
Hard Data on Soft Errors: A Large-Scale Assessment
of Real-World Error Rates in GPGPU

Imran S. Haque
Department of Computer Science

Stanford University
Stanford, CA, USA

ihaque@cs.stanford.edu

Vijay S. Pande
Department of Chemistry

Stanford University
Stanford, CA, USA
pande@stanford.edu

Abstract—Graphics processing units (GPUs) are gaining
widespread use in high-performance computing because of
their performance advantages relative to CPUs. However, the
reliability of GPUs is largely unproven. In particular, current
GPUs lack error checking and correcting (ECC) in their
memory subsystems. The impact of this design has not been
previously measured at a large enough scale to quantify soft
error events.

We present MemtestG80, our software for assessing memory
error rates on NVIDIA graphics cards. Furthermore, we
present a large-scale assessment of GPU error rate, conducted
by running MemtestG80 on over 50,000 hosts on the Fold-
ing@home distributed computing network. Our control exper-
iments on consumer-grade and dedicated-GPGPU hardware in
a controlled environment found no errors. However, our survey
on Folding@home finds that, in their installed environments,
two-thirds of tested GPUs exhibit a detectable, pattern-sensitive
rate of memory soft errors. We show that these errors persist
after controlling for overclocking and environmental proxies
for temperature, but depend strongly on board architecture.

I. INTRODUCTION

Commodity programmable graphics processing units
(GPUs) have made TFLOP-scale floating-point performance
available on the desktop. This extremely high performance
makes GPUs attractive in a number of computationally-
limited applications including molecular dynamics [5], [19],
molecular comparison [7], and machine learning [3].

While GPGPU (general-purpose computation on GPUs)
can be attractive, its origin is in the relatively-error-tolerant
area of consumer graphics; GPU reliability in non-graphics
applications is largely unproven. Previous work [15], [16]
has questioned GPU logic reliability. A particular concern
is the reliability of GPU memory, as its lack of ECC (error-
checking-and-correcting) has been previously noted [16],
[17].

No prior work has tested GPGPU on a large enough
scale to quantify the rate of “soft” or stochastic memory
errors. Our contribution in this work is a quantification
of the reliability of GPU memory subsystems carried out
on over 50,000 GPUs on the Folding@home distributed
computing network. MemtestG80, a standalone version of

our test code, is available under the LGPL license at
https://simtk.org/home/memtest.

Our experiment comprises over 840 terabyte-hours of
memory testing distributed over more than 50,000 individual
GPUs worldwide. We also present control experiments car-
ried out on individual nodes and a GPU cluster. Our results
demonstrate a detectable, pattern-sensitive rate of memory
faults in the installed base of commercial GPU hardware.
Even after controlling for overclocked cards and time of day
(as a proxy for ambient temperature) we find that two-thirds
of GPUs exhibit sensitivity to memory faults in a pattern-
dependent manner. This error rate depends strongly on board
architecture, with devices based on the newer GT200 GPU
exhibiting failure rates an order of magnitude lower than
those based on the older G80/G92 design.

We begin with a primer on soft error generation and
detection mechanisms, present the design and validation of
MemtestG80, and explain the methodology of our large-
scale experiment. We then present the results and analysis
of the experiment and conclude with a discussion of the
implications of our findings.1

II. BACKGROUND AND PREVIOUS WORK

Errors in hardware systems can be classified as “soft” or
“hard”: hard errors are triggered by physical hardware de-
fects, whereas soft errors are random, transient faults not due
to physical defects. The term “soft error” has traditionally
referred to radiation-induced upsets in electronic circuits [6],
[21]. Transient errors can also be caused by non-radiation
mechanisms, such as leakage from adjacent circuits, timing
violations, and improper signal routing or power design [4],
[10], [15]. In this work, we use the term “soft error” to
refer to all transient faults, rather than just radiation-induced
errors.

A very-large-scale approach is required in order to ef-
ficiently accumulate statistically-significant data regarding

1Additional analysis and data can be found in the online Supplementary
Information at https://simtk.org/home/memtest.

2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

978-0-7695-4039-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CCGRID.2010.84

691

soft error rate (SER). Estimates for RAM SER have been
drawn from a variety of sources [20], ranging from 5 ×
10−14 to 4 × 10−7 errors per bit-hour. Recent data from
Google suggest a further hard error rate in DRAM between
2.5 − 7 × 10−11 errors per bit-hour [14]. Data from IBM
indicate that in natural environments, even with hundreds of
devices under test, more than 1,000 testing hours may be
required to accumulate statistically meaningful test results
[6]. Additionally, possible environmental (e.g., thermal or
radiation) effects on SER dictate that a variety of conditions
be tested. For example, cosmic ray flux varies by a factor
of two depending on latitude [21], and approximately 13x
between sea level and 10,200 ft in altitude [6].

High-level software and modeling techniques have been
proposed for soft error detection and correction. Software
hardening techniques can be used to detect logic and mem-
ory soft errors [12]. Sheaffer et al. take a simulation-based
approach and characterize the architectural vulnerability of
graphics algorithms on GPUs [15]. Their later work points
out that this characterization is inappropriate for GPGPU,
which requires tighter error guarantees than conventional
graphics [16]. Shi et al. applied a similar active testing
strategy to ours to 506 GPUs at major GPU clusters and
found hard errors in 1.8% of tested boards, but no soft errors
[17].

While prior work has laid out testing methods to detect
soft errors, no previous studies have applied these techniques
to a large installed base to assess the impact of soft errors
on the emerging GPGPU platform. Our contributions in this
work are twofold: first, a test code using proven methods
to detect soft errors; second, a large body of data using
this tester to assess SER on tens of thousands of GPUs
worldwide.

III. DESIGN AND VALIDATION OF MEMTESTG80

In this section we describe the design and validation of
MemtestG80, our CUDA-based [11] code to test for memory
errors on NVIDIA GPUs based on the Tesla architecture
[8]. MemtestG80 is a CUDA implementation of most of the
memory tests in Memtest86 [2], a widely-used open-source
memory tester for x86-based machines that implements
many popular memory-test patterns, including randomized
tests and tests for pattern-sensitive errors.

For conciseness, we refer the reader to the supplementary
information for descriptions of the test patterns, details on
the implementation of a logic test unique to MemtestG80
(based on a linear congruential generator (LCG)), and addi-
tional data not presented in the main paper.

In the following, one “iteration” of MemtestG80 refers
to the execution of each test once. For tests that take
place in multiple rounds, every round is executed (with one
exception, explained in Section IV). Such an iteration over
64 MiB of memory typically takes between 1 to 5 seconds
to complete, depending on GPU speed.

A. Validation

To validate MemtestG80, we carried out both negative
and positive control experiments. Since the purpose of this
study is to investigate the latent error rate in GPU hardware,
a true negative control (one in which we are guaranteed no
errors) is not possible. To minimize errors from overheating
or power disturbances, the controls were run on machines
in controlled-temperature environments with known-good
power sources.

We ran negative controls on a GeForce 8800 GTX and on
eight NVIDIA Tesla C870 boards. Over 93,000 iterations of
MemtestG80 were run over 700MiB of GPU memory on
the 8800GTX. An aggregate 1.48 million iterations were
run over 320 MiB on each Tesla board. No errors were
detected on these boards, demonstrating that errors detected
by MemtestG80 are unlikely to be spurious or due to errors
in the code.

To ensure that MemtestG80 detects errors under condi-
tions known to generate memory errors, we also carried
out a positive control experiment. Since overclocking is
known to generate memory errors, we used overclocking
as our positive control. MemtestG80 was run on a GeForce
9500GT (default memory clock rate = 400 MHz) with its
memory clock rate set to 400, 420, 430, 440, 450, 475,
500, and 530 MHz. Each test comprised 20 iterations of
MemtestG80 (10 at 530MHz). To keep thermal effects from
affecting test results, between tests the board was reset to
400MHz and allowed to cool to a constant temperature.
Finally, we ran 20 more iterations at 400 MHz to verify
that the hardware had not been damaged. The results of
the positive control experiment are presented in Table I and
Supplementary Figure 1.

Two results deserve special attention. First, both vari-
ants of the moving-inversions test (which write constant
32-bit patterns to memory) are completely insensitive to
overclocking-induced errors. This inspires our choice of the
all-zero pattern as the logic test pattern (see Supplementary
Information for details), as it seems to be insensitive to some
classes of memory errors.

Second, the modulo-20 test is far more sensitive to
overclocking-induced errors than are the other tests. The
modulo-20 test proceeds in 20 rounds. In round i, a 32-
bit pattern is written to each memory location whose offset
from the start of tested memory is equal to i modulo 20; the
bitwise complement of the pattern is then written twice to
every other memory location. Subsequently, the offsets equal
to i modulo 20 are read back and verified. The sensitivity
of this test may stem from the fact that the test’s stride
of 20 is unlikely to align with any architectural stride in
the memory chips, so tested cells are more likely to be
physically scattered and influenced by neighboring cells.

The sensitivity of the modulo-20 test persists in real-world
situations and is key to our sampling of error rates. The
pattern sensitivity of the memory subsystem is in itself an

692

Test name Frequency WER
Moving inversions (ones/zeros) — 0

Moving inversions (random) — 0
Modulo-20 430 9.05× 10−4

Random blocks 500 3.72× 10−10

Memtest86 walking 8-bit 475 1.14× 10−9

True walking zeros (8-bit) 475 2.56× 10−8

True walking ones (8-bit) 475 2.75× 10−9

Walking ones (32-bit) 475 3.76× 10−9

Walking zeros (32-bit) 500 9.64× 10−9

TABLE I
LOWEST CLOCK RATE (MHZ) AT WHICH MEMTESTG80 TESTS FOUND

ERRORS IN 20 ITERATIONS AND WORD ERROR RATES AT 500MHZ RAM
CLOCK

interesting result, as it demonstrates that the likelihood of
encountering a memory error is highly dependent on the
access and data patterns.

IV. EXPERIMENTAL METHODOLOGY

To carry out the large-scale assessment presented in Sec-
tion V, MemtestG80 was deployed on the Folding@home
(FAH) distributed computing network [1], [18]. For each
execution of MemtestG80, we collected device information
(card name, memory size, and shader-domain clock speed).
The majority (97.5%) of our data were collected with a
memory test region size of 64 MiB and a logic test period
of 512. Because of the high memory bandwidths required
on GPUs, memory blocks are interleaved across physical
memory chips to speed total throughput. We believe that the
tested memory region sizes are sufficiently large that they
are likely to be spread across all or a substantial fraction
of chips on the tested devices. On Folding@home, only 2
rounds of the modulo-20 test were run per test iteration.
Later rounds were performed in following iterations.

We ran a variable number of test iterations, collecting
individual results for every test iteration. Rather than mea-
suring the exact bit-error-rate we consider only whether any
errors were detected during an iteration. It is possible that a
test which detected errors may have its “error flag” toggled
off by a memory or logic error, creating a false negative. If
a test is successful, a GPU error may toggle an error flag bit
on — but this is in itself a GPU error. Thus, this approach
solves false positives: in the worst case, our results may
underestimate the error rate, but will never overestimate it.

We identify GPUs by Folding@home client installation
ID numbers. This may multiply-count GPUs, but we believe
that this overestimation is not significant. The test was
run at least once on over 50,000 distinct client IDs, with
an aggregate of over 18.9 billion test iterations executed.
Geographically, tested boards are distributed worldwide,
with very good coverage of North America, Europe, and
major population centers elsewhere. Based on logic clock
frequencies, similar numbers of overclocked and “stock” (at

or below reference frequencies) boards were sampled (Sup-
plementary Figure 2). Finally, we achieve good coverage of
GPUs across the NVIDIA product line, including both the
G80 and GT200 GPU architectures (Supplementary Table
1).

V. RESULTS

Our underlying statistical model is that each card (in
combination with its environment) has its own probabil-
ity of failing a test iteration P (fail), and that each card
is drawn independently from some underlying distribution
P (P (fail)). This independence assumption is justified by
the fact that our installed base is widely separated geographi-
cally. In all following plots and analyses, “P (fail)” refers to
any given card’s probability of failing a single MemtestG80
iteration. We classified each test iteration as having failed
or not using the method from Section IV and calculated an
empirical probability of failure (per test iteration) for each
card tested as the ratio of failed tests to total tests, thereby es-
timating P (P (fail)). To add statistical validity, we applied
various cutoffs for the minimum number of test iterations a
card must have completed to be used in constructing this
empirical card-reliability probability distribution. For graph-
ical clarity, instead of presenting P (P (fail)), we present
the cumulative distribution functions (CDFs), or integrated
probability distributions, F (P (fail)), where F (P (x)) =
P (P (fail) < x).

Fig. 1 displays the CDFs derived from this data for five
values of the iteration threshold. Each trace represents the
distribution calculated using a different cutoff for the number
of iterations required to have been completed to consider a
card for inclusion.

The most apparent trend in the data is the strongly
bimodal distribution. All the CDFs start with a nonzero value
at P (fail) = 0, representing the fraction of cards at each
threshold which never failed a test. All CDFs further show
a second population with a mean P (fail) around 2× 10−5,
which represents nearly all the remaining cards. Finally,
there is a very small population of cards with failure rates
higher than 1×10−4. This bimodal trend is statistically rele-
vant, as it continues to appear in the data even at the largest
cutoff. At a threshold of 300,000 iterations, approximately
one-third of cards tested never exhibited a memory error.
Nearly all of the remainder had failure probabilities between
0 and 10−4; only about 2% had failure probabilities higher
than this. We suspect that these high-error-rate boards are
ones with hard errors in GPU memory or logic, and we do
not consider them further.

VI. ANALYSIS

In this section we analyze the results, broken down by
properties of the GPUs. Our main statistical method is the
information gain criterion for data partitioning attributes;
informally, the information gain in an attribute measures the

693

Fig. 1. Empirical cumulative distribution functions F(P(fail)) of card failure
probability P(fail) at several test-iteration thresholds

amount of variability in an underlying distribution explained
by the attribute. Mathematical details are provided in the
Supplementary Information.

A. Bimodality of P(fail)

The bimodal distribution of card failure probabilities illus-
trated in Fig. 1 raises an obvious question: is the existence
of cards with nonzero failure probability easily explained
through a simple structural or environmental variable, or is
it inherent to the population of boards? To answer this we
tested a set of hypotheses on our data set. As a reference, a
perfect indicator variable on this dataset (separating the data
into cards which never failed and those which did) has an
information gain I(D;V) of 0.9217 bits.

Splits of the dataset based on overclocking status and
local time of day of test execution (a proxy for ambient
temperature, to which we did not have access) both failed to
show significant information gain on our data: 0.0565 and
0.0346 bits respectively. However, a split based on GPU
architecture (G80 vs GT200) had an information gain of
0.521 bits and is significant. Fig. 2 shows that GT200-based
boards were far less likely to fail MemtestG80 iterations
than G80-based boards; in particular, GT200-based boards
cluster around P (fail) = 2.2×10−6, an order of magnitude
lower than the mode P (fail) for the overall dataset.

Our data suggest that the bimodal structure of the failure
probability distributions is caused by differing architectures
in the boards tested. Specifically, the newer GT200 architec-
ture has an apparent soft error rate nearly tenfold lower than
that of G80. The most obvious user-visible enhancement
on the GT200 memory controller relative to that on G80
is improved support for coalescing memory operations, or
combining multiple memory reads or writes into single
transactions. We simulated the memory access patterns for
either GPU on the modulo-20 test, and found that both chips

Fig. 2. Empirical CDFs of card failure probability at several test-iteration-
count thresholds, by architecture (G80/G92 in red, GT200 in blue)

issue the same number of transactions, but G80 transmits
16.7% more bytes than GT200. By itself this does not
explain a 10-fold reduction in error probability for GT200.

The large sample sizes for boards on both architectures
make it unlikely that there is a consistent environmental
difference between installations of either board type. While
it is possible that the error rate is an age-induced effect
(G80 is an older design than GT200, and it is possible that
G80 boards in our sample are physically older than GT200
boards), our data suggest that GT200 is inherently more
resistant to memory errors than G80.

A notable result is that, when broken down by architec-
ture, the population of boards that never failed a test iteration
decreases monotonically with respect to increasing iteration
thresholds. This suggests that all the tested boards may have
a nonzero error rate, and that some boards did not run the
test long enough to detect one of these relatively-rare events.

B. Consumer vs professional hardware

Our dataset includes GT200-based cards from NVIDIA’s
Tesla line of high-end dedicated-GPGPU hardware. We here
consider whether high-end (Tesla) hardware is more reliable
than consumer (GeForce) hardware. Fig. 3 plots failure
probability CDFs for GeForce and Tesla hardware based
on GT200. While the Tesla plots are rougher due to the
much smaller sample size, they appear to represent the
same distribution as that underlying the GeForce traces. This
suggests that the soft-error mechanism we observe is present
in both GeForce and Tesla hardware at similar rates.

C. Impact of errors on molecular dynamics

To assess the impact of memory errors on scientific
computing, we looked for mutual information between the
probability that a given card generates memory errors and
the probability that the same card triggers a simulation

694

Fig. 3. Empirical CDFs of card failure probability at several test-iteration-
count thresholds, by product line (GeForce in red, Tesla in blue)

failure (SF) on its Folding@home work units. Counting
only work units in which at least one MemtestG80 iteration
was executed, the mutual information between MemtestG80
errors and Folding@home SFs was 0.131 bits, compared
to overall entropies of 1.965 and 1.018 bits respectively
for memory error and SF distributions. This indicates that
MemtestG80 errors likely do not correlate well with SFs.
However, we believe that this measure underreports the true
impact. SFs have a variety of causes which may be unrelated
to errors on the board; furthermore, because of the design
of Folding@home, certain types of SFs were not reported
to the servers and thus not logged. Hence, our results are
inconclusive as to the impact of observed errors on scientific
simulations.

D. Failure modes of tests

By examining the mutual information between the results
of each individual test comprising a MemtestG80 iteration,
it is possible to better understand the mechanisms triggering
failures under various conditions. Fig. 4 shows the ratio of
mutual information to total entropy for each pair of tests
in MemtestG80. Informally, this describes how well the
results of each test explain the results of each other test; it
is a nonlinear measure of correlation. Mathematical details
can be found in the Supplementary Information. Several
interesting trends emerge from this data:

1) The Modulo-20 test stands on its own
Both the M20 column and the M20 row in Fig.
4 have small values across their lengths, indicating
the Modulo-20 test covaried strongly with no other
test. This is likely due to the Modulo-20 test’s high
sensitivity and reinforces the notion that it probes a
different failure mechanism than do other tests.

Fig. 4. Mutual information-to-entropy ratios for each test pair. Each entry
is the fraction of the entropy of the test in that column explained by the
test in that row. Brighter squares indicate that more of the variance of
the explained test is explained by the explainer test. Test codes defined in
Supplementary Information.

2) The Random Blocks test is a good logic test
Although it was not intended as a logic test, the large
values in the RB row for the columns corresponding
to the LCG-based logic tests indicate that RB does a
good job of capturing the errors measured by the LCG
tests. Conversely, the small values in the RB column
for the LCG tests demonstrate that RB is measuring
a superset of errors relative to the LCG tests. This
result is reasonable, as the RB test is very shader-logic
intensive. We have designed it around a multithreaded,
multi-core Park-Miller Minimal Standard pseudoran-
dom number generator [13], which performs many
more logic operations than any other MemtestG80 test.

3) The logic tests measure a distinct failure mode from
most memory tests
The four-iteration variants of the logic test (L4 and
LS4) are poorly explained by most memory tests, and
in particular, are less-well-explained by the memory
tests than are their one-iteration counterparts (L and
LS). This is to be expected, as the one-iteration vari-
ants are more influenced by memory errors. However,
the bright block in the bottom-right of Fig. 4 shows
that the logic tests covary strongly among themselves.
Furthermore, memory tests have higher mutual infor-
mation to the L4 test than the LS4 test, indicating that
the use of shared memory in the latter is a significant
variable. Together, these results show that the logic and
memory tests detect distinct failure modes, and that
errors can be observed in the on-GPU shared memory.

695

VII. CONCLUSIONS

We have presented the first large-scale study of error
rates in GPGPU hardware, conducted over more than 50,000
GPUs on the Folding@home distributed computing network.
Our control experiments on consumer-grade and dedicated-
GPGPU hardware in a controlled environment found no
errors. However, our large-scale experimental results show
that approximately two-thirds of tested cards exhibited a
pattern-sensitive susceptibility to soft errors in GPU memory
or logic, confirming concerns about the reliability of the
installed base of GPUs for GPGPU computation. We have
further demonstrated that this nonzero error rate cannot be
adequately explained by overclocking or time of day (a
proxy for ambient temperature), but does correlate strongly
with GPU architecture. While we cannot rule out user error,
misconfiguration on the part of Folding@home donors, or
environmental effects as causing nonzero error rates, our
results strongly suggest that GPGPU is susceptible to soft
errors under normal conditions on non-negligible timescales.

These data are particularly relevant both to GPU-
based distributed computing applications and to vendors of
consumer-targeted software that relies on GPU acceleration.
We emphasize that although our data were collected only
on NVIDIA GPUs, we have no reason to believe that the
reliability picture significantly differs for GPUs from ATI,
Intel, or other manufacturers, as the driving forces behind
GPU development to date have not emphasized GPGPU-
style reliability concerns.

What can be done?: A first step for software developers
is to incorporate memory test functionality, like that found
in MemtestG80, to proactively detect malfunctioning cards.
On the hardware side, the addition of parity or ECC func-
tionality to the memory subsystem would prevent memory-
induced silent errors. The partial ECC in the GDDR5
specification is a first step, but cannot protect against errors
in the memory controller or RAM itself.

NVIDIA’s announcement that their next-generation GPU
(Fermi) will feature ECC on its memory is encouraging.
However, because of the economic pressures on the con-
sumer GPU market, it is possible that ECC will not be
featured at the consumer level, where the primary appli-
cation remains graphics. Consequently, consumer GPGPU
developers may need to implement redundant computation
or software-based ECC [9].

Nevertheless, our data demonstrate that it is certainly pos-
sible to perform reliable GPGPU computing on consumer-
grade hardware, but that doing so requires close attention
to the characteristics of the hardware. With the great power
of single-board TFLOP computation comes a great respon-
sibility to ensure data integrity.

ACKNOWLEDGMENTS

We foremost thank the Folding@home donors, without
whom this study would not be possible. We further thank

Dr. Paul Coteus and Ewen Cheslack-Postava for useful dis-
cussions, and Adam Beberg, Ewen Cheslack-Postava, Philip
Guo, Peter Kasson, Alex Rasmussen, and Dustin Maghamfar
for comments on the manuscript. We acknowledge support
from an NSF graduate fellowship and from NIH (R01-
GM062868, U54 GM072970) and NSF (CHE-0535616).

REFERENCES

[1] A. L. Beberg et al. Folding@home: Lessons from eight years of
volunteer distributed computing. In 8th IEEE Intl. Wkshp. High Perf.
Comp. Biol. (HiCOMB 2009), 2009.

[2] C. Brady. Memtest86. http://www.memtest86.com.
[3] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector

machine training and classification on graphics processors. In Proc.
25th Intl. Conference on Machine Learning (ICML 2008), pages 104–
111, 2008.

[4] B. F. Cockburn. Tutorial on semiconductor memory testing. J.
Electronic Testing, 5(4):321–336, Nov 1994.

[5] M. S. Friedrichs et al. Accelerating molecular dynamic simulation on
graphics processing units. J. Computational Chemistry, 30(6):864–72,
2009.

[6] M. S. Gordon et al. Single-event-upset and alpha-particle emission
rate measurement techniques. IBM J. Research and Development,
52(3), May 2008.

[7] I. S. Haque and V. S. Pande. PAPER - accelerating parallel evaluations
of ROCS. J. Computational Chemistry, 31(1):117–132, 2009.

[8] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: A unified graphics and computing architecture. IEEE Micro,
28(2):39–55, 2008.

[9] N. Maruyama, A. Nukada, and S. Matsuoka. Software-based ECC
for GPUs. In 2009 Symposium on Application Accelerators in High
Performance Computing (SAAHPC’09), 2009.

[10] C. Metra, M. Favalli, and B. Riccò. Self-checking detection and
diagnosis of transient, delay, and crosstalk faults affecting bus lines.
IEEE Trans. Comput., 49(6):560–574, 2000.

[11] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, 2008.

[12] B. Nicolescu, R. Velazco, and M. S. Reorda. Effectiveness and
limitations of various software techniques for “soft error” detection: a
comparative study. In Proc. 7th Intl. On-Line Testing Wkshp., 2001.,
pages 172–177, 2001.

[13] S. K. Park and K. W. Miller. Random number generators: good ones
are hard to find. Commun. ACM, 31(10):1192–1201, October 1988.

[14] B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM errors in the
wild: a large-scale field study. In SIGMETRICS ’09: Proc. 11th Intl.
Conf. Meas. Model. Comp. Sys., pages 193–204, New York, NY, USA,
2009. ACM.

[15] J. W. Sheaffer, D. P. Luebke, and K. Skadron. The visual vulnera-
bility spectrum: characterizing architectural vulnerability for graphics
hardware. In GH ’06: Proc. 21st ACM SIGGRAPH/Eurographics
Symposium on Graphics Hardware, pages 9–16, 2006.

[16] J. W. Sheaffer, D. P. Luebke, and K. Skadron. A hardware re-
dundancy and recovery mechanism for reliable scientific computa-
tion on graphics processors. In GH ’07: Proc. 22nd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pages
55–64, 2007.

[17] G. Shi, J. Enos, M. Showerman, and V. Kindratenko. On testing GPU
memory for hard and soft errors. In 2009 Symposium on Application
Accelerators in High Performance Computing (SAAHPC’09), 2009.

[18] M. Shirts and V. S. Pande. Screen savers of the world unite! Science,
290(5498):1903–1904, Dec 2000.

[19] J. E. Stone et al. Accelerating molecular modeling applications with
graphics processors. J. Computational Chemistry, 28(16):2618–2640,
September 2007.

[20] Tezzaron Semiconductor. Soft errors in electronic memory - a white
paper. Technical report, January 2004.

[21] J. F. Ziegler. Terrestrial cosmic rays. IBM J. Research and Develop-
ment, 40(1), January 1996.

696

