
An Interactive Tutorial System for Java

Eric Roberts
Stanford University

eroberts@cs.stanford.edu

ABSTRACT interactive teaching materials, primarily because of its integration
with the web through the applet mechanism. The 1997 and 1998
ITiCSE conferences convened working groups to develop Java as
a resource for creating visualizations and interactive animations
for instructional use [3, 7]. The 1997 report offers the following
assessment of the opportunities that Java provides:

As part of the documentation for its library packages, the Java
Task Force (JTF) developed an online tutorial system that enables
teachers and students to explore the resources provided by the
Task Force in a highly interactive style. The individual pages that
make up the tutorial often include demonstration programs that
the reader can experiment with while remaining on the same web
page as the explanatory text. Although the original motivation for
developing that tutorial system was to document the JTF packages
themselves, the structure is general enough for teachers to design
their own tutorials and interactive demonstrations. This paper
describes the structure of that tutorial system and illustrates its
use. In addition, the paper describes some work-in-progress that
will make it possible to create interactive lecture demonstrations
from PowerPoint™.slides.

Visualization has long been an important pedagogical tool in
CS education. The widespread use of the Web and the
introduction of Java, with its ability to present interactive
animated applets and other types of animation, all provide
opportunities to expand the availability of visualization-based
teaching and learning. [3]

Other authors have reported on similar attempts to use Java as a
framework for developing teaching materials. The SIGCSE’98
proceedings, for example, include no fewer than five papers on the
use of Java as a framework for supporting interactive, web-based
tutorials and animations [2, 4, 5, 6, 9].Categories and Subject Descriptors

In recent years, the difficulty of maintaining compatibility
among applets running in an ever-expanding array of browsers has
led to some decline in the popularity of the applet paradigm. For
reasons discussed at length in the January 2006 release of the JTF
Project Rationale [1], however, the Task Force is convinced that
applets continue to provide an appropriate framework for making
software applications available on the web. The Task Force,
moreover, has undertaken a major effort to eliminate compatibility
problems, as described in the report.

K.3.2 [Computer and Information Science Education]:
computer science education, curriculum.

General Terms
None.

Keywords
Computer science education, CS1, teaching libraries, Java.

1. INTRODUCTION 3. OVERVIEW OF THE JTF TUTORIAL
The ACM Java Task Force was created in 2004 to develop a set of
pedagogical resources that will make it easier to teach Java in
first-year computer science courses [8]. The primary deliverables
of that effort are a set of library packages that address those
problems identified by the community as the most significant
challenges involved in teaching Java to an introductory audience
[1]. In addition to those packages, the Task Force has also
produced several software tools that support the teaching of Java
in other ways. This paper describes an online tutorial system that
was initially developed to document the Java Task Force libraries,
but which also makes it possible for instructors to develop their
own interactive tutorials for students.

The purpose of this section is to give readers a feel for how the
online JTF tutorial system operates—admittedly in the
noninteractive style that a paper copy imposes. Figure 1 shows the
top-level page for the chapter on the acm.gui package, which
supports the development of simple graphical user interfaces or
GUIs. The browser window is divided into three frames. The
frame along the left is the navigation frame, which contains an
outline of the tutorial as a whole, expanded to show the detailed
structure of the current section. The majority of the right-hand
side of the window is occupied by the text frame, which provides
the text description for that page. As you can see from the
example, the text frame can use the full repertoire of HTML
features; the sample page includes images for the ACM and JTF
icons, multiple fonts to enhance readability, an ordered list
identifying the subsections, and hyperlinks that connect the
section names to the appropriate pages. The third frame, which is
called the control bar, appears at the bottom of the window and
includes the copyright notice and an arrow link to the next page.

2. APPLETS AS A TUTORIAL PARADIGM
Ever since its introduction in 1995, educators have recognized that
Java represents an attractive environment for the development of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

Figure 2 shows a slightly more interesting page that appears
later in this section of the tutorial. As you can see from the
expanded outline in the navigation frame, this slide is the fourth
slide in the TableLayout subsection of the acm.gui package
description. More importantly, this page shows a sample applet

Figure 1. Sample page from the JTF Tutorial

Figure 2. Sample tutorial page showing embedded applet

running in a demo frame that appears to the right of the text
frame. As you can see if you look at the web-based version of the
JTF Tutorial, the demo program is fully active. You can type a
temperature into the Fahrenheit or Celsius field and then convert
that temperature to the other scale either by hitting RETURN or by
clicking the appropriate button. Finally, the control bar now
contains a button that downloads the code for the applet running
in the demo frame.

missing, no demo page appears. Similarly, the zip attribute tells
CreateTutorial where to find the downloadable code. It is this
attribute that triggers the creation of the button in the control bar
that downloads the code.

The tutorial page shown in Figure 1 has no demo program but
is the root of a directory section with three subsidiary pages. The
HTML file for this page must specify the labels for the navigation
bar and the directory names of the subsidiary pages, as follows:

Although it may not be obvious at first glance, the demo frame
contains more than the TemperatureConverter program itself.
If you simply included an applet tag for this program in the
HTML code for the frame, the applet would appear in a simple
rectangular box, without the title bar and controls. Adding the
simulated frame is not merely (if you will) “window dressing” but
actually plays an important pedagogical role. In this section of the
tutorial in particular, it is very important for readers to understand
how the layout changes when the user resizes the window. The
resize control in the lower right and the maximum/minimize
buttons on the title bar are active and resize the window inside the
demo frame. Resizing the window signals the layout manager for
the applet that it needs to reconstruct the layout of the window,
making it easy for the user to see exactly what happens as the size
of the window changes.

<slide
 pageref="<code>TableLayout</code>:table"
 pageref="Calendar example:calendar">

Here, each of the pageref attributes indicates a subsidiary page
that descends from the page containing the pageref entries. The
portion of the pageref attribute that precedes the colon specifies
the tag to be included in the navigation frame. Note that this
section of the entry can contain embedded HTML tags, such as the
ones in this example that set tokens like TableLayout in code
font. The portion of the pageref attribute that follows the colon
represents the name of a subdirectory that includes the slides for
this subsidiary page. These subsidiary pages may further
subdivided into lower level pages to any level of nesting.

Thus, to create a tutorial of your own, all you need to do is

1. Create HTML pages for the text frames of any pages you want
to include in your tutorial. To do so, you can either write your
own HTML files or use page-creation tools to assist in that
process. For example, popular applications like Microsoft Word™

allow you to save files as HTML, which makes it particularly easy
for web novices to create these pages.

The look and feel of the simulated frame adjusts to match the
system on which it is running. The demo applet shown in Figure 2
shows how things look when the browser is running on a
Macintosh. On a Windows platform, the style of the applet frame
changes to conform to the standard appearance of the Windows
environment.

2. Arrange these HTML pages into a directory hierarchy that is
appropriate for the logic and flow of the material.4. DESIGNING YOUR OWN TUTORIALS

To see how the tutorial package might be tailored to support your
own customized tutorial, the first thing you need to understand is
what parts of the tutorial page are generated by the tutorial author
and what parts are generated automatically. The short answer is
that the author is responsible only for the text frame. Everything
else is generated automatically. The navigation frame, the control
bar, the demo frame, and the index file that creates the frame
structure are all generated from the text pages by running the
CreateTutorial application on the directory tree containing the
specifications of the various text frames.

3. Edit the HTML files so that they include the slide tags that
provide the metainformation needed to create the tutorial, as
illustrated by the earlier examples.

4. Run the CreateTutorial application to create the complete
set of HTML files.

5. CREATING LECTURE DEMO APPLETS
Although being able to create online tutorials will presumably be
useful to some instructors, that capability alone may not prove
sufficient to entice a large number of people to use this system.
The HTML-based approach faces two significant impediments:The CreateTutorial application, of course, needs to have a

certain amount of information in order to create the HTML files
that represent the page. In particular, there must be some way for
the CreateTutorial application to determine the order of
individual pages at a particular level of the hierarchy, the name of
the class (if any) to run as an applet, and the location from which
to download the code. This information is provided by adding a
slide tag to the HTML file for the text frame. Because this tag is
not recognized as part of HTML, browsers will ignore it. The
CreateTutorial application, on the other hand, can scan files
for this tag and use the attributes to generate the additional files
needed to support the tutorial operation.

1. Online tutorials are not as common as lecture demonstrations.
Almost all faculty teaching introductory computer science courses
give lectures and can benefit enormously from having interactive
demonstration programs to accompany the lecture presentation.
Creating online reference material is in some sense “extra.”
2. Creating a lecture demonstration is easier than writing a web
tutorial, primarily because the tools are more effective. Even with
web-authoring tools, designing a web page tends to require more
effort than creating a presentation using Microsoft PowerPoint™.
In addition, the number of instructors who can use PowerPoint
effectively is far larger than the number who feel comfortable with
web-authoring tools. In the modern university, PowerPoint is an
essential tool that more or less everyone learns.

The attributes attached to the slide tag depend on the role of
that page. For the TemperatureConverter slide, this tag must
contain the information needed to identify the both the .jar file
for the applet and the name of the main class. In this specific
instance, the slide tag looks like this:

Unfortunately, however, PowerPoint doesn’t really fit the bill
for illustrating Java programs. Although it is a fine tool for
creating slides that move the viewer through a sequence of
concepts, it lacks the ability to run Java programs within a
presentation. And although third-party plugins exist to support
coordinated displays of HTML pages and PowerPoint slides, those
plugins are difficult to use effectively and do not run on all of the
major platforms.

<slide archive="JTFTutorial.jar"
 code="TemperatureConverter.class"
 zip="TemperatureConverter.zip">

The archive and code attributes are the same as those found in a
traditional applet tag and let the CreateTutorial application
know how to start the demo program. If these attributes are

After we finished implementing the web-based tutorial system,
the natural question that arose was whether it would be possible to
extend its functionality to support the creation of lecture slides as
well. Java itself is certainly more than capable of supporting such
a presentation system, but the fundamental challenge is finding a
way to leverage existing PowerPoint expertise so that users can
create such displays without learning a new authoring paradigm.

then postprocess the HTML file to add any demonstration applets
the author wished to include. This strategy, however, turns out to
be unworkable. When PowerPoint converts a presentation to
HTML, it does so by generating screen images of each slide and
then creating an HTML file that simply loads each image as a
separate page. Such a mechanism clearly offers no flexibility to
edit the individual components of a slide.

In seeking to determine whether such a system was feasible,
we initially considered—and then abandoned—several potential
strategies:

• Converting each slide in the PowerPoint presentation to a web
page by parsing the PowerPoint data file and creating an HTML
page that duplicates its effect. Although this strategy initially
seems to offer considerably more flexibility than the preceding
one, it fails because PowerPoint and HTML have entirely different
models for how information is displayed on the screen. The most
obvious difference is that PowerPoint allows the user to control
the position of each structure on the screen; web browsers, by
contrast, lays out the entire presentation dynamically by
interpreting the HTML. Equally important, however, is the fact
that HTML offers no mechanism for implementing even the
simplest PowerPoint effects, such as making new items appear on
the slide each time the mouse is pressed. Being able to duplicate at
least the ability to sequence through a slide is essential if users are
to accept such a mechanism.

• Capturing the operation of an applet as a succession of images
or digital video. In many ways, the simplest approach to support
displaying a program in a PowerPoint presentation is to capture
the succession of images as the program is run and then to drop
that set of images into a standard PowerPoint presentation. The
downside of this strategy is that the demonstration is entirely
“canned” in the sense that it is impossible for the user to control
the operation of the demo in the way that running an actual
program would permit. For certain styles of program animation,
this loss of user control greatly diminishes the effectiveness of the
demonstration.
• Converting the PowerPoint presentation to HTML and then
adding in the appropriate applet tags. The fact that modern
implementations of PowerPoint already include an option to save
a presentation as HTML suggests that it might be possible to
convert an existing PowerPoint presentation to HTML form and

What we ended up doing deciding to do instead was to convert
the entire PowerPoint presentation to an applet. Figure 3 illustrates
how the PowerPoint-to-applet mechanism appears when it is
running in a browser. The title on the page was simply the title on

Figure 3. Lecture demonstration page with an embedded applet

a PowerPoint slide, and the entire rest of the page is simply the
HanoiDemo applet running with the same background color.

REFERENCES
1. ACM Java Task Force. Project rationale. Second public draft,

January 2006.The first step in creating the applet version of the PowerPoint
presentation is to parse the binary data file to create a data
structure that drives a more general presentation applet. That
system is currently under development. Its success is not
dependent on implementing the full range of PowerPoint effects,
since most of the available effects are not actually used (or are
certainly not essential) in an effective presentation. The prototype
implementation interprets only text boxes, bullet lists, and images,
limiting the available effects to having an item appear when the
mouse is clicked. Later versions will support a wider range of
PowerPoint features, most notably the ability to group items
together to form a single unit.

2. Lewis Barnett, Joseph F. Kent, Justin Casp, and David Green.
Design and implementation of an interactive tutorial
framework. Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education, Atlanta, GA,
February 1998.

3. Joseph Bergin, Thomas L. Naps, et al. Java resources for
computer science instruction. Report of the ITiCSE’98
Working Group on Curricular Opportunities of Java Based
Software Development, SIGCSE Bulletin, September 1997.

4. Christopher Boroni, Frances Goosey, Michael Grinder, and
Rockford Ross. A paradigm shift! The Internet, the web,
browsers, Java and the future of computer science education.
Proceedings of the 29th SIGCSE Technical Symposium on
Computer Science Education, Atlanta, GA, February 1998.

The key additional feature is that the PowerPoint-to-applet
translation system looks for a particular kind of labeled box in the
presentation and converts that to an applet insertion, using the
boundary of the box to indicate the location of the applet and the
label to identify which applet to run. Those embedded applets are
run in the context of the larger applet that implements the
PowerPoint presentation as a whole. In the presentation shown in
Figure 3, for example, the entire slide reason below the title was
taken up by an applet box whose label indicated that the region
was to be replace by the HanoiDemo applet.

5. David Cole, Roger Wainwright, and Dale Schoenefeld. Using
Java to develop Web based tutorials. Proceedings of the 29th
SIGCSE Technical Symposium on Computer Science
Education, Atlanta, GA, February 1998.

6. Herbert Dershem and Peter Brummund. Tools for Web-based
sorting algorithms. Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education, Atlanta, GA,
February 1998.

7. Thomas Naps, et al. Using the WWW as the delivery
mechanism for interactive, visualization-based instructional
modules. Report of the ITiCSE’97 Working Group on
Visualization, SIGCSE Bulletin, September 1997.

6. CONCLUSION
The JTF Tutorial system allows potential users of the Task Force
packages to learn the details of those packages in an environment
that offers a high degree of interactivity. That system, moreover,
can be easily tailored to support custom tutorial packages
developed by individual instructors.

8. Eric Roberts. Resources to support the use of Java in
introductory computer science. Proceedings of the 35th
SIGCSE Technical Symposium on Computer Science
Education, Norfolk, VA, March 2004.In addition to web pages, the JTF Tutorial system is currently

being extended to support the creation of lecture demonstration
applets from simple PowerPoint presentations. Initial experiments
with this approach show significant promise, although it remains
to be seen how effective this strategy will prove in practice.

9. Susan H. Rodger and Willard C. Pierson. Web-based
animation of data structures using JAWAA. Proceedings of the
29th SIGCSE Technical Symposium on Computer Science
Education, Atlanta, GA, February 1998.

