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Abstract1

Biomedical research underpins progress in our understanding of human health and disease,2

drug discovery, and clinical care. However, with the growth of complex lab experiments,3

large datasets, many analytical tools, and expansive literature, biomedical research is in-4

creasingly constrained by repetitive and fragmented workflows that slow discovery and limit5

innovation, underscoring the need for a fundamentally new way to scale scientific exper-6

tise. Here, we introduce Biomni, a general-purpose biomedical AI agent designed to au-7

tonomously execute a wide spectrum of research tasks across diverse biomedical subfields.8

To systematically map the biomedical action space, Biomni first employs an action discov-9

ery agent to create the first unified agentic environment – mining essential tools, databases,10

and protocols from tens of thousands of publications across 25 biomedical domains. Built11

on this foundation, Biomni features a generalist agentic architecture that integrates large12

language model (LLM) reasoning with retrieval-augmented planning and code-based execu-13

tion, enabling it to dynamically compose and carry out complex biomedical workflows – en-14

tirely without relying on predefined templates or rigid task flows. Systematic benchmarking15

demonstrates that Biomni achieves strong generalization across heterogeneous biomedical16

tasks – including causal gene prioritization, drug repurposing, rare disease diagnosis, micro-17

biome analysis, and molecular cloning – without any task-specific prompt tuning. Real-world18

case studies further showcase Biomni’s ability to interpret complex, multi-modal biomedical19

datasets and autonomously generate experimentally testable protocols. Biomni envisions a20

future where virtual AI biologists operate alongside and augment human scientists to dra-21

matically enhance research productivity, clinical insight, and healthcare. Biomni is ready to22

use at https://biomni.stanford.edu, and we invite scientists to explore its capabilities, stress-23

test its limits, and co-create the next era of biomedical discoveries.24
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1 Introduction25

Biomedical research is a key pillar of modern science and medicine, driving discoveries in disease26

mechanisms, diagnostics, and therapeutics1–4. Yet, with the growth in large-scale experiments,27

data, tools, and literature, progress is increasingly slowed by fragmented, complex workflows that28

require specialized tools, exhaustive literature reviews, intricate experimental design, and careful29

statistical modeling5, 6. A vast volume of valuable biomedical data sits underutilized7, many so-30

phisticated analyses are not conducted, and many connections for past knowledge and literature are31

not made, not for lack of significance, but because the demand for expert researchers far exceeds32

the supply. This mismatch between data abundance and limited human bandwidth highlights an33

urgent need for a fundamentally new approach – one that can effectively scale expertise, streamline34

workflows, and unlock the full potential of biomedical research.35

Recent advances in Artificial Intelligence (AI) have created a paradigm shift, opening the36

possibility for fundamentally reshaping biomedical research8. AI agents have dramatically re-37

shaped fields such as software engineering9, law10, material science11 and healthcare12 by au-38

tomating repetitive tasks, enhancing productivity, and enabling breakthroughs that were previ-39

ously unimaginable. Given these developments, the question emerges: Can we build a virtual40

AI biomedical scientist? Such a virtual scientist would autonomously tackle diverse biomedical41

research tasks spanning multiple subfields, unlocking extensive capabilities and fostering novel42

insights through interdisciplinary integration – an achievement that can radically augment human43

biologists limited by specialized expertise. Capable of efficiently managing thousands of concur-44

rent tasks, this virtual scientist could dramatically enhance human productivity and accelerate the45

pace of biomedical discovery.46

Previous approaches have largely relied on specialist agentic workflows tailored to nar-47

row biomedical tasks13–19, which restricts their capacity to move fluidly and generalize across48

the full spectrum of biomedical domains, as needed to answer key research questions. Enabling49

an AI agent to handle a broad range of biomedical tasks introduces substantial technical chal-50

lenges – most notably, the need to tightly couple advanced reasoning20 with the ability to exe-51

cute highly specialized biomedical actions21. Although LLM-based reasoning has seen significant52

advancements22, such LLMs need access to an environment that explicitly defines the biomedical53
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action space, which is inherently diverse, domain-specific, and complex. Moreover, a truly capable54

system requires an agentic architecture that can natively interact with this biomedical environment55

– autonomously selecting and composing actions, using its reasoning capabilities to plan and exe-56

cute diverse tasks without relying on rigid, pre-defined workflows.57

Here we present Biomni, a generalist biomedical AI agent purpose-built to automate and58

advance biomedical research across a wide range of subfields. Acting as a virtual AI biologist,59

Biomni autonomously formulates novel, testable hypotheses, performs complex bioinformatics60

analyses, and designs rigorous experimental protocols. To enable this capability, we first con-61

structed a unified and comprehensive biomedical action space by systematically analyzing tens62

of thousands of biomedical research papers spanning 25 distinct subfields, curated from major63

bio-literature repositories. From this foundation, we developed an LLM-powered action discovery64

agent capable of reading papers and extracting key tasks, tools, and databases essential to driving65

biomedical discoveries. These elements are then selected and implemented into Biomni-E1, the66

foundational environment that defines the biomedical action space for agentic interaction. Biomni-67

E1 includes 150 specialized biomedical tools, 105 software packages, and 59 databases. We then68

designed Biomni-A1, a general-purpose agent architecture capable of flexibly executing a broad69

spectrum of biomedical tasks by using tools and datasets provided by Biomni E1. Given a user70

query, the agent first uses a retrieval system to identify the most relevant tools, databases, and soft-71

ware needed. It then applies LLM-based reasoning and domain expertise to generate a detailed,72

step-by-step plan. Each step is expressed through executable code, enabling precise and flexible73

compositions of biomedical actions – an essential feature given the domain’s reliance on highly74

specialized tools and data resources. Unlike traditional function-calling methods, this approach75

supports the dynamic and complex nature of biomedical workflows. This integrated system allows76

Biomni not only to solve challenging, large-scale biomedical problems with efficiency, but also to77

generalize to novel tasks across previously unseen areas of biomedical research.78

Rigorous benchmarking demonstrates Biomni’s outstanding performance across established79

biomedical Q&A benchmarks, and robust generalization performance in eight challenging, realis-80

tic scenarios never encountered during development. Additionally, we highlight Biomni’s practical81

capabilities through three impactful case studies: (1) analyzing 458 files of wearable sensor data82

to generate novel insights; (2) rapidly performing comprehensive bioinformatics analyses on mas-83
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sive raw datasets, such as single-cell RNA-seq and ATAC-seq data, to generate novel insights and84

hypotheses; (3) autonomously designing laboratory protocols to assist wet-lab researchers. With85

Biomni, we introduce the first generation of a scalable, general-purpose biomedical AI agent,86

setting the stage for an era where virtual AI biologists work alongside human researchers to dra-87

matically accelerate biomedical discovery from basic research to translation.88

2 Results89

Overview of Biomni. Biomni is a general-purpose biomedical AI agent comprising two main90

components: Biomni-E1, a foundational biomedical environment with a unified action space, and91

Biomni-A1, an intelligent agent designed to utilize this environment effectively.92

Curating a unified biomedical action space is challenging due to its inherent complexity and93

vastness. We systematically address this by employing an AI-driven approach (Figure 1a). Specif-94

ically, we leveraged the 25 subject categories defined by bioRxiv, selecting the 100 most recent95

publications per category. An action discovery LLM agent processed each paper sequentially,96

extracting essential tasks, tools, databases, and software necessary to replicate or generate the de-97

scribed research. This comprehensive set of resources constitutes the essential actions required to98

perform a large set of biological research tasks.99

We then curated Biomni-E1, an environment for a biomedical AI agent to perform a wide100

range of actions (Figure 1b). Identified tools were rigorously verified by human experts, along101

with corresponding test cases. These tools (Supplementary Table 1-Table 18) were specifically102

chosen for their non-trivial nature, encompassing complex code, domain-specific know-how, or103

specialized AI models. Recognizing the inherent flexibility required by biological software, which104

cannot always be simplified into static functions, we constructed an execution environment pre-105

installed with 105 widely-used biological software packages (Supplementary Table 23-30), sup-106

porting Python, R, and Bash scripts. For database integration, we categorized resources into two107

distinct groups. The first group consists of massive relational databases accessible via web APIs108

(e.g., PDB, OpenTarget, ClinVar) (Supplementary Table 19-20). Rather than creating numerous109

individual retrieval tools, we implemented a unified function per database. Each function accepts110

natural language queries and internally employs an LLM to parse database schemas and generate111

executable queries dynamically. Databases without web interfaces were downloaded into a data112
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lake and preprocessed locally into structured pandas DataFrames for seamless integration with the113

agent, for a total of 59 databases in Biomni-E1 (Supplementary Table 21-22). In summary, Biomni-114

E1 is the first environment for biomedical AI agent and includes 150 specialized biomedical tools,115

105 software, and 59 databases.116

To build a general-purpose agent capable of tackling diverse biomedical tasks, we require a117

specialized agentic architecture – one that avoids hardcoding workflows for each individual task.118

This led to the development of Biomni-A1, which incorporates several core innovations critical119

for operating across the biomedical research landscape. First, we introduce an LLM-based tool120

selection mechanism designed to navigate the complexity and specialization of biomedical tools,121

dynamically retrieving a tailored subset of resources based on the user’s goal. Second, recogniz-122

ing that biomedical tasks often require rich procedural logic, Biomni-A1 uses code as a universal123

action interface – allowing it to compose and execute complex workflows involving loops, par-124

allelization, and conditional logic. Crucially, this approach also enables the agent to interleave125

calls to software, tools, databases, and raw data operations that do not conform to predefined func-126

tion signatures-supporting flexible and dynamic integration of heterogeneous resources. Third, the127

agent adopts an adaptive planning strategy: it formulates an initial plan grounded in biomedical128

knowledge and iteratively refines it throughout execution, enabling responsive, context-aware be-129

havior. Together, these innovations enable Biomni-A1 to generalize to previously unseen tasks and130

domains, dynamically composing intelligent actions and interfacing with software, data, and tools131

in a way that embodies generalist biomedical intelligence (Figure 1c).132

Biomni excels on general biomedical knowledge and reasoning benchmarks. We evaluated133

Biomni on three challenging multiple-choice benchmarks of general biomedical knowledge and134

reasoning: Humanity’s Last Exam (HLE)23 and LAB-Bench24, which includes two key subtasks –135

DbQA (Database Question Answering) and SeqQA (Sequence Question Answering) (Figure 2a).136

These tasks span tool use, symbolic reasoning, and structured biological information retrieval –137

core competencies for any robust biomedical AI agent. To isolate the impact of tool access and138

agent design, we compared Biomni against six strong general-purpose baselines (details in Sup-139

plementary Notes A). Specialized methods25, 26 designed for each task is not considered as we aim140

to compare on generalist performance.141
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For LAB-Bench, a 45-question development set was used to refine tool and database inter-142

faces, while the final evaluation was conducted on 315 held-out test questions, with performance143

averaged across three independent runs. We only curated a representative 12.5% subset of the full144

benchmark due to API cost constraints. In DbQA, which requires structured querying over biolog-145

ical databases, Biomni achieved 74.4% accuracy – matching expert human performance (74.7%)146

and outperformed all baselines, including the coding agent (ReAct+Code, 40.8%). In SeqQA,147

which involves reasoning over DNA and protein sequences, Biomni achieved 81.9% accuracy,148

again exceeding human-level performance (78.8%).149

To test true generalization of biomedical knowledge and reasoning without any development150

set, we also evaluated Biomni on a 52-question subset of HLE spanning 14 biomedical subfields151

– from molecular biology to physiology. Biomni achieved 17.3% accuracy, significantly outper-152

forming the base LLM (6.0%), coding agent (12.8%), and literature agent (12.2%). These re-153

sults demonstrate Biomni’s ability to generalize across unfamiliar, open-ended biomedical domains154

without any task-specific adaptation. Additional ablation results are shown in Supplementary Fig-155

ures 1-2. Performances across each subfield are reported in the Supplementary Figure 3.156

Biomni generalizes to new, real-world biomedical tasks across diverse subfields. To evaluate157

generalization in realistic research tasks, we curated eight new biomedical benchmarks spanning158

genetics, genomics, microbiology, pharmacology, and clinical medicine (Figure 2b). Each task159

was framed to reflect a common, well-defined, but complex real-world biomedical research goal,160

including: (1) Variant prioritization: Identify the most likely causal variant from a list of poten-161

tial variants for a trait, requiring reasoning about regulatory functions in non-coding regions. (2)162

GWAS causal gene detection: Select the most likely causal gene within a locus, demanding fine-163

grained locus-level inference. (3) CRISPR perturbation screen design: Construct gene panels to164

maximize post-perturbation effect across a large (⇠20,000 genes) search space. (4) Rare disease165

diagnosis: Map patient phenotypes and genetic findings to rare disease diagnosis. (5) Drug repur-166

posing: Given a rare disease and a list of candidate drugs, select the best therapeutic match. (6)167

Single-cell RNA-seq annotation: Assign accurate cell-type labels to individual cell profiles across168

tissues, species, and platforms. (7) Microbiome disease-taxa analysis: Perform statistical associa-169

tion tests on microbiome datasets to uncover disease-relevant taxa. (8) Patient gene prioritization:170
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Given an individual patient’s genetic profile and phenotype description, identify the most plausi-171

ble causal gene. We benchmarked Biomni without prompt engineering or task-specific fine-tuning172

against three baselines: (1) a base LLM (Claude Sonnet 3.7) without tool use, (2) a coding agent173

with direct function calls and code execution (ReAct+Code), and (3) Biomni-ReAct, an ablation174

of Biomni that replaces code-based planning with ReAct-style chaining. The complete benchmark175

constructions are described in Methods, with detailed performance comparisons in Supplementary176

Notes B.177

Across all tasks, Biomni outperformed the base LLM by an average relative performance178

gain of 402.3%, the coding agent by 43.0%, and its own ablated variant Biomni-ReAct by 20.4%.179

These findings highlight the importance of code-centric planning and environment grounding, en-180

abling Biomni to compose precise, flexible, and context-aware actions. For each benchmark, we181

further analyzed the execution trajectories, identifying commonly invoked tools, software, and182

datasets, as detailed in Supplementary Figures 6-16. These trajectories provide insight into the183

complexity and structure of agent behavior across tasks. On average, Biomni executes between 6184

and 24 distinct steps per task, involving combinations of 0-4 specialized tools, 1-8 software pack-185

ages, and 0-3 unique data lake items. The agent interleaves data extraction, search/retrieval, rea-186

soning, and computational analyses (Supplementary Figure 8) – reflecting a workflow pattern that187

mirrors how human scientists alternate between retrieving knowledge and generating new insights.188

Resource usage varies by task type: information synthesis tasks, such as CRISPR perturbation189

screen design and GWAS causal gene identification, rely heavily on database queries (e.g., KEGG,190

Reactome) and literature search (e.g., PubMed, Google), whereas bioinformatics analysis tasks191

like microbiome profiling and single-cell annotation involve minimal database use but extensive192

code execution with software libraries such as scanpy.193

Biomni jointly analyzes 458 wearable sensor files to generate physiological hypotheses. To194

evaluate Biomni’s performance in real-world biomedical workflows, we invited scientists to ap-195

ply it directly to their own research questions. In this case study, a researcher used Biomni to196

analyze 458 Excel files containing months-long wearable sensor data (continuous glucose moni-197

toring (CGM) and body temperature) from 30 participants. The data were highly heterogeneous:198

file formats varied, annotations were inconsistent, and participants exhibited substantial variability199

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2025. ; https://doi.org/10.1101/2025.05.30.656746doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.30.656746
http://creativecommons.org/licenses/by/4.0/


(Figure 3a). The researcher posed an open-ended question: Can we uncover biologically meaning-200

ful thermogenic patterns?201

Biomni autonomously generated and executed a 10-step analysis pipeline (Figure 3b), in-202

ferring meal events from glucose spikes, extracting pre/post meal temperature windows, normal-203

izing across individuals, and synthesizing population-level trends. Crucially, after completing the204

pipeline, the agent delivered a structured, human-readable report summarizing its key findings205

(Supplementary Notes D). It identified a consistent postprandial thermogenic response, with an206

average temperature rise of 2.19�C (median: 1.10�CC) and a wide range across individuals (-207

0.11�CC to 15.56�CC). Some participants showed rapid, pronounced spikes within 30 minutes of208

eating, while others had delayed or muted responses – indicating divergent metabolic phenotypes209

(Figure 3c,d). These insights were not manually curated or extracted by a human; the agent per-210

formed the entire analysis end-to-end and surfaced the results as a concise narrative highlighting211

patterns that would otherwise being ignored in raw data.212

In a parallel workflow, the scientist requested Biomni to analyze 227 nights of wearable-213

recorded sleep data across 10 participants. Biomni computed averages for duration, efficiency,214

latency, and sleep stage composition, derived a composite sleep quality score, and conducted215

chronobiological analyses. The agent delivered a structured summary to the user (Supplemen-216

tary Notes D, Supplementary Figure 4), including personalized sleep profiles and timing insights,217

without human post hoc synthesis. Biomni uncovered several novel insights: sleep efficiency218

consistently peaked mid-week (on Wednesdays) and declined on Sundays, suggesting a potential219

behavioral pattern tied to pre-Monday stress or weekend-induced disruptions. Another important220

finding was that consistent sleep timing correlated more strongly with higher sleep quality than221

total sleep duration, highlighting the critical role of circadian regularity in maintaining restorative222

sleep.223

The scientist then tasked Biomni with analyzing multi-omics data (652 lipidomic, 731 metabolomic,224

and 1,470 proteomic features), jointly with the CGM data. Biomni conducted cross-omics correla-225

tion analysis, applied hierarchical clustering to uncover biologically coherent feature groups, and226

performed unsupervised PCA to link CGM signals to molecular pathways. It automatically gener-227

ated interpretable outputs – trajectory plots, heatmaps, boxplots, PCA biplots, and cluster maps –228

empowering rapid insight generation from complex multimodal datasets (Supplementary Notes D,229
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Supplementary Figure 5). Significant correlations among lipids, metabolites, and proteins revealed230

tightly interlinked regulatory pathways, underscoring the systems-level nature of metabolic regula-231

tion. Notably, several identified biomarkers showed consistent patterns across samples and exhib-232

ited high connectivity within correlation networks. Across all cases, the scientist noted that Biomni233

accelerated the path from messy real-world data to testable hypotheses, supporting applications in234

sleep optimization, metabolic research, and precision health.235

Biomni automates complex multi-omics analysis to decipher transcriptional regulation of236

skeletal lineages. To test whether Biomni could generalize to complex omics workflows, a scien-237

tist used it to analyze a recently published multi-omics dataset of the developing human skeleton 27.238

This dataset comprises 336,162 single-nucleus RNA-Seq (snRNA) and ATAC-seq (snATAC-Seq),239

paired with spatial transcriptomics data collected from human embryos between 5-11 weeks post-240

conception (Figure3e). While the original study emphasized developmental trajectories and dis-241

ease mechanisms, the scientist was interested in exploring gene regulatory mechanisms across242

emerging skeletal cell types – a technically demanding task typically requiring extensive bioinfor-243

matics support.244

The scientist asked Biomni to investigate transcriptional regulation across skeletal lineages245

using a detailed instruction (Supplementary Notes E). The system autonomously planned and exe-246

cuted a ten-stage analysis pipeline: (1) loading and exploring all datasets, (2) preparing RNA-seq247

data for analysis, (3) configuring pySCENIC to retrieve motifs, (4) running GRNBoost2 to infer248

gene regulatory networks, (5) pruning networks using cisTarget, (6) calculating regulon activity249

with AUCell, (7) extracting accessibility data from ATAC-seq, (8) filtering predicted targets us-250

ing ATAC-seq accessibility, (9) analyzing activity patterns across cell types, developmental stages,251

and anatomical regions, and (10) summarizing findings and preparing a report to the scientist. It252

enabled Biomni to predict transcription factor-target gene links and filter regulons based on mo-253

tif enrichment and chromatin accessibility correlations (Figure 3f). The full run, completed in254

just over five hours, handled real-time execution issues (e.g., variable name mismatches) by sub-255

sampling and debugging locally. Throughout, Biomni maintained all intermediate outputs – code,256

figures, and logs – organized in a reproducible folder structure for validation and inspection. The257

agent summarized all the analysis and generated a report describing the analysis and key findings258
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(Supplementary Notes E).259

In its final gene regulatory network (GRN) analysis (Figure 3h), Biomni re-capitulated known260

regulatory relationships between key osteogenic transcription factors such as RUNX2 and HHIP,261

confirming how they are regulated by a shared set of anti-osteogenic transcription factors including262

TWIST1, LMX1B, and ALX4 27. These findings align with author’s report 27 about the balanced263

regulation needed for proper bone formation and suture patency. Furthermore, Biomni also uncov-264

ered several unreported TFs, including AUTS2, ZFHX3, and PBX1, showed unexpectedly high265

regulatory activity across multiple skeletal cell types. Although PBX1 is a well-established skele-266

tal regulator 28 and ZFHX3/AUTS2 have only limited or indirect skeletal reports (in mouse 29
267

or zebrafish 30), their broad activity here suggests under-appreciated roles across diverse skele-268

tal lineages. Biomni reported that these novel regulators were particularly active in osteoblasts,269

preosteoblasts, and various chondrocyte populations, suggesting they play important but previ-270

ously unrecognized roles in the transcriptional control of skeletal cell fate determination during271

human embryonic development. Finally, Figure 3g-h reveals how Biomni’s visualizations effec-272

tively captured both temporal dynamics of regulator activity and cell-type-specific variations in key273

regulons like RUNX2. This demonstrates how Biomni enables researchers to autonomously per-274

form complex multi-omics analysis and rapidly generate testable hypotheses without specialized275

programming expertise.276

Biomni designs wet-lab validated experimental protocol for cloning. To evaluate Biomni’s277

ability to support real-world experimental design, we focused on a core task in molecular biology:278

cloning. This process is central to countless workflows in research and biotechnology and requires279

complex reasoning, from designing high-fidelity primers to choosing the right assembly method280

and validating constructs. While general-purpose LLMs have struggled to perform such tasks due281

to limited domain knowledge and tool access 24, Biomni integrates LLM reasoning with dynamic282

tool execution, enabling expert-level performance in molecular biology tasks.283

To rigorously evaluate this task, we first collaborated with an expert group of gene-editing284

researchers to design an open-ended cloning benchmark and expert user study (Figure 4a). Our285

benchmark consisted of 10 realistic, representative cloning tasks covering Golden Gate, Gibson,286

Gateway, and restriction cloning – each with options including single-fragment vs. pooled assem-287
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bly. The benchmark also included essential validation steps, such as designing Sanger sequencing288

primers and analyzing restriction digests. We posed these tasks to four entities: an LLM (Claude289

3.7), Biomni, a human trainee (Stanford Biology Master with previous experience in cloning),290

and a senior human expert (Stanford Genetics PostDoc with 5+ years of cloning experience).291

Each was asked to generate a complete, end-to-end protocol along with the final cloned plas-292

mid map. Blinded expert reviewers assessed the outputs. Biomni produced protocols and designs293

that matched the human expert in accuracy and completeness – often providing comparable lev-294

els of detail and anticipating the same edge cases. In contrast, the human trainee’s submissions295

were frequently incomplete or suboptimal, reflecting the experience gap typical in early-stage re-296

searchers. Remarkably, Biomni completed all tasks autonomously in a fraction of the time taken297

by the expert.298

To further validate Biomni in a real-world setting, a scientist assigned it a practical cloning299

task: cloning a guide RNA targeting the human B2M gene into the lentiCRISPR v2 Blast construct300

(Figure 4b). Biomni successfully executed the task through a comprehensive workflow (Figure 4c).301

First, it analyzed the plasmid structure using annotation and pattern search tools to identify key fea-302

tures necessary for cloning. It then designed three Cas9 sgRNAs targeting B2M using specialized303

knockout sgRNA design tools. For the cloning process, Biomni generated forward and reverse304

oligos with BsmBI overhangs to enable directional insertion of the sgRNA sequence. It produced305

detailed protocols (Figure 4d) for oligo annealing, double-stranded DNA formation, and Golden306

Gate cloning into the target vector. Biomni also provided complete bacterial transformation in-307

structions, including heat-shock steps and antibiotic selection. For quality control, it designed a308

U6 promoter sequencing primer to verify sgRNA insertion and simulated the Golden Gate assem-309

bly to produce the final plasmid map.310

The scientist followed Biomni’s protocol exactly to perform the wet-lab experiment (Fig-311

ure 4e). Colonies appeared on the plate the next day; two were cultured, miniprepped, and se-312

quenced using the Biomni-designed primers – both showing perfect alignment. This case illustrates313

how scientists can rely on Biomni to autonomously design complex molecular biology experiments314

with accuracy comparable to human experts, but in a fraction of the time.315

User-friendly interface to empower scientists to generate biomedical discoveries. To bring the316
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power of Biomni into the hands of every scientist, we built an intuitive graphical interface – avail-317

able at https://biomni.stanford.edu – to help transform the way researchers interact with biomedical318

data and tools. This seamless platform enables users to submit natural language queries and receive319

results powered by the full capabilities of Biomni’s agentic system. Whether designing complex320

cloning experiments, querying multi-omics databases, or generating hypotheses from wearable321

data, scientists can now access the intelligence of a general-purpose biomedical AI agent without322

writing a single line of code. The interface is designed for rapid iteration, real-time feedback, and323

visual traceability, allowing users to explore intermediate steps, inspect tool usage, and validate324

results interactively. By closing the gap between biomedical intent and execution, Biomni opens a325

new era of accessible, automated, and scalable scientific discovery. An example of this interface is326

shown in Supplementary Figure 17.327

3 Discussion328

Biomni marks a major step forward in biomedical research, demonstrating robust generalization329

across diverse subfields and laying the groundwork for AI agents as integral collaborators in scien-330

tific discovery. Its zero-shot performance across complex tasks – including those in genetics, ge-331

nomics, microbiology, immunology, pharmacology, and clinical medicine – underscores its poten-332

tial to boost research productivity, accelerate discovery, and broaden access to advanced biomedical333

analyses.334

By automating complex, labor-intensive workflows, which normally require both expert335

knowledge and coding skills, Biomni enables researchers to redirect their efforts toward creative336

hypothesis generation, experimental innovation, and cross-disciplinary collaboration. This shift337

holds profound implications. In the conext of target and drug discovery for biopharma, Biomni338

can autonomously prioritize targets, design perturbation screens, or repurpose drugs – offering a339

path to faster, more cost-effective reasearch. In clinical application settings, its capabilities in gene340

prioritization and rare disease diagnosis point to more accurate, personalized insights and stream-341

lined diagnostics. For consumer health, Biomni’s integration of wearable data and multi-omics342

analyses envisions real-time, individualized health monitoring and intervention.343

Nonetheless, several limitations remain. While Biomni’s unified environment spans a wide344

range of biomedical tools and databases, the evaluated tasks represent only a subset of the field,345
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and key domains remain unexplored. In addition, in the action discovery agent, our decision to pri-346

oritize the most recent literature makes the agent appear timely, but risks overlooking foundational347

concepts and techniques that have faded from current discourse despite their enduring relevance.348

The future versions should encapsulate a larger coverage of publications when defining the envi-349

ronment. Moreover, although Biomni approaches human-level performance in tasks like database350

querying, sequence analysis, and molecular cloning, it still struggles in areas requiring nuanced351

clinical judgment, novel experimental reasoning, analytical inventions, or deep biological thinking352

and synthesis. No system yet captures the full scope of human biomedical expertise. As reflected353

in our benchmarks, Biomni has not achieved expert-level performance across all task categories.354

We expect continued improvements as foundation models evolve and the agentic environment ex-355

pands, as well as thanks to human experts and trainees deploying Biomni to facilitate or augment356

their work.357

These limitations open promising directions for future development. Training biomedical358

reasoning agents with reinforcement learning could enable continuous self-improvement in plan-359

ning and execution. Integrating multimodal data – text, images, and structured inputs – may further360

deepen reasoning capabilities. Equipping Biomni to autonomously discover and incorporate new361

tools and databases, as well as incorporate more historical methods (which may have high utility362

but can be easily forgotten by human users), would ensure adaptability and long-term relevance.363

Looking ahead, Biomni and its successors could become foundational infrastructure in an AI-364

powered biomedical ecosystem, working seamlessly with human experts to unlock novel insights365

into health and disease. This hybrid partnership may radically reshape biomedical research –366

automating hypothesis generation, scaling discovery pipelines, and enabling medical innovation367

to proceed at unprecedented speed and scope. General-purpose agents like Biomni could not only368

accelerate breakthroughs but redefine the future of scientific inquiry itself.369
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Figure 1: Overview of the unified biomedical action space and agent environment in Biomni. (a) Workflow for systematically
curating the unified biomedical action space. Actions necessary to conduct biomedical research were extracted from 2,500 recent
bioRxiv publications across 25 biomedical subfields using an AI-driven discovery agent. Extracted actions were rigorously validated
and curated by human experts, resulting in the integration of 105 biomedical software tools, 150 specialized biological tools (includ-
ing wet-lab protocols, AI-driven predictive models, and domain-specific know-how), and 59 comprehensive biomedical databases.
(b) Illustration of the unified biomedical action space spanning diverse biomedical subfields such as genetics, genomics, synthetic
biology, cell biology, physiology, microbiology, pharmacology, bioengineering, biophysics, molecular biology, and pathology. Rep-
resentative tools and databases integrated into Biomni’s environment are shown, highlighting its general-purpose capabilities. (c)
Example workflow demonstrating Biomni’s reasoning and action composition process to autonomously answer a complex biological
question. Biomni retrieves relevant tools based on the user’s query, formulates a structured reasoning plan, and composes executable
code to perform comprehensive bioinformatics analyses, iteratively refining its reasoning based on observations until converging on
a final, precise answer.
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Figure 2: Zero-shot generalization of Biomni across diverse realistic biomedical tasks. (a) Biomni is superior to 6 baselines in
Q&A multiple choice benchmarks that broadly evaluate the model’s capability across biomedical fields. (b) Biomni demonstrates
robust zero-shot performance across eight previously unseen, real-world biomedical scenarios spanning multiple biomedical sub-
fields, without any task-specific fine-tuning or prompt engineering. Evaluated tasks include variant prioritization and GWAS causal
gene detection (genetics and genomics), perturbation screen design (functional genomics, immunology), patient gene prioritiza-
tion, rare disease diagnosis (clinical genomics), drug repurposing (pharmacology), microbiome disease-taxa bioinformatics analysis
(microbiology), and single-cell RNA-seq cell annotation (single-cell biology). Across these diverse scenarios, Biomni consistently
outperformed baseline models (Base LLM, ReAct+Code) and specialized environments (Biomni ReAct), highlighting its general-
purpose biomedical capabilities and ability to autonomously adapt to new and complex biomedical tasks.
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Key figures generated from Biomni
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Figure 3: Biomni autonomously executes complex multi-modal biomedical analyses to generate hypothesis. (a-d) Biomni rapidly
analyzed CGM-derived thermogenic responses data and activity data from 30 individuals, comprising 458 raw Excel sheets. (b)
Workflow demonstrating Biomni’s autonomous execution of data preprocessing, meal event detection, postprandial temperature
analysis, and thermogenic response characterization. (c) Representative individual temperature-response plots and temperature in-
crease distribution following meals, automatically generated by Biomni. (d) Summary of unique biological findings identified
by Biomni, including significant increases in core body temperature post-meal intake (average 2.19C, median 1.10C), and notable
inter-individual variability in thermogenic responses. (e-h) Biomni autonomously analyzed single-cell multiomics data from approx-
imately 336,000 nucleus droplets, combining single-nucleus RNA (snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq)
across human embryonic joint development (shoulder, hip, knee). (f) A detailed workflow diagram showing Biomni’s 10-step analy-
sis pipeline for gene regulatory networks with multiomics. (g) Two key figures generated from Biomni: Left panel shows a heatmap
of regulator activity by developmental stage, with color intensity indicating activity levels. Right panel displays a boxplot of RUNX2
regulon activity by cell type, showing variation in expression across different cell populations. (h) Key findings from the GRN anal-
ysis: 1) Novel transcription factors (AUTS2, ZFHX3, and PBX1) showing high regulatory activity across multiple skeletal lineages
despite no previous association with skeletal development, and 2) Across the 566-589 regulons recovered, limb mesenchyme cells
display the highest mean regulonactivity score, underscoring their prominent role in skeletal transcriptional control.
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## Step-by-Step Cloning Protocol

### 1. Design and Order Oligos
- **Forward oligo**: 5'-
CACCGCGCGAGCACAGCTAAGGCCA-3'
- **Reverse oligo**: 5'-
AAACTGGCCTTAGCTGTGCTCGCGC-3'

### 2. Anneal and Phosphorylate Oligos
1. Resuspend oligos to 100 μM in nuclease-free water
2. Prepare annealing reaction:
   - 1 μL Forward oligo (100 μM)
   - 1 μL Reverse oligo (100 μM)
   - 1 μL 10X T4 Ligation Buffer
   - 6.5 μL nuclease-free water
   - 0.5 μL T4 PNK
3. Incubate in a thermocycler:
   - 37°C for 30 minutes (phosphorylation)
   - 95°C for 5 minutes (denaturation)
   - Ramp down to 25°C at 5°C/min (annealing)
4. Dilute annealed oligos 1:200 in nuclease-free water 
(final: 50 nM)

### 3. Golden Gate Assembly
1. Prepare reaction:
   - 100 ng lentiCRISPR v2 blast plasmid
   - 1 μL diluted annealed oligos (50 nM)
   - 2 μL 10X T4 DNA Ligase Buffer
   - 1 μL BsmBI-v2 (NEB)
   - 1 μL T4 DNA Ligase
   - Nuclease-free water to 20 μL total
2. Incubate in a thermocycler:
   - 37°C for 5 minutes
   - 16°C for 5 minutes
   - Repeat steps 1-2 for 10 cycles
   - 55°C for 5 minutes (final digestion)
   - 80°C for 5 minutes (enzyme inactivation)

c

### 4. Bacterial Transformation
1. Add 2 μL of the Golden Gate reaction to 50 μL of 
competent Stbl3 E. coli cells
2. Incubate on ice for 30 minutes
3. Heat shock at 42°C for 45 seconds
4. Return to ice for 2 minutes
5. Add 950 μL of SOC medium
6. Incubate at 37°C for 1 hour with shaking
7. Plate 100 μL on LB agar plates with ampicillin (100 μg/mL)
8. Incubate plates at 37°C overnight

### 5. Colony Screening and Verification
1. Pick 3-5 colonies and grow in 5 mL LB + ampicillin 
medium overnight
2. Extract plasmid DNA using a miniprep kit
3. Verify correct insertion by Sanger sequencing using the U6 
promoter forward primer:
   5'-GACTATCATATGCTTACCGT-3'
4. Confirm the presence of the B2M sgRNA sequence in the 
plasmid

### 6. Lentivirus Production and Cell Transduction
1. Transfect the verified plasmid into HEK293T cells along 
with packaging plasmids
2. Collect virus-containing supernatant after 48-72 hours
3. Filter and concentrate the lentivirus if needed
4. Transduce target cells with the lentivirus
5. Select transduced cells with blasticidin (5-10 μg/mL)
6. Verify B2M knockout by flow cytometry, Western blot, or 
genomic sequencing

d Biomni generated wet-lab cloning protocol Plasmid Map

e

A scientist 
follows the 
protocol to 
perform the 
cloning

GG

Cloning Open Answer Evaluation

Multiple-piece GG

GG Library Gibson

Gibson Library Gateway

Restriction
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Diagnostic digest

Figure 4: Biomni designs wet-lab experimental protocol. (a) Open-ended cloning benchmark on 10 real cloning scenarios. We
compared against base LLM, trainee-level human, and expert-level human scientists. We found that Biomni has similar accuracy
as the expert level scientist, and significantly higher accuracy than trainee level, while using much less time. (b) Example of a
user request to Biomni for cloning an sgRNA targeting the human B2M gene into the lentiCRISPR v2 Blast plasmid. (c) Biomni’s
automated stepwise workflow, including plasmid analysis, sgRNA design, oligo synthesis, Golden Gate assembly, bacterial transfor-
mation, colony screening, and final plasmid mapping. (d) Biomni-generated detailed cloning protocol with step-by-step instructions
and comprehensive plasmid map, enabling laboratory scientists to execute the experiment autonomously. (e) Validation of Biomni’s
cloning protocol through successful colony growth on selection plates, followed by Sanger sequencing confirming perfect alignment
of sgRNA insertion in picked colonies, demonstrating Biomni’s robust capability for precise and reliable experimental design.
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4 Methods370

Action Discovery from Literature. 100 recent publications from the year 2024 at biorxiv Were371

collected and analyzed by extracting and parsing their PDF contents. Each paper was processed372

in chunks, and a specialized prompt guided an LLM through each chunk to explicitly identify373

and extract three categories of actionable insights: tasks, software, and databases. Specifically for374

tasks, the LLM was instructed to highlight recurrent tasks requiring specialized implementations375

within biomedical research workflows.376

Implementing the Biomni Environment. In the initial iteration of environment construction, a377

conservative and focused approach was adopted for tool curation. Initially, tasks were filtered378

based on relevance to the primary research interests-drug discovery and clinical biomedicine-379

retaining fields such as biochemistry, bioengineering, biophysics, cancer biology, cell biology, de-380

velopmental biology, genetics, genomics, immunology, microbiology, molecular biology, pathol-381

ogy, pharmacology, physiology, synthetic biology, and systems biology. Subsequently, these were382

narrowed down to approximately 1,900 commonly recurring tasks. These tasks were further man-383

ually reviewed to eliminate redundancy and exclude tasks that were trivial or easily implementable384

through simple code. Selecting highly specialized tasks that require significant domain expertise385

was emphasized, such as wet-lab protocols and advanced AI models.386

Human scientists then collaborated with software engineering agents equipped with web387

search capabilities to implement each specialized tool. Every tool underwent rigorous validation,388

requiring a clearly defined test case that it successfully passed. This stringent process culminated in389

a curated collection of 150 specialized tools. Additionally, essential literature retrieval tools were390

included, such as PubMed and Google Scholar, with provisions for future iterative expansions.391

Each tool was strictly defined using a comprehensive checklist that mandated: (1) a clear392

and descriptive name, (2) detailed documentation, (3) outputs formatted as detailed research logs393

optimized for LLM interpretation, (4) the inclusion and successful passing of a specific test case,394

and (5) specialization criteria-if a task could easily be implemented via brief LLM-generated code395

(e.g., simple database queries), no specialized tool was created.396

Databases were categorized and extensive relational databases accessible via web APIs (e.g.,397

PDB, OpenTargets, ClinVar) were integrated using a unified querying function. This function398

accepts natural language inputs and leverages an LLM to dynamically parse database schemas399

and execute corresponding queries. Databases lacking web APIs were downloaded and locally400

preprocessed into structured pandas DataFrames for seamless accessibility by the agent.401

For software integration, recognizing the frequent necessity of concurrently utilizing multiple402
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software tools, a unified containerized environment was constructed, which was pre-installed with403

a comprehensive suite of relevant software. Additionally, this environment supports the execution404

of R packages and command-line interface (CLI) tools.405

Biomni-A1. The Biomni agent is a general-purpose biomedical AI agent built upon the CodeAct31
406

framework, designed to systematically solve biomedical tasks by combining LLMs with an inter-407

active coding environment. Given a user query, Biomni begins by prompting the LLM to generate408

a clear, numbered bullet-list plan detailing the steps needed to tackle the given problem, keeping409

careful track of progress and adjustments along the way. As the tool, software, and database space410

is vast, the query task may only use a small set of these resources. To avoid long context, a prompt-411

based retriever is utilized, powered by a separate LLM, where the agent dynamically selects the412

most relevant functions, datasets, and software libraries from available resources. During execu-413

tion, the LLM generates code, executes it in a coding environment (Python, R, or Bash), and returns414

the resulting observations to inform subsequent reasoning. This iterative approach continues until415

the agent converges on an accurate, validated solution.416

Q&A Benchmarks. Development and testing sets were created by sampling the LAB-Bench417

Database Question-Answering and Sequence Question-Answering benchmarks 24. Due to resource418

constraints, each set comprises 12.5% of the complete reference, proportionally distributed across419

benchmark subtasks, providing a cost-effective and representative assessment of model perfor-420

mance. The development set informed iterative refinements to Biomni’s database integrations and421

tool implementations, while the test set provided an independent evaluation of generalization ca-422

pabilities. Accuracy was evaluated by following the LAB-Bench protocol, using multiple-choice423

answer options with an option for abstention due to insufficient information. Results represent424

averages across three independent evaluation runs.425

For Humanity’s Last Exam (HLE)23, a representative sample of questions was selected, span-426

ning fourteen subdisciplines of Biology/Medicine: Genetics, Biology, Ecology, Neuroscience,427

Biochemistry, Microbiology, Immunology, Molecular Biology, Computational Biology, Biophysics,428

Bioinformatics, Genomics, and Physiology. From each subdiscipline, up to five questions were429

sampled (or the maximum number available if fewer than five existed in the category). This430

sampling approach yielded a final evaluation set of 52 questions that comprehensively assessed431

Biomni’s performance across the biological sciences. The evaluation was conducted directly with-432

out the use of a development set.433

Curating real-world benchmarks. The variant prioritization benchmark was curated from Open434

Target Genetics32 ground truth set, and processed such that given a variant, a negative set of vari-435
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ants is found. The prompt was as follows: ”Your task is to identify the most promising variant436

associated with a given GWAS phenotype for futher examination. From the list, prioritize the437

top associated variant (matching one of the given variant). GWAS phenotype: {trait} Variants:438

{variant list}”. Accuracy was used as the metric. The GWAS causal gene detection benchmark439

utilized a dataset curated from Shringarpure et al33, using the original prompt: ”Your task is to440

identify likely causal genes within a locus for a given GWAS phenotype. From the list, provide441

only the likely causal gene (matching one of the given genes). Identify the causal gene. GWAS442

phenotype: {trait} Genes in locus: {gene str}”. Accuracy was used as the metric. The pertur-443

bation screen design benchmark was curated from Schmidt et al.34. The prompt is ”Task: Plan444

a CRISPR screen to{task description}. There are 18,939 possible genes to perturb and only per-445

turb {num genes} genes. For each perturbation, you can measure out {measurement} which will446

be referred to as the score. Generate {num genes} genes that maximize the perturbation effect.447

Output format: a list of genes 1. XXX 2.XXX 3.XXX ...”. The evaluation metric was the average448

post-perturbed effect. As the scale differs for the post-perturbed effect, one screen (IL-2) was used.449

The scRNA-seq annotation benchmark ensured flexibility across diverse data formats (e.g., Cel-450

lxGene, author-hosted portals), encompassing multiple tissues, species, sequencing technologies,451

and experimental conditions. Datasets with author-provided annotations (Tier 1 or Tier 2, typically452

�10 cell types) were prioritized, and 20k-50k cells were subsampled proportionally to their cell453

type distributions. Automatic evaluation was conducted at the single-cell level using LLMs via454

semantic match, accounting for both naming variations (e.g., fibroblast vs. Fibroblast cells) and455

hierarchical relations (e.g., CD8+ T cells vs. T cells), judged on-the-fly by LLM agents and later456

verified by humans. In the microbiome benchmark, both Biomni and human experts independently457

performed differential abundance analysis on five diverse microbiome datasets, selected to reflect458

different data types, biological contexts, and analytical challenges. Dataset 1 comes from the MGM459

2.0 platform35 and includes relative microbial abundance across samples and another with sample460

labels, ideal for classification tasks35. Dataset 2 curated from a well-known Nature study, offers461

microbial abundance data in mice alongside metadata such as diet and sex, making it valuable for462

modeling host-microbiome interactions36. Dataset 3, developed by Pasolli et al.37, combines eight463

human metagenomic studies with species-level features processed using MetaPhlAn237. Dataset 4464

explores microbial communities in drinking water systems, providing an OTU matrix with abun-465

dances represented as relative sequence counts. This environmental dataset allows models to be466

tested beyond host-associated microbiomes38. Finally, Dataset 5 is an in-house resource derived467

from the Human Microbiome Project39. Together, these datasets provide a comprehensive foun-468

dation for benchmarking AI agents in microbiome analysis across both clinical and environmental469
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domains. Biomni results were compared against those generated by human experts for consistency,470

accuracy, and efficiency. The drug repurposing benchmark used a dataset from Huang et al.40, for471

the task of identifying the most likely drug from a pre-defined list of drugs for repurposing in a472

given indication. Evaluation was based on the alignment score with off-label prescription patterns473

of clinicians from an EHR system. The prompt was ”Your task is to identify top 5 drugs that can474

be potentially repurposed to treat the given disease. From the list, prioritize the drug list with475

the highest potential (matching the given DrugBank IDs). Disease: {disease} Drugs: {drug list}476

Output format: a list of drugs with their DrugBank IDs, no drug name, just the IDs: 1. DB00001477

2. DB00002 3. DB00003 ..”. The rare disease diagnosis benchmark used the MyGene2 dataset,478

curated by Alsentzer et al.41. The ground truth was expert annotated diagnosis. The prompt was479

”Task: given a patient’s phenotypes and a list of candidate genes, diagnose the rare disease that480

the patient has. Phenotypes: {phenotype list} Candidate genes: {candidate genes} Output format:481

{{’disease name’: XXX, ’OMIM ID’: XXX}}”. The patient gene prioritization benchmark used482

a dataset curated by Alsentzer et al.41. The ground truth was a truly causal gene. The prompt was483

”Task: Given a patient’s phenotypes and a list of candidate genes, identify the causal gene. Phe-484

notypes: {phenotype list} Candidate genes: {candidate genes} Output format: {{’causal gene’:485

[gene1]}}”.486

Wearable analysis case study. A wearable case study integrated CGM-derived body temperature487

data, sleep metrics, and multi-omics datasets from human participants42, as follows: CGM Body488

Temperature Data: For each participant, continuous glucose monitors (CGMs) equipped with tem-489

perature sensors recorded skin temperature in high resolution. A total of 485 temperature files were490

collected, each centered on a presumed meal event. The time window for each file spanned 6 hours491

total, comprising 2 hours pre-meal and 4 hours post-meal. Sleep Data: Sleep metrics were derived492

from wrist-worn wearable devices for a subset of 10 participants, covering 227 nights of sleep. Pa-493

rameters collected included sleep duration, sleep efficiency, sleep latency, sleep stage composition494

(light, deep, REM), and number of wake episodes. Omics Data: Blood samples were analyzed to495

generate the following: Lipidomics: 652 lipid features across 147 samples; Metabolomics: 731496

metabolite features across 147 samples; Proteomics: 1,470 protein features across 20 samples.497

Multiome analysis case study. The authors’ dataset was directly downloaded and used with no498

modifications 27. The authors’ study generated a multi-omic dataset of human embryonic skeletal499

development from 5-11 weeks post-conception. The dataset includes snRNA-seq and snATAC-seq500

data from approximately 336,000 nuclei across five anatomical regions (hip, knee, shoulder joints,501

calvaria, and skull base). The dataset covers both appendicular (limb) and cranial regions. No502
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additional tools or manual preprocessing were added. As the analytical traces are extensive, more503

guidance was included in the prompt instruction and two use cases were tested:504

Comparative Analysis. This analysis focused on how cellular processes differ across anatomi-505

cal locations and developmental timepoints. Biomni was instructed to characterize the cellular506

composition across anatomical regions (calvaria, skull base, shoulder, hip, knee) and developmen-507

tal stages. We prompted Biomni with detailed instructions (Supplementary Section E), including508

cell type proportion estimates, region-specific population labels, UMAP embeddings, stacked bar509

plots, a comparison of intramembranous versus endochondral ossification, key transcription factor510

highlights, and developmental trajectory tracing.511

Gene Regulatory Network Analysis We asked Biomni to identify transcriptional programs underly-512

ing skeletal development. Following a systematic 10-step process, Biomni inferred gene regulatory513

networks by: (1) loading and exploring all datasets, (2) preparing RNA-seq data for analysis, (3)514

configuring pySCENIC to retrieve motifs, (4) running GRNBoost2 to infer gene regulatory net-515

works, (5) pruning networks using cisTarget, (6) calculating regulon activity with AUCell, (7)516

extracting accessibility data from ATAC-seq, (8) filtering predicted targets using ATAC-seq ac-517

cessibility, (9) analyzing activity patterns across cell types, developmental stages, and anatomical518

regions, and (10) summarizing findings.519

Manual verification To evaluate whether the aggregated findings are truly reflected by the data or520

merely simulated or hallucinated by the LLM, manual (human) verification was conducted follow-521

ing the traces and codes generate by Biomni.522

Wetlab Benchmark Development and Evaluation. A comprehensive benchmark was developed523

consisting of 20 open-ended cloning questions curated from real-world applications to represent524

the diversity and complexity of molecular cloning tasks across four major categories: Golden525

Gate assembly, Gibson assembly, restriction enzyme cloning, and Gateway cloning. Each cate-526

gory included both single-construct and pooled cloning scenarios. Additionally, the benchmark527

incorporated common validation methods, including diagnostic restriction digestion, Sanger se-528

quencing primer design, and sequence alignment analysis. For establishing baseline performance,529

three human experts with extensive experience in molecular cloning were recruited. These experts530

were instructed to complete each task without utilizing language models but were permitted to use531

standard molecular biology tools, search engines, and publicly available online resources such as532

plasmid repositories and primer design platforms. The time required for each expert to complete533

each task was recorded, from initial task understanding to the final protocol and plasmid map gen-534

eration. In parallel, Biomni and general LLM models were evaluated on identical tasks. Each535

system was provided with the same task descriptions and required to generate detailed end-to-end536
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experimental protocols and final cloned plasmid maps. For general LLMs, Claude 3.7 was used as537

one of the most capable publicly-available models at the time of testing, providing it with the same538

information but without access to specialized molecular biology tools. For evaluation, an indepen-539

dent senior researcher with experience in molecular cloning technologies was recruited and blinded540

to the source of each protocol (human expert, Biomni, or general LLM). The evaluator assessed541

each protocol and plasmid map based on two primary criteria: (1) Accuracy: The correctness of542

the proposed methodology, including appropriate enzyme selection, reaction conditions, primer543

design parameters, and plasmid construction strategy. (2) Completeness: The thoroughness of the544

protocol, including all necessary steps, reagents, concentrations, incubation times, and verification545

methods. Each criterion was scored on a scale of 1-5 according to a detailed rubric (Supplementary546

Table S31-32). The average scores across all 20 tasks were calculated for each system and human547

expert to enable direct comparison.548

Wetlab Validation. A practical cloning task was selected for validation: the insertion of a guide549

RNA targeting the human B2M gene into the lentiCRISPR v2 Blast construct. This task was550

chosen for its relevance to CRISPR-based gene editing applications and its moderate complexity,551

involving multiple molecular biology techniques. The experiment was conducted in a standard552

molecular biology laboratory setting using commercially available reagents and materials. The553

lentiCRISPR v2 Blast plasmid was obtained from Addgene. All protocols for the experiment were554

generated entirely by Biomni without modification (Supplementary Notes F), including plasmid555

analysis, sgRNA design, oligo design with appropriate overhangs, detailed Golden Gate assembly556

conditions, bacterial transformation parameters, and verification strategies. For validation of the557

cloning results, standard molecular biology practices were followed, selecting colonies for cul-558

ture and miniprep, followed by Sanger sequencing using the Biomni-designed primers. Sequence559

alignment analysis was performed to verify the correct insertion of the sgRNA sequence. The560

success of the cloning process was determined by the presence of bacterial colonies on selective561

media and subsequent sequence verification confirming the accurate incorporation of the designed562

sgRNA construct into the lentiCRISPR v2 Blast backbone.563
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Data availability. All data used in Biomni are publicly available at Harvard Dataverse under564

https://doi.org/10.7910/DVN/CE4ZYG.565

Code availability. Biomni is open-sourced at https://github.com/snap-stanford/biomni. A web-566

based user interface is available at https://biomni.stanford.edu. Note that the public tool is not for567

protected health information.568
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