
Stratified Synthesis: Automatically
Learning the x86-64 Instruction Set

Stefan Heule
Stanford University, USA

sheule@cs.stanford.edu

Eric Schkufza
VMware, USA

eschkufza@vmware.com

Rahul Sharma
Stanford University, USA

sharmar@cs.stanford.edu

Alex Aiken
Stanford University, USA

aiken@cs.stanford.edu

Abstract
The x86-64 ISA sits at the bottom of the software stack of
most desktop and server software. Because of its importance,
many software analysis and verification tools depend, either
explicitly or implicitly, on correct modeling of the semantics
of x86-64 instructions. However, formal semantics for the
x86-64 ISA are difficult to obtain and often written manually
through great effort. We describe an automatically synthe-
sized formal semantics of the input/output behavior for a
large fraction of the x86-64 Haswell ISA’s many thousands
of instruction variants. The key to our results is stratified
synthesis, where we use a set of instructions whose semantics
are known to synthesize the semantics of additional instruc-
tions whose semantics are unknown. As the set of formally
described instructions increases, the synthesis vocabulary
expands, making it possible to synthesize the semantics of
increasingly complex instructions.

Using this technique we automatically synthesized for-
mal semantics for 1,795 instruction variants of the x86-64
Haswell ISA. We evaluate the learned semantics against man-
ually written semantics (where available) and find that they
are formally equivalent with the exception of 50 instructions,
where the manually written semantics contain an error. We
further find the learned formulas to be largely as precise as
manually written ones and of similar size.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI ’16 June 13–17, 2016, Santa Barbara, CA, USA
Copyright c© 2016 ACM 978-1-4503-4261-2/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2908080.2908121

Categories and Subject Descriptors I.2.2 [Automatic Pro-
gramming]: Program synthesis; F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Specification techniques

Keywords ISA specification, program synthesis, x86-64

1. Introduction
The various x86 instruction sets have been ubiquitous for
decades, and currently the Haswell family of processors is
widely used for server and desktop machines. Because of
the importance of x86, many software analysis tools have
been built that reason about programs written in x86 directly
(e.g., [2, 9, 24]) or that reason about programs in high-level
languages that are then translated to x86 (e.g., [17]). All
such tools require a precise formal semantics of the x86
ISA. One might assume, then, that a formal semantics of the
current 64-bit x86 ISA (known as x86-64) would be readily
available, but one would be wrong. In fact, the only published
description of the x86-64 ISA is the Intel manual [14] with
over 3,800 pages written in an ad-hoc combination of English
and pseudo-code. There are two primary barriers to producing
a formal specification of x86-64. First, the instruction set is
huge: x86-64 contains 981 unique mnemonics and a total of
3,684 instruction variants. Second, many of the instructions
have complex semantics. For example, the rotate instruction
implicitly truncates its integer argument, modifies an implicit
register operand, and depending on its input either changes
the value of multiple condition registers or leaves them
undefined. Many instructions have comparable edge cases
and variations, and the behaviors are often inconsistent with
other, related instructions.

For those who need a formal semantics of x86-64, a com-
mon though necessarily inefficient approach is to generate
formal specifications by hand on demand: whenever progress
requires the semantics of an instruction i, someone writes a
formula for i. Many software research groups have taken this
approach, and ours is no exception. However, our personal

sheule@cs.stanford.edu
eschkufza@vmware.com
sharmar@cs.stanford.edu
aiken@cs.stanford.edu

experience is that it is nearly impossible to write and maintain
correct specifications solely by hand—x86-64 is just too big
and complicated. As a result, we gradually built an elaborate
infrastructure to support developing a formal semantics, in-
cluding templates to describe the semantics of families of
closely related instructions and testing tools to compare the
formal descriptions with the behavior of the actual hardware.
Wherever we added automation, we found additional bugs
in the human written specifications. Eventually we came to
ask whether we could eliminate the problematic human effort
entirely and generate a useful formal description of most of
x86-64 from a small “proto specification”.

The most successful previous attempt to automatically
generate a formal semantics for x86-64 is a template-based
method for explaining input-output examples that are derived
from hardware executions. This approach has been used to
generate formulas for 534 instruction variants [12]. These
variants cover the core of 32-bit x86, but do not include any
of the more recent extensions of x86-64 (e.g., vector instruc-
tions). The templates are written by hand and must satisfy
certain structural restrictions. It seems unlikely that these
requirements are expressive enough to cover the remainder
of the instruction set.

In this paper we demonstrate a new technique that can
automatically synthesize a formal semantics for a large
fraction of the x86-64 ISA. Our approach uses program
synthesis to learn bit-vector formulas that can be consumed
by SMT solvers such as Z3 [32] or CVC4 [6]. We begin
by choosing a small set of x86-64 instructions that we call
the base set. Our approach expects a formal semantics for
every instruction in the base set as input and then generates
formulas for the remaining instructions automatically. The
effort required to produce the formulas for the base set is
small—they can either be written by hand or generated using
some other approach (including [12]).

At a high level, our approach works as follows. We execute
an instruction i for which the formal semantics is not known
yet on a set of test inputs T to obtain an initial description of
its behavior. We then search for a program p that matches the
behavior of i on the tests T , where p only uses instructions
drawn from the base set S. However, there is little reason to
have confidence that one program that happens to match an
instruction’s behavior on a set of test cases actually captures
the behavior of that instruction for all possible inputs, so we
perform the search multiple times to find a set of programs P
that match the behavior of i on T and use only instructions
from S. Given two programs p, p′ ∈ P , we test whether
p ≡ p′ using an SMT solver and the formulas from the base
set. If the two programs are semantically distinct (meaning
the agreement on T is coincidental), we know that one or
both programs are not a correct description of i. We use the
model produced by the SMT solver to obtain an input t that
distinguishes p and p′, add t to the set of tests T , and start over.
We repeat this process until we are unable to generate another
program not in P that agrees with i on T (which includes all

counterexamples discovered along the way). When we are
done, we choose one p̂ ∈ P and return the formula for p̂ as
the semantics of i.

Even given that we search for multiple programs until no
further inconsistencies can be discovered, there is no guar-
antee that the program p̂ correctly implements i. This uncer-
tainty is unavoidable: we do not start with a formal specifica-
tion of i’s behavior, and so the best we can possibly do is to
produce a semantics that is consistent with whatever informa-
tion is available. However, we have carefully compared our
automatically generated semantics to previously developed
formulas for x86-64 and found a number of discrepancies. In
every case, the automatically generated semantics was correct
and the hand-written semantics was wrong. Furthermore, as
a result of this effort we discovered a number of new bugs
and inconsistencies in the Intel manual (see Section 5).

Because we want to automate the production of the formal
semantics as much as possible, we must minimize the size
of the base set of instructions that is the input to the process.
However, many of the instructions that we consider can only
be characterized by programs that are so long that no currently
available program synthesis technique can produce them if
they are written using only instructions in the initial base set.
To address this problem, we introduce the idea of stratified
synthesis: whenever we learn a program p for an instruction
i, we add the formula for p to the base set as the semantics
of i. Thus, as we learn the semantics of simpler instructions,
our vocabulary for expressing the semantics of more complex
instructions expands. We have implemented the approach in
a tool called STRATA and we empirically observe that the
use of stratified synthesis is both effective and necessary—
there are many instructions that are learned only after other,
intermediate, instructions have been learned.
This paper makes the following contributions:

• We introduce a stratified program synthesis technique that
enables us to learn complex programs in small steps and
show how it can be used to synthesize a formal semantics
for the x86-64 ISA.

• We contribute SMT formulas for a subset of the x86-64
ISA that is significantly larger than previous automatically
synthesized semantics 1.

• We evaluate these formulas for correctness and usability;
in doing so, we identify several important errors in pre-
existing formalizations.

2. Modeling x86-64
In this paper, we focus on the functional aspects of the x86-
64 instruction set. That is, we search for bit-vector formulas
that give a precise description for the input-output behavior
of instructions on registers and memory. The details of the
x86-64 memory model, such as how memory behaves under
concurrency or alignment requirements are important but

1 Available at https://stefanheule.com/strata/.

https://stefanheule.com/strata/

orthogonal to that goal and are not inferred by our approach.
Nonetheless, we consider the majority Haswell instruction
set, with extensions such as AVX and AVX2.

2.1 Modeling the CPU State
We model the CPU state as bit-vectors that correspond to
registers and an array that represents a byte-addressable
memory. We restrict our register model to the registers
described below. The x86-64 architecture has additional
special purpose registers and flags used by system-level
instructions, which we do not attempt to model or learn (see
Section 2.2).

• General Purpose Registers: The 16 64-bit registers:
rax, rcx, . . . , r15; the lower 32, 16, and 8 bits of those
registers: eax, ax and al, etc.; and the legacy registers
that name bits 8 through 15: ah, ch, dh, bh.

• Vector Registers: The 16 256-bit registers: ymm0, . . . ,
ymm15; and the lower 128 bits of those registers: xmm0,
. . . , xmm15.

• Status Flags: Five bits from the rflags register. These
store partial results from many arithmetic operations and
are used by conditional jump instructions: cf (carry), pf
(parity), zf (zero), sf (sign), and of (overflow).

2.2 Instructions in Scope
We exclude a few classes of instructions because they are very
difficult to model, rarely used, or both. Of the entire 3,684
instruction variants that make up the x86-64 Haswell ISA,
these exclusions leave us with 2,918 variants whose specifi-
cations we can potentially infer. The excluded instructions
are:

• Systems-level (302 variants): These instructions are rarely
used by application-level code and would require a more
detailed model of the operating system, protection levels,
and other low-level details. Examples are hlt (stopping
execution), syscall (system call) and invpcid (invali-
date entries in the TLB).

• Cryptography (35 variants): These instructions sup-
port AES encryption. An example is aeskeygenassist
(AES round key generation).

• x87 (155 variants): These are floating-point instructions
introduced in 1980 and deprecated by SSE (1999). The
newer instructions are faster, more versatile, and vector-
ized.

• MMX instructions (177 variants): These are vector in-
structions introduced in 1997 and deprecated by SSE
(1999). These instructions suffer from limitations such
as the inability to interleave integer and floating-point
operations.

• String instructions (97 variants): Currently unsupported
by the synthesizer we use.

2.3 Dataflow Information
Our approach to synthesizing formulas requires information
about which locations an instruction reads from and writes
to with respect to both registers and memory. In most cases,
these sets are given by an instruction’s operands. However,
some instructions implicitly read or write additional loca-
tions. For example, mulq rcx multiplies rcx (the explicit
operand) by rax (implicit operand) and stores the result in
rax and rdx (both also implicit). Certain x86-64 instructions
may also place undefined values in register locations. Be-
cause these values are free to vary between implementations
([12] showed that different CPUs actually do exhibit different
behavior), we require that these locations be specified as well,
so as not to overfit to the CPU that we run our experiments
on. We neither attempt to learn the output relation for un-
defined values that are placed in output registers, nor allow
instructions to read from an undefined location. Although this
information is already provided by the x86-64 specification
in sufficient detail, we note that it would have been possible
to automatically infer the majority of it as well.

3. Approach
In this section we describe our approach, starting with a
simple example that shows the main steps, followed by an
explanation of the details. The full algorithm in pseudocode
is shown in Algorithm 1 and Algorithm 2.

3.1 Overview
We start with a base set of instructions, for which we al-
ready have formal specifications. This set is meant to be
small but should cover all of the unique functionality in the
instruction set. For all remaining instructions, we automati-
cally infer a formula for an instruction i by learning a small
x86-64 program, consisting only of instructions whose se-
mantics are already known, that behaves identically to i. For
instance, consider the instruction variant decb (the decre-
ment instruction that operates on an 8 bit register). Since the
only operand of decb is a register, we can instantiate the
instruction (INSTANTIATEINSTR in Algorithm 1) to obtain a
one instruction program by choosing an input register; e.g.,
decb bl. We call this the target instruction t, and attempt
to synthesize a loop-free program p0 that behaves just like
t on a number of test cases (more on test case generation
in Section 3.3) using a stochastic search. For the stochastic
search SYNTHESIZE we use STOKE [26] for which we give
a description in Section 4.

For instance, for the decrement instruction we might learn
this program:

1 xorb al, al # al = 0 and clears cf
2 setae ah # set ah if cf is 0
3 subb ah, bl # bl = bl - ah

Algorithm 1 Main algorithm
Input: base set baseset , a set of instruction/formula pairs,

and a set worklist of instructions
Result: a set of instruction/formula pairs

1: procedure STRATA(worklist , baseset)
2: tests ← GENERATETESTCASES()
3: while |worklist | > 0 do
4: instr ← CHOOSE(worklist)
5: worklist ← worklist − {instr}
6: t← STRATAONE(instr , baseset , tests)
7: if t is failure then

we couldn’t learn a program for instr yet
8: worklist ← worklist ∪ {instr}
9: else

10: baseset ← baseset ∪ {〈instr , t.formula〉}
11: result ← baseset
12: for (instr , formula)← baseset do
13: result ← result ∪ GENERALIZE(instr , formula)

14: return baseset

learn a formula for instr
15: procedure STRATAONE(instr , baseset , tests)
16: prog instr ← INSTANTIATEINSTR(instr)
17: t = SYNTHESIZE(prog instr , baseset , tests)
18: if t is timeout then return 〈failure〉

the set of equivalence classes of learned programs
19: eqclasses ← {{t.prog}}
20: while true do
21: t = SYNTHESIZE(prog instr , baseset , tests)
22: if t is timeout then
23: break
24: else
25: t← CLASSIFY(t.prog , eqclasses, tests)
26: if t is failure then return 〈failure〉
27: if |eqclasses| > threshold then
28: break
29: bestclass ← CHOOSECLASS(eqclasses)
30: bestprog ← CHOOSEPROG(bestclass)
31: formula ← BUILDFORMULA(instr , bestprog)
32: return 〈success, formula〉

The comments indicate the main steps of the program, but
note that the instructions not only decrement the bl register,
but also sets a number of status flags appropriately.

The search for a program has the freedom to overwrite
registers that are not written by the target instruction; the
resulting program p0 must only agree with t on the locations
that t may write. For example, the program above overwrites
al, ah as well as cf, even though the decrement instruction
does not affect these locations. Requiring that the synthesized
program agree with the target instruction only on the tar-

Algorithm 2 Helper functions
classify prog into the equivalence classes

1: procedure CLASSIFY(prog , eqclasses , tests)
2: eqs ← ∅
3: for class ← eqclasses do
4: t← SMTSOLVER(prog ,CHOOSEPROG(class))
5: if t is equivalent then
6: eqs ← eqs ∪ {class}
7: else if t is counterexample then
8: tests ← tests{t.counterexample}
9: remove all programs p in eqclasses for which

RUN(p) 6= RUN(prog instr)
10: if |eqclasses| = 0 then return 〈failure〉
11: if |eqs| = 0 then
12: eqclasses ← eqclasses ∪ {prog}
13: else
14: eqclasses ← merge all classes in eqs
15: add prog to merged class
16: return 〈success〉

generalize a learned formula for an instruction to a set
of formulas

17: procedure GENERALIZE(instr , formula)
18: result ← ∅
19: for instr ′ ← ALLINSTRUCTIONS() do
20: if instr ′ has same mnemonic as instr then
21: continue
22: candidate ← NONE
23: if operands of instr ′ have same size then
24: candidate ← rename operands in formula

25: if operands of instr ′ have smaller size then
26: candidate ← rename and sign-extend operands
27: if operands of instr ′ have larger size then
28: candidate ← rename and select operands
29: if candidate 6= NONE then
30: test candidate with random constant operands

and on random test cases
31: add to result if all tests pass
32: return result

get’s write set effectively gives the search temporary scratch
locations to use.

Once we have learned a program p, we can convert it to a
formula by symbolic execution of p since we have formulas
for all the instructions in p. However, the program p may
overfit to the test cases, and there might be inputs for which
p and t disagree. We run the search again to find a potentially
different program p′ that also behaves just like t on all test
cases. Now, we use an SMT solver to check p ≡ p′.

If p 6≡ p′, we get a counterexample, that is, an input for
which p and p′ behave differently. We can then remove the
incorrect program (or possibly both programs) by comparing

their behavior on this new input against t. We also add the new
test case to our set of test cases and search again. Otherwise,
if p ≡ p′, we add p′ to the set of programs we know. We
repeat this process until we can either not find any more
programs, or until we have enough programs according to a
threshold. We discuss how to deal with solver timeouts and
spurious counterexamples in Section 3.7.

This process increases our confidence that the learned
programs in fact agree with t on all inputs, and allows us to
find tricky corner-case inputs. High confidence is the most
we can hope to achieve because, again, our purpose is to
infer specifications for which there is in general no ground
truth. In Section 5 we evaluate the correctness of the learned
semantics for those instructions where we happen to have
hand-written formulas.

Once this processes finishes, we are left with a collection
of programs from which we can choose one (details in
Section 3.8) to use as the semantics of t. At this point, we
can add this instruction variant to the base set, and use it in
further searches for other instructions. This creates a stratified
search, where simple instructions are learned first, followed
by slightly more complex instructions that use the simpler
instructions learned previously, and so on, until finally quite
complex instructions are learned.

3.2 Base Set
The base set consists of 51 instruction variants that cover the
fundamental operations of the x86-64 instruction set:

• Integer addition (4 instruction variants).
• Bitwise operations, including bitwise or and exclusive or,

shifts (both arithmetic and logical) as well as population
count (6 instruction variants).

• Data movement from one register to another, as well as
variants to sign-extend values (7 instruction variants).

• Conditional move (1 instruction variant).
• Conversion operations between integers and floating-

point values for both 32- and 64-bit data types (8 instruc-
tion variants).

• Floating point operations including addition, subtrac-
tion minimum, maximum, division, approximate recip-
rocal and square root, fused multiply and add/subtract
(which is not the same as a multiply followed by an ad-
dition due to the higher internal precision of the fused
operation), for both single and double precision floating-
point values where available, all vectorized (24 instruction
variants).

• Clear registers. We include vzeroall, which clears all
vector registers. This is included for technical reasons
only: STOKE requires the initial program (conceptually
the empty program) to define all output locations, and this
instruction allows this easily for the vector registers (1
instruction variant).

Precisely modeling floating-point instructions over bit-
vectors in a way that performs well with SMT solvers is
challenging [10]. For this reason, we model the floating-point
instructions in the base set as uninterpreted functions. This
encoding is extremely imprecise, but still provides a useful
semantics for many instructions. For example, it is sufficient
for inferring that vectorized floating-point addition consists
of several floating-point additions over different parts of the
vector arguments. The main limitation of using uninterpreted
functions is that it complicates equivalence checking. Given
two programs that potentially represent the semantics of
an unmodeled instruction, the appearance of uninterpreted
functions substantially reduces the likelihood that we will be
able to show those two programs to be equivalent.

In addition to these instructions, we found that certain data
movements are not well supported by any instruction in the
x86-64 instruction set. For instance, there is no instruction
to set or clear the overflow flag of (there is an instruction
that can set any of the other four flags), and in fact several
instructions are needed just to set this single flag. Similarly,
updating, say, the upper 32 bits of a 64-bit general purpose
register in a non-destructive manner is surprisingly difficult
and again requires several instructions. Many instructions
include setting specific flags or parts of registers as part of
their functionality, and the fact that the x86-64 instruction
set is missing some of these primitives makes implementing
such instructions in x86-64 more difficult than necessary. For
this reason, we augment the base set with pseudo instructions
that provide this missing functionality. Of course, like other
base set instructions, we provide formulas for the pseudo
instructions.

We implement the pseudo instructions as procedures
(that could be inlined). Unlike regular instructions, pseudo
instructions cannot be parameterized by operands, since
assembly-level procedure calls take arguments in predefined
locations according to a calling convention. We address this
issue by having a template for every pseudo instruction that
can be instantiated with several specific register operands.
For instance, we might have a template to set a flag that is
instantiated separately for all six status flags. We add the
following pseudo instruction templates:

• Split and combine registers. Move the value of a 2n-
bit register into two n-bit registers (upper and lower
half), as well as the inverse operation (2 templates, 108
instantiations).

• More splitting and combining. For the 128-bit registers,
we also allow them to be split into four 32-bit registers,
and vice versa (2 templates, 18 instantiations).

• Moving a single byte. Move the value in a 1-byte register
to a specific byte in an n-byte register, and vice versa (2
templates, 152 instantiations).

• Move status flag to a register and back. Move the bit
stored in a status flag to the least significant bit of a register

by zero-extending its value, and move the least significant
bit of a general purpose register to a specific status flag (2
templates, 22 instantiations).

• Set and clear status flags (2 templates, 12 instantiations).
• Set sf, zf and pf according to result. The sign, zero

and parity flags have relatively consistent meaning across
many instructions, and this instruction sets them according
to the value in a given general purpose register (the sign
flag is the most significant bit, the zero flag is 1 if and only
if the value is zero, and the parity flag indicates if the least
significant byte has an even or odd number of set bits in
the 8 least significant bits). (1 template, 4 instantiations).

This makes for a total of 11 pseudo instructions with 316
instantiations. All of these have trivial semantics, as they are
mostly concerned with data movement.

3.3 Test Cases
A test case is a CPU state, i.e., values for all registers, flags
and memory. When beginning a synthesis task we initially
generate 1024 random test cases. Additionally, we also pick
heuristically interesting bit patterns such as 0, -1 (all bits
set) and populate different register combinations with these
values. Similarly, we pick some special floating-point values,
such as NaN (not a number), infinity, or the smallest non-zero
value. With 22 heuristically interesting values we generate an
additional 5556 test cases for a total of 6580. In Algorithm 1,
this step is called GENERATETESTCASES.

3.4 Generalize Learned Programs
So far we have a method for learning a formula for an
instruction variant that uses a specific set of registers. We
need to generalize these formulas to other registers, and to
instructions that take constants (so-called immediates) and
memory locations as operands.

3.4.1 Generalization to Other Registers
If we have learned a formula for a particular set of register
operands, then we can generalize this to other registers by
simple renaming. For instance, after learning a formula
for decb bl, we can create a formula for decb r8 by
computing the formula for decb bl. This determines the
value for all registers that are written to, including bl. For all
such outputs, we rename all occurrences of bl to r8. In our
example, we might have learned the formula

bl ← bl− 18

zf ← (bl− 18) = 08

(only showing the zero status flag for brevity; the two updates
are done in parallel, so that bl on the right-hand side refers
to the previous value in both cases). Here,− is subtraction on
bit-vectors, = equality on bit-vectors, and cw is the constant
bit-vector of widthw with value c. This can easily be renamed

to obtain the fomula for decb r8:

r8 ← r8− 18

zf ← (r8− 18) = 08

Some instructions read or write implicit locations as well
as take explicit operands. For the renaming to be unambigu-
ous, we should learn a formula for an instruction where the
implicit and explicit operands aren’t referring to the same
register. This can be done by ensuring that INSTANTIATEIN-
STR selects the explicit operands to be distinct from the any
implicit ones an instruction might have.

This procedure makes two assumptions: (1) that using
different registers as operands cannot make the instruction
behave differently, and (2) the renaming is unambiguous
(after taking care of implicit operands appropriately).

We can validate assumption (1) by running the instruc-
tion with different operands and validating that it behaves
as we expect. If it does not, we can learn a separate formula
for the operands that behave differently. Interestingly, we
have found exactly one case where an instruction has differ-
ent behavior depending on the register arguments, namely
xchgl eax, eax. Normally, xchgl exchanges two 32-bit
registers and clears the upper 32 bits of both corresponding
64-bit registers. However, xchgl eax, eax leaves every-
thing unchanged2.

Assumption (2) is actually not true, and the renam-
ing might be ambiguous. For instance, the instruction
xaddq rax, rcx exchanges the two registers and stores
the sum in rcx. That is, the formula for this instruction is
(ignoring status flags for simplicity):

rax ← rcx

rcx ← rcx+ rax

where + is the bit-vector addition on 64-bit values. Now, if
we want to get the formula for xaddq rdx, rdx then we
have two possible values for updating the register rdx, as
both locations that xaddq writes to are identical here. Fortu-
nately, this situation only applies to instructions where two
or more locations are written that could possibly alias (con-
sidering both explicit operands as well as implicit locations),
and there are only five mnemonics that write two or more
locations: cmpxchg, xchg, mulxl, vinsertps, and xaddw.
We manually decide the correct value for these cases by con-
sulting the Intel manual as well as testing the instruction on
sample inputs. For the first two it does not matter as both
possible values are the same, and for the remaining three it is
easy to determine the correct value. For instance, the xaddq
instruction writes the sum, and so xaddq rdx, rdx would
store

rdx+ rdx

in rdx. This generalization is done in BUILDFORMULA in
Algorithm 1.

2 To be precise, there are several possible encodings for the instruction

3.4.2 Generalizing to Memory Operands
The vast majority of instruction variants that can take a mem-
ory operand have a corresponding variant that takes only
register operands. We can validate that the two instructions
behave identically (except for the operand location) on ran-
dom test cases, and then use the formula we have learned for
the register variant.

For several floating-point operations, the memory location
used has a different size. For instance, consider a floating-
point addition on two 32-bit values where one of the values is
stored in memory: addss xmm0, (rax). The correspond-
ing register-only variant operates on two 128-bit registers
(because all xmm registers where floating-point values are
stored are 128 bits). We can still generalize to these instruc-
tions, but only considering the lowest 32 bits from the register
variant. Again, we validate this step by testing on random
inputs.

While in principle this generalization could also be done
in BUILDFORMULA, we do this as a post-processing step
after we have learned all register-only formulas, namely in
GENERALIZE.

3.4.3 Generalizing to Immediate Operands
Similar to memory operands, many instructions with imme-
diate operands have a corresponding instruction that takes
only registers. Again we can validate the hypothesis that they
behave identically (other than where the inputs come from)
and use the same formula. Some instructions do not have a di-
rectly corresponding instruction, but first require the constant
to be extended to a higher bit width. We might hypothesize
that the constant needs to be either sign-extended or zero-
extended, but otherwise can use a formula already learned.
We test this hypothesis on random inputs when we generalize
instructions with immediate operands in GENERALIZE. We
find that sign-extending the constants is the correct decision
for all such instructions (even ones where one might expect a
zero-extension, such as bit-wise instructions).

However, other instructions with immediate operands do
not have a corresponding register-only instruction. Unfortu-
nately, we cannot easily apply the same trick we used for
registers and learn a formula directly for such variants. The
problem is we would need to convert the instruction into a
program in INSTANTIATEINSTR and therefore instantiate all
operands. This means that we cannot vary the value of the
immediate, and thus can only learn a formula for a partic-
ular constant. However, for many cases this turns out to be
enough, as we can just learn a separate formula for every
possible value of the constant. If the constant only has 8 bits,
then brute force enumeration of all 256 possible values is
feasible. This approach works well, as many instructions with
8 bit constants actually are a family of instructions and the
constant controls which member of the family is desired. For

xchgl eax, eax, and only the two variants that hard-code one of the
operands to be eax are affected. These essentially encode to nop.

instance, the pshufd instruction rearranges the four 32-bit
values in a 128-bit register according to control bits in an
8-bit immediate argument. Not only is it possible to learn 256
different formulas for such instructions it is also considerably
simpler to only learn a formula for a single control constant
rather than one that works for all possible constants.

3.5 Preventing Formula Blowup
Due to the stratified search, where formulas for entire pro-
grams are reused in the semantics of newly learned instruc-
tions, our formulas have the potential to grow in size and the
formulas that are learned later in the process might become
very large. We found that a small number of simplifications
reduce the size of the synthesized formulas dramatically and
cause our learned formulas to be manageable in size. We
preform two types of simplifications:

• Constant propagation.
• Move bit selection over bit-wise operations and across

concatenation. For instance, for a 32 bit variable eax, we
can simplify (eax◦eax)[31:0] to eax (where ◦ is the con-
catenation operator for bit-vectors). This transformation
can sometimes directly simplify the formula, or enable
further simplifications in subexpressions.

3.6 Finding Precise Formulas
We strongly prefer precise formulas that do not involve
uninterpreted functions. To ensure we learn a precise formula
whenever possible, we first attempt to synthesize any formula.
If the formula is imprecise (i.e., involves an uninterpreted
function), then we additionally perform another search where
we restrict the set of available instructions to only ones
that have a precise formula. If the search succeeds, we
categorize the program as usual and keep learning more
precise programs until no more can be found or a threshold
is reached. If no program using only this limited set of
instructions can be found, then we accept the imprecise
formula. For brevity this additional step is not shown in
Algorithm 1.

3.7 Unknown Solver Answers
An SMT solver (SMTSOLVER in the pseudo code) does not
always answer ”equivalent” or ”counterexample” when asked
whether two formulas are equivalent. It is possible for the
solver to time out, or to report that the two programs might
not be equivalent, without giving a valid counterexample.
The latter can happen with imprecise formulas that make use
of uninterpreted functions. In that case, the counterexample
provided by the SMT solver might be incorrect: the two
programs in question may actually behave identically on that
input.

Since we do not have precise formulas for most floating-
point operations, we must deal with the fact that we cannot
always prove equivalence or inequivalence of programs, and
we cannot always obtain useful counterexamples. Instead of

learning a set of programs for which we know that all pro-
grams are equivalent, we instead learn a set of equivalence
classes c1, . . . , cn (called eqclasses in STRATAONE of Algo-
rithm 1). All programs in a given class are formally equivalent
(as proven by the SMT solver). Now, if we learn a new pro-
gram p, we can try to prove it equivalent to the programs in
all of equivalence classes and either add it to an existing class,
merge classes if it happens that p is equivalent to programs in
currently distinct equivalence classes, or create a new class
for just p (done in CLASSIFY in Algorithm 2).

Thus, at the end of our search, we have a set of equivalence
classes to choose from. If the formulas are precise, then there
will typically be only a single class (unless timeouts are
encountered, e.g., due to non-linear arithmetic).

3.8 Choosing a Program
Once we can no longer find new programs (or we have
decided we have found sufficiently many programs), we must
pick one program as the representative we use to create a
formula. If there is only a single equivalence class, then all
programs in it are equivalent and in theory it doesn’t matter
which program we pick. However, some formulas might be
more desirable than others, e.g., if they are simpler or use no
non-linear arithmetic. For this reason, we heuristically rank
all formulas (that correspond to the synthesized programs) in
order of the following criteria.

• Number of uninterpreted functions
• Number of non-linear arithmetic operations
• Number of nodes in the AST of the formula

This means we prefer precise formulas (ones that do not
contain uninterpreted functions), formulas that perform well
in SMT queries (no non-linear arithmetic that is prone to
timeouts) and are simple (small formulas). This step is done
in CHOOSEPROG in Algorithm 1.

Since we have no way to further distinguish between equiv-
alence classes, we consider all classes that are above a thresh-
old size (to avoid unreproducible outcomes) and pick the
best one according to the ranking heuristic (CHOOSECLASS
above).

4. Program Synthesis using STOKE
We use STOKE for the program synthesis step. Although we
us it as a black box we provide a high-level description of
how STOKE works here for completeness.

STOKE [26] is a stochastic search tool that synthesizes
(or optimizes) x86-64 code from examples. Given a set of test
cases H = {(h1, o1), . . . , (hn, on)} consisting of pairs of
inputs/outputs, and a subset χ of x86-64 instructions, STOKE
synthesizes a program p that uses these instructions and
agrees with the test cases, i.e., ∀j.p(hj) = oj . To synthesize
a formula corresponding to an instruction i, we set χ to
the instructions in the base set for which the formulas are
already known. The examples are generated by executing a

program containing only the instruction i on input CPU states
(Section 3.3) and recording the output states.

STOKE starts from an empty program p and makes re-
peated randomly selected transformations to p. The trans-
formations include inserting a randomly chosen instruction,
deleting a randomly chosen instruction, swapping two ran-
domly chosen instructions, etc. The transformations applied
by STOKE are guided by a cost function defined on the test
cases. The cost function penalizes programs that are “further”
from being equivalent to i on the tests. For instance, a candi-
date cost function is the sum of Hamming distances between
p(ij) and oj . STOKE searches for programs that minimize
cost by transforming the current program p to a new program
p′. If the cost of p′ is lower than p, then p′ becomes the cur-
rent program and the process is repeated again. If instead
the cost of p′ is greater than the cost of p, then with some
probability—exponentially decaying with the difference of
cost between p and p′—STOKE still updates the current pro-
gram to p′. STOKE terminates when it finds a program that
satisfies all the test cases in H .

Due to its stochastic nature and the large size of the x86-64
ISA, multiple runs of STOKE usually lead to distinct syn-
thesized programs. This property is useful for synthesizing
the multiple programs required by our approach. Nonethe-
less, STOKE allows for user-defined cost functions and we
use this facility to avoid finding a program we have already
learned before again. To this end, we add a term to the regular
cost function that is 1 if the current program has been learned
already, and 0 otherwise.

5. Experiments
In this section we evaluate our implementation STRATA
according to the following research questions.

(RQ1) What number of instructions can STRATA automati-
cally synthesize a formula for?

(RQ2) Are the synthesized formulas correct?
(RQ3) How large are the synthesized formulas compared

manually written ones?
(RQ4) How precise and usable are the synthesized formulas

compared to the hand-written ones?
(RQ5) Is the simplification step effective?
(RQ6) Is the stratification of the synthesis necessary?

We also give some details on the overall synthesis process,
such as how long it takes and what fraction of the SMT solver
calls returned unsatisfiable, a counterexample or timed out.

5.1 Synthesis Results
Table 1 summarizes the number of formulas that our approach
can learn automatically. Starting from 51 base instructions
and 11 pseudo instruction templates, both with formulas
written by hand, we first learn 692 instruction variants that
only use registers as operands. These can then be generalized
to other instruction variants that use memory or immediate

Base set 51
Pseudo instruction templates 11

Register-only variants learned 692
Generalized (same-sized operands) 796
Generalized (extending operands) 81
Generalized (shrinking operands) 107
8-bit constant instructions learned 119.42

Learned formulas in total 1795.42

Table 1. Overall synthesis results. The table lists the number
of base instructions, and how many formulas can be automat-
ically learned from these, broken up into different categories.

operands. More precisely, we can generalize to another 796
instruction variants that use operands of the same size as
the register-only variants. 81 variants require an operand to
be sign-extended and another 107 variants are instructions
that use smaller operands (a 32- or 64-bit memory location
instead of a 128-bit xmm register). Finally, we also learned
formulas for instructions with an 8-bit constant that do not
have a corresponding register-only instruction. We attempted
to learn a separate formula for all 256 different possible
values for the constant. In some cases, we learned a formula
only for some of the possible constants, which is why we
count every formula as 1/256 of an instruction variant. We
learn 119.42 instruction variants in this way. In total, STRATA
learned 1,795.42 formulas automatically, or 61.5% of the
instructions in scope.

5.2 Limitations
We manually inspected the instructions for which STRATA
was unable to learn a formula. They can be roughly catego-
rized as follows, though there might be some overlap between
categories:

• Missing base set instructions. Some instructions per-
form floating-point operations that do not appear in the
base set. The same is true of several vectorized inte-
ger instructions. For these instructions, there is no non-
vectorized instruction that performs the corresponding
primitive operation (e.g., saturated addition). A possible
solution would be to add pseudo instructions that perform
these operations in a non-vectorized fashion.

• Program synthesis limits. Some instructions are learn-
able in principle, though the length of the shortest program
required to do so is beyond the reach of STOKE’s program
synthesis engine.

• Cost function. There are several instructions for which
STOKE’s cost function does not provide sufficient guid-
ance for search to proceed effectively. For instance, for
some instructions it is difficult to produce a program that
correctly sets the overflow flag. STOKE’s cost function
cannot provide much feedback for just this single bit until
a mostly correct program is found.

5.3 Correctness
STOKE already contains formulas for a subset of the x86-64
instruction set. These are written against the same model of
the CPU state used in this paper, and so we can easily compare
the STOKE formulas against the ones learned by STRATA by
asking an SMT solver if the formulas are equivalent.

We have hand-written formulas from STOKE for 1,431.91
instructions variants (or 79.75%) of the formulas learned
by STRATA (none of these were instruction variants with
a constant). For 1,377.91 instruction variants, we could
prove equivalence automatically. We manually inspected
the 54 instruction variants where the SMT solver was not
able to automatically prove the equivalence between the
manually written formula and the one synthesized by STRATA.
For 4 instructions, the formulas are in fact equivalent if
some additional axioms about the uninterpreted functions
are added: Because we encode all floating point instructions
as uninterpreted functions, the SMT solver does not know
that there is a well-defined relationship between some of
these. For instance, a fused multiply-add with an additive
operand that is zero is equivalent to a regular multiply. Adding
such axioms allows us to prove the equivalence for these 4
instructions. Alternatively, if an encoding for floating point
operations would be used that the SMT solver can reason
about, then no axiom would be necessary.

In the remaining 50 cases, there were semantic differences
between the hand-written and synthesized formulas. We
inspected each case manually by consulting the Intel manual
as well as running example inputs on real hardware to
determine which is correct. In all cases, the formulas learned
by STRATA were correct and the manually written ones were
not:

• The AVX extension adds many variants of existing instruc-
tions with three operands; two source operands and one
destination. In 32 cases, the manually written formulas
incorrectly left the upper 64 bits of the destination un-
changed instead of copying the bits from the first source
operand.

• For 10 vectorized conversion operations (from double to
single precision floating point values or from doubles to
32-bit integers), the upper 64 bits of the result are sup-
posed to be 0, but the hand-written formulas mistakenly
left these unchanged.

• There are 8 variants of a combined addition/subtraction
operation (e.g., addsubps). The hand-written formulas
erroneously swap the position of the addition and subtrac-
tion operations.

In summary, we found 50 instruction variants where the
hand-written formulas contained errors, and 4 cases where
the formulas required some relatively simple axioms about
the uninterpreted functions used to be proven equivalent. All
other automatically learned formulas are provably equivalent
to the hand-written ones.

Errors in Intel documentation The Intel manual [14]
only contains informal pseudo-code and an English descrip-
tion of the semantics, so there is no automatic way of com-
paring the learned formulas with the manual. However, over
the course of this project we found several inconsistencies
when manually comparing the two. This is unsurprising given
the over 3,800 pages of intricate technical content, the vast
majority of which is not machine-checked. Examples of these
errors include:

• The upper 128 bits of the output register of pshufb xmm0, xmm1
are kept unmodified on Intel hardware, but the pseudo-
code in the manual incorrectly says they are cleared.

• The Op/En column for the vextracti128 instruction
should be MRI, but it was RMI. This causes a wrong
operand ordering when assembling this instruction.

• One possible encoding for xchgl eax, eax is 0x90

according to the manual, and its semantics are to clear the
upper 32 bits of rax. However, 0x90 is also the encoding
of nop, which does nothing according to the manual (and
hardware).

• The textual description of roundpd claims to produce a
single-precision floating point value, when it produces a
double-precision floating point value.

We have reported all of these items and they were confirmed
by Intel as errors in the manual [8].

5.4 Formula Size
Large formulas can cause problems for SMT solvers and per-
form less well, especially if formulas are further combined
(e.g., to prove equivalence between two x86-64 programs).
For this reason, we answer (RQ3) by comparing the number
of nodes in the AST of the formula representation in the au-
tomatically learned formulas and the hand-written formulas.
For every instruction variant where we have both a learned
and hand-written formula, we compute

number of nodes in learned formula
number of nodes in hand-written formula

We plot a histogram of this distribution in logarithmic space
(such that increases and decreases in size are shown sym-
metrically) in Figure 1. The center of the figure consists of
formulas that have the same size, with instructions where
STRATA’s formulas are smaller to the left and instructions
where the hand-written formulas are smaller to the right. The
median of this distribution is one (i.e., formulas are equally
large). The smallest formula has size 0 (for the nop instruc-
tion), and the largest formula has 211 and 196 nodes for
STRATA and the hand-written formulas, respectively.

5.5 Formula Precision
Two further important aspects of the quality of formulas is
the number of uninterpreted function applications (a measure
of preciseness) and the number of non-linear arithmetic oper-
ations (which tend to perform poorly in queries), as stated by

9x smaller 3x smaller equal 3x larger 9x larger

Relative size increase for Strata formulas

0

20

40

60

80

100

120

140

160

180

N
u

m
b

er
of

fo
rm

u
la

s

Figure 1. Distribution of the relative increase in size of
the formulas learned by STRATA compared to the hand-
written formulas. Negative numbers indicate that the learned
formulas were smaller.

(RQ4). We found that the automatically synthesized formulas
have the same number of non-linear operations, except for 9
instruction variants, where they contain fewer such operations
(the hand-written formulas for some rotate instructions con-
tain a modulo operation, whereas the automatically learned
ones do not). In all of these cases the non-linear operation is
a modulo by a constant, and is likely not a big problem for
SMT solvers (unlike non-linear operations by variables).

The number of uninterpreted functions (UIF) is the same
for almost all instruction variants, with the exception of 4
formulas, where the automatically learned formulas contain
redundant UIFs: Instead of using a single UIF, the learned
formula uses 2 UIFs that combined perform the same op-
eration as the single UIF. In all cases a simplification step
that knows about floating point operations should be able to
remove these redundant UIFs.

In summary, the automatically learned formulas are com-
parable in size, and with the exception of 4 instruction vari-
ants are equally precise and contain at most as many non-
linear arithmetic operations compared to the hand-written
formulas.

5.6 Simplification
To address (RQ5), we measure the size of the learned formu-
las before and after simplification and compute the relative
decrease in size (as before when comparing with handwrit-
ten formulas). At the median of this distribution, simplified
formulas are 8.45 times smaller, and in the extreme they are
smaller by up to a factor of 1,583. A small number of formu-
las are larger after simplification (due to using a distributive
law), but at most by a factor of 1.33. The full distribution is
shown in Figure 2.

5.7 Stratification
To answer (RQ6), we can investigate if instructions could
have been learned sooner. To this end, we define the stratum
of a formula that corresponds to an instruction variant i induc-

equal 10x smaller 100x smaller 1000x smaller

Relative size decrease simplified formulas

0

50

100

150

200

250

N
u

m
b

er
of

fo
rm

u
la

s

Figure 2. Distribution of the relative decrease in size of the
formulas learned by STRATA due to the simplification step.

tively as follows. Let M(i) represent the set of instructions
that the synthesized program for i uses, and let B be the set
of instructions in the base set. Then,

stratum(i) =

0 if i ∈ B
1 + max

i′∈M(i)
stratum(i′) otherwise

Intuitively, this captures the earliest point at which a particular
formula could have been learned with the given program. We
show the distribution of strata in Figure 3, which shows that
stratified synthesis is in fact necessary for our approach to
learning the semantics of x86-64: only 13.73% of instructions
are learned at stratum 1, the 50th percentile of all learned in-
structions is reached only at stratum 4, and the 90th percentile
is not reached until stratum 10.

In STRATA, formulas are added to the base set as soon
as a specification has been learned (by learning multiple
programs). So when an instruction i at stratum n is added
to the base set and another instruction i′ makes use of
i during the search for its specification, we say i′ was
learned at stratum (at least) n + 1. However, there might
be another (equivalent) specification where the instruction
i was not used, and thus the stratum for i′ then might be
different (and lower). Therefore, to definitively answer (RQ6),
we run STRATA where new instructions are not added to
the base set (for the same amount of time, on the same
machine as the main experiment). This effectively turns
off stratification and determines the maximum number of
instructions this approach can learn at stratum 1. We find
that for the register-only variants, we can learn only 426
formulas without stratification, compared to the total 692
formulas learned with stratification (an increase of 62.4%).
In the experiment with stratification, only 95 formulas were
learned at stratum 1, showing that indeed, some formulas
at higher strata could have been learned at lower strata if
we had given more time to the program synthesis at those
lower strata. However, overall stratification was essential to
learning.

Stratum

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

F
ra

ct
io

n
of

fo
rm

u
la

s

51

0

95

1

89

2

90

3

78

4

59

5

63

6

55

7

46

8

47

9

21

10

16

11

13

12

9

13

6

14

3

15

2

16

Figure 3. Distribution of the strata for all register-only
instruction variants. Formulas at stratum 0 are from the base
set, and all others are learned formulas.

5.8 Experimental Details
We performed all experiments on an Intel Xeon E5-2697
machine with 28 physical cores, running at 2.6 GHz. For en-
gineering reasons, we split the problem into learning register-
only variants and learning formulas for instructions with
an 8-bit constant. Finally, we generalized these formulas to
other similar instruction variants with memory or immediate
operands.

Our algorithm is embarrassingly parallel and we run it
on all available cores. We let the register-only experiment
run for 268.86 hours, and spent 159.12 hours for the 8-bit
constant experiment. Total runtime therefore is 427.98 hours,
or 11983.37 CPU core hours. Figure 4 shows the progress
during the learning of register-only instructions, both for
STRATA as presented and STRATA with stratification turned
off. STRATA is able to quickly learn formulas for the simple
instructions, with progress tapering off as more difficult
instructions are attempted.

During the process of learning formulas, we invoked an
SMT solver to decide what equivalence class a program
belongs to (procedure CLASSIFY in Algorithm 2). Out of
the 7,075 such decisions STRATA had to make when learning
register-only variants, we found an equivalent program in
6,669 cases (94.26%) and created a new equivalence class in
356 cases (5.03%) as the solver could not prove equivalence
with any existing class. In only 3 out of these 356 cases a
solver timeout was the cause, and in all other cases the solver
did not give a valid counterexample.

We also found a (valid) counterexample in 50 cases. This
highlights the importance of learning many programs, as the
first one we learn can actually be wrong. It also shows that
for the most part the testcases work well.

5.9 Implementation
We make STRATA, our implementation of stratified synthesis
available online, together with the results of the experiments
described in this paper including all learned formulas.

https://stefanheule.com/strata/

https://stefanheule.com/strata/

0 50 100 150 200 250

Wall-clock time elapsed [hours]

0

100

200

300

400

500

600

700

N
u

m
b

er
of

fo
rm

u
la

s
le

ar
n

ed

Progress

Progress without stratification

Figure 4. Progress over time as measured by the number of
(register-only) formulas learned.

6. Related Work
There has been a proliferation of program synthesis tech-
niques in recent years. These include techniques based on
SAT solvers [28], SMT solvers [13, 15], exhaustive enumer-
ation [4, 11, 20, 30], and stochastic search [19, 26, 27]. In
this work, we demonstrate that stratification significantly en-
hances the performance of STOKE, a stochastic synthesizer
of x86-64 code. We believe that other approaches to program
synthesis can also benefit from the modularity introduced by
stratification, which we leave as future work. Our focus in
the current work is to obtain a formal semantics for x86-64
instructions.

The work closest to ours is by Godefroid and Taly [12].
Using 6 manually provided templates and SMT-based synthe-
sis, they are able to synthesize formulas for 534 32-bit x86
arithmetic (no floating-point) instructions. For tractability, the
templates are required to have “smart inputs”, which is a set
of inputs such that if two instantiations of the template agree
on the smart inputs then the instantiations are guaranteed to
be equivalent for all inputs. They show that in the absence of
smart inputs, the SMT based synthesizer runs out of memory
while synthesizing formulas for 32-bit shifts [12]. In contrast,
we do not require templates, smart or otherwise. We bootstrap
a small base set of formulas to obtain formulas for a larger
set of instructions. While the base set of formulas that we use
were written manually, many of these could be synthesized
by extending the approach of [12] to x86-64.

The HOIST system automatically synthesizes abstract
semantics (for abstract domains such as intervals, bit-wise
domain, etc.) by exhaustively sampling 8-bit instructions of
embedded processors [23]. In subsequent work, templates
were used to scale this process to 32-bit instructions [22].
In contrast, we synthesize bit-precise concrete semantics for
x86-64 instructions that operate on registers which can have
up to 256 bits. These concrete semantics can be used to obtain
abstract semantics (for any abstract domain) using [25].

Several research groups have implemented, with consider-
able effort, their own formal specification for the x86 instruc-
tion set. Our work automates this task and generates a more

complete specification than the existing ones. For instance,
CompCert includes a partial formal specification for 32-bit
x86. The paper [30] uses formulas for 179 32-bit x86 opcodes
described in [18]. The STOKE tool itself contains manually
written formulas for a subset of x86-64. Other platforms
for x86 include BAP [7], BitBlaze [29], Codesurfer/x86 [3],
McVeto [31], Jakstab [16], among many others. We note that
Intel does not appear to have a formal model that fully defines
CPU behavior, not even internally [1, Section 4.1].

The idea of comparing two implementations by translating
them to SAT or SMT solvers has been used in many contexts,
e.g., deviation detection to find bugs [21] or to determine the
soundness of optimizations [5]. In our work, we use it to find
corner-case inputs that are not part of our testcases.

7. Conclusions
We have presented STRATA, a tool for automatically synthe-
sizing the semantics of x86-64 instructions. Using stratified
synthesis, in which we use the semantics of instructions we
have learned to bootstrap the process of learning the seman-
tics of additional instructions, we have learned specifications
for 1,795 x86-64 instruction variants starting from a base set
of just 58 instructions and 11 pseudo instruction templates.
Our results are the most complete formal description of the
x86-64 instruction reported to date.

Acknowledgements
This material is based on research sponsored by DARPA un-
der agreement number FA84750-14-2-0006. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements either ex-
pressed or implied of DARPA or the U.S. Government. This
work was also supported by NSF grants CCF-1409813 and
CCF-1160904, as well as a Microsoft Fellowship.

References
[1] N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and E. Shlomo.

Virtual cpu validation. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, pages 311–327,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3834-9.
doi: 10.1145/2815400.2815420. URL http://doi.
acm.org/10.1145/2815400.2815420.

[2] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.
Codesurfer/x86—a platform for analyzing x86 executables.
In Compiler Construction, pages 250–254. Springer, 2005.

[3] G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum.
Codesurfer/x86-a platform for analyzing x86 executables. In
Compiler Construction, 14th International Conference, CC
2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings, pages 250–254, 2005.

http://dx.doi.org/10.1145/2815400.2815420
http://doi.acm.org/10.1145/2815400.2815420
http://doi.acm.org/10.1145/2815400.2815420

[4] S. Bansal and A. Aiken. Automatic generation of peephole
superoptimizers. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006, pages 394–403, 2006.

[5] S. Bansal and A. Aiken. Automatic generation of peephole
superoptimizers. In Proceedings of the 12th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XII, pages 394–
403, New York, NY, USA, 2006. ACM. ISBN 1-59593-
451-0. doi: 10.1145/1168857.1168906. URL http:
//doi.acm.org/10.1145/1168857.1168906.

[6] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanovic, T. King, A. Reynolds, and C. Tinelli. CVC4. In
Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
pages 171–177, 2011.

[7] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP:
A binary analysis platform. In Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, pages 463–469, 2011.

[8] M. Charney. Personal communication, February 2016.

[9] M. Christodorescu, N. Kidd, and W.-H. Goh. String analysis
for x86 binaries. In Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering, volume 31, pages
88–95, 2005.

[10] E. Darulova and V. Kuncak. Sound compilation of reals.
In The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, pages 235–248, 2014.

[11] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data struc-
ture transformations from input-output examples. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pages 229–239, 2015.

[12] P. Godefroid and A. Taly. Automated synthesis of symbolic
instruction encodings from i/o samples. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 441–452, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9.
doi: 10.1145/2254064.2254116. URL http://doi.
acm.org/10.1145/2254064.2254116.

[13] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 62–73, 2011.

[14] Intel. Intel 64 and IA-32 Architectures Soft-
ware Developer Manuals, Revision 325462-057US,
December 2015. URL http://www.intel.
com/content/www/us/en/processors/
architectures-software-developer-manuals.
html.

[15] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-
guided component-based program synthesis. In Proceedings
of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1, ICSE 2010, Cape Town, South Africa,
1-8 May 2010, pages 215–224, 2010.

[16] J. Kinder and H. Veith. Jakstab: A static analysis platform for
binaries. In Computer Aided Verification, 20th International
Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008,
Proceedings, pages 423–427, 2008.

[17] X. Leroy. The CompCert C Verified Compiler, 2012.

[18] J. Lim and T. W. Reps. TSL: A system for generating abstract
interpreters and its application to machine-code analysis. ACM
Trans. Program. Lang. Syst., 35(1):4, 2013.

[19] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy.
Efficient synthesis of probabilistic programs. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pages 208–217, 2015.

[20] P. Osera and S. Zdancewic. Type-and-example-directed pro-
gram synthesis. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, Portland, OR, USA, June 15-17, 2015, pages 619–630,
2015.

[21] D. A. Ramos and D. R. Engler. Practical, Low-
Effort Equivalence Verification of Real Code. In
Computer Aided Verification, 2011. doi: 10.1007/
978-3-642-22110-1_55. URL http://dx.doi.
org/10.1007/978-3-642-22110-1_55.

[22] J. Regehr and U. Duongsaa. Deriving abstract transfer func-
tions for analyzing embedded software. In Proceedings of
the 2006 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’06), Ot-
tawa, Ontario, Canada, June 14-16, 2006, pages 34–43, 2006.

[23] J. Regehr and A. Reid. HOIST: a system for automatically
deriving static analyzers for embedded systems. In Proceedings
of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
2004, Boston, MA, USA, October 7-13, 2004, pages 133–143,
2004.

[24] T. Reps and G. Balakrishnan. Improved memory-access
analysis for x86 executables. In Compiler Construction, pages
16–35. Springer, 2008.

[25] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation
of the best transformer. In Verification, Model Checking, and
Abstract Interpretation, 5th International Conference, VMCAI
2004, Venice, January 11-13, 2004, Proceedings, pages 252–
266, 2004.

[26] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superop-
timization. In Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, Houston, TX,
USA - March 16 - 20, 2013, pages 305–316, 2013.

[27] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization
of floating-point programs with tunable precision. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, page 9, 2014.

[28] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu.
Programming by sketching for bit-streaming programs. In
Proceedings of the ACM SIGPLAN 2005 Conference on Pro-

http://dx.doi.org/10.1145/1168857.1168906
http://doi.acm.org/10.1145/1168857.1168906
http://doi.acm.org/10.1145/1168857.1168906
http://dx.doi.org/10.1145/2254064.2254116
http://doi.acm.org/10.1145/2254064.2254116
http://doi.acm.org/10.1145/2254064.2254116
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1007/978-3-642-22110-1_55

gramming Language Design and Implementation, Chicago, IL,
USA, June 12-15, 2005, pages 281–294, 2005.

[29] D. X. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.
Bitblaze: A new approach to computer security via binary
analysis. In Information Systems Security, 4th International
Conference, ICISS 2008, Hyderabad, India, December 16-20,
2008. Proceedings, pages 1–25, 2008.

[30] V. Srinivasan and T. W. Reps. Synthesis of machine code from
semantics. In Proceedings of the 36th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 596–607, 2015.

[31] A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder,
T. Andersen, and T. W. Reps. Directed proof generation
for machine code. In Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings, pages 288–305, 2010.

[32] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura. Effi-
ciently solving quantified bit-vector formulas. Formal Methods
in System Design, 42(1):3–23, 2013.

	Introduction
	Modeling x86-64
	Modeling the CPU State
	Instructions in Scope
	Dataflow Information

	Approach
	Overview
	Base Set
	Test Cases
	Generalize Learned Programs
	Generalization to Other Registers
	Generalizing to Memory Operands
	Generalizing to Immediate Operands

	Preventing Formula Blowup
	Finding Precise Formulas
	Unknown Solver Answers
	Choosing a Program

	Program Synthesis using STOKE
	Experiments
	Synthesis Results
	Limitations
	Correctness
	Formula Size
	Formula Precision
	Simplification
	Stratification
	Experimental Details
	Implementation

	Related Work
	Conclusions

