Abby C. King3,4, Jennifer L. Hicks5, Scott L. Delp5,6 & 
Jure Leskovec7,8

While physical activity is critical to human health, most people do not meet 
recommended guidelines1,2. Built environments that are more walkable have the 
potential to increase activity across the population3–8. However, previous studies on 
the built environment and physical activity have led to mixed findings, possibly due to 
methodological limitations such as small cohorts, over-reliance on self-reported 
measures and cross-sectional designs5,7,9–11. Here we address these limitations by 
leveraging a large US cohort of smartphone users (N = 2,112,288) to evaluate within- 
person longitudinal behaviour changes that occurred over 248,266 days of objectively 
measured physical activity across 7,447 relocations among 1,609 US cities. By 
analysing the results of this natural experiment, which exposed individuals to 
differing built environments, we find that increases (decreases) in walkability are 
associated with significant increases (decreases) in physical activity after relocation. 
For example, moving from a less walkable (25th percentile) city to a more walkable city 
(75th percentile) increased walking by 1,100 daily steps, on average. These changes 
hold across different genders, ages and body mass index values, and are sustained 
over 3 months. The added activity is predominantly composed of moderate-to- 
vigorous physical activity, which is linked to an array of associated health benefits1. 
Evidence against residential self-selection confounding is reported. Our findings 
provide robust evidence supporting the importance of the built environment in 
directly improving health-enhancing physical activity and offer potential guidance 
for public policy activities in this area.

A substantial number of people worldwide are physically inactive4,12,13 
and therefore at risk for common and deadly non-communicable dis-
eases such as cardiovascular disease, cancer and diabetes13–15. Mean-
while, urban environments worldwide have grown rapidly, with current 
estimates predicting that 6.7 billion people will be living in cities by 
2050 (ref. 16). While the evidence base on the impacts of the design 
of urban environments on physical activity levels has grown, further 
information is needed on the putative causal impacts of diverse urban 
environments on key health behaviours such as physical activity5,7,10,11,17,18 
and interactions between environmental and individual factors19. Spe-
cifically, current evidence has not been able to determine whether 
physical activity levels are directly influenced by the built environment 
or are mainly a product of personal preferences10,20. Understanding 
these factors is critical for developing optimal public policy1,8,21, and for 
planning cities5,22 and designing behaviour change interventions23,24.

Previous studies on the effects of the built environment on physical 
activity have led to mixed or modest findings and have not been able 
to reliably distinguish between direct environmental impacts and indi-
vidual preferences. Common methodological limitations include small 
cohorts, data from a single location or a limited number of locations, 

over-reliance on self-reported activity, with its attendant biases25, 
cross-sectional designs that constrain temporal understanding and 
causal inference, residential self-selection and other confounding 
factors5,7,9,20,26,27. Today’s mobile phones, including the now globally 
dominant smartphone, can capture physical activity and geolocation 
in a continuous fashion, making them a powerful tool for studying 
large-scale population dynamics and health23, the use of which can 
reveal the basic patterns of physical activity3, sleep28, human move-
ment29 and mood rhythms30, along with the dynamics of the spread 
of diseases such as malaria31 and COVID-19 (ref. 32) and linkages with 
socioeconomic status in low- and middle-income countries33. In this 
study, we use a large-scale physical activity dataset to disentangle the 
influences of the built environment from personal proclivities through 
a natural experiment, and quantify the impact of walkability on changes 
in physical activity levels at the individual and population scale.

Effect of walkability on daily steps
We study 248,266 days of minute-by-minute step recordings from 5,424 
users of the Azumio Argus smartphone application who relocated 
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at least once within a 3-year observation period. Overall, these par-
ticipants relocated a total of 7,447 times among 1,609 cities within the 
USA, forming a countrywide natural experiment (Fig. 1a). The dataset 
includes smartphone-derived accelerometry recordings of physical 
activity for free-living individuals that were exposed to different built 
environments, enabling us to compare their objectively measured, lon-
gitudinal physical activity for up to 90 days before and after relocation 
(Fig. 1b). The average participant recorded 5,574 steps per day (stand-
ard deviation σ = 3,055) over an average span of 14.2 hours. Research 
has demonstrated that smartphones provide accurate step counts34 

and reliable activity estimates in both laboratory and free-living set-
tings35. We ensured that our dataset included a broad range of relo-
cating and non-relocating participants, including across age, gender 
and weight status (as measured by body mass index (BMI)) (Extended 
Data Table 1). Previous work further verified that data from the Argus 
smartphone application used in this study reproduced established 
relationships between age, gender, weight status and activity, as well 
as country-level variations in activity and obesity levels3. We also veri-
fied that our findings were robust to different relocation definitions, 
including those aimed at removing business and leisure travel and 
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Fig. 1 | Physical activity levels undergo significant changes following 
relocation between US cities of different walkability levels. a, During the 
observation period, 5,424 participants relocated 7,447 times between 1,609 US 
cities. Circle area is proportional to the square root of the number of relocations 
to and from the city. b, The physical activity levels of participants were tracked 
through smartphone accelerometry over several months before and after 
relocation, creating a countrywide study of 7,447 quasi-experiments. c–f, Physical 
activity of participants moving from less walkable locations to New York City 

(c,e), in comparison to participants moving in the opposite direction (d,f) 
(Methods). Activity levels change significantly immediately after relocation 
and are symmetric but inverted for participants moving in the opposite 
direction (e,f). All error bars throughout figures correspond to bootstrapped 
95% confidence intervals. Credits: a–d, maps reproduced from US Census 
Bureau (https://www.census.gov/geographies/mapping-files/2016/geo/
carto-boundary-file.html); b, walking human silhouette reproduced from 
Wikimedia commons under a Creative Commons CC BY 1.0 license.

https://www.census.gov/geographies/mapping-files/2016/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/2016/geo/carto-boundary-file.html
https://creativecommons.org/licenses/by/1.0/
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excluding time periods right before and right after relocation, which 
are probably impacted by the relocation process itself (Extended Data 
Fig. 6; Methods: ‘Identifying participant relocation’).

Our large-scale activity measurements enable us to characterize 
the impact of built environments on physical activity. Consider the 
178 participants relocating to New York City (a walkability score of 89 
out of 100) coming from various less walkable US locations (Fig. 1c; a 
Walk Score of at least one standard deviation or 15.4 points lower; mean 
walkability 48). When exposed to the built environment of New York 
City after relocating, these participants increased their physical activ-
ity by 1,400 steps, their average daily steps increasing from 5,600 to 
7,000 (Fig. 1e; P < 10−10; all statistical hypothesis tests throughout refer 
to two-sided Student’s t-tests unless indicated otherwise; Methods: 
‘Statistical methods’). Participants relocating in the opposite direction, 
that is, from New York City to other less walkable US cities (Fig. 1d), 
exhibited an inverted, symmetric effect of decreasing their physical 
activity by 1,400 steps, going from 7,000 to 5,600 average daily steps 
(P < 10−10, Fig. 1f; more examples in Supplementary Fig. 1).

To investigate whether moving to more walkable environments gen-
erally leads to increased physical activity, we aggregate changes in 
physical activity across all relocations in the dataset (Fig. 2a; Methods: 
‘Aggregating relocation-based quasi-experiments’). We find that reloca-
tions to more walkable cities (Walk Score increases of 49 and higher) 
are associated with increases of about 1,100 daily steps, equivalent to 
11 minutes more walking activity every day36.

Evaluating potential selection effects
Notably, we attempt to estimate the impact of substantial built envi
ronment changes in-place on physical activity through events of 
substantial built environment changes resulting from relocation. 
This approach provides unique advantages, as substantial in-place 
changes are exceedingly rare and costly, leading to recent calls for 
quasi-experimental study designs such as ours37. However, this 
approach could lead to biased estimates due to selection effects, 
such as participants moving to a new environment being particularly 
motivated to increase physical activity. Importantly, we find robust 

evidence that our estimates are unlikely to be significantly influenced 
by such selection effects. Critical to this argument are (1) that we find no 
evidence of increases in average physical activity of participants when 
they are relocating to environments with walkability scores similar to 
the environment from which they came (bootstrapped 95% confidence 
interval for walkability differences between −16 and 16 is [−76 to 122]) 
and (2) that the estimated relationship between walkability differences 
and physical activity is approximately point symmetric (Fig. 2a and 
Supplementary Fig. 2). If participants that moved were motivated to 
increase their physical activity after moving, we should have observed 
this increase also for relocations to environments of similar walkabil-
ity, but we did not observe any difference. If participants that moved 
relocated to higher-walkability locations specifically for this quality, 
a form of residential self-selection, we should have observed higher 
physical increases relative to physical activity decreases when relocat-
ing to a lower-physical-activity location. Instead, we observed point 
symmetric changes.

In addition, we observe that these increases are sustained over 
3 months after moving (Supplementary Fig. 3c and Extended Data 
Fig. 2). Furthermore, we find similar, consistent effects of walkability 
increases and decreases between cities in similar climates (for exam-
ple, Ellicott City, MD to New York, NY in Fig. 2a), and more generally 
across relocations during all seasons (Supplementary Fig. 6), and 
after relocating to cities of higher, similar and lower median house-
hold income (Supplementary Fig. 7). In addition, census data suggest 
that between 77% and 98% of participants that move do not move for 
walkability reasons, but instead for family, job and housing-related 
reasons (Methods: ‘Selection effects in relocation and mobile app 
usage’). We also find that relocating and non-relocating app users 
are similar in age, gender and weight status, and that those relocat-
ing to higher-, similar- and lower-walkability locations were similar 
in age, weight status and previous physical activity levels (Extended 
Data Figs. 4 and 5; Methods: ‘Selection effects in relocation and 
mobile app usage’). Overall, these results suggest that physical activ-
ity levels are directly influenced by the built environment and not 
simply a product of personal preferences or other types of selection  
effects.
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Fig. 2 | Relocations with changes in walkability are associated with 
corresponding changes in physical activity across most demographics.  
a, Difference in average daily steps aggregated across all relocations. We find 
that significantly more walkable locations are associated with increases of about 
1,100 daily steps, and significantly less walkable locations are associated with 
similar decreases (for 49–80 point Walk Score increase or decrease). Moving to 
locations of similar walkability is associated with unchanged physical activity 

levels. b, Higher walkability is associated with increased daily steps across age, 
gender, BMI and baseline activity level groups. Bars show the steps gained per 
day for each point increase in walkability score (assuming linear model; Methods). 
Positive values across all bars reveal that, with increasing walkability, more 
steps are taken by every subgroup, which is significant for all the subgroups 
except women over 50 years of age (Student’s t-tests, all P < 0.05; women over 
50 years of age, P = 0.14).



410  |  Nature  |  Vol 645  |  11 September 2025

Article

Walkability effects across demographic groups
We find that higher walkability is associated with significantly more 
daily steps across all age, gender, BMI and baseline activity level 
groups, which is significant for all the subgroups except women 
over 50 years of age (Fig. 2b; all P < 0.05; women over 50 years of 
age, P = 0.14). Previous research has identified additional barriers 
to physical activity relevant to older women including cultural expec-
tations, norms, societal messages discouraging physical activity, 
family priorities and safety38,39. The relationship between walkability 
and activity is strongest for highly active women (gaining 43.7 steps 
per walkability point increase). Importantly, we find that regardless 
of BMI status, individuals record more steps after moving to more 
walkable cities, and that these increases are also shared by individuals 
who were less active before moving (Fig. 2b). These findings suggest 
that compared with interventions targeting individuals and reach-
ing small numbers of people, changes to the built environment can 
influence large populations. However, the relatively smaller effect for 
older women suggests that, for this group in particular, built environ-
ment changes may need to be accompanied by additional age- and 
gender-specific interventions aimed at their specific constraints. 
Previous work has described person-level factors that impede physi-
cal activity participation of older women, such as a greater number 
of functional impairments that discourage activity, more frequent 
caregiving demands that interfere with physical activity, more dif-
ficulties with outdoor wayfinding and lower driving rates, which can 
limit their ability to get to local parks to exercise40–45. In addition, older 
women are less well served by public transit in many US cities, which 
base their routes on commuter patterns46,47. Therefore, multilevel 
interventions that focus on social environmental factors in addition 
to built environment factors are recommended, such as encouraging 
walking groups and advising on how to overcome the above types of 
personal barriers41,48.

Changes in moderate-to-vigorous physical activity
Next, we investigate whether the walkability-induced increase in 
steps reflected an increase in moderate-to-vigorous physical activ-
ity (MVPA), which has been shown to be beneficial for many health 
outcomes, including lower all-cause mortality risk14,15. Using minute- 
by-minute step data, we find that extra steps taken after moving to a 
more walkable location are predominantly composed of MVPA cor-
responding to brisk walks (Fig. 3a). We estimate that large increases 
in walkability (that is, 49–80 points) are associated with an increase 
in MVPA of about 1 hour per week (Fig. 3d). Further emphasizing the 
consistency and symmetry of built environment effects, we find that 
similar amounts of MVPA are lost when relocating to a less walkable 
location (Fig. 3b), and that the activity intensity distribution remains 
effectively unchanged when relocating to a similarly walkable loca-
tion (Fig. 3c). US national physical activity guidelines recommend, 
similar to international guidelines, 150 minutes or more per week of 
MVPA to obtain optimal health benefits49. For a walkability increase 
of between 48 and 80 points, we find that the associated increases 
in MVPA would support 42.5% of participants meeting guidelines 
for MVPA versus 21.5% before relocation, a 98% relative increase  
(Fig. 3e; Methods: ‘Physical activity measure’ and ‘Simulating the 
impact of walkability improvements’). Our findings substantively 
expand on the findings of previous literature, indicating that improv-
ing the walkability of built environments can lead to better health 
outcomes across large populations.

We perform a simulation study to predict how improving walkabil-
ity would support increasing the fraction of the US population that 
meets aerobic physical activity guidelines (Methods: ‘Simulating the 
impact of walkability improvements’). Our dataset covers 1,609 US 
cities, which are home to more than 41% of the country’s population 

(137 million), and we adjust for age differences between the smart-
phone user population and the US adult population. According to our 
smartphone-based objective measurements, about 18% or 58 million 
Americans met the guidelines for MVPA between 2013 and 2016. Our 
estimate of 18% meeting aerobic guidelines is within expectations, 
given well-established differences between accelerometer-derived 
and self-reported physical activity50,51. Our simulation (Fig. 3f) pre-
dicts that bringing all US locations to the level of Chicago or Philadel-
phia (a walkability score of 78) may lead to 11.2% or 36 million more 
Americans meeting aerobic physical activity guidelines. Bringing 
all US locations to the level of New York City (a walkability score of 
89) may lead to 14.5% or 47 million more Americans meeting these 
guidelines.

Discussion
There are limitations to the device-based instrument (that is, people’s 
personal smartphones) we used to collect physical activity data in 
participants’ natural environments. For example, our sample may 
be biased towards individuals of higher socioeconomic status and 
people interested in their activity and health. However, we find that 
walkability improvements led to increased physical activity after 
relocating to cities of higher, similar and lower median household 
income (Supplementary Fig. 7). We further acknowledge that other 
city characteristics may affect walking and be correlated with the 
city’s walkability (for example, climate, availability of transit, or land 
use mix)52,53. However, we find that walkability differences are asso-
ciated with physical activity differences in cities of similar climate 
(Supplementary Fig. 5) and across all seasons (Supplementary Fig. 6). 
While relocation uniquely enables the quasi-experimental study of 
behavioural changes in different environments, there may be selection 
effects driving relocation, referred to as residential self-selection20. 
However, as previously discussed, we report evidence against such 
selection effects.

Over 90% of adults in the USA already own a smartphone54 and the 
number of mobile connections worldwide has risen to 8.5 billion55, 
exhibiting significant year-to-year increases. Therefore, we expect 
any biases related to smartphone ownership and usage to continue 
to diminish in the future. This study is restricted to a single country 
and results may not generalize to other countries. However, previ-
ous studies have found, in general, similar types of built environment 
relationships across countries diverse in climate, demographics, 
income, culture and activity supportiveness5,56–58. As these studies 
used walkability indices that were based on elements shared with the 
measure used here (Methods: ‘Walkability measure’), this suggests 
that our findings may generalize to other countries. We chose a simple, 
highly used and extensively validated measure of walkability at a city 
level59–64. However, this type of aggregated, non-divisible walkability 
score precludes the ability to identify which elements of walkability 
may confer the largest benefits. Location data to assess walkability on 
a neighbourhood or census tract level was not available, preventing 
the analysis of within-city variation in walkability. Further research is 
needed to identify key environmental features on a neighbourhood 
level and disentangle their individual contributions, building on past 
cross-sectional research and smaller-scale studies using self-reported 
physical activity measures, which currently constitute the majority 
of research in the field65. Future research is also needed to untangle 
how the built environment may differentially affect physical activity 
related to leisure, transportation and working. While walking is the most 
popular aerobic physical activity66, our dataset may fail to capture time 
spent in activities where it is impractical to carry a phone (for example, 
football) or for which steps are not a major component of the activity 
(for example, bicycling), and there may exist systematic differences 
in wear time because participants in the current dataset had to carry 
their phone for steps to be recorded. The increasing prevalence of 
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wearable activity trackers in the form of smartwatches and similar 
devices will continue to enable more convenient methods of capturing 
daily movement and steps. Further, our smartphone dataset repro-
duces previously established relationships between activity across 
geographic locations, gender and age3. We also find that the span of 
time over which steps were recorded is uncorrelated with relocating 
to higher- or lower-walkability areas (Extended Data Fig. 7), and thus 
systematic wear time differences are unlikely to affect our analyses. 
Together, these findings increase confidence that our dataset is able 
to identify activity differences between built environments and groups 
based on gender, age and weight status.

Further research is needed to determine which policies, on topics 
such as land use mix, intersection design and access to public transit, 

are most effective in increasing city walkability for both new and exist-
ing urban areas53. While increasing walkability of all cities to the level 
of New York City is probably not possible, earlier research has shown 
promising connections between implemented changes to the built 
environment, walkability and physical activity67. The results of our 
analysis will provide researchers and policy-makers with the infor-
mation to estimate the effects of targeted increases in walkability on 
physical activity and weigh the cost effectiveness of changes to the built 
environment against other public health interventions.

This countrywide natural experiment presents prospective evi-
dence of built environments affecting physical activity across 7,447 
relocations among 1,609 US cities over a 3-year timespan. It reveals 
the direct behavioural impacts of differing built environments on 
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intensity of physical activity (steps per minute) following relocation to more  
(a; more than 16-point walkability increase), less (b; more than 16-point 
walkability decrease) and similarly (c; 16-point walkability difference or less) 
walkable environments. a, We find that walkability-induced additional physical 
activity (Fig. 2a) predominantly consists of MVPA, which has been shown to be 
beneficial for many health outcomes14,15. b, Moving to less walkable locations is 
associated with a symmetric loss of MVPA that is equivalent to the increase in 
more walkable locations (a). c, Further, moving to similarly walkable locations 
is associated with an unchanged distribution of intensity levels. This suggests 
that relocation, in and of itself, is not generally associated with increases in 
physical activity, for instance, owing to an individual’s motivation to increase 

physical activity. d, Change in MVPA (minutes per week) versus differences in 
walkability. ΔT(I) is defined as the change in weekly minutes (ΔT) of activity at 
intensity level I after relocation, in units of steps per minute. ΔTMVPA, that is, 
change in the time spent in MVPA, is computed by summing ΔT(I) for I ≥ 100 
(inset). Large increases in walkability (that is, 49–80 points) are associated with 
an increase of about 1 hour per week in MVPA. e, The increases in time spent in 
MVPA lead to twice as many participants meeting national and international 
aerobic physical activity guidelines of 150 minutes per week or more in MVPA 
(before 21.5%, after 42.5%). f, A simulation based on these estimates predicts 
that if all US cities had the walkability of Chicago or Philadelphia (a walkability 
score of 78), then individuals would increase their average daily step activity by 
443 steps and their MVPA per week by 24 minutes, which would mean that 11.2% 
or 36 million more Americans would then meet national physical activity 
guidelines for MVPA (Methods).
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the physical activity levels of individuals and demonstrates the 
utility of such massive, digitally enabled, real-world datasets for 
evidence-based policy. Our findings suggest that designing built 
environments to be more activity-friendly could have significant 
effects on the physical activity of large populations, and serve as a 
powerful complement to interventions that focus on changing behav-
iour at the individual level. However, changes in built environments 
may need to be accompanied by additional age- and gender-specific 
interventions aimed at specific subgroups who could particularly 
benefit from physical activity increases (that is, women over 50 years 
old). The quality of the prospective device-collected evidence and 
consistency of findings across numerous cities, demographic groups 
and relocation-related walkability differentials highlight the fun-
damental importance of the urban built environment in improving 
physical activity and health.
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Methods

Study design
We conducted a countrywide, prospective, longitudinal physical 
activity study of US residents that evaluated their physical activity 
levels within the context of the walkability of their built environments 
before and after relocation (‘participants’). We leveraged the naturally 
occurring physical activity data that was captured by a health app on 
participants’ phones to compare each person’s physical activity levels 
before and after they relocated to a different area within the USA. While 
similar relocation-based study designs have been used previously to 
estimate effects of place and built environments26,68,69, the vast majority 
have been limited by relatively small sample sizes, using only self-report 
physical activity measurement and the limited diversity with respect 
to the areas to which they relocated. Objective measures of both urban 
walkability and physical activity were used and are discussed in more 
detail throughout the Methods. We analysed anonymized, prospec-
tively collected data from 2,112,288 US smartphone users using the 
Azumio Argus health app over 3 years (March 2013 to February 2016) 
to identify 5,424 participants that relocated 7,447 times among 1,609 
US cities. These 1,609 cities are home to 137 million Americans, or more 
than 42% of the US population. We note that relocation is neither purely 
exogenous nor random, and discuss the important implications of this 
below. We follow established best practices for analysing large-scale 
health data from wearables and smartphone apps70.

The Azumio Argus app is a free smartphone application for track-
ing physical activity and other health behaviours. Participants were 
excluded from a particular analysis if necessary information was unre-
ported (for example, participants with no reported age were excluded 
from the analysis of Fig. 2b). Extended Data Table 1 includes basic sta-
tistics on study population demographics and weight status (BMI). 
Anonymized Azumio Argus app data was obtained through a Data Use 
Agreement. Data handling and analysis was conducted in accordance 
with the guidelines of the Stanford University Institutional Review 
Board, which deemed this study exempt.

For population size statistics, refer to Extended Data Tables 1–3.

Statistical methods
All error bars throughout this paper correspond to bootstrapped 95% 
confidence intervals. When these bootstrapped 95% confidence inter-
vals do not include the null value (typically 0), they indicate a statisti-
cally significant difference at the α = 0.05 level. All statistical hypothesis 
tests were two-sided Student’s t-tests unless indicated otherwise.

Identifying participant relocation
We defined participant relocation as the action of moving to a new place 
for a substantial amount of time. We identified participant relocation as 
follows. Participant location on a given day was assigned to a city based 
on the weather update in the participant’s app activity feed. Weather 
updates are automatically added to the feed of each participant accord-
ing to the nearest cell phone tower. We searched for participants that 
stayed in one location within a 100-km radius for at least 14 days and 
then moved to a different location that was at least 100 km away. Partici-
pants were required to stay within a 100-km radius of this new location 
for at least another 14 days. The 14-day threshold was chosen to filter 
out short trips that may be related to business or leisure travel. Using 
this threshold, we find that most participants do not relocate again and 
spend a median of 81 days in the new location, effectively excluding the 
impact of short-term travel on our analyses. Most participants stopped 
tracking their activity at this time, rather than relocating again. In addi-
tion, we repeated our analyses with thresholds of 21 and 30 days and 
found highly consistent results (Extended Data Fig. 6). We required a 
substantial move distance (100 km or more) to ensure that relocating 
participants were exposed to a new built environment. We allowed for 
up to 5 days of intermediate travel between these two locations and 

ignored these days during analyses. We applied this method to 2,112,288 
users of the Argus smartphone app and identified 31,034 relocations. 
Among these, we required participants to have used the app to track 
their physical activity for at least 10 days within the 30 days before 
and after their relocation (as in previous work3). We further required 
at least 1 day of tracked physical activity before and after relocation 
to ensure that, whenever we compare two participant populations, 
these populations are identical and therefore comparable (that is, 
we seek to identify within-participant changes in physical activity). 
We repeated our statistical analyses with alternative data inclusion 
criteria, such as the number of days with tracked physical activity, and 
found similar results.

Physical activity measure
Our device-based (historically often called objective) measure of physi-
cal activity was the number of steps over time recorded by the partici-
pant’s smartphone. Steps were determined based on the smartphone 
accelerometers and the manufacturer’s proprietary algorithms for 
step counting. The Azumio Argus app records step measurements on 
a minute-by-minute basis. These measurements are collected passively 
without requiring the smartphone or Azumio Argus app to be in active 
use. Extended Data Table 2 includes basic statistics on physical activity 
and tracking in the study population.

Data from the Azumio Argus app have been used previously to study 
physical activity in large populations3,71,72, where the authors showed 
that this form of data follows well-established trends3. For example, 
they demonstrated that activity decreased with increasing age12,19,73,74 
and BMI19,74,75, and is lower in female individuals than in male individu-
als12,19,73,74,76, trends that are consistent with national surveillance data 
in this area. Physical activity estimates were also reasonably well cor-
related with self-report-based population estimates on a country level3.

Several studies have established significant differences between 
accelerometer-derived and self-reported physical activity50,51. Self- 
reports typically overestimate moderate and vigorous activity and 
underestimate sedentary activity50. In a US study using National Health  
and Nutrition Examination Survey 2005–2006 data, 59.6% of adults 
self-reported meeting MVPA guidelines for aerobic physical activ-
ity, whereas estimates using accelerometry were much lower at 
9.6%51. For our observation period between 2013 and 2016, the US 
National Health Interview Survey reported that 49.6–52.6% of the 
US population met MVPA guidelines. Nationally representative 
accelerometer-based estimates for this time are not available. Our 
smartphone-accelerometry-based estimate of 18% meeting aerobic 
guidelines is within expectations, given well-established differences 
between accelerometer-derived and self-reported physical activity and 
earlier data (Methods)50,51. In addition, unlike many previous studies 
mailing accelerometers to study participants to wear for a week, our 
study focuses on real-world physical activity by free-living individuals 
that may not be equally affected by their awareness of being observed 
(that is, the Hawthorne effect).

We filtered out days as invalid when less than 500 or more than 
50,000 steps had been recorded. We further ignored days immediately 
preceding and following the relocation itself (5 days before and 5 days 
after relocation), because the process of relocating, rather than the new 
built environment itself, could impact physical activity during these 
days. Physical activity was relatively stable outside this period (Sup-
plementary Fig. 4). We considered physical activity within a window 
of 30 days before and 30 days after relocation (with the exception of 
Supplementary Fig. 3 and Extended Data Fig. 2 that use 90-day windows 
to illustrate long-term changes). In total, our dataset included 248,266 
days of objectively measured minute-by-minute physical activity sur-
rounding 7,447 relocations (595,803 days for the 180-day period).

We used the following measures as primary outcomes in this study: 
(1) Change in average daily steps following relocation (Figs. 1e,f and 
2a,b). (2) Change in average weekly minutes spent in MVPA following 



relocation, where we considered all minutes spent at intensities greater 
than or equal to 100 steps per minute as MVPA36: T T IΔ = ∑ Δ ( )IMVPA =100

∞ , 
where ΔT(I) is defined as the change in weekly minutes of activity at 
intensity level I, in units of steps per minute, after moving. Figure 3a–c 
shows changes in average weekly minutes spent at different intensity 
levels. (3) Change in the fraction of the population that met aerobic 
physical activity guidelines following relocation, defined as spending 
at least 150 minutes per week in MVPA1 (Fig. 3e,f). All error bars cor-
respond to bootstrapped 95% confidence intervals77.

Walkability measure
We considered relocations among 1,609 cities in the USA. Walkability 
scores for these cities were based on the publicly available and system-
atically developed Walk Score78. Scores are on a scale of 1 to 100 (where 
100 is the most walkable) and are based on amenities (for example, 
grocery stores, schools, parks, restaurants and retail) within a 0.25-mile 
to 1.5-mile radius (a decay function penalizes more distant amenities) 
and measures of friendliness to pedestrians, such as city block length 
and intersection density. Extended Data Table 3 includes basic statistics 
on the cities included in our study and their walkability scores. Walk 
Scores at the city level are computed by weighting the Walk Score of 
each geographic unit within a city (typically about the size of a city 
block) by the population density of that unit79.

The Walk Score measure is a frequently used measure of walkability 
that is freely and widely available across the USA and other countries 
including Canada and Australia78. It is highly correlated62 with other 
walkability measures80–82, and was found to offer the best fit to walking 
trips in a study conducted in Montréal62. It is widely used in the literature 
and has been extensively validated59–64. Although other measures of 
walkability exist80–82, the Walk Score measure was chosen in light of 
the pragmatic focus of the investigation and its ease of use and acces-
sibility. More comprehensive walkability indices could provide further 
granular information related to specific aspects of walkability that 
might be of prime importance.

We determined cut points for Walk Score differences of −16 to +16, 
16 to 48 and 49 to 80, as we preferred cut points that were symmetric 
around 0 (no change in walkability score), equivalent in size (32 Walk 
Score points difference) and balanced granularity and statistical power, 
as large Walk Score differences are more rare. Among the 7,447 reloca-
tions, 2.4% (2.4%) were associated with 49+ walkability point increases 
(decreases), 20.7% (21.3%) were associated with 16–48 walkability point 
increases (decreases) and 53.1% of relocations were to locations of 
similar walkability (−16 to +16 point difference).

Aggregating relocation-based quasi-experiments
We aggregated changes in physical activity following relocation based 
on the difference in walkability scores between the origin and destina-
tion city, Δ. In Fig. 2a, each circle corresponds to a pair of cities sized 
by the number of participants moving between those cities. We fit a 
linear model mΔ + b to these data with slope m = 16.6 (Student’s t-test; 
P < 10−10) and intercept b = 25.0 (Student’s t-test; P = 0.462).

We considered potential confounders such as differences in climate 
(using Köppen climate type83) and median income between the origin 
and destination city. We found that the relationship between walkability 
and walking behaviour still holds within pairs of cities with similar cli-
mate, for instance, moving from Miami, FL to Jacksonville, FL, or from 
Amarillo, TX to Euless, TX (see annotations in Fig. 2a as well as more 
generally in Supplementary Fig. 5). Furthermore, we found similar 
effects across relocations in all seasons (Supplementary Fig. 6) and 
relocations to cities with higher, lower and similar median household 
income levels (Supplementary Fig. 7).

Impact of walkability across subgroups
We considered the effect of walkability differences on change in physi-
cal activity across subgroups based on demographics (ages 18–29, 

30–49 and 50+ years), weight status (normal, overweight and obese 
levels of BMI), previous activity level (below 5,000, 5,000–8,500 and 
above 8,500 average daily steps before relocation) and gender (men 
and women). Owing to the approximately linear nature of the rela-
tionship between walkability changes and physical activity changes 
(Fig. 2a), we used a linear model for estimation. For each subgroup, 
we ran independent linear regressions of the difference in daily steps 
on differences in walkability between cities at the level of individual 
relocations. The models included an intercept coefficient: m ⋅ Δ + b. 
We determined the estimated coefficient of walkability (m; that is, 
the increase in daily steps for each one-point increase in walkability 
of a city) along with 95% confidence intervals (based on Student’s 
t-distribution) for each subgroup (Fig. 2b). We performed Student’s 
t-tests on the regression model coefficients, which establish that 
relocation to a city of higher walkability is associated with signifi-
cantly more daily steps across all age, gender, BMI and activity level 
groups (Student’s t-test; all P < 0.05), with the exception of women 
over 50 years old, for which the positive difference was not statistically 
significant (Student’s t-test, P = 0.14). We found that the effect was 
diminished in overweight and obese women relative to normal-weight 
women. Thus, the non-significant effect on women over 50 years of 
age may be explained, in part, by the larger average BMI of this group 
(27.4) compared with other women (25.3; P < 10−10). In comparison, 
men over 50 years of age also had a larger BMI compared with other 
men, but the difference was smaller than in women (28.2 versus 27.0; 
P < 10−7).

Adjusting for seasonality
Physical activity is influenced by climate and weather84 and relocations 
are not equally distributed across seasons (Supplementary Fig. 3a). We 
found that differences in physical activity levels following relocations 
may be influenced by seasonal variation, especially when consider-
ing comparatively long observation periods of about 6 months (Sup-
plementary Fig. 3b,c). For analyses of variation in activity over time 
(Fig. 1e,f, Extended Data Fig. 2 and Supplementary Figs. 1 and 3), we 
adjusted for these seasonal effects by weighting relocations in each 
calendar month equally. This was achieved by first estimating physi-
cal activity levels separately for each calendar month and then taking 
the average. This process is repeated 1,000 times in our bootstrap 
estimates.

Selection effects in relocation and mobile app usage
While relocation uniquely enabled the quasi-experimental study of 
behavioural changes in different environments, there may be selection 
effects driving relocation, often referred to as residential self-selection. 
According to a 2013 US Census Bureau report, 98% of people moved 
primarily for reasons of housing, family and employment85. Less than 
1% of people moved primarily for health reasons. There are some cat-
egories that might, in part, include people who want to reduce their 
dependence on cars. These include ‘health reasons’ (0.4%), ‘other 
housing-related’ (14.0%), ‘wanted better neighborhood/less crime’ 
(3.2%) and ‘to be closer to work/easier commute’ (5.4%), suggesting 
that at least 77% of participants moved for reasons completely unre-
lated to car dependence85. In addition, neighbourhood selection may 
be influenced by personal preferences such as exercise and walking 
activities20. With respect to this possibility, note that we found no 
indication of increases in physical activity after moving to a location of 
similar walkability (Figs. 2a and 3c). This suggests that those relocating 
participants are not simply more motivated to exercise, on average, but 
that changes in physical activity may be explained by the changing built 
environment. It is possible that selection effects were absent because 
participants may not have perceived themselves as being observed, 
in contrast to previous studies that featured explicit, short periods of 
monitoring (Hawthorne effect). We further acknowledge that other 
city characteristics may affect walking and be correlated with the city’s 
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walkability (for example, length of work days). We investigated poten-
tial selection effects further by comparing the population of relocating 
mobile app users, first, to the overall US population, and, second, to 
the overall mobile app user population, including non-relocating app 
users. We found that the relocating participant population is similar in 
age (36 versus 37.7 years median age) and gender (49.8% versus 51.0% 
female, P = 0.132; Student’s t-test) to the US population (Extended 
Data Fig. 3). We adjusted for differences in age for the simulation esti-
mates in Fig. 3f and Extended Data Fig. 1. Within the app user popula-
tion, we found that movers and non-movers (that is, relocating and 
non-relocating participants) tend to be close in age (43.8 versus 37.9 
and 38.5 versus 33.7 average age for men and women, respectively; 
Extended Data Fig. 4a,b), and weight status (68.1% versus 59.8% and 
45.6% versus 44.3% overweight and obese for men and women, respec-
tively; Extended Data Fig. 4c,d). However, movers were generally more 
physically active than non-movers (6,284 versus 5,825 and 5,279 versus 
4,635 average daily steps for men and women, respectively; Extended 
Data Fig. 4e,f). Furthermore, we found that within movers, those that 
relocate to higher-, similar- and lower-walkability locations were similar 
in age, weight status and previous physical activity levels (Extended 
Data Fig. 5).

Simulating the impact of walkability improvements
We simulated the impact of US nationwide walkability improvements 
on US population physical activity levels. Concretely, we simulated 
the impact of increasing US city walkability scores to a constant tar-
get walkability score between 1 and 100. We also highlight the walk-
ability scores of Chicago and Philadelphia (78) as well as New York 
City (89) to aid interpretation. As the relocation population was not 
explicitly drawn to be representative of the US population, we adjusted 
our estimates through ratio-based post-stratification weights across 
age-based strata86. We used civilian population estimates from the US 
Census Bureau for 2016 as the target population distribution. While 
there were no significant differences in the gender distribution (49.8% 
female versus 51.0% female, P = 0.132; Extended Data Fig. 3a), we found 
slight differences in age (36.0 versus 37.7 years median age; Extended 
Data Fig. 3b), which we corrected for through sampling weights. We 
acknowledge that other selection effects and heterogeneous treat-
ment effects may exist. Using a bootstrap with 1,000 replications, 
we estimated the difference in the overall US population that would 
meet US national aerobic physical activity guidelines for MVPA1 after 
relocating based on the relocation-induced difference in walkability. 
We used a linear regression model and data from relocations asso-
ciated with both walkability increases and decreases. We estimated 
the total fraction of US population meeting aerobic physical activity 
guidelines as the sum between the fraction of people already meeting 
these guidelines before relocating plus the estimated addition based 
on the regression model. Confidence intervals represent bootstrapped 
95% confidence intervals. Final estimates are depicted in Fig. 3f and 
Extended Data Fig. 1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are available at GitHub (https://github.com/behavioral-data/
movers-public).

Code availability
Code is available at GitHub (https://github.com/behavioral-data/
movers-public).
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Extended Data Fig. 1 | Simulating the impact of walkability improvements 
on United States physical activity levels. a, Estimated fraction of population 
with 150 minutes or MVPA or more per week following an increase in walkability 
across all represented U.S. locations. b, Average amount of MVPA added across 

population following an increase in walkability across all represented U.S. 
locations. c, Average amount of daily steps added across population following 
an increase in walkability across all represented U.S. locations. Shaded regions 
correspond to 95% confidence intervals.
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Extended Data Fig. 2 | Changes in physical activity levels following relocation 
are still observed after three months. Examples show physical activity levels 
for participants moving from/to San Diego, CA (a,b), San Francisco, CA (c,d), 
and Baltimore, MD (e,f). The observation period is extended from 30 days to  

90 days pre- and post-relocation. Observed changes in physical activity levels 
suggest that built environment influences persist over at least three months 
and may lead to sustained long-term behavior change.



Extended Data Fig. 3 | Demographics of relocating participants (Movers) in 
our dataset compared to U.S. Census estimates for movers. a, While there 
are no significant differences in the gender distribution (49.8% female vs. 50.4% 

female, P = 0.423, Z-test), b, We find a slightly lower age in our data for movers 
compared to the US Census reported movers (36.0 vs 37.7 median age), that we 
corrected for in the simulation experiment (Fig. 3f, Extended Data Fig. 1).
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Extended Data Fig. 4 | Comparison of relocating participants (movers) to 
all participants in our dataset to understand potential selection effects. 
Within the study population, we find that movers and non-movers (i.e., relocating 
and non-relocating participants) tend to be a-b, close in age (43.8 vs 37.9 and 
38.5 vs 33.7 average age for men and women, respectively), c-d, and weight 

status (68.1 vs 59.8 and 45.6 vs 44.3 percent overweight and obese for men and 
women, respectively). e-f, However, movers were generally more physically 
active than non-movers (6,284 vs 5,825 and 5,279 vs 4,635 average daily steps 
for men and women, respectively).



Extended Data Fig. 5 | Comparison of different groups of relocating 
participants (movers) to understand potential selection effects. Within the 
study population, we find that movers to higher (greater than 16 walkability 
points), similar (within 16 walkability points), and lower (less than -16 walkability 
points) walkability locations tend to be a-b, close in age (44.4 vs 43.7 vs 45.0 and 
39.0 vs 38.3 vs 38.3 average age for men and women moving to higher, similar, 

and lower walkability locations, respectively), c-d, weight status (69.3 vs 67.3 vs 
66.5 and 46.6 vs 44.9 vs 46.1 percent overweight and obese for men and women 
moving to higher, similar, and lower walkability locations, respectively), e-f, and 
baseline physical activity levels (6,257 vs 6,229 vs 6,301 and 5,422 vs 5,239 vs 
5,405 average daily steps for men and women moving to higher, similar, and 
lower walkability locations, respectively).
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Extended Data Fig. 6 | Different definitions of relocation lead to highly 
consistent results. After relocation, participants are required to stay in the 
new location for at least 14, 21, or 30 days. We find that all of these definitions 
lead to highly consistent results as most relocating participants stay for 
substantially longer periods of time (median 81 days). In the rest of the paper, 
we use the 14 day definition (purple).



a b

Extended Data Fig. 7 | Higher physical activity in more walkability cities is 
not explained by differences in estimated wear time. Participants have an 
average span of 14.2h between the first and last recorded step, our proxy for daily 
wear time (Methods). a, Wear time estimates before and after relocation are 
14.16 hours and 14.18 hours, respectively, with no significant difference (P = 0.807; 
t-test). b, We find no significant association between relocation-induced 

difference in walkability and wear time. The line shows the best linear fit using 
data from all relocations. Its slope is not significantly different from zero (slope 
0.0014; P = 0.371; t-test). These results suggest that differences in recorded 
steps after relocation are due to actual differences in physical activity behavior 
and are not explained by differences in wear time.
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Extended Data Table 1 | Summary of demographic statistics for the study participants (Methods)

Study observation period ranged from March 2013 to February 2016. Percentages are in parentheses. NA refers to missingness in data.



Extended Data Table 2 | Summary of physical activity statistics for the study participants (Methods)

Statistics are averages unless otherwise noted with standard deviations in parentheses.
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Extended Data Table 3 | Location and walkability statistics for all locations included in our study with at least 70 moving 
participants (sorted alphabetically)

Percentages are in parentheses.
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