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While physical activity is critical to human health, most people do not meet
recommended guidelines'?. Built environments that are more walkable have the
potential to increase activity across the population®®. However, previous studies on
thebuiltenvironment and physical activity have led to mixed findings, possibly due to

methodological limitations such as small cohorts, over-reliance on self-reported
measures and cross-sectional designs®>”® ™, Here we address these limitations by
leveraging a large US cohort of smartphone users (N =2,112,288) to evaluate within-
person longitudinal behaviour changes that occurred over 248,266 days of objectively
measured physical activity across 7,447 relocations among 1,609 US cities. By
analysing the results of this natural experiment, which exposed individuals to
differing built environments, we find that increases (decreases) in walkability are
associated with significant increases (decreases) in physical activity after relocation.
For example, moving fromaless walkable (25th percentile) city to amore walkable city
(75th percentile) increased walking by 1,100 daily steps, on average. These changes
hold across different genders, ages and body mass index values, and are sustained
over 3 months. The added activity is predominantly composed of moderate-to-
vigorous physical activity, which is linked to an array of associated health benefits’.
Evidence against residential self-selection confounding is reported. Our findings
provide robust evidence supporting the importance of the built environment in
directly improving health-enhancing physical activity and offer potential guidance
for public policy activities in this area.

Asubstantial number of people worldwide are physically inactive*'*

and therefore at risk for common and deadly non-communicable dis-
eases such as cardiovascular disease, cancer and diabetes” . Mean-
while, urbanenvironments worldwide have grown rapidly, with current
estimates predicting that 6.7 billion people will be living in cities by
2050 (ref. 16). While the evidence base on the impacts of the design
of urban environments on physical activity levels has grown, further
informationis needed on the putative causalimpacts of diverse urban
environments on key health behaviours such as physical activity>”11718
and interactions between environmental and individual factors'. Spe-
cifically, current evidence has not been able to determine whether
physical activity levels are directly influenced by the built environment
or are mainly a product of personal preferences'®*. Understanding
these factorsis critical for developing optimal public policy**?, and for
planning cities**? and designing behaviour change interventions®?,

Previous studies on the effects of the built environment on physical
activity have led to mixed or modest findings and have not been able
toreliably distinguish between direct environmental impacts and indi-
vidual preferences. Common methodological limitations include small
cohorts, data from a single location or a limited number of locations,

over-reliance on self-reported activity, with its attendant biases®,
cross-sectional designs that constrain temporal understanding and
causal inference, residential self-selection and other confounding
factors>’*2°2% Today’s mobile phones, including the now globally
dominantsmartphone, can capture physical activity and geolocation
in a continuous fashion, making them a powerful tool for studying
large-scale population dynamics and health?, the use of which can
reveal the basic patterns of physical activity?, sleep?, human move-
ment® and mood rhythms®, along with the dynamics of the spread
of diseases such as malaria® and COVID-19 (ref. 32) and linkages with
socioeconomic status in low- and middle-income countries®. In this
study, we use alarge-scale physical activity dataset to disentangle the
influences of the built environment from personal proclivities through
anatural experiment, and quantify the impact of walkability on changes
in physical activity levels at the individual and population scale.

Effect of walkability on daily steps

We study 248,266 days of minute-by-minute step recordings from 5,424
users of the Azumio Argus smartphone application who relocated
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Fig.1|Physical activity levels undergo significant changes following
relocationbetween US cities of different walkability levels. a, During the
observation period, 5,424 participants relocated 7,447 times between 1,609 US
cities. Circleareais proportional to the square root of the number of relocations
toand fromthecity.b, The physical activity levels of participants were tracked
through smartphoneaccelerometry over several months before and after
relocation, creatingacountrywide study of 7,447 quasi-experiments. c—f, Physical
activity of participants moving from less walkable locations to New York City

at least once within a 3-year observation period. Overall, these par-
ticipants relocated atotal of 7,447 times among 1,609 cities within the
USA, forming a countrywide natural experiment (Fig. 1a). The dataset
includes smartphone-derived accelerometry recordings of physical
activity for free-living individuals that were exposed to different built
environments, enabling us to compare their objectively measured, lon-
gitudinal physical activity for up to 90 days before and after relocation
(Fig.1b). The average participant recorded 5,574 steps per day (stand-
ard deviation o =3,055) over an average span of 14.2 hours. Research
has demonstrated that smartphones provide accurate step counts®
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(c,e), incomparison to participants moving in the opposite direction (d,f)
(Methods). Activity levels change significantly immediately after relocation
and are symmetric butinverted for participants movingin the opposite
direction (e,f). Allerror bars throughout figures correspond to bootstrapped
95% confidenceintervals. Credits: a-d, mapsreproduced from US Census
Bureau (https://www.census.gov/geographies/mapping-files/2016/geo/
carto-boundary-file.html); b, walking human silhouette reproduced from
Wikimediacommonsundera Creative Commons CCBY 1.0 license.

and reliable activity estimates in both laboratory and free-living set-
tings®. We ensured that our dataset included a broad range of relo-
cating and non-relocating participants, including across age, gender
and weight status (as measured by body mass index (BMI)) (Extended
Data Table 1). Previous work further verified that data from the Argus
smartphone application used in this study reproduced established
relationships between age, gender, weight status and activity, as well
as country-level variationsinactivity and obesity levels®. We also veri-
fied that our findings were robust to different relocation definitions,
including those aimed at removing business and leisure travel and


https://www.census.gov/geographies/mapping-files/2016/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/2016/geo/carto-boundary-file.html
https://creativecommons.org/licenses/by/1.0/

a
1,500 | San Francisco, CA — El Dorado Hills, CA
New York, NY — Westerly, RI
1,000 Amarillo, TX — Euless, TX
500
(%]
Q
o8
12}
> 0
‘®
o
<
-500
-1,000 | ¢
Indianapolis, IN — Cleveland, OH
-1,500 Ellicott City, MD — New York, NY
(-80, -48] (-48, -16] (-16, 16] (16, 48] (48, 80]
A Walkability

Fig.2|Relocations with changes in walkability are associated with
corresponding changes in physical activity across most demographics.

a, Differencein average daily steps aggregated across all relocations. We find
thatsignificantly more walkable locations are associated with increases of about
1,100 daily steps, and significantly less walkable locations are associated with
similar decreases (for 49-80 point Walk Score increase or decrease). Moving to
locations of similar walkability is associated with unchanged physical activity

excluding time periods right before and right after relocation, which
are probably impacted by the relocation processitself (Extended Data
Fig. 6; Methods: ‘Identifying participant relocation’).

Our large-scale activity measurements enable us to characterize
the impact of built environments on physical activity. Consider the
178 participants relocating to New York City (a walkability score of 89
out 0of 100) coming from various less walkable US locations (Fig. 1c; a
Walk Score of at least one standard deviation or 15.4 points lower; mean
walkability 48). When exposed to the built environment of New York
City afterrelocating, these participantsincreased their physical activ-
ity by 1,400 steps, their average daily steps increasing from 5,600 to
7,000 (Fig.1e; P<107'; all statistical hypothesis tests throughout refer
to two-sided Student’s ¢-tests unless indicated otherwise; Methods:
‘Statistical methods’). Participants relocating in the opposite direction,
that is, from New York City to other less walkable US cities (Fig. 1d),
exhibited an inverted, symmetric effect of decreasing their physical
activity by 1,400 steps, going from 7,000 to 5,600 average daily steps
(P<107, Fig. 1f; more examples in Supplementary Fig. 1).

Toinvestigate whether moving to more walkable environments gen-
erally leads to increased physical activity, we aggregate changes in
physical activity across all relocations in the dataset (Fig. 2a; Methods:
‘Aggregating relocation-based quasi-experiments’). We find that reloca-
tions to more walkable cities (Walk Score increases of 49 and higher)
areassociated withincreases of about 1,100 daily steps, equivalent to
11 minutes more walking activity every day>®.

Evaluating potential selection effects

Notably, we attempt to estimate the impact of substantial built envi-
ronment changes in-place on physical activity through events of
substantial built environment changes resulting from relocation.
This approach provides unique advantages, as substantial in-place
changes are exceedingly rare and costly, leading to recent calls for
quasi-experimental study designs such as ours®. However, this
approach could lead to biased estimates due to selection effects,
such as participants moving to anew environment being particularly
motivated to increase physical activity. Importantly, we find robust

ASteps/AWalkability

I Men
I Women

60

BMI Baseline activity level

(daily steps)
levels. b, Higher walkability is associated with increased daily steps across age,
gender, BMIand baseline activity level groups. Bars show the steps gained per
day foreach pointincreasein walkability score (assuming linear model; Methods).
Positive values across all bars reveal that, with increasing walkability, more
steps are taken by every subgroup, which s significant for all the subgroups
exceptwomen over 50 years of age (Student’s t-tests, all P< 0.05; women over
50yearsofage, P=0.14).

evidence that our estimates are unlikely to be significantly influenced
by such selection effects. Critical to thisargument are (1) that we find no
evidence of increases in average physical activity of participants when
they arerelocating to environments with walkability scores similar to
the environment from which they came (bootstrapped 95% confidence
interval for walkability differences between -16 and 16 is [-76 t0 122])
and (2) that the estimated relationship between walkability differences
and physical activity is approximately point symmetric (Fig. 2a and
Supplementary Fig. 2). If participants that moved were motivated to
increase their physical activity after moving, we should have observed
thisincrease also for relocations to environments of similar walkabil-
ity, but we did not observe any difference. If participants that moved
relocated to higher-walkability locations specifically for this quality,
aform of residential self-selection, we should have observed higher
physicalincreases relative to physical activity decreases when relocat-
ing to a lower-physical-activity location. Instead, we observed point
symmetric changes.

In addition, we observe that these increases are sustained over
3 months after moving (Supplementary Fig. 3c and Extended Data
Fig.2). Furthermore, we find similar, consistent effects of walkability
increases and decreases between cities in similar climates (for exam-
ple, Ellicott City, MD to New York, NY in Fig. 2a), and more generally
across relocations during all seasons (Supplementary Fig. 6), and
after relocating to cities of higher, similar and lower median house-
holdincome (Supplementary Fig. 7). In addition, census data suggest
that between 77% and 98% of participants that move do not move for
walkability reasons, but instead for family, job and housing-related
reasons (Methods: ‘Selection effects in relocation and mobile app
usage’). We also find that relocating and non-relocating app users
are similar in age, gender and weight status, and that those relocat-
ing to higher-, similar- and lower-walkability locations were similar
in age, weight status and previous physical activity levels (Extended
Data Figs. 4 and 5; Methods: ‘Selection effects in relocation and
mobile app usage’). Overall, these results suggest that physical activ-
ity levels are directly influenced by the built environment and not
simply a product of personal preferences or other types of selection
effects.
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Walkability effects across demographic groups

We find that higher walkability is associated with significantly more
daily steps across all age, gender, BMI and baseline activity level
groups, which is significant for all the subgroups except women
over 50 years of age (Fig. 2b; all P< 0.05; women over 50 years of
age, P=0.14). Previous research has identified additional barriers
to physical activity relevant to older women including cultural expec-
tations, norms, societal messages discouraging physical activity,
family priorities and safety*®**. The relationship between walkability
and activity is strongest for highly active women (gaining 43.7 steps
per walkability pointincrease). Importantly, we find that regardless
of BMI status, individuals record more steps after moving to more
walkable cities, and that these increases are also shared by individuals
who were less active before moving (Fig. 2b). These findings suggest
that compared with interventions targeting individuals and reach-
ing small numbers of people, changes to the built environment can
influence large populations. However, the relatively smaller effect for
older women suggests that, for this group in particular, built environ-
ment changes may need to be accompanied by additional age- and
gender-specific interventions aimed at their specific constraints.
Previous work has described person-level factors thatimpede physi-
cal activity participation of older women, such as a greater number
of functional impairments that discourage activity, more frequent
caregiving demands that interfere with physical activity, more dif-
ficulties with outdoor wayfinding and lower driving rates, which can
limit their ability to get to local parks to exercise*®*. In addition, older
women are less well served by public transitin many US cities, which
base their routes on commuter patterns*®*’. Therefore, multilevel
interventions that focus on social environmental factorsin addition
to built environment factors are recommended, such as encouraging
walking groups and advising on how to overcome the above types of
personal barriers*5,

Changes in moderate-to-vigorous physical activity

Next, we investigate whether the walkability-induced increase in
steps reflected an increase in moderate-to-vigorous physical activ-
ity (MVPA), which has been shown to be beneficial for many health
outcomes, including lower all-cause mortality risk'*. Using minute-
by-minute step data, we find that extra steps taken after movingto a
more walkable location are predominantly composed of MVPA cor-
responding to brisk walks (Fig. 3a). We estimate that large increases
in walkability (that is, 49-80 points) are associated with an increase
in MVPA of about 1 hour per week (Fig. 3d). Further emphasizing the
consistency and symmetry of built environment effects, we find that
similar amounts of MVPA are lost when relocating to a less walkable
location (Fig.3b), and that the activity intensity distribution remains
effectively unchanged when relocating to a similarly walkable loca-
tion (Fig. 3¢). US national physical activity guidelines recommend,
similar to international guidelines, 150 minutes or more per week of
MVPA to obtain optimal health benefits*. For a walkability increase
of between 48 and 80 points, we find that the associated increases
in MVPA would support 42.5% of participants meeting guidelines
for MVPA versus 21.5% before relocation, a 98% relative increase
(Fig. 3e; Methods: ‘Physical activity measure’ and ‘Simulating the
impact of walkability improvements’). Our findings substantively
expand on the findings of previous literature, indicating thatimprov-
ing the walkability of built environments can lead to better health
outcomes across large populations.

We perform asimulation study to predict how improving walkabil-
ity would support increasing the fraction of the US population that
meets aerobic physical activity guidelines (Methods: ‘Simulating the
impact of walkability improvements’). Our dataset covers 1,609 US
cities, which are home to more than 41% of the country’s population
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(137 million), and we adjust for age differences between the smart-
phone user population and the US adult population. According to our
smartphone-based objective measurements, about 18% or 58 million
Americans met the guidelines for MVPA between 2013 and 2016. Our
estimate of 18% meeting aerobic guidelines is within expectations,
given well-established differences between accelerometer-derived
and self-reported physical activity***". Our simulation (Fig. 3f) pre-
dicts thatbringing all USlocations to the level of Chicago or Philadel-
phia (a walkability score of 78) may lead to 11.2% or 36 million more
Americans meeting aerobic physical activity guidelines. Bringing
all US locations to the level of New York City (a walkability score of
89) may lead to 14.5% or 47 million more Americans meeting these
guidelines.

Discussion

Thereare limitations to the device-based instrument (that is, people’s
personal smartphones) we used to collect physical activity datain
participants’ natural environments. For example, our sample may
be biased towards individuals of higher socioeconomic status and
people interested in their activity and health. However, we find that
walkability improvements led to increased physical activity after
relocating to cities of higher, similar and lower median household
income (Supplementary Fig. 7). We further acknowledge that other
city characteristics may affect walking and be correlated with the
city’s walkability (for example, climate, availability of transit, or land
use mix)*>**, However, we find that walkability differences are asso-
ciated with physical activity differences in cities of similar climate
(Supplementary Fig. 5) and across all seasons (Supplementary Fig. 6).
While relocation uniquely enables the quasi-experimental study of
behavioural changesin different environments, there may be selection
effects driving relocation, referred to as residential self-selection®.
However, as previously discussed, we report evidence against such
selection effects.

Over 90% of adults in the USA already own a smartphone** and the
number of mobile connections worldwide has risen to 8.5 billion*,
exhibiting significant year-to-year increases. Therefore, we expect
any biases related to smartphone ownership and usage to continue
to diminish in the future. This study is restricted to a single country
and results may not generalize to other countries. However, previ-
ous studies have found, in general, similar types of built environment
relationships across countries diverse in climate, demographics,
income, culture and activity supportiveness>* 8, As these studies
used walkability indices that were based on elements shared with the
measure used here (Methods: ‘Walkability measure’), this suggests
that our findings may generalize to other countries. We chose asimple,
highly used and extensively validated measure of walkability at a city
level®¢*. However, this type of aggregated, non-divisible walkability
score precludes the ability to identify which elements of walkability
may confer the largest benefits. Location data to assess walkability on
aneighbourhood or census tract level was not available, preventing
the analysis of within-city variation in walkability. Further research is
needed to identify key environmental features on a neighbourhood
level and disentangle their individual contributions, building on past
cross-sectional research and smaller-scale studies using self-reported
physical activity measures, which currently constitute the majority
of research in the field®. Future research is also needed to untangle
how the built environment may differentially affect physical activity
related toleisure, transportation and working. While walking is the most
popular aerobic physical activity®®, our dataset may fail to capture time
spentinactivities whereitisimpractical to carry aphone (for example,
football) or for which steps are not a major component of the activity
(for example, bicycling), and there may exist systematic differences
in wear time because participants in the current dataset had to carry
their phone for steps to be recorded. The increasing prevalence of
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Fig.3|Improvements in walkability are associated withincreasesin MVPA
and with twice as many participants meeting aerobic physical activity
guidelines (49+ pointincrease). a-c, Changesin physical activity stratified by
intensity of physical activity (steps per minute) following relocation to more
(a; more than 16-point walkability increase), less (b; more than 16-point
walkability decrease) and similarly (c; 16-point walkability difference or less)
walkable environments. a, We find that walkability-induced additional physical
activity (Fig.2a) predominantly consists of MVPA, which has been shown tobe
beneficial for many health outcomes'"*. b, Moving to less walkable locationsis
associated with asymmetricloss of MVPA thatis equivalentto theincreasein
more walkablelocations (a). ¢, Further, moving to similarly walkable locations
isassociated withanunchanged distribution of intensity levels. This suggests
thatrelocation, inand of itself, is not generally associated withincreasesin
physical activity, forinstance, owing to anindividual’s motivation toincrease

wearable activity trackers in the form of smartwatches and similar
devices will continue to enable more convenient methods of capturing
daily movement and steps. Further, our smartphone dataset repro-
duces previously established relationships between activity across
geographic locations, gender and age®. We also find that the span of
time over which steps were recorded is uncorrelated with relocating
to higher- or lower-walkability areas (Extended Data Fig. 7), and thus
systematic wear time differences are unlikely to affect our analyses.
Together, these findings increase confidence that our dataset is able
toidentify activity differences between built environments and groups
based on gender, age and weight status.

Further research is needed to determine which policies, on topics
such as land use mix, intersection design and access to public transit,

Target minimum walkability

physical activity.d, Change in MVPA (minutes per week) versus differences in
walkability. AT(/) is defined as the change in weekly minutes (AT) of activity at
intensity level/after relocation, in units of steps per minute. ATyypa, thatis,
changeinthetimespentin MVPA, iscomputed by summing AT(/) for />100
(inset). Large increasesin walkability (thatis, 49-80 points) are associated with
anincrease ofabout1hour per weekin MVPA. e, Theincreasesintime spentin
MVPA lead to twice as many participants meeting national and international
aerobic physical activity guidelines of 150 minutes per week or morein MVPA
(before 21.5%, after 42.5%).f, Asimulation based on these estimates predicts
thatifall US cities had the walkability of Chicago or Philadelphia (a walkability
score of 78), thenindividuals would increase their average daily step activity by
443 stepsand their MVPA per week by 24 minutes, whichwould mean that 11.2%
or 36 million more Americans would then meet national physical activity
guidelines for MVPA (Methods).

aremost effectiveinincreasing city walkability for both new and exist-
ing urban areas®. While increasing walkability of all cities to the level
of New York City is probably not possible, earlier research has shown
promising connections between implemented changes to the built
environment, walkability and physical activity®. The results of our
analysis will provide researchers and policy-makers with the infor-
mation to estimate the effects of targeted increases in walkability on
physical activity and weigh the cost effectiveness of changes to the built
environment against other public health interventions.

This countrywide natural experiment presents prospective evi-
dence of built environments affecting physical activity across 7,447
relocations among 1,609 US cities over a 3-year timespan. It reveals
the direct behavioural impacts of differing built environments on
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the physical activity levels of individuals and demonstrates the
utility of such massive, digitally enabled, real-world datasets for
evidence-based policy. Our findings suggest that designing built
environments to be more activity-friendly could have significant
effects on the physical activity of large populations, and serve as a
powerful complement to interventions that focus on changing behav-
iour at the individual level. However, changes in built environments
may need to be accompanied by additional age- and gender-specific
interventions aimed at specific subgroups who could particularly
benefit from physical activity increases (that is, women over 50 years
old). The quality of the prospective device-collected evidence and
consistency of findings across numerous cities, demographic groups
and relocation-related walkability differentials highlight the fun-
damental importance of the urban built environment in improving
physical activity and health.
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Methods

Study design

We conducted a countrywide, prospective, longitudinal physical
activity study of US residents that evaluated their physical activity
levels within the context of the walkability of their built environments
before and after relocation (‘participants’). We leveraged the naturally
occurring physical activity data that was captured by a health app on
participants’ phonesto compare each person’s physical activity levels
before and after they relocated to a different area within the USA. While
similar relocation-based study designs have been used previously to
estimate effects of place and built environments?¢%%, the vast majority
have been limited by relatively small sample sizes, using only self-report
physical activity measurement and the limited diversity with respect
totheareastowhichthey relocated. Objective measures of both urban
walkability and physical activity were used and are discussed in more
detail throughout the Methods. We analysed anonymized, prospec-
tively collected data from 2,112,288 US smartphone users using the
Azumio Argus health app over 3 years (March 2013 to February 2016)
to identify 5,424 participants that relocated 7,447 times among 1,609
UScities. These 1,609 cities are home to 137 million Americans, or more
than42% of the US population. We note that relocationis neither purely
exogenous nor random, and discuss the important implications of this
below. We follow established best practices for analysing large-scale
health data from wearables and smartphone apps™.

The Azumio Argus app is a free smartphone application for track-
ing physical activity and other health behaviours. Participants were
excluded fromaparticular analysis if necessary information was unre-
ported (forexample, participants with no reported age were excluded
from the analysis of Fig. 2b). Extended Data Table lincludes basic sta-
tistics on study population demographics and weight status (BMI).
Anonymized Azumio Argus app data was obtained through a Data Use
Agreement. Data handling and analysis was conducted inaccordance
with the guidelines of the Stanford University Institutional Review
Board, which deemed this study exempt.

For population size statistics, refer to Extended Data Tables 1-3.

Statistical methods

Allerror bars throughout this paper correspond to bootstrapped 95%
confidenceintervals. When these bootstrapped 95% confidence inter-
vals do notinclude the null value (typically 0), they indicate a statisti-
cally significant difference at the a = 0.05 level. All statistical hypothesis
tests were two-sided Student’s ¢-tests unless indicated otherwise.

Identifying participant relocation

We defined participant relocationas the action of moving toanew place
forasubstantial amount of time. We identified participant relocation as
follows. Participant location onagiven day was assigned to a city based
on the weather update in the participant’s app activity feed. Weather
updates are automatically added to the feed of each participant accord-
ing to the nearest cell phone tower. We searched for participants that
stayed in one location within a100-km radius for at least 14 days and
thenmoved to adifferentlocation that was at least 100 km away. Partici-
pants were required to stay within a100-km radius of this new location
for at least another 14 days. The 14-day threshold was chosen to filter
out short trips that may be related to business or leisure travel. Using
this threshold, we find that most participants do not relocate again and
spend amedian of 81 daysin the new location, effectively excluding the
impactof short-termtravel on our analyses. Most participants stopped
trackingtheir activity at this time, rather than relocating again. In addi-
tion, we repeated our analyses with thresholds of 21 and 30 days and
found highly consistent results (Extended Data Fig. 6). We required a
substantial move distance (100 km or more) to ensure thatrelocating
participants were exposed to a new built environment. We allowed for
up to 5 days of intermediate travel between these two locations and

ignored these days during analyses. We applied this method to 2,112,288
users of the Argus smartphone app and identified 31,034 relocations.
Among these, we required participants to have used the app to track
their physical activity for at least 10 days within the 30 days before
and after their relocation (as in previous work?). We further required
atleast 1 day of tracked physical activity before and after relocation
to ensure that, whenever we compare two participant populations,
these populations are identical and therefore comparable (that is,
we seek to identify within-participant changes in physical activity).
We repeated our statistical analyses with alternative data inclusion
criteria, such as the number of days with tracked physical activity, and
found similar results.

Physical activity measure

Our device-based (historically often called objective) measure of physi-
cal activity was the number of steps over time recorded by the partici-
pant’ssmartphone. Steps were determined based on the smartphone
accelerometers and the manufacturer’s proprietary algorithms for
step counting. The Azumio Argus app records step measurements on
aminute-by-minute basis. These measurements are collected passively
without requiring the smartphone or Azumio Argus app tobeinactive
use. Extended Data Table 2 includes basic statistics on physical activity
and tracking in the study population.

Datafromthe Azumio Argus app have been used previously to study
physical activity in large populations*”*”%, where the authors showed
that this form of data follows well-established trends>. For example,
they demonstrated that activity decreased with increasing age'>*7>7
and BMI®™*”, and is lower in female individuals than in male individu-
als>®737%7 trends that are consistent with national surveillance data
in this area. Physical activity estimates were also reasonably well cor-
related with self-report-based population estimates ona country level’.

Several studies have established significant differences between
accelerometer-derived and self-reported physical activity**™. Self-
reports typically overestimate moderate and vigorous activity and
underestimate sedentary activity™. InaUS study using National Health
and Nutrition Examination Survey 2005-2006 data, 59.6% of adults
self-reported meeting MVPA guidelines for aerobic physical activ-
ity, whereas estimates using accelerometry were much lower at
9.6%"". For our observation period between 2013 and 2016, the US
National Health Interview Survey reported that 49.6-52.6% of the
US population met MVPA guidelines. Nationally representative
accelerometer-based estimates for this time are not available. Our
smartphone-accelerometry-based estimate of 18% meeting aerobic
guidelines is within expectations, given well-established differences
between accelerometer-derived and self-reported physical activity and
earlier data (Methods)***!. In addition, unlike many previous studies
mailing accelerometers to study participants to wear for a week, our
study focuses on real-world physical activity by free-living individuals
that may not be equally affected by their awareness of being observed
(thatis, the Hawthorne effect).

We filtered out days as invalid when less than 500 or more than
50,000stepshad beenrecorded. We furtherignored daysimmediately
preceding and following the relocationitself (5 days before and 5 days
afterrelocation), because the process of relocating, rather than the new
built environment itself, could impact physical activity during these
days. Physical activity was relatively stable outside this period (Sup-
plementary Fig. 4). We considered physical activity within a window
of 30 days before and 30 days after relocation (with the exception of
Supplementary Fig. 3 and Extended Data Fig. 2 that use 90-day windows
toillustrate long-term changes). In total, our datasetincluded 248,266
days of objectively measured minute-by-minute physical activity sur-
rounding 7,447 relocations (595,803 days for the 180-day period).

We used the following measures as primary outcomes in this study:
(1) Change in average daily steps following relocation (Figs. 1e,f and
2a,b). (2) Change in average weekly minutes spent in MVPA following



relocation, where we considered all minutes spent at intensities greater
thanorequal to 100 steps per minute as MVPA*: AT ypa = 21100 AT (),
where AT(/) is defined as the change in weekly minutes of activity at
intensity level/, in units of steps per minute, after moving. Figure 3a-c
shows changes in average weekly minutes spent at different intensity
levels. (3) Change in the fraction of the population that met aerobic
physical activity guidelines following relocation, defined as spending
atleast 150 minutes per week in MVPA! (Fig. 3¢,f). All error bars cor-
respond to bootstrapped 95% confidence intervals”.

Walkability measure

We considered relocations among 1,609 cities in the USA. Walkability
scores for these cities were based on the publicly available and system-
atically developed Walk Score’®. Scores are onascale of 1t0100 (where
100 is the most walkable) and are based on amenities (for example,
grocery stores, schools, parks, restaurants and retail) within a 0.25-mile
to1.5-mileradius (adecay function penalizes more distant amenities)
and measures of friendliness to pedestrians, such as city block length
andintersectiondensity. Extended Data Table 3 includes basic statistics
on the cities included in our study and their walkability scores. Walk
Scores at the city level are computed by weighting the Walk Score of
each geographic unit within a city (typically about the size of a city
block) by the population density of that unit”.

The Walk Score measureis a frequently used measure of walkability
thatis freely and widely available across the USA and other countries
including Canada and Australia’. It is highly correlated®® with other
walkability measures®*-®?, and was found to offer the best fit to walking
tripsinastudy conducted in Montréal®. Itiswidely used in the literature
and has been extensively validated®¢*. Although other measures of
walkability exist®** 2, the Walk Score measure was chosen in light of
the pragmatic focus of the investigation and its ease of use and acces-
sibility. More comprehensive walkability indices could provide further
granular information related to specific aspects of walkability that
might be of prime importance.

We determined cut points for Walk Score differences of —16 to +16,
16 to 48 and 49 to 80, as we preferred cut points that were symmetric
around O (no change in walkability score), equivalent in size (32 Walk
Score points difference) and balanced granularity and statistical power,
aslarge Walk Score differences are more rare. Among the 7,447 reloca-
tions, 2.4% (2.4%) were associated with 49+ walkability pointincreases
(decreases), 20.7% (21.3%) were associated with 16-48 walkability point
increases (decreases) and 53.1% of relocations were to locations of
similar walkability (=16 to +16 point difference).

Aggregatingrelocation-based quasi-experiments

We aggregated changes in physical activity following relocation based
onthedifference in walkability scores between the origin and destina-
tion city, A. InFig. 2a, each circle corresponds to a pair of cities sized
by the number of participants moving between those cities. We fit a
linear model mA + bto these datawith slope m=16.6 (Student’s t-test;
P<107) and intercept b =25.0 (Student’s t-test; P= 0.462).

We considered potential confounders such as differences in climate
(using K6ppen climate type®®) and medianincome between the origin
and destination city. We found that the relationship between walkability
and walking behaviour still holds within pairs of cities with similar cli-
mate, for instance, moving from Miami, FLto Jacksonville, FL, or from
Amarillo, TX to Euless, TX (see annotations in Fig. 2a as well as more
generally in Supplementary Fig. 5). Furthermore, we found similar
effects across relocations in all seasons (Supplementary Fig. 6) and
relocations to cities with higher, lower and similar median household
income levels (Supplementary Fig. 7).

Impact of walkability across subgroups
We considered the effect of walkability differences on change in physi-
cal activity across subgroups based on demographics (ages 18-29,

30-49 and 50+ years), weight status (normal, overweight and obese
levels of BMI), previous activity level (below 5,000, 5,000-8,500 and
above 8,500 average daily steps before relocation) and gender (men
and women). Owing to the approximately linear nature of the rela-
tionship between walkability changes and physical activity changes
(Fig. 2a), we used a linear model for estimation. For each subgroup,
weranindependent linear regressions of the difference in daily steps
ondifferences in walkability between cities at the level of individual
relocations. The modelsincluded anintercept coefficient:m - A + b.
We determined the estimated coefficient of walkability (m; that is,
theincrease in daily steps for each one-point increase in walkability
of a city) along with 95% confidence intervals (based on Student’s
t-distribution) for each subgroup (Fig. 2b). We performed Student’s
t-tests on the regression model coefficients, which establish that
relocation to a city of higher walkability is associated with signifi-
cantly more daily steps across all age, gender, BMI and activity level
groups (Student’s t-test; all P < 0.05), with the exception of women
over 50 yearsold, for which the positive difference was not statistically
significant (Student’s ¢-test, P= 0.14). We found that the effect was
diminished in overweight and obese women relative to normal-weight
women. Thus, the non-significant effect on women over 50 years of
age may be explained, in part, by the larger average BMI of this group
(27.4) compared with other women (25.3; P<107°). In comparison,
men over 50 years of age also had a larger BMI compared with other
men, but the difference was smaller thanin women (28.2 versus 27.0;
P<107).

Adjusting for seasonality

Physicalactivity isinfluenced by climate and weather®* and relocations
arenotequally distributed across seasons (Supplementary Fig. 3a). We
found that differencesin physical activity levels following relocations
may be influenced by seasonal variation, especially when consider-
ing comparatively long observation periods of about 6 months (Sup-
plementary Fig. 3b,c). For analyses of variation in activity over time
(Fig. 1e,f, Extended Data Fig. 2 and Supplementary Figs. 1and 3), we
adjusted for these seasonal effects by weighting relocations in each
calendar month equally. This was achieved by first estimating physi-
cal activity levels separately for each calendar month and then taking
the average. This process is repeated 1,000 times in our bootstrap
estimates.

Selection effects in relocation and mobile app usage

While relocation uniquely enabled the quasi-experimental study of
behavioural changesin different environments, there may be selection
effectsdriving relocation, often referred to as residential self-selection.
According to a 2013 US Census Bureau report, 98% of people moved
primarily for reasons of housing, family and employment®. Less than
1% of people moved primarily for health reasons. There are some cat-
egories that might, in part, include people who want to reduce their
dependence on cars. These include ‘health reasons’ (0.4%), ‘other
housing-related’ (14.0%), ‘wanted better neighborhood/less crime’
(3.2%) and ‘to be closer to work/easier commute’ (5.4%), suggesting
that at least 77% of participants moved for reasons completely unre-
lated to car dependence®. In addition, neighbourhood selection may
be influenced by personal preferences such as exercise and walking
activities®. With respect to this possibility, note that we found no
indication of increasesin physical activity after moving to alocation of
similar walkability (Figs.2aand 3c). This suggests that those relocating
participants are not simply more motivated to exercise, on average, but
that changes in physical activity may be explained by the changing built
environment. Itis possible that selection effects were absent because
participants may not have perceived themselves as being observed,
incontrast to previous studies that featured explicit, short periods of
monitoring (Hawthorne effect). We further acknowledge that other
city characteristics may affect walking and be correlated with the city’s
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walkability (for example, length of work days). We investigated poten-
tial selection effects further by comparing the population of relocating
mobile app users, first, to the overall US population, and, second, to
the overall mobile app user population, including non-relocating app
users. We found that the relocating participant populationis similarin
age (36 versus 37.7 years median age) and gender (49.8% versus 51.0%
female, P=0.132; Student’s t-test) to the US population (Extended
DataFig.3). We adjusted for differences in age for the simulation esti-
mates in Fig. 3f and Extended Data Fig. 1. Within the app user popula-
tion, we found that movers and non-movers (that is, relocating and
non-relocating participants) tend to be close in age (43.8 versus 37.9
and 38.5 versus 33.7 average age for men and women, respectively;
Extended Data Fig. 4a,b), and weight status (68.1% versus 59.8% and
45.6% versus 44.3% overweight and obese for men and women, respec-
tively; Extended DataFig.4c,d). However, movers were generally more
physically active thannon-movers (6,284 versus 5,825 and 5,279 versus
4,635 average daily steps for menand women, respectively; Extended
DataFig.4e,f). Furthermore, we found that within movers, those that
relocate to higher-, similar-and lower-walkability locations were similar
in age, weight status and previous physical activity levels (Extended
DataFig.5).

Simulating the impact of walkability improvements

We simulated the impact of US nationwide walkability improvements
on US population physical activity levels. Concretely, we simulated
the impact of increasing US city walkability scores to a constant tar-
get walkability score between 1 and 100. We also highlight the walk-
ability scores of Chicago and Philadelphia (78) as well as New York
City (89) to aid interpretation. As the relocation population was not
explicitly drawn to be representative of the US population, we adjusted
our estimates through ratio-based post-stratification weights across
age-based strata®. We used civilian population estimates from the US
Census Bureau for 2016 as the target population distribution. While
there were no significant differencesin the gender distribution (49.8%
female versus 51.0% female, P = 0.132; Extended Data Fig. 3a), we found
slight differencesinage (36.0 versus 37.7 years median age; Extended
Data Fig. 3b), which we corrected for through sampling weights. We
acknowledge that other selection effects and heterogeneous treat-
ment effects may exist. Using a bootstrap with 1,000 replications,
we estimated the difference in the overall US population that would
meet US national aerobic physical activity guidelines for MVPA! after
relocating based on the relocation-induced difference in walkability.
We used a linear regression model and data from relocations asso-
ciated with both walkability increases and decreases. We estimated
the total fraction of US population meeting aerobic physical activity
guidelines as the sumbetween the fraction of people already meeting
these guidelines before relocating plus the estimated addition based
ontheregression model. Confidence intervals represent bootstrapped
95% confidence intervals. Final estimates are depicted in Fig. 3f and
Extended Data Fig. 1.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data are available at GitHub (https://github.com/behavioral-data/
movers-public).

Code availability

Code is available at GitHub (https://github.com/behavioral-data/
movers-public).
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status (68.1vs 59.8 and 45.6 vs 44.3 percent overweight and obese for men and
women, respectively). e-f, However, movers were generally more physically
activethannon-movers (6,284 vs 5,825and 5,279 vs 4,635 average daily steps
formenand women, respectively).
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and lower walkability locations, respectively), c-d, weight status (69.3 vs 67.3 vs
66.5and 46.6vs44.9 vs46.1 percentoverweight and obese for men and women
movingto higher, similar, and lower walkability locations, respectively), e-f, and
baseline physical activity levels (6,257 vs 6,229 vs 6,301and 5,422 vs 5,239 vs
5,405 average daily steps for men and women moving to higher, similar, and
lower walkability locations, respectively).
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Extended Data Table 1| Summary of demographic statistics for the study participants (Methods)

Quantity All participants Movers Non-movers
Total participants 2,112,288 (100.0) 5,424 (100.0) 2,106,864 (100.0)
Median Age 32 36 32

Moves per participant - Min: 1.0, Max: 9.0, Avg: 1.37 -

# Female 413,373 (48.1) 1,732 (49.8) 411,641 (48.1)
# Male 446,406 (51.9) 1,748 (50.2) 444,658 (51.9)
# gender NA 1,252,509 (59.3) 1,944 (35.8) 1,250,565 (59.4)
# Overweight 347,964 (30.4) 1,549 (33.2) 346,415 (30.4)
# Obese 241,842 (21.2) 1,073 (23.0) 240,769 (21.2)
# BMI NA 969,538 (45.9) 760 (14.0) 968,778 (46.0)

Study observation period ranged from March 2013 to February 2016. Percentages are in parentheses. NA refers to missingness in data.



Extended Data Table 2 | Summary of physical activity statistics for the study participants (Methods)

Quantity Value
# Daily Steps
Overall 5574 (3055)
Before Move 5559 (3059)
After Move 5588 (3051)
# Minutes MVPA
Overall 103 (104)
Before Move 102 (101)
After Move 104 (106)
% Population Meeting PA Guidelines
Overall 23.9
Before Move 234
After Move 24.4
# Days Tracked per Relocation (30 days)
Total 248,266
Min 2
Max 51
Mean 33.3(12.7)
# Days Tracked per Relocation (90 days)
Total 595,803
Min 1
Max 153
Mean 80.0 (39.4)

Statistics are averages unless otherwise noted with standard deviations in parentheses.
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Extended Data Table 3 | Location and walkability statistics for all locations included in our study with at least 70 moving
participants (sorted alphabetically)

City Walkability # Moving participants # Female # Overweight
Atlanta, GA 48 140 46 (53.5) 37 (30.6)
Austin, TX 39 123 38 (49.4) 37 (35.6)
Boston, MA 81 106 34 (53.1) 27 (32.1)
Charlotte, NC 26 71 20 (51.3) 20 (37.0)
Chicago, IL 78 222 60 (48.4) 61 (32.8)
Dallas, TX 45 121 27 (34.2) 46 (43.4)
Denver, CO 60 72 28 (58.3) 24 (36.9)
Honolulu, HI 63 74 19 (37.3) 27 (39.7)
Houston, TX 48 167 48 (43.2) 54 (38.6)
Las Vegas, NV 40 179 43 (38.7) 57 (38.8)
Los Angeles, CA 66 224 77 (48.7) 62 (31.3)
Miami, FL 78 98 21 (39.6) 32 (37.6)
New Orleans, LA 57 70 26 (56.5) 13 (20.6)
New York, NY 89 257 90 (55.2) 74 (32.0)
Orlando, FL. 41 195 57 (44.9) 72 (42.1)
Philadelphia, PA 78 75 26 (54.2) 20 (32.3)
Phoenix, AZ 40 97 32 (43.2) 38 (42.2)
Portland, OR 64 72 30 (55.6) 19 (31.1)
San Antonio, TX 36 102 25 (36.8) 32 (35.6)
San Diego, CA 50 196 57 (47.5) 54 (32.1)
San Francisco, CA 86 205 57 (42.5) 61 (33.3)
San Jose, CA 50 95 31(51.7) 21 (24.7)

Seattle, WA 73 103 29 (50.0) 24 (26.4)

Percentages are in parentheses.
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