
Eric Roberts Handout #11A
CS 106A January 8, 2010

Solutions to the Lecture Problems

1. PutBeeperLine

/*
 * File: PutBeeperLine.java
 * ------------------------
 * This program tests the putBeeperLine method, which creates a
 * line of beepers moving forward from Karels position.
 */

import stanford.karel.*;

public class PutBeeperLine extends SuperKarel {

public void run() {
putBeeperLine();
turnLeft();
putBeeperLine();

}

/*
 * Creates a line of beepers by putting a beeper down on every
 * intersection between Karel's current position and the next wall.
 */
private void putBeeperLine() {
while (frontIsClear()) {
putBeeper();
move();

}
putBeeper();

}

}

– 2 –

2. BanishWinter

/*
 * File: BanishWinter.java
 * -----------------------
 * The BanishWinter subclass gets Karel adorn a series
 * of trees with a cluster of beeper leaves.
 */

import stanford.karel.*;

public class BanishWinter extends SuperKarel {

/* Main program */

public void run() {
while (beepersInBag()) {
findTree();
addLeavesToTree();

}
moveToWall();

}

/*
 * Moves Karel up to the next tree.
 *
 * Programming style note: Since a tree is simply a wall,
 * this method can simply call moveToWall. You could
 * therefore replace the findTree call in the main program
 * with moveToWall, but the program might then be harder to
 * read because it violates the "tree" metaphor used at the
 * level of the main program.
 */
private void findTree() {
moveToWall();

}

/*
 * Adorns a single tree with a cluster of leaves. The
 * precondition is that Karel must be immediately
 * west of the tree, facing east; the postcondition is
 * that Karel is at the bottom of the other side of the
 * tree, facing east.
 */
private void addLeavesToTree() {
turnLeft();
climbTree();
addLeaves();
descendToGround();
turnLeft();

}

– 3 –

/*
 * Climbs to the top of the tree.
 */
private void climbTree() {
while (rightIsBlocked()) {
move();

}
}

/*
 * Moves Karel back to the ground. Both the pre- and
 * postconditions have Karel facing south.
 */
private void descendToGround() {
moveToWall();

}

/*
 * Creates the cluster of leaves at the top of a tree.
 * The precondition is that Karel must be facing north at
 * the top of the tree; the postcondition is that Karel
 * is still at the top, but on the other side of the
 * trunk, facing south.
 */
private void addLeaves() {
turnRight();
createBeeperSquare();
move();
turnRight();

}

/*
 * Moves Karel forward until it is blocked by a wall.
 */
private void moveToWall() {
while (frontIsClear()) {
move();

}
}

/*
 * Creates a square of four beepers, leaving Karel in its
 * original orientation. The resulting square is positioned
 * ahead and to the left of Karel's starting position.
 */
private void createBeeperSquare() {
for (int i = 0; i < 4; i++) {
putBeeper();
move();
turnLeft();

}
}

}

