
The ACM Java Task Force

Tutorial

Eric Roberts (chair), Stanford University, eroberts@cs.stanford.edu
Kim Bruce, Pomona College, kim@cs.pomona.edu

Robb Cutler, The Harker School, robbc@harker.org
James Cross, Auburn University, cross@eng.auburn.edu

Scott Grissom, Grand Valley State University, grissom@gvsu.edu
Karl Klee, Alfred State College, kleekj@alfredstate.edu

Susan Rodger, Duke University, rodger@cs.duke.edu
Fran Trees, Drew University, fran@ftrees.com

Ian Utting, University of Kent, i.a.utting@kent.ac.uk
Frank Yellin, Google, Inc., fyellin@gmail.com

August 25, 2006

This work is supported by grants from the ACM Education Board, the SIGCSE
Special Projects Fund, and the National Science Foundation (grant DUE-0411905).

The ACM Java Task Force
Tutorial

(August 20, 2006)

Table of Contents

Chapter 1. Introduction to the JTF packages .. 1
Chapter 2. Using the acm.graphics package .. 11
Chapter 3. Animation and interactivity ... 44
Chapter 4. Graphical user interfaces ... 65

ACM Java Task Force Tutorial – 1 –

Chapter 1
Introduction to the JTF Packages

Since its release in 1995, the Java programming language has become increasingly
important as a vehicle for teaching introductory programming. Java has many significant
advantages over earlier teaching languages and enables students to write exciting
programs that capture their interest and imagination. At the same time, Java is far more
sophisticated than languages that have traditionally filled that role, such as BASIC and
Pascal. The complexity that comes with that sophistication can be a significant barrier to
both teachers and students as they try to understand the structure of the language.

In early 2004, the ACM created the Java Task Force (JTF) and assigned it the
following charge:

To review the Java language, APIs, and tools from the perspective of
introductory computing education and to develop a stable collection of
pedagogical resources that will make it easier to teach Java to first-year
computing students without having those students overwhelmed by its
complexity.

After two preliminary releases in February 2005 and February 2006, the JTF released its
final report in July 2006.

This tutorial is designed to give instructors a gentle introduction into how to use the
JTF materials in the context of an introductory programming course. As a tutorial, this
document does not attempt to cover every detail of the varstructurery to defend the
decisions that went into the overall design. The complete description of the packages can
be found in the online javadoc; a review of the design is available in the Java Task Force
Rationale document.

1.1 Getting started
In their classic textbook The C Programming Language, Brian Kernighan and Dennis
Ritchie offered the following observation at the beginning of Chapter 1:

The only way to learn a new programming language is by writing
programs in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the
program text somewhere, compile it successfully, load it, run it, and find
out where the output went. With these mechanical details mastered,
everything else is comparatively easy.

Even though C has given way to Java and our expectations of what constitutes an
interesting first program have changed, the wisdom of getting the mechanical details out
of the way remains as applicable as ever. During the review process for the JTF
packages, the most common questions we received were from users who were unsure
how to compile and run programs that made use of any libraries beyond the standard
classes supplied with the Java distribution. Once that hurdle was cleared, using the JTF
packages seemed to be straightforward.

ACM Java Task Force Tutorial – 2 –

Downloading the “hello, world” programs
The moral of the story, therefore, is that it is essential to get a simple program working
before you move on to more complex examples. Taking our inspiration from Kernighan
and Ritchie, our first example will be a simple program that displays the “hello, world”
message. You can download the code for this program—along with a copy of the
acm.jar library and a couple of more advanced versions of the program—from the
following web address:

http://jtf.acm.org/downloads/Hello.zip

Please take a moment to download the Hello.zip file and unzip it on your computer. If
you are reading this tutorial online, you should be able simply to click on the link. Most
browser programs will automatically download and unzip the code with no further
interaction on your part. When you have done so, you should see a directory named
Hello that contains the following four files: HelloConsole.java, HelloDialog.java,
HelloGraphics.java, and acm.jar. The first three are Java program files, and the last
one is a library file that contains the compiled code for the JTF packages.

Once you have successfully downloaded these files, your next step is to compile and
run the HelloConsole program, which is the simplest of the examples. The code for this
version of the program appears in Figure 1-1. If you are using the traditional command-
line interface supplied with Sun’s Java Development Kit, this process requires two steps.
The first step is to compile the HelloConsole.java file by issuing the command

javac -classpath acm.jar HelloConsole.java

You can then run the program by invoking the command

java -cp .:acm.jar HelloConsole

On Windows platforms, the colon in the classpath must be replaced with a semicolon (;).

Figure 1-1. Simple program to display “hello, world” on the screen

/*
 * File: HelloConsole.java
 * -----------------------
 * This program displays the message "hello, world" and is inspired
 * by the first program "The C Programming Language" by Brian
 * Kernighan and Dennis Ritchie. This version displays its message
 * using a console window.
 */

import acm.program.*;

public class HelloConsole extends ConsoleProgram {

public void run() {
println("hello, world");

}

/* Standard Java entry point */
/* This method can be eliminated in most Java environments */

public static void main(String[] args) {
new HelloConsole().start(args);

}

}

ACM Java Task Force Tutorial – 3 –

Note that the acm.jar file must be specified as part of both the compilation and
execution steps.

If everything is working, the computer should pop up a console window that looks
something like this:

HelloConsole
hello, world

If you are using one of the many Integrated Development Environments (IDEs)
available for Java—such as Microsoft Visual Studio™, Metrowerks CodeWarrior™, or
the open-source Eclipse system—you will need to ensure that the acm.jar file is
included as part of the classpath, which is the list of directories and JAR files that Java
searches to find class definitions that are not part of the source files. The procedure for
doing so varies from system to system. Please check the documentation for your own
IDE to see how one goes about specifying the classpath.

Eliminating the static main method
As soon as you have the HelloConsole program working, it is useful to try one
additional experiment. If you look at the code in Figure 1-1, you will see that there is a
main method at the end of the class definition. As the comment indicates, it is possible to
eliminate this method in many Java environments, but not all. Open the
HelloConsole.java file in an editor, delete the main method and its associated
comments, and then see if you can still compile and run the program. If so, you will be
able to write shorter programs that will be much easier for novices to understand. If not,
you will need to tell your students to include a standardized main method in their
programs that always looks like

public static void main(String[] args) {
new MainClass().start(args);

}

where MainClass is the name of the main class.

The examples available on the JTF web site include a static main method to ensure that
these programs will run in as many environments as possible. For clarity of presentation,
however, the programs in the remainder of this tutorial eliminate the main method to
focus attention on the more substantive parts of these examples. The programs instead
begin with a run method, which is called after the runtime libraries have created the
necessary windows and arranged them on the screen.

Making the programs a little more interesting
Although getting the HelloConsole program working is a good first step, it isn’t a
particularly exciting example. If nothing else, the program seems terribly out of date.
While printing a message on the console may have been a reasonable example in the
1970s, students today are used to much more sophisticated programs, with fancy graphics
and interactive dialogs. Surely a modern object-oriented language like Java can do better
than duplicating the kind of program students wrote a generation ago.

That’s where the other two programs that you downloaded as part of the Hello.zip
file come in. If you compile and run the HelloDialog.java program in precisely the
same way that you ran HelloConsole.java, the "hello, world" message won’t appear

ACM Java Task Force Tutorial – 4 –

in a console window. In fact, the program doesn’t create a program frame at all. Instead
the prorgam pops up an interactive dialog box that looks something like this, although the
precise format of the display will vary depending on what operating system you are using
and what “look and feel” it defines for Java applications:

OK

hello, world

Message

The HelloGraphics.java file uses the facilities of the acm.graphics package to display
the message in large, friendly letters across the window:

HelloGraphics

hello, world
The code for each of these programs is similar in certain respects to that used in

HelloConsole. The HelloDialog program is almost exactly the same. Other than
changes in the comments, the only difference is the header line for the class, which now
looks like this:

public class HelloDialog extends DialogProgram

The body of the class is exactly the same. The only difference—which is sufficient to
cause the change in behavior—is that this version extends DialogProgram instead of
ConsoleProgram.

The code for HelloGraphics appears in Figure 1-2. The details of the program are
not important at this point, and will be covered in Chapter 2. Even so, the basic idea is
likely to be clear, even if you could not have generated the code as it stands. The first
line creates a GLabel object with the message text, the second line gives it a larger font,
and the last three lines take care of adding the label so that it is centered in the window.
What is important to notice is that the HelloGraphics class extends GraphicsProgram,
which is yet another category of program. These three classes—ConsoleProgram,
DialogProgram, and GraphicsProgram—are the building blocks for Java applications
built using the acm.program package, which is introduced in the following section.

1.2 The Program class hierarchy
Each of the applications contained in the Hello.zip file represents a simple,
paradigmatic example of one of three classes defined in the package called acm.program.
The classes for the various versions of the "hello, world" program—taken together
with the classes defined in the acm.program package—form the class hierarchy shown in

ACM Java Task Force Tutorial – 5 –

Figure 1-2. Program to display “hello, world” graphically

/*
 * File: HelloGraphics.java
 * ------------------------
 * This program displays the message "hello, world" and is inspired
 * by the first program "The C Programming Language" by Brian
 * Kernighan and Dennis Ritchie. This version displays the message
 * graphically.
 */

import acm.graphics.*;
import acm.program.*;

public class HelloGraphics extends GraphicsProgram {

public void run() {
GLabel label = new GLabel("hello, world");
label.setFont("SansSerif-100");
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;
add(label, x, y);

}

}

Figure 1-3. As the diagram shows, each of the example applications is a subclass of a
specific program type: HelloConsole is a subclass of ConsoleProgram, HelloDialog is
a subclass of DialogProgram, and HelloGraphics is a subclass of GraphicsProgram.
Each of these classes is a subclass of a more general Program class, which is in turn a
subclass of Swing’s JApplet class.

Figure 1-3. The Program class hierarchy

margorP

margorPelosnoC margorPgolaiD margorPscihparG

telppAJ

elosnoColleH golaiDolleH scihparGolleH

The program class hierarchy in Figure 1-3 provides a straightforward introduction to
the ideas of subclassing and inheritance that students seem to find compelling. After all,

ACM Java Task Force Tutorial – 6 –

the word program has the intuitive meaning of some kind of application that can be
executed on a computer. It is clear, moreover, that there are different kinds of programs,
which provides a motivation for subclassing. A particular program running on a
machine—HelloConsole, for example—is an instance of a ConsoleProgram, but it is
also clearly an instance of a more generic Program class. This inheritance structure
therefore exemplifies the is-a relationship between a class and its superclass in a
seemingly natural way.

Using the Program class offers several advantages beyond the pedagogical one of
serving as an archetype for class hierarchies:

• The Program class encourages students to beyond the procedural paradigm implied by
public static void main into a more object-oriented style in which all methods are
executed in the context of an object.

• Because the Program class is a subclass of JApplet, a Program can run equally well as
applications and web-based applets.

• The Program class includes several features to make instruction easier, such as menu
bars with standard File and Edit menus.

Behavior common to all Program classes
Sitting as it does at the root of the program hierarchy, the Program class defines the
behavior that all of its subclasses share, and it is therefore important to understand
something of how the Program class works before moving on to its individual subclasses.
The most important feature of the Program class is that it standardizes the process of
program startup in a way that unifies the traditionally disparate models of applications
and applets. The idea is that a program should work the same way if you run it as an
application or as an applet in the context of a web browser. To achieve this goal, the
Program class automatically executes several of the operations that a browser performs
when running an applet. Thus, no matter whether you run a program as a standalone
application or view it as an applet running inside a web browser, the startup process
consists of the following steps:

1. Create a new instance of the main class.
2. Create a frame in which to run the program.
3. Install components in the frame as required by the program subclass. A

ConsoleProgram, for example, installs a console in the frame; a GraphicsProgram,
by contrast, installs a graphical canvas.

4. Call the program’s init method to perform any application-specific initializion.
5. Ensure that the frame layout is up to date by calling validate.
6. Call the run method using a new thread of control.

For the most part, these steps are entirely automatic, and the student doesn’t need to be
aware of the details. From the student’s perspective, the essential step in getting a
program running is defining a run method that contains the code, as illustrated by each of
the three implementations of the "hello, world" program. The code for each run
method depends to some extent on the specific subclass, so that the code for a
ConsoleProgram will include method calls for interacting with a console while a
GraphicsProgram will include calls for displaying graphical objects on a canvas.
Despite these differences, the startup operations for every program subclass remain the
same.

ACM Java Task Force Tutorial – 7 –

The sections that follow offer a quick introduction to the ConsoleProgram ,
DialogProgram, and GraphicsProgram classes. For a more complete description of the
methods available in each class, please see the javadoc documentation.

The ConsoleProgram class
A ConsoleProgram begins by creating a console window and installing it in the program
frame. The code for the ConsoleProgram then communicates with the user through calls
to methods that are passed on to the console, such as the

println("hello, world");

you saw in the the HelloConsole example.

Although the ConsoleProgram class exports a much larger set of input and output
methods as defined by the IOModel interface in the acm.io package, you can easily get
started using only the methods listed in Figure 1-4. This set includes the familiar print
and println methods provided by the classes in the java.io package along with a set of
methods like readInt, readDouble, and readLine for reading input of various types.

The code for the Add2Console program in Figure 1-5 offers an extremely simple
illustration of how to use the ConsoleProgram class: a program that reads in two integers
from the user and prints their sum. A sample run of the Add2Console program might
look like this:

Add2
This program adds two numbers.
Enter n1: 17
Enter n2: 25
The total is 42.

Figure 1-4. Useful methods in the ConsoleProgram class

Output methods
void print(any value)

Writes the value to the console with no terminating newline.
void println(any value)

Writes the value to the console followed by a newline.
void println()

Returns the cursor on the console to the beginning of the next line.
void showErrorMessage(String msg)

Displays an error message on the console, which appears in red.

Input methods
String readLine(String prompt)

Reads and returns a line of text from the console without the terminating newline.
int readInt(String prompt)

Reads and returns an int value from the console.
double readDouble(String prompt)

Reads and returns an double value from the console.

Additional methods
void setFont(Font font) or void setFont(String str)

Sets the overall font for the console, which may also be specified as a string.
void clear()

Clears the console screen.

ACM Java Task Force Tutorial – 8 –

Figure 1-5. Program to add two numbers entered on the console

/*
 * File: Add2Console.java
 * ----------------------
 * This program adds two numbers and prints their sum. Because
 * this version is a ConsoleProgram, the input and output appear
 * on the console.
 */

import acm.program.*;

public class Add2Console extends ConsoleProgram {

public void run() {
println("This program adds two numbers.");
int n1 = readInt("Enter n1: ");
int n2 = readInt("Enter n2: ");
int total = n1 + n2;
println("The total is " + total + ".");

}

}

Given that the ConsoleProgram class derives its inspiration from the classical
paradigm of text-based, synchronous interaction, using this model is generally quite
straightforward for those who learned programming in that domain. If you use the
Add2Console program as a template, you can easily write new versions of any of the
traditional programs from the days of Pascal and C when consoles represented the
primary style of interaction. Even though the underlying paradigm is familiar, there are
nonetheless a few important features of the ConsoleProgram class that are worth
highlighting:

• The ConsoleProgram class makes it possible for students to tell the difference
between user input, program output, and error messages. By default, user input is
shown in blue, and error messages appear in red. One of the principal advantages of
making these distinctions is that the pattern of user interaction is obvious when the
program is displayed on a classroom projection screen.

• The setFont method makes it possible to change the font used by the console. For
classroom projection, it is useful to specify a larger font size using a line something
like this:

setFont("Monospaced-bold-18");

• The ConsoleProgram class automatically installs a menu bar with standard File and
Edit menus. These menus include facilities for printing or saving the console log,
reading from an input script, and the standard cut/copy/paste operations.

Even though console-based interaction is comfortable for most teachers today, students
who have grown up with modern graphical applications tend to find this style of
interaction primitive and uninspiring. To avoid having them lose interest in computing
altogether, it is important to introduce graphics and interactivity early in an introductory
course. At the same time, the ConsoleProgram class has its place. Many instructors find
that it is easier to illustrate how simple programming constructs work in a console-based
environment because there aren’t as many complicating details to distract the student
from the essential character of the construct in question. Similarly, console-based

ACM Java Task Force Tutorial – 9 –

programs often provide a good framework for teaching problem-solving because students
must focus on finding solution strategies instead of implementing the many graphical
bells and whistles that can get in the way of fundamental ideas.

The DialogProgram class
The DialogProgram class is similar to ConsoleProgram except for one important detail.
Instead of forwarding its input and output methods to a console, a DialogProgram
implements those operations by popping up dialog boxes that deliver or request the same
information. The print and println methods pop up a message dialog that contains the
output line; the input methods like readInt and readLine pop up an input dialog that
requests the information from the user. This difference is illustrated by the Add2Dialog
program in Figure 1-6. Except for the fact that this version extends DialogProgram
instead of ConsoleProgram, the code is identical to the Add2Console program from
Figure 1-5. Running the Add2Dialog program produces a series of dialog boxes as
shown in Figure 1-7.

Figure 1-6. Program to add two numbers entered via popup dialogs

/*
 * File: Add2Dialog.java
 * ---------------------
 * This program adds two numbers and prints their sum. Because
 * this version is a DialogProgram, the input and output appear
 * as popup dialogs.
 */

import acm.program.*;

public class Add2Dialog extends DialogProgram {

public void run() {
println("This program adds two numbers.");
int n1 = readInt("Enter n1: ");
int n2 = readInt("Enter n2: ");
int total = n1 + n2;
println("The total is " + total + ".");

}

}

The DialogProgram class turns out to be valuable more for pedagogical than practical
reasons. The advantage of having both the ConsoleProgram and the DialogProgram
classes is that it emphasizes the nature of inheritance. The Add2Console program and the
add2Dialog program have exactly the same run method. The difference in behavior
comes from the fact that the two programs inherit operations from different Program
subclasses.

The similarity between the ConsoleProgram and DialogProgram classes underscores
an important principle of object-oriented design. The input and output operations for
these classes are specified by the IOModel interface in the acm.io package. This
IOModel interface defines a set of methods that includes—along with several others—the
methods print, println, readInt, readDouble, readLine, and showErrorMessage
described in Figure 1-4. Because the code for the Program class declares that it
implements IOModel, each of its subclasses will share that set of methods. Those
methods, or course, are implemented in different ways, but they invariably have the same
name and parameter structure.

ACM Java Task Force Tutorial – 10 –

Figure 1-7. Dialogs produced by the Add2Dialog program

OK

This program adds two integers.

Message

OK

Enter n1:

17

Input

OK

Enter n2:

25

Input

OK

The total is 42.

Message

The GraphicsProgram class
The GraphicsProgram class is by far the most interesting of the classes in the program
hierarchy. As the HelloGraphics program made clear, a GraphicsProgram can present
information on the screen in a way that holds at least a little more excitement than is
possible with a ConsoleProgram. That example, however, merely scratched the surface
of what is possible using the GraphicsProgram class. Because that class is far too
powerful to cover in a single subsection, learning how to use the facilities provided by
GraphicsProgram and the acm.graphics package on which it is based will take up the
next two chapters in this tutorial. To unlock the power of graphics, read on.

ACM Java Task Force Tutorial – 11 –

Chapter 2
Using the acm.graphics Package

The HelloGraphics example in Chapter 1 offers a simple example of how to write
graphical programs, but does not explain the details behind the methods it contains. The
purpose of this chapter is to give you a working knowledge of the facilities available in
the acm.graphics package and how to use them effectively.

The class structure of acm.graphics package appears in Figure 2-1. Most of the
classes in the package are subclasses of the abstract class GObject at the center of the
diagram. Conceptually, GObject represents the universal class of graphical objects that
can be displayed. When you use acm.graphics, you assemble a picture by constructing
various GObjects and adding them to a GCanvas at the appropriate locations. The
following section describes the general model in more detail and the later sections offer a
closer look at the individual classes in the package.

Figure 2-1. Class diagram for the acm.graphics package

tcejbOGdnuopmoCG

tceRdnuoRG

crAG egamIG

tceRD3G

lebaLG eniLG lavOG tceRG nogyloPG

eltruTG

nePG

tnioPG

reniatnoC.twa.avaj

savnaCG noisnemiDG elgnatceRGhtaMG

2.1 The acm.graphics model
When you create a picture using the acm.graphics package, you do so by arranging
graphical objects at various positions on a background called a canvas. The underlying
model is similar to that of a collage in which an artist creates a composition by taking
various objects and assembling them on a background canvas. In the world of the collage
artist, those objects might be geometrical shapes, words clipped from newspapers, lines
formed from bits of string, or images taken from magazines. In the acm.graphics
package, there are counterparts for each of these graphical objects.

ACM Java Task Force Tutorial – 12 –

The “felt board” metaphor
Another metaphor that often helps students understand the conceptual model of the
acm.graphics package is that of a felt board—the sort one might find in an elementary
school classroom. A child creates pictures by taking shapes of colored felt and sticking
them onto a large felt board that serves as the background canvas for the picture as a
whole. The pieces stay where the child puts them because felt fibers interlock tightly
enough for the pieces to stick together. The left side of Figure 2-2 shows a physical felt
board with a red rectangle and a green oval attached. The right side of the figure is the
virtual equivalent in the acm.graphics world. To create the picture, you would need to
create two graphical objects—a red rectangle and a green oval—and add them to the
graphical canvas that forms the background.

Figure 2-2. Physical felt board and its virtual equivalent

FeltBoard

The code for the FeltBoard example appears in Figure 2-3. Even though you have
not yet had a chance to learn the details of the various classes and methods used in the
program, the overall framework should nonetheless make sense. The program first
creates a rectangle, indicates that it should be filled rather than outlined, colors it red, and
adds it to the canvas. It then uses almost the same operations to add a green oval.
Because the oval is added after the rectangle, it appears to be in front, obscuring part of
the rectangle underneath. This behavior, of course, is exactly what would happen with
the physical felt board. Moreover, if you were to take the oval away by calling

remove(oval);

the parts of the underlying rectangle that had previously been obscured would reappear.

In this tutorial, the order in which objects are layered on the canvas will be called the
stacking order. (In more mathematical descriptions, this ordering is often called
z-ordering, because the z-axis is the one that projects outward from the screen.)
Whenever a new object is added to a canvas, it appears at the front of the stack.
Graphical objects are always drawn from back to front so that the frontmost objects
overwrite those that are further back.

The coordinate system
The acm.graphics package uses the same basic coordinate system that traditional Java
programs do. Coordinate values are expressed in terms of pixels, which are the
individual dots that cover the face of the screen. Each pixel in a graphics window is
identified by its x and y coordinates, with x values increasing as you move rightward
across the window and y values increasing as you move down from the top. The point
(0, 0)—which is called the origin—is in the upper left corner of the window. This

ACM Java Task Force Tutorial – 13 –

Figure 2-3. Code for the felt board example

/*
 * File: FeltBoard.java
 * --------------------
 * This program offers a simple example of the acm.graphics package
 * that draws a red rectangle and a green oval. The dimensions of
 * the rectangle are chosen so that its sides are in proportion to
 * the "golden ratio" thought by the Greeks to represent the most
 * aesthetically pleasing geometry.
 */

import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class FeltBoard extends GraphicsProgram {

/** Runs the program */
public void run() {

GRect rect = new GRect(100, 50, 100, 100 / PHI);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(150, 50 + 50 / PHI, 100, 100 / PHI);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);

}

/** Constant representing the golden ratio */
public static final double PHI = 1.618;

}

coordinate system is illustrated by the diagram in Figure 2-4, which shows only the red
rectangle from the FeltBoard.java program. The location of that rectangle is (100, 50),
which means that its upper left corner is 100 pixels to the right and 50 pixels down from
the origin of the graphics window.

Figure 2-4. The Java coordinate system

FeltBoard
(0, 0)

(100, 50)

increasing values of y

increasing values of x

ACM Java Task Force Tutorial – 14 –

The only difference between the coordinate systems used in the acm.graphics
package and Java’s Graphics class is that the acm.graphics package uses doubles to
represent coordinate values instead of ints. This change makes it easier to create figures
whose locations and dimensions are produced by mathematical calculations in which the
results are typically not whole numbers. As a simple example, the dimensions of the red
rectangle in Figure 2-4 are proportional to the golden ratio, which Greek mathematicians
believed gave rise to the most pleasing aesthetic effect. The golden ratio is
approximately equal to 1.618 and is usually denoted in mathematics by the symbol φ.
Because the acm.graphics package uses doubles to specify coordinates and dimensions,
the code to generate the rectangle looks like this:

new GRect(100, 50, 100, 100 / PHI)

In the integer-based Java model, it would be necessary to include explicit code to convert
the height parameter to an int. In addition to adding complexity to the code, forcing
students to convert coordinates to integers can introduce rounding errors that distort the
geometry of the displayed figures.

Judging from the experience of the instructors who tested the acm.graphics package
while it was in development, the change from ints to doubles causes no confusion but
instead represents an important conceptual simplification. The only aspect of Java’s
coordinate system that students find problematic is the fact that the origin is in a different
place from what they know from traditional Cartesian geometry. Fortunately, it doesn’t
take too long to become familiar with the Java model.

The GPoint, GDimension, and GRectangle classes
Although it is usually possible to specify individual values for coordinate values, it is
often convenient to encapsulate an x and a y coordinate as a point, a width and a height
value as a composite indication of the dimensions of an object, or all four values as the
bounding rectangle for a figure. Because the coordinates are stored as doubles in the
acm.graphics package, using Java’s integer-based Point, Dimension, and Rectangle
classes would entail a loss of precision. To avoid this problem the acm.graphics
package exports the classes GPoint, GDimension, and GRectangle, which have the same
semantics as their standard counterparts except for the fact that their coordinates are
doubles.

As an example, the declaration

GDimension goldenSize = new GDimension(100, 100 / PHI);

introduces the variable goldenSize and initializes it to a GDimension object whose
internal width and height fields are the dimensions of the golden rectangle illustrated in
the earlier example. The advantage of encapsulating these values into objects is that they
can then be passed from one method to another using a single variable.

The GMath class
Computing the coordinates of a graphical design can sometimes require the use of simple
trigonometric functions. Although functions like sin and cos are defined in Java’s
standard Math class, students find them confusing in graphical applications because of
inconsistencies in the way angles are represented. In Java’s graphics libraries, angles are
measured in degrees; in the Math class, angles must be given in radians. To minimize the
confusion associated with this inconsistency of representation, the acm.graphics
package includes a class called GMath, which exports the methods shown in Figure 2-5.
Most of these methods are simply degree-based versions of the standard trigonometric
functions, but the distance, angle, and round methods are also worth noting.

ACM Java Task Force Tutorial – 15 –

Figure 2-5. Static methods in the GMath class

Trigonometric methods in degrees
static double sinDegrees(double angle)

Returns the trigonometric sine of an angle measured in degrees.
static double cosDegrees(double angle)

Returns the trigonometric cosine of an angle measured in degrees.
static double tanDegrees(double angle)

Returns the trigonometric tangent of an angle measured in degrees.
static double toDegrees(double radians)

Converts an angle from radians to degrees.
static double toRadians(double degrees)

Converts an angle from degrees to radians.

Conversion methods for polar coordinates
double distance(double x, double y)

Returns the distance from the origin to the point (x, y).
double distance(double x0, double y0, double x1, double y1)

Returns the distance between the points (x0, y0) and (x1, y1).
double angle(double x, double y)

Returns the angle between the origin and the point (x, y), measured in degrees.

Convenience method for rounding to an integer
static int round(double x)

Rounds a double to the nearest int (rather than to a long as in the Math class).

2.2 The GCanvas class
In the acm.graphics model, pictures are created by adding graphical objects—each of
which is an instance of the GObject class hierarchy described in section 2.3—to a
background canvas. That background—the analogue of the felt board in the physical
world—is provided by the GCanvas class. The GCanvas class is a lightweight component
and can be added to any Java container in either the java.awt or javax.swing packages,
which makes it possible to use the graphics facilities in any Java application. For the
most part, however, students in introductory courses won’t use the GCanvas class directly
but will instead use the GraphicsProgram class, which automatically creates a GCanvas
and installs it in the program window, as illustrated in several preceding examples. The
GraphicsProgram class forwards operations such as add and remove to the embedded
GCanvas so that students don’t need to be aware of the underlying implementation
details.

The most important methods supported by the GCanvas class are shown in Figure 2-6.
Many of these methods are concerned with adding and removing graphical objects.
These methods are easy to understand, particularly if you keep in mind that a GCanvas is
conceptually a container for GObject values. The container metaphor explains the
functionality provided by the add, remove, and removeAll methods in Figure 2-6, which
are analogous to the identically named methods in JComponent and Container.

The add method comes in two forms, one that preserves the internal location of the
graphical object and one that takes an explicit x and y coordinate. Each method has its
uses, and it is convenient to have both available. The first is useful particularly when the
constructor for the GObject specifies the location, as it does, for example, in the case of
the GRect class. If you wanted to create a 100 x 60 rectangle at the point (75, 50), you
could do so by writing the following statement:

add(new GRect(75, 50, 100, 60));

ACM Java Task Force Tutorial – 16 –

Figure 2-6. Useful methods in the GCanvas class

Constructor
new GCanvas()

Creates a new GCanvas containing no graphical objects.

Methods to add and remove graphical objects from a canvas
void add(GObject gobj)

Adds a graphical object to the canvas at its internally stored location.
void add(GObject gobj, double x, double y) or add(GObject gobj, GPoint pt)

Adds a graphical object to the canvas at the specified location.
void remove(GObject gobj)

Removes the specified graphical object from the canvas.
void removeAll()

Removes all graphical objects and components from the canvas.

Method to find the graphical object at a particular location
GObject getElementAt(double x, double y) or getElementAt(GPoint pt)

Returns the topmost object containing the specified point, or null if no such object exists.

Useful methods inherited from superclasses
int getWidth()

Return the width of the canvas, in pixels.
int getHeight()

Return the height of the canvas, in pixels.
void setBackground(Color bg)

Changes the background color of the canvas.

The second form is particularly useful when you want to choose the coordinates of the
object in a way that depends on other properties of the object. For example, the
following code taken from the HelloGraphics example in Chapter 1 centers a GLabel
object in the window:

GLabel label = new GLabel("hello, world");
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;
add(label, x, y);

Because the placement of the label depends on its dimensions, it is necessary to create the
label first and then add it to a particular location on the canvas.

The GCanvas method getElement(x, y) returns the graphical object on the canvas
that includes the point (x, y). If there is more than one such object, getElement returns
the one that is in front of the others in the stacking order; if there is no object at that
position, getElement returns null. This method is useful, for example, if you need to
select an object using the mouse. Chapter 3 includes several examples of this technique.

Several of the most useful methods in the GCanvas class are those that are inherited
from its superclasses in Java’s component hierarchy. For example, if you need to
determine how big the graphical canvas is, you can call the methods getWidth and
getHeight. Thus, if you wanted to define a GPoint variable to mark the center of the
canvas, you could do so with the following declaration:

GPoint center = new GPoint(getWidth() / 2.0, getHeight() / 2.0);

You can also change the background color by calling setBackground(bg), where bg is
the new background color for the canvas.

ACM Java Task Force Tutorial – 17 –

2.3 The GObject class
The GObject class represents the universe of graphical objects that can be displayed on a
GCanvas. The GObject class itself is abstract, which means that programs never create
instances of the GObject class directly. Instead, programs create instances of one of the
GObject subclasses that represent specific graphical objects such as rectangles, ovals, and
lines. The most important such classes are the ones that appear at the bottom of the class
diagram from Figure 2-1, which are collectively called the shape classes. The shape
classes are described in detail in section 2.4. Before going into those details, however, it
makes sense to begin by describing the characteristics that are common to the GObject
class as a whole.

Methods common to all GObject subclasses
All GObjects—no matter what type of graphical object they represent—share a set of
common properties. For example, all graphical objects have a location, which is the x
and y coordinates at which that object is drawn. Similarly, all graphical objects have a
size, which is the width and height of the rectangle that includes the entire object. Other
properties common to all GObjects include their color and how the objects are arranged
in terms of their stacking order. Each of these properties is controlled by methods
defined at the GObject level. The most important such methods are summarized in
Figure 2-7.

Determining the location and size of a GObject
The first several methods in Figure 2-7 make it possible to determine the location and
size of any GObject. The getX, getY, getWidth, and getHeight methods return these
coordinate values individually, and the getLocation, getSize, and getBounds methods
return composite values that encapsulate that information in a single object, as described
in section 2.1.

Changing the location of a GObject
The next three methods in Figure 2-7 offer several techniques for changing the location of
a graphical object. The setLocation(x, y) method sets the location to an absolute
coordinate position on the screen. For example, in the FeltBoard example, executing the
statement

rect.setLocation(0, 0);

would move the rectangle to the origin in the upper left corner of the window.

The move(dx, dy) method, by contrast, makes it possible to move an object relative to
its current location. The effect of this call is to shift the location of the object by a
specified number of pixels along each coordinate axis. For example, the statement

oval.move(10, 0);

would move the oval 10 pixels to the right. The dx and dy values can be negative.
Calling

rect.move(0, -25);

would move the rectangle 25 pixels upward.

The movePolar(r, theta) method is useful in applications in which you need to
move a graphical object in a particular direction. The name of the method comes from
the concept of polar coordinates in mathematics, in which a displacement is defined by a

ACM Java Task Force Tutorial – 18 –

Figure 2-7. Useful methods common to all graphical objects

Methods to retrieve the location and size of a graphical object
double getX()

Returns the x-coordinate of the object.
double getY()

Returns the y-coordinate of the object.
double getWidth()

Returns the width of the object.
double getHeight()

Returns the height of the object.
GPoint getLocation()

Returns the location of this object as a GPoint.
GDimension getSize()

Returns the size of this object as a GDimension.
GRectangle getBounds()

Returns the bounding box of this object (the smallest rectangle that covers the figure).
Methods to change the object’s location

void setLocation(double x, double y) or setLocation(GPoint pt)
Sets the location of this object to the specified point.

void move(double dx, double dy)
Moves the object using the displacements dx and dy.

void movePolar(double r, double theta)
Moves the object r units in direction theta, measured in degrees.

Methods to set and retrieve the object’s color
void setColor(Color c)

Sets the color of the object.
Color getColor()

Returns the object color. If this value is null, the package uses the color of the container.
Methods to change the stacking order

void sendToFront() or sendToBack()
Moves this object to the front (or back) of the stacking order.

void sendForward() or sendBackward()
Moves this object forward (or backward) one position in the stacking order.

Method to determine whether an object contains a particular point
boolean contains(double x, double y) or contains(GPoint pt)

Checks to see whether a point is inside the object.

distance r and an angle theta. Just as it is in traditional geometry, the angle theta is
measured in degrees counterclockwise from the +x axis. Thus, the statement

rect.movePolar(10, 45);

would move the rectangle 10 pixels along a line in the 45˚ direction, which is northeast.

Setting the color of a GObject
The acm.graphics package does not define its own notion of color but instead relies on
the Color class in the standard java.awt package. The predefined colors are:

Color.BLACK
Color.DARK_GRAY
Color.GRAY
Color.LIGHT_GRAY
Color.WHITE

Color.RED
Color.YELLOW
Color.GREEN
Color.CYAN

Color.BLUE
Color.MAGENTA
Color.ORANGE
Color.PINK

It is also possible to create additional colors using the constructors in the Color class. In
either case, you need to include the import line

ACM Java Task Force Tutorial – 19 –

import java.awt.*;

at the beginning of your program.

The setColor method sets the color of the graphical object to the specified value; the
corresponding getColor method allows you to determine what color that object currently
is. This facility allows you to make a temporary change to the color of a graphical object
using code that looks something like this:

Color oldColor = gobj.getColor();
gobj.setColor(Color.RED);

. . . and then at some later time . . .

gobj.setColor(oldColor);

Controlling the stacking order
Figure 2-7 also lists a set of methods that make it possible to control the stacking order.
The sendToFront and sendToBack methods move the object to the front or back of the
stack, respectively. The sendForward and sendBackward methods move the object one
step forward or backward in the stack so that it jumps ahead of or behind the adjacent
object in the stack. Changing the stacking order also redraws the display to ensure that
underlying objects are correctly redrawn.

For example, if you add the statement

oval.sendBackward();

to the end of the FeltBoard program, the picture on the display would change as follows:

Checking for containment
In many applications—particularly those that involve interactivity of the sort that you
will see in Chapter 3—it is useful to be able to tell whether a graphical object contains a
particular point. This facility is provided by the contains(x, y) method, which returns
true if the point (x , y) is inside the figure. For example, given a standard Java
MouseEvent e, you can determine whether the mouse is inside the rectangle rect using
the following if statement:

if (rect.contains(e.getX(), e.getY()))

Even though every GObject subclass has a contains method, the precise definition of
what it means for a point to be “inside” the object differs depending on the class. In the
case of a GOval, for example, a point is considered to be inside the oval only if it is
mathematically contained within the elliptical shape that the GOval draws. Points that are
inside the bounding rectangle but outside of the oval are considered to be “outside.”
Thus, it is important to keep in mind that

gobj.contains(x, y)

and

gobj.getBounds().contains(x, y)

do not necessarily return the same answer.

ACM Java Task Force Tutorial – 20 –

The GFillable, GResizable, and GScalable interfaces
You have probably noticed that several of the examples you’ve already seen in this
tutorial include methods that do not appear in the list in Figure 2-7. For example, the
FeltBoard program includes calls to a setFilled method to mark the rectangle and oval
as filled rather than outlined. Looking at Figure 2-7, it appears that the GObject class
does not include a setFilled method, which is indeed the case.

As the caption for Figure 2-7 makes clear, the methods listed in that table are the ones
that are common to every GObject subclass. While it is always possible to set the
location of a graphical object, it is only possible to fill that object if the idea of “filling”
makes sense for that class. Filling is easily defined for geometrical shapes such as ovals,
rectangles, polygons, and arcs, but it is not clear what it might mean to fill a line, an
image, or a label. Since there are subclasses that cannot give a meaningful interpretation
to setFilled, that method is not defined at the GObject level but is instead implemented
only for those subclasses for which filling is defined.

At the same time, it is important to define the setFilled method so that it works the
same way for any class that implements it. If setFilled, for example, worked
differently in the GRect and GOval classes, trying to keep track of the different styles
would inevitably cause confusion. To ensure that the model for filled shapes remains
consistent, the methods that support filling are defined in an interface called GFillable,
which specifies the behavior of any fillable object. In addition to the setFilled method
that you have already seen, the GFillable interface defines an isFilled method that
tests whether the object is filled, a setFillColor method to set the color of the interior
of the object, and a getFillColor method that retrieves the interior fill color. The
setFillColor method makes it possible to set the color of an object’s interior
independently from the color of its border. For example, if you changed the code from
the FeltBoard example so that the statements generating the rectangle were

GRect rect = new GRect(100, 50, 100, 100 / PHI);
rect.setFilled(true);
rect.setColor(Color.RED);
r.setFillColor(Color.MAGENTA);

you would see a rectangle whose border was red and whose interior was magenta.

In addition to the GFillable interface, the acm.graphics package includes two
interfaces that make it possible to change the size of an object. Classes in which the
dimensions are defined by a bounding rectangle—GRect, GOval, and GImage—
implement the GResizable interface, which allows you to change the size of a resizable
object gobj by calling

gobj.setSize(newWidth, newHeight);

A much larger set of classes implements the GScalable interface, which makes it
possible to change the size of an object by multiplying its width and height by a scaling
factor. In the common case in which you want to scale an object equally in both
dimensions, you can call

gobj.scale(sf);

which multiplies the width and height by sf. For example, you could double the size of a
scalable object by calling

gobj.scale(2);

ACM Java Task Force Tutorial – 21 –

The scale method has a two-argument form that allows you to scale a figure
independently in the x and y directions. The statement

gobj.scale(1.0, 0.5);

leaves the width of the object unchanged but halves its height.

The methods specified by the GFillable, GResizable, and GScalable interfaces are
summarized in Figure 2-8.

2.4 Descriptions of the individual shape classes
So far, this tutorial has looked only at methods that apply to all GObjects, along with a
few interfaces that define methods shared by some subset of the GObject hierarchy. The
most important classes in that hierarchy are the shape classes that appear at the bottom of
Figure 2-1. The sections that follow provide additional background on each of the shape
classes and include several simple examples that illustrate their use.

As you go through the descriptions of the individual shape classes, you are likely to
conclude that some of them are designed in ways that are less than ideal for introductory
students. In the abstract, this conclusion is almost certainly correct. For practical reasons
that look beyond the introductory course, the Java Task Force decided to implement the
shape classes so that they match their counterparts in Java’s standard Graphics class. In
particular, the set of shape classes corresponds precisely to the facilities that the
Graphics class offers for drawing geometrical shapes, text strings, and images.
Moreover, the constructors for each class take the same parameters and have the same
semantics as the corresponding method in the Graphics class. Thus, the GArc
constructor—which is arguably the most counterintuitive in many ways—has the
structure it does, not because we thought that structure was perfect, but because that is the
structure used by the drawArc method in the Graphics class. By keeping the semantics

Figure 2-8. Methods defined by interfaces

GFillable (implemented by GArc, GOval, GPen, GPolygon, and GRect)
void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false means outlined).
boolean isFilled()

Returns true if the object is filled.
void setFillColor(Color c)

Sets the color used to fill this object. If the color is null, filling uses the color of the object.
Color getFillColor()

Returns the color used to fill this object.

GResizable (implemented by GImage, GOval, and GRect)
void setSize(double width, double height)

Changes the size of this object to the specified width and height.
void setSize(GDimension size)

Changes the size of this object as specified by the GDimension parameter.
void setBounds(double x, double y, double width, double height)

Changes the bounds of this object as specified by the individual parameters.
void setBounds(GRectangle bounds)

Changes the bounds of this object as specified by the GRectangle parameter.

GScalable (implemented by GArc, GCompound, GImage, GLine, GOval, GPolygon, and GRect)
void scale(double sf)

Resizes the object by applying the scale factor in each dimension, leaving the location fixed.
void scale(double sx, double sy)

Scales the object independently in the x and y dimensions by the specified scale factors.

ACM Java Task Force Tutorial – 22 –

consistent with its Java counterpart, the acm.graphics package makes it easier for
students to move on to the standard packages as they learn more about programming.

The GRect class and its subclasses
The simplest and most intuitive of the shape classes is the GRect class, which represents a
rectangular box. This class implements the GFillable, GResizable, and GScalable
interfaces, but otherwise includes no other methods except its constructor, which comes
in two forms. The most common form of the constructor is

new GRect(x, y, width, height)

which defines both the location and size of the GRect. The second form of the
constructor is

new GRect(width, height)

which defines a rectangle of the specified size whose upper left corner is at the origin. If
you use this second form, you will typically add the GRect to the canvas at a specific
(x, y) location as discussed in section 2.2.

You have already seen one example of the use of the GRect class in the simple
FeltBoard example. A more substantive example is the Checkerboard program in
Figure 2-9, which draws a checkerboard that looks like this:

Checkerboard

As you can see from the diagram of the graphics class hierarchy in Figure 2-1, the
GRect class has two subclasses—GRoundRect and G3DRect—that define shapes that are
essentially rectangles but differ slightly in the way they are drawn on the screen. The
GRoundRect class has rounded corners, and the G3DRect class has beveled edges that can
be shadowed to make it appear raised or lowered. These classes extend GRect to change
their visual appearance and to export additional method definitions that make it possible
to adjust the properties of one of these objects. For GRoundRect, these properties specify
the corner curvature; for G3DRect, the additional methods allow the client to indicate
whether the rectangle should appear raised or lowered. Neither of these classes are used
much in practice, but they are included in acm.graphics to ensure that it can support the
full functionality of Java’s Graphics class, which includes analogues for both.

The GOval class
The GOval class represents an elliptical shape and is defined so that the parameters of its
constructor match the arguments to the drawOval method in the standard Java Graphics
class. This design is easy to understand as long as you keep in mind the fact that Java

ACM Java Task Force Tutorial – 23 –

Figure 2-9. Code for the checkerboard example

/*
 * File: Checkerboard.java
 * -----------------------
 * This program draws a checkerboard. The dimensions of the
 * checkerboard is specified by the constants NROWS and
 * NCOLUMNS, and the size of the squares is chosen so
 * that the checkerboard fills the available vertical space.
 */

import acm.program.*;
import acm.graphics.*;

public class Checkerboard extends GraphicsProgram {

/** Runs the program */
public void run() {

double sqSize = (double) getHeight() / NROWS;
for (int i = 0; i < NROWS; i++) {

for (int j = 0; j < NCOLUMNS; j++) {
double x = j * sqSize;
double y = i * sqSize;
GRect sq = new GRect(x, y, sqSize, sqSize);
sq.setFilled((i + j) % 2 != 0);
add(sq);

}
}

}

/* Private constants */
private static final int NROWS = 8; /* Number of rows */
private static final int NCOLUMNS = 8; /* Number of columns */

}

defines the dimensions of an oval by specifying the rectangle that bounds it. Like GRect,
the GOval class implements the GFillable, GResizable, and GScalable interfaces but
otherwise includes no methods that are specific to the class.

The GLine class
The GLine class is used to display a straight line on the display. The standard GLine
constructor takes the x and y coordinates of each end point. For example, to draw a line
that extends diagonally from the origin of the canvas in the upper left to the opposite
corner in the lower right, you could use the following code:

GLine diagonal = new GLine(0, 0, getWidth(), getHeight());
add(diagonal);

On the whole, the GLine class makes intuitive sense. There are, however, a few points
that are worth remembering:

• Calling setLocation(x, y) or move(dx, dy) on a GLine object moves the line
without changing its length or orientation. If you need to move one of the endpoints
without affecting the other, you can do so by calling the methods
setStartPoint(x, y) or setEndPoint(x, y).

• The GLine class implements GScalable—which expands or contracts the line relative
to its starting point—but not GFillable or GResizable.

ACM Java Task Force Tutorial – 24 –

• From a mathematical perspective, a line has no thickness and therefore does not
actually any points. In practice, however, it is useful to define any point that is no
more than a pixel away from the line segment as being part of the line. This definition
makes it possible, for example, to select a line segment using the mouse by looking for
points that are “close enough” to the line to be considered as being part of it.

• As with any other GObject, applying the getWidth method to a GLine returns its
horizontal extent on the canvas. There is no way in acm.graphics to change the
thickness of a line, which is always one pixel.

Even though the GLine class is conceptually simple, you can nonetheless create
wonderfully compelling pictures with it. Figure 2-10, for example, shows a drawing
made up entirely of GLine objects. The program to create this figure—which simulates
the process of stringing colored yarn through a series of equally spaced pegs around the
border—appears in Figure 2-11.

The GArc class
The GArc class—which is used to display elliptical arcs on the canvas—has proven to be
somewhat more confusing to novices than the other shape classes in the acm.graphics
package. As noted in the introduction to section 2.4, the Java Task Force chose to
implement the GArc class so that its operation was consistent with the drawArc and
fillArc methods in the standard Graphics class. This strategy has the advantage of
making it easier for students to make the eventual transition to the standard tools at a cost
of exposing some of Java’s complexity earlier.

The GArc constructor takes six parameters: x, y, width, height, start, and sweep.
The first four define a bounding rectangle exactly as they do for the GOval class. The
start and sweep parameters—each of which is measured in degrees counterclockwise
from the +x axis just as angles are in traditional geometry—indicate the angle at which
the arc begins and how far it extends, respectively.

Figure 2-10. Pattern created by looping yarn around pegs spaced equally along the border

YarnPattern

ACM Java Task Force Tutorial – 25 –

Figure 2-11. Code to generate the yarn pattern in Figure 2-10

/*
 * File: YarnPattern.java
 * ----------------------
 * This program illustrates the use of the GLine class to simulate
 * winding a piece of colored yarn around a set of pegs equally
 * spaced along the edges of the canvas. At each step, the yarn is
 * stretched from its current peg to the one DELTA pegs further on.
 */

import acm.graphics.*;
import acm.program.*;
import java.awt.*;
import java.util.*;

public class YarnPattern extends GraphicsProgram {

/** Runs the program */
public void run() {

ArrayList pegs = createPegList();
int thisPeg = 0;
int nextPeg = -1;
while (thisPeg != 0 || nextPeg == -1) {

nextPeg = (thisPeg + DELTA) % pegs.size();
GPoint p0 = (GPoint) pegs.get(thisPeg);
GPoint p1 = (GPoint) pegs.get(nextPeg);
GLine line = new GLine(p0.getX(), p0.getY(),
 p1.getX(), p1.getY());
line.setColor(Color.MAGENTA);
add(line);
thisPeg = nextPeg;

}
}

/* Create an array list containing the locations of the pegs */
private ArrayList createPegList() {

ArrayList pegs = new ArrayList();
for (int i = 0; i < N_ACROSS; i++) {

pegs.add(new GPoint(i * PEG_SEP, 0));
}
for (int i = 0; i < N_DOWN; i++) {

pegs.add(new GPoint(N_ACROSS * PEG_SEP, i * PEG_SEP));
}
for (int i = N_ACROSS; i > 0; i--) {

pegs.add(new GPoint(i * PEG_SEP, N_DOWN * PEG_SEP));
}
for (int i = N_DOWN; i > 0; i--) {

pegs.add(new GPoint(0, i * PEG_SEP));
}
return pegs;

}

/* Private constants */
private static final int N_ACROSS = 50;
private static final int N_DOWN = 30;
private static final int PEG_SEP = 10;
private static final int DELTA = 67;

}

ACM Java Task Force Tutorial – 26 –

To get a sense of how these parameters work, it is easiest to look at a simple example,
such as the following:

double size = 200;
double x = (getWidth() - size) / 2;
double y = (getHeight() - size) / 2;
GArc arc = new GArc(x, y, size, size, 45, 270);
add(arc);

The first three lines define the size of the bounding rectangle and calculate the x and y
coordinates at its upper left corner. The constructor call itself then includes the
dimensions of that rectangle along with a start parameter of 45 and a sweep parameter
of 270. Together, these parameters define an arc that begins at 45˚ and then extends
through 270˚ in the counterclockwise direction. The interpretation of these parameters is
illustrated on the left side of Figure 2-12.

Figure 2-12. The geometry of the GArc class

(x, y)

start
sweep

width

h
e
i
g
h
t

UnfilledArc

FilledArc

The two sample runs at the right of Figure 2-12 show how the arc appears on the
canvas. The code example from the preceding paragraph creates an unfilled arc as shown
in the upper diagram. The lower diagram shows what happens if you were to call

arc.setFilled(true);

In Java, a filled arc is drawn by connecting the endpoints of the arc to the center of the
circle and the filling the interior. The result is a wedge shape of the sort you would find
in a pie chart (or, as shown in the diagram, a Pac-Man game).

Java’s interpretation of what it means to fill an arc can cause confusion because the
unfilled arc does not include the complete outline of its filled counterpart. You can create
the outline of the wedge by filling the GArc and then setting its fill color to match the
background. Thus, if you were to add the line

arc.setFillColor(Color.WHITE);

ACM Java Task Force Tutorial – 27 –

you would see a figure like this:

OutlineArc

Java’s interpretation of filling also has implications for the semantics of the contains
method. For an unfilled arc, containment implies that the arc point is actually on the arc,
subject to the same interpretation of “closeness” as described for lines in the preceding
section. For a filled arc, containment implies inclusion in the wedge. This definition of
containment is necessary to ensure that mouse events are transmitted to the arc in a way
that matches the user’s intuition.

If the width and height parameters in the GArc constructor are different, the arc will
be elliptical rather than circular. When this occurs, the arc segment is taken from the oval
inscribed in the bounding rectangle, just as you would expect. The confusing thing is that
the angles are always interpreted as if the arc were scaled to be circular. For example, if
you were to increase the window size and then call

arc.scale(5, 1);

you would get the following elongated arc, which is five times as wide as it is high:

StretchedArc

In this figure, the start and sweep angles are still defined to be 45˚ and 270˚, even
though the missing wedge at the right is now clearly smaller than the 90˚ angle that
appears in the unscaled figure.

Figure 2-13 offers a more substantive example of the use of arcs by generating the
background curve for the Taoist yin-yang symbol:

YinYang

ACM Java Task Force Tutorial – 28 –

Figure 2-13. Code to create a yin-yang figure using arcs

/*
 * File: YinYang.java
 * ------------------
 * This program draws the Taoist yin-yang symbol at the center of
 * the graphics window. The height and width of the entire figure
 * are both specified by the constant FIGURE_SIZE.
 */

import acm.graphics.*;
import acm.program.*;
import java.awt.*;

public class YinYang extends GraphicsProgram {

/** Runs the program */
public void run() {

double x = getWidth() / 2;
double y = getHeight() / 2;
double r = FIGURE_SIZE / 2;
GArc bigBlack = new GArc(x - r, y - r, 2 * r, 2 * r, -90, 180);
bigBlack.setFilled(true);
add(bigBlack);
GArc smallWhite = new GArc(x - r / 2, y - r, r, r, -90, 180);
smallWhite.setFilled(true);
smallWhite.setColor(Color.WHITE);
add(smallWhite);
GArc smallBlack = new GArc(x - r / 2, y, r, r, 90, 180);
smallBlack.setFilled(true);
add(smallBlack);
GArc outerCircle = new GArc(x - r, y - r, 2 * r, 2 * r, 0, 360);
add(outerCircle);

}

/* Private constants */
private static final double FIGURE_SIZE = 150;

}

The GLabel class
The GLabel class is used to display text strings on the canvas. The GLabel class is
different from the other shape classes because the operations one wants to perform on
strings are different from those that are appropriate for geometrical figures. As a result,
the GLabel class implements none of the standard GFillable, GResizable, and
GScalable interfaces but instead has its own collection of methods, as shown in Figure
2-14. Despite the many differences, however, it is useful to include GLabel in the
graphic hierarchy so that it is possible to mix geometric figures and text on the canvas.

Despite its lack of symmetry with the other shape classes, the GLabel class is easy to
understand once you figure out the terminology used to define its geometry. The most
important thing to realize is that the position of a GLabel is not defined by the upper left
corner, but by the starting point of the baseline, which is the imaginary line on which the
characters sit. The origin and baseline properties of the GLabel class are illustrated in the
following diagram:

The quick brown fox jumped over the lazy dog baseline

origin

ACM Java Task Force Tutorial – 29 –

Figure 2-14. Useful methods in the GLabel class

Constructors
new GLabel(String str, double x, double y)

Creates a new GLabel containing str whose baseline begins at the point (x, y).
new GLabel(String str)

Creates a new GLabel containing str whose baseline begins at the point (0, 0).

Methods to set and retrieve the text string
void setLabel(String str)

Changes the string displayed by the label to str. The size generally changes as a result.
String getLabel()

Returns the string stored inside the label.

Methods to change and query the font used for the display
void setFont(Font f) or setFont(String description)

Sets the font using a Java Font object or a string in the form "Family-style-size".
Font getFont()

Returns the current font.
double getAscent()

Returns the maximum distance characters in the current font ascend above the baseline.
double getDescent()

Returns the maximum distance characters in the current font descend below the baseline.

Given that the GLabel class does not implement either the GResizable or the
GScalable interface, the only way to change the size of a GLabel is to change its font.
The setFont method takes a standard Java Font object, but is overloaded so that it can
also accept a string describing the font. That string is interpreted in the manner specified
by Font.decode and consists of three parts—the font family, the style, and the point
size—separated by hyphens. Thus, to set the font of a variable named title to be an 18-
point, boldface, sans-serif font, you can simply write

label.setFont("SansSerif-bold-18");

When given a string as its argument, the setFont method interprets an asterisk in any of
these positions as signifying the previous value. Thus, you can set the style of a label to
italic without changing its family or size by writing

label.setFont("*-italic-*");

Several of the methods in Figure 2-14 are included to assist in the process of
positioning the GLabel. The most important methods for controlling the position,
however, are not specific to the GLabel class but are simply the getWidth and
getHeight methods inherited from GObject. As they do for all graphical objects, these
methods return the dimensions of the rectangle that bounds the figure. The getWidth
method returns the horizontal extent of the label and will change if you change either the
font or the internal string. The getHeight method returns the height of a single line of
text in the current font, which is defined to be the distance between the baselines of
successive lines. The getAscent and getDescent methods return the maximum distance
the current font extends above and below the baseline, respectively.

Now that you know about these methods, you are finally in a position to understand
the details of how the code in the HelloGraphics example from Chapter 1 centers the
label on the canvas. The relevant lines look like this:

GLabel label = new GLabel("hello, world");
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;
add(label, x, y);

ACM Java Task Force Tutorial – 30 –

The calculation of the x coordinate moves rightward half the width of the canvas as a
whole, but subtracts away half the width of the GLabel to reach its origin point. The
calculation of the y coordinate is similar, but this time the offset is half the distance the
font extends above the baseline, which is given by getAscent. The plus sign in the
calculation of the y coordinate value may initially seem confusing, but the confusion
disappears when you remember that y values increase as you move down the screen.

If you work with a lot of text on the canvas, you will probably discover at some point
that the strategy of using getAscent to center a GLabel vertically doesn’t quite work.
Most labels that you display on the canvas will appear to be a few pixels too low. The
reason for this behavior is that getAscent returns the maximum ascent of the font and not
the distance the text of this particular label happens to rise above the baseline. For most
fonts, the parentheses and diacritical marks extend above the tops of the uppercase letters
and therefore make the font ascent larger than it seems to be in practice. If you are a
stickler for aesthetics, you may need to adjust the vertical centering by a pixel or two to
have things look precisely right.

The GImage class
The GImage class is used to display an image on the canvas. That image must be
presented in one of the standard formats for image data, of which the most common are
the GIF (Graphics Interchange Format) and JPEG (Joint Photographic Experts Group)
formats. To create an image, you will need to use an image processing tool (such as
Adobe Photoshop™) or download the image from the web. Unless they are specifically
marked as being in public domain, images you find on the web are usually subject to
copyright protection, which means that you must ensure that any use you make of those
images fits under the standard “fair use” guidelines.

Once you have created the image file, you need to put it in a place where your Java
application can find it. The standard GImage constructor takes the name of the image and
then looks for the image data in the following places:

1. Inside the JAR file for the application, looking first for an image resource in the top-
level package and then for one in a package named images.

2. Inside the directory that contains the application, looking for an image file with the
appropriate name.

3. Inside a subdirectory called images of the application directory.

If the image is found in any of those places, it is loaded automatically to create a Java
Image object. If none of these places contains the image, the GImage constructor
generates a runtime error. A more extensive discussion of the search strategy for images
appears in the documentation for the MediaTools class in the acm.util package.

To offer a simple example, suppose that you wanted to display the logo for the Java
Task Force in the center of a GraphicsProgram canvas. The first step would be to
download the JTFLogo.gif file from our web site and store it on your own machine,
either in the directory that contains the program or in a images subdirectory. You can
then create the image and add it to the window like this:

GImage logo = new GImage("JTFLogo.gif");
double x = (getWidth() - logo.getWidth()) / 2;
double y = (getHeight() - logo.getHeight()) / 2;
add(logo, x, y);

This code generates the following display:

ACM Java Task Force Tutorial – 31 –

JTFLogo

The GImage class implements both the GResizable and GScalable interfaces, but not
GFillable. Scaling and resizing of images is performed automatically by Java’s image-
handling libraries. For example, you could stretch and recenter the logo by issuing the
commands

logo.move(-logo.getWidth() / 2, 0);
logo.scale(2, 1);

which would change the display to

StretchedLogo

The GPolygon class
The shape that represents the greatest deviation from the traditional Java model is the
GPolygon class, which is used to draw closed polygonal shapes. Unlike the other shape
classes, the constructor for the GPolygon does not create a fully formed object but instead
creates a polygon with no vertices. Starting with that empty polygon, you can then add
additional vertices using any of three different methods—addVertex, addEdge, and
addPolarEdge—that are defined as part of the GPolygon class.

These methods are easiest to illustrate by example. Before doing so, however, it is
important to note that the coordinates of each vertex are not expressed in the global
coordinate space of the canvas but are instead defined in relation to a point chosen to
represent the origin of the polygon. The origin need not be one of the vertices and is
typically chosen to be the center, particularly for regular polygonal shapes. Setting the
location of a GPolygon corresponds to specifying the location of its origin, and the
polygon is then drawn relative to that point. The advantage of this strategy is that moving
a polygon requires changing the coordinates of just one point and does not require
adjusting the coordinates of each vertex.

The simplest method to explain is addVertex(x, y), which adds a vertex at the point
(x, y) relative to the location of the polygon. Suppose, for example, that you wanted to
draw a diamond shape, 80 pixels high and 60 pixels wide, that looks like this:

ACM Java Task Force Tutorial – 32 –

Diamond

You can define the diamond GPolygon relative to its center using the following code:

GPolygon diamond = new GPolygon();
diamond.addVertex(-30, 0);
diamond.addVertex(0, 40);
diamond.addVertex(30, 0);
diamond.addVertex(0, -40);

If you then wanted to position the diamond in the center of the window as it appears in
the example, you could add it to the canvas with the line

add(diamond, getWidth() / 2, getHeight() / 2);

The diamond is then drawn so that its center is at the center of the canvas a whole. Each
of the vertices is expressed relative to that point.

The addEdge(dx, dy) method is similar to addVertex, except that the parameters
specify the displacement from the previous vertex to the current one. You could
therefore create the same diamond by making the following sequence of calls:

GPolygon diamond = new GPolygon();
diamond.addVertex(-30, 0);
diamond.addEdge(30, 40);
diamond.addEdge(30, -40);
diamond.addEdge(-30, -40);
diamond.addEdge(-30, 40);

Note that the first vertex must still be added using addVertex, but that subsequent ones
can be defined by specifying the edge displacements. Moreover, the final edge is not
explicitly necessary because the polygon is automatically closed before it is drawn.

Some polygons are easier to define by specifying vertices; others are more easily
represented by edges. For many polygonal figures, however, it is even more convenient
to express edges in terms of polar coordinates. This mode of specification is supported in
the GPolygon class by the method addPolarEdge(r, theta), which is identical to
addEdge(dx, dy) except that its arguments are the length of the edge (r) and its
direction (theta) expressed in degrees counterclockwise from the +x axis. This method
makes it easy to create figures such as the hexagon

Hexagon

which can be generated using the following method, where side indicates the length of
each edge:

ACM Java Task Force Tutorial – 33 –

private GPolygon createHexagon(double side) {
GPolygon hex = new GPolygon();
hex.addVertex(-side, 0);
for (int i = 0; i < 6; i++) {

hex.addPolarEdge(side, 60 - i * 60);
}
return hex;

}

The GPolygon class implements the GFillable and GScalable interfaces, but not
GResizable. It also supports the method rotate(theta), which rotates the polygon
theta degrees counterclockwise around its origin.

The GPolygon class is also useful as a base for new shape classes whose outlines are
polygonal regions. This strategy is illustrated by the GStar class in Figure 2-15, which

Figure 2-15. Class definition for a five-pointed star

/*
 * File: GStar.java
 * ----------------
 * This file illustrates the strategy of subclassing GPolygon by
 * creating a new GObject class depicting a five-pointed star.
 */

import acm.graphics.*;

/**
 * Defines a new GObject class that appears as a five-pointed star.
 */

public class GStar extends GPolygon {

/**
 * Creates a new GStar centered at the origin that fits inside
 * a square of the specified size.
 */

public GStar(double size) {
double sinTheta = GMath.sinDegrees(18);
double b = 0.5 * sinTheta / (1.0 + sinTheta);
double edge = (0.5 - b) * size;
addVertex(-size / 2, -b * size);
int angle = 0;
for (int i = 0; i < 5; i++) {

addPolarEdge(edge, angle);
addPolarEdge(edge, angle + 72);
angle -= 72;

}
markAsComplete();

}

/**
 * Creates a new GStar centered at the point (x, y) that fits inside
 * a square of the specified size.
 */

public GStar(double x, double y, double size) {
this(size);
setLocation(x, y);

}
}

ACM Java Task Force Tutorial – 34 –

draws the following five-pointed star:

GStar

The only complicated part of the GStar definition is the geometry required to compute
the coordinates of the starting point of the figure.

The constructor for the GStar class ends with a call to the protected GPolygon method
markAsComplete, which prohibits clients from adding more vertices to the polygon. This
call protects the integrity of the class and makes it impossible for clients to change the
shape of a GStar object into something else.

2.5 The GCompound class
The shape classes described in Section 2.4 are the basic building blocks that allow you to
build more complicated structures. In a sense, these classes represent the “atoms” of the
acm.graphics world. Particular as diagrams become more complex, it is useful to
assemble several atomic shapes into a “molecule” that you can then manipulate as a unit.
In the acm.graphics package, this facility is provided by the GCompound class.

The methods defined in GCompound are in some sense the union of those available to
the GObject and GCanvas classes. As a GObject, a GCompound responds to method calls
like setLocation and move; as an implementer (like GCanvas) of the GContainer
interface, it supports methods like add and remove. A summary of the important
methods available for GCompound appears in Figure 2-16.

A simple example of GCompound
To get a sense of how the GCompound class works, it is easiest to start with a simple
example. Imagine that you wanted to assemble the following face on the canvas:

GFace

ACM Java Task Force Tutorial – 35 –

Figure 2-16. Important methods in the GCompound class (beyond those from GObject)

Constructor
GCompound()

Creates a new GCompound that contains no objects.

Methods to add and remove graphical objects from a compound
void add(GObject gobj)

Adds a graphical object to the compound.
void add(GObject gobj, double x, double y) or add(GObject gobj, GPoint pt)

Adds a graphical object to the compound at the specified location.
void remove(GObject gobj)

Removes the specified graphical object from the compound.
void removeAll()

Removes all graphical objects and components from the compound.

Methods to determine the contents of the compound
Iterator iterator()

Returns an iterator that runs through the graphical objects from back to front.
GObject getElementAt(double x, double y) or getElementAt(GPoint pt)

Returns the topmost object containing the specified point, or null if no such object exists.

Miscellaneous methods
void markAsComplete()

Marks this compound as complete to prohibit any further changes to its contents.
GPoint getLocalPoint(double x, double y) or getLocalPoint(GPoint pt)

Returns the point in the local coordinate space corresponding to pt in the canvas.
GPoint getCanvasPoint(double x, double y) or getCanvasPoint(GPoint pt)

Returns the point on the canvas corresponding to pt in the local coordinate space.

For the most part, this figure is easy to create. All you need to do is create a new GOval
for the head, two GOvals for the eyes, a GRect for the mouth, and a GPolygon for the
nose. If you put each of these objects on the canvas individually, however, it will be hard
to manipulate the face as a unit. Suppose, for example, that you wanted to move the
entire face to some new position on the screen. As things stand, doing so would require
moving the various graphical objects independently. It would be better simply to tell the
entire face to move.

The code in Figure 2-17 uses GCompound to define a GFace class that contains the
necessary components. These components are created and then added in the appropriate
places as part of the GFace constructor. Once you have defined this class, you can then
construct a new GFace object and add it to the center of the canvas using the following
code:

GFace face = new GFace(100, 150);
add(face, getWidth() / 2, getHeight() / 2);

The GCompound coordinate system
The general paradigm for using GCompound is to create an empty instance of the class and
then to add other graphical objects to it. The coordinates at which these objects appear
are expressed relative to the reference point of the GCompound itself, and not to the canvas
in which the compound will eventually appear. This strategy means that you can add a
compound object to a canvas and the move all its elements as a unit simply by setting the
location of the compound. Thus, once you had created the GFace object described in the
preceding section, you could move the entire face 20 pixels to the right by executing the
following method:

face.move(20, 0);

ACM Java Task Force Tutorial – 36 –

Figure 2-17. Program to create a GFace class by extending GCompound

/*
 * File: GFace.java
 * ----------------
 * This file defines a compound GFace class.
 */

import acm.graphics.*;

/**
 * This code defines a new class called GFace, which is a compound
 * object consisting of an outline, two eyes, a nose, and a mouth.
 * The origin point for the face is the center of the figure.
 */
public class GFace extends GCompound {

/** Construct a new GFace object with the specified dimensions */
public GFace(double width, double height) {

head = new GOval(width, height);
leftEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
rightEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
nose = createNose(NOSE_WIDTH * width, NOSE_HEIGHT * height);
mouth = new GRect(MOUTH_WIDTH * width, MOUTH_HEIGHT * height);
add(head, -width / 2, -height / 2);
add(leftEye, -0.25 * width - EYE_WIDTH * width / 2,
 -0.25 * height - EYE_HEIGHT * height / 2);
add(rightEye, 0.25 * width - EYE_WIDTH * width / 2,
 -0.25 * height - EYE_HEIGHT * height / 2);
add(nose, 0, 0);
add(mouth, -MOUTH_WIDTH * width / 2,
 0.25 * height - MOUTH_HEIGHT * height / 2);

}

/* Creates a triangle for the nose */
private GPolygon createNose(double width, double height) {

GPolygon poly = new GPolygon();
poly.addVertex(0, -height / 2);
poly.addVertex(width / 2, height / 2);
poly.addVertex(-width / 2, height / 2);
return poly;

}

/* Constants specifying feature size as a fraction of the head size */
private static final double EYE_WIDTH = 0.15;
private static final double EYE_HEIGHT = 0.15;
private static final double NOSE_WIDTH = 0.15;
private static final double NOSE_HEIGHT = 0.10;
private static final double MOUTH_WIDTH = 0.50;
private static final double MOUTH_HEIGHT = 0.03;

/* Private instance variables */
private GOval head;
private GOval leftEye, rightEye;
private GPolygon nose;
private GRect mouth;

}

ACM Java Task Force Tutorial – 37 –

In some cases—most notably when you need to translate the coordinates of a mouse
click, which are expressed in the global coordinate space of the canvas—it is useful to be
able to convert coordinates from the local coordinate space provided by the GCompound to
the coordinate space of the enclosing canvas, and vice versa. These conversions are
implemented by the methods getCanvasPoint and getLocalPoint, as described in
Figure 2-16.

Recentering objects using GCompound
The fact that the GCompound class maintains its own coordinate system has an additional
advantage that may not immediately spring to mind: it allows you to change the reference
point for a single graphical object, usually to make the interpretation of that reference
point more closely correspond to the way that object might behave in the real world. As
an example, consider how you might represent a bouncing ball on the canvas. The
obvious solution is to use a GOval with equal width and height so that it appears as a
circle. The only problem with that strategy is that the reference point of a GOval is in the
upper left corner. If you want to perform any physical calculations involving the ball, it
would be far better if the location of the ball were defined to be its center.

Figure 2-18. Using GCompound to create a ball defined by its center

/*
 * File: GBall.java
 * ----------------
 * This file defines a GObject class that represents a ball.
 */

import acm.graphics.*;

/**
 * This class defines a GObject subclass that represents a ball
 * whose reference point is the center rather than the upper
 * left corner.
 */
public class GBall extends GCompound {

/** Creates a new ball with radius r centered at the origin */
public GBall(double r) {

GOval ball = new GOval(2 * r, 2 * r);
ball.setFilled(true);
add(ball, -r, -r);
markAsComplete();

}

/** Creates a new ball with radius r centered at (x, y) */
public GBall(double r, double x, double y) {

this(r);
setLocation(x, y);

}

}

The simplest way to accomplish this shift in the reference point from the corner to the
center is to use the GCompound class. If you add a GOval with radius r so that its location
in the coordinate system of the compound is at (–r, –r), then the GCompound will display
itself on the canvas as a circle centered at the location of the GCompound object. The code
in Figure 2-18 shows how to use this strategy to create a new GBall class whose location
represents the center of the ball. You’ll have a chance to see this class in action in

ACM Java Task Force Tutorial – 38 –

Chapter 3 which includes code to animate a GBall object so that it bounces around inside
the boundaries of the canvas.

2.6 The GPen and GTurtle classes
The remaining two classes in the acm.graphics package are the GPen and GTurtle
classes, which don’t really fit into the shape class framework. Their purpose is to provide
students with a simple mechanism for drawing figures using a paradigm that is more
aligned with the pen-on-paper model that the felt-board model used in the rest of the
package.

The GPen class
The GPen class models a pen that remembers its current location on the GCanvas on
which it is installed. The most important methods for GPen are setLocation (or move to
specify relative motion) and drawLine. The former corresponds to picking up the pen
and moving it to a new location; the latter represents motion with the pen against the
canvas, thereby drawing a line. Each subsequent line begins where the last one ended,
which makes it very easy to draw connected figures. The GPen object also remembers the
path it has drawn, making it possible to redraw the path when repaint requests occur. The
most important methods for the GPen class are shown in Figure 2-19.

Figure 2-19. Useful methods in the GPen class

Constructors
GPen()

Creates a new GPen object with an empty path.
GPen(double x, double y)

Creates a new GPen object whose initial location is the point (x, y).

Methods to reposition and draw lines with the pen
void setLocation(double x, double y) or setLocation(GPoint pt)

Moves the pen to the specified absolute location.
void move(double dx, double dy)

Moves the pen using the displacements dx and dy.
void movePolar(double r, double theta)

Moves the pen r units in the direction theta, measured in degrees.
void drawLine(double dx, double dy)

Draws a line with the specified displacements, leaving the pen at the end of that line.
void drawPolarLine(double r, double theta)

Draws a line r units in the direction theta, measured in degrees.

Methods to define a filled region bounded by pen strokes
void startFilledRegion()

Fills the polygon formed by lines drawn between here and the next endFilledRegion.
void endFilledRegion()

Closes and fills the region begun by startFilledRegion.

Miscellaneous methods
void showPen()

Makes the pen itself visible, making it possible to see where the pen moves.
void hidePen()

Makes the pen invisible.
void setSpeed(double speed)

Sets the speed of the pen, which must be a number between 0 (slow) and 1 (fast).
double getSpeed()

Returns the speed last set by setSpeed.
void erasePath()

Removes all lines from this pen’s path.

ACM Java Task Force Tutorial – 39 –

The graphics model provided by the GPen class is particularly well suited for
generating recursive figures, such as the Koch fractal or “snowflake” curve. In its
simplest form, the Koch fractal is simply an equilateral triangle that looks like this:

KochSnowflake

This figure is called the order 0 Koch fractal. To construct the Koch fractal of the next
higher order, all you do is replace each of the lines in the current figure by a new line in
which the center third is replace by a triangular wedge pointing to the outside of the
figure. If you do this for each of the three line segments in the order 0 fractal, you get the
order 1 fractal:

KochSnowflake

You can continue this process to obtain Koch fractals of successively higher orders. The
order 3 Koch fractal, for example, looks like this:

KochSnowflake

A recursive program to display a Koch fractal appears in Figure 2-20.

ACM Java Task Force Tutorial – 40 –

Figure 2-20. Using GPen to draw a Koch fractal snowflake

/*
 * File: KochSnowflake.java
 * ------------------------
 * This program demonstrates the use of the GPen class by drawing
 * a Koch fractal snowflake.
 */

import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class KochSnowflake extends GraphicsProgram {

/** Runs the program to create the snowflake display */
public void run() {

double width = getWidth();
double height = getHeight();
pen = new GPen();
add(pen, width / 2, height / 2);
drawKochFractal(EDGE_FRACTION * Math.min(width, height), ORDER);

}

/*
 * Draws a snowflake fractal centered at the current pen position.
 * The edge parameter indicates the length of any of an edge on the
 * order 0 fractal, which is simply a triangle. The order parameter
 * specifies the number of levels of recursive decomposition.
 */

private void drawKochFractal(double edge, int order) {
pen.move(-edge / 2, -edge / (2 * Math.sqrt(3)));
drawFractalLine(edge, 0, order);
drawFractalLine(edge, -120, order);
drawFractalLine(edge, +120, order);

}

/*
 * Draws a fractal line that extends r pixels in the direction theta.
 */

private void drawFractalLine(double r, int theta, int order) {
if (order == 0) {

pen.drawPolarLine(r, theta);
} else {

drawFractalLine(r / 3, theta, order - 1);
drawFractalLine(r / 3, theta + 60, order - 1);
drawFractalLine(r / 3, theta - 60, order - 1);
drawFractalLine(r / 3, theta, order - 1);

}
}

/* Private constants */
private static final double EDGE_FRACTION = 0.75;
private static final int ORDER = 3;

/* Private instance variables */
private GPen pen;

}

ACM Java Task Force Tutorial – 41 –

Both the GPen class and the GTurtle class described in the following section are often
used to create animated displays. To provide clients with some control over the speed of
the animation, both classes include a setSpeed method, which takes a number between
0.0 and 1.0 as its argument. Calling setSpeed(0.0) means that the animation crawls
along at a very slow pace; calling setSpeed(1.0) makes it proceed as fast as the system
allows. Intermediate values are interpreted so as to provide a smoothly varying speed of
operation. Thus, if the speed value is associated with a scrollbar whose ends represent
the values 0.0 and 1.0, adjusting the scrollbar will cause the animation to speed up or
slow down in a way that seems reasonably natural to users.

The GTurtle class
The GTurtle class is similar to GPen but uses a “turtle graphics” model derived from the
Project Logo turtle described in Seymour Papert’s book Mindstorms. In the turtle
graphics world, the conceptual model is that of a turtle moving on a large piece of paper.
A GTurtle object maintains its current location just as a GPen does, but also maintains a
current direction.

The most common methods in the GTurtle class are shown in Figure 2-21. Of these,
the ones that implement the essential semantics for GTurtle are forward(distance),
which moves the turtle forward the specified distance, and the directional methods

Figure 2-21. Useful methods in the GTurtle class

Constructors
GTurtle()

Creates a new .GTurtle object with an empty path.
GTurtle(double x, double y)

Creates a new .GTurtle object whose initial location is the point (x, y).

Methods to move and rotate the turtle
void setLocation(double x, double y) or setLocation(GPoint pt)

Moves the turtle to the specified absolute location without drawing a line.
void forward(double distance)

Moves the turtle distance units in the current direction, drawing a line if the pen is down.
void setDirection(double direction)

Sets the direction (in degrees counterclockwise from the x-axis) in which the turtle is moving.
double getDirection()

Returns the current direction in which the turtle is moving.
void right(double angle) or right()

Turns the turtle direction the specified number of degrees to the right (default is 90).
void left(double angle) or left()

Turns the turtle direction the specified number of degrees to the left (default is 90).

Miscellaneous methods
void penDown()

Tells the turtle to lower its pen so that it draws a track. The pen is initially up.
void penUp()

Tells the turtle to raise its pen so that it stops drawing a track
void showTurtle()

Makes the turtle visible. The turtle itself is initially visible.
void hideTurtle()

Makes the turtle invisible.
void setSpeed(double speed)

Sets the speed of the turtle, which must be a number between 0 (slow) and 1 (fast).
double getSpeed()

Returns the speed last set by setSpeed.
void erasePath()

Removes all lines from the turtle’s path.

ACM Java Task Force Tutorial – 42 –

which moves the turtle forward the specified distance, and the directional methods
left(angle) and right(angle), which rotate the turtle the indicated number of degrees in
the appropriate direction. The path is created by a pen located at the center of the turtle.
If the pen is down, calls to forward generate a line; if the pen is up, such calls simply
move the turtle without drawing a line.

Although GTurtle and GPen have similar capabilities, they are likely to be used in
different ways. The GTurtle class is designed to be used at the very beginning of a
course and must be both simple and evocative as intuitive model. The GTurtle therefore
has somewhat different defaults than its GPen counterpart does. The image of the
GTurtle, for example, is initially visible, while the GPen image is hidden. Moreover, the
GTurtle does not actually draw lines until the pen is lowered. The GPen offers no option;
the pen is always down. These defaults make the GTurtle consistent with the Logo
model, in which students learn to move the turtle first and then start drawing pictures
with it.

2.7 The GObjectTrace demonstration program
In order for students to get a good sense of how the acm.graphics model works, they
need to see it in action. Although writing graphical programs is essential to gaining an
understanding, there is a sense in which the resulting programs have lost some
immediacy. Students need to understand that whenever they call a method in a graphical
object—or, in the language of object-oriented programming, send it a message—that
object will respond by repainting itself on the canvas. In a running application, those
repaint requests are typically coalesced into a single operation, which makes it difficult to
see how an object responds to the individual messages.

To make it easier for students to see precisely how graphical objects work and what
effect each type of message has on that object, the demos section of the Java Task Force
web site contains a program called GObjectTrace, which you can find at the following
URL:

http://jtf.acm.org/demos/demos/GObjectTrace.html

This applet brings up a program window that has a GCanvas in the upper portion and an
interactive console along the bottom. This console is running a stripped-down version of
a Java interpreter that includes definitions for the entire GObject hierarchy. By typing
Java statements into this window, you can create arbitrary objects, add them to the
canvas, and then send those objects messages that are immediately reflected in the canvas
display.

As an example, the three screen snapshots in Figure 2-22 show a series of steps in a
GObjectTrace session. The line

GRect r = new GRect(25, 25, 100, 50);

allocates a new GRect object whose upper left corner is at the point (25, 25) and whose
dimensions are 100 x 50. Nothing appears on the canvas, however, until the user calls

add(r);

at which point an unfilled rectangle appears. The next two lines of input show what
happens if you send messages—in this case, setFilled and move—to the object, which
responds as shown in the display.

ACM Java Task Force Tutorial – 43 –

Figure 2-22. Using the GObjectTrace application

GObjectTrace

> GRect r = new GRect(25, 25, 100, 50);
> add(r);

GObjectTrace

> GRect r = new GRect(25, 25, 100, 50);
> add(r);
> r.setFilled(true);

GObjectTrace

> GRect r = new GRect(25, 25, 100, 50);
> add(r);
> r.setFilled(true);
> r.move(200, 0);

ACM Java Task Force Tutorial – 44 –

Chapter 3
Animation and Interactivity

Even though the programs in Chapter 2 offer a reasonably complete survey to the classes
in the acm.graphics package, they do so using examples that are entirely static.
Running those programs causes a picture to appear in its final form. For students to get
excited about graphics, it is essential to add animation so that the pictures evolve as the
program runs and interactivity to give the user control over the program. This chapter
introduces several strategies for implementing each of those capabilities.

As with almost every programming task, however, there are many different ways to
animate a program or to get it to respond to mouse events. Some instructors will strongly
prefer one style, while others will argue equally strongly for a different approach. To
reach the widest possible audience, the Java Task Force chose to support several of the
most popular styles and allow individual instructors to make their own choices.

Although the decision to support multiple styles seems appropriate in terms of the
overall package design, it carries with it some pedagogical risks. Giving students several
options for accomplishing the same task often confuses them to the point that they learn
none of the strategies well. In general, it is more successful to teach one approach in
detail, bringing up the possibility of alternative strategies only when students have
mastered a particular approach. To avoid the same pitfalls for readers of this tutorial, we
have chosen to foreground one strategy for animation and one for mouse-based
interaction and to place the discussion of alternative strategies in an optional section. As
you read this chapter for the first time, it probably makes sense to focus on sections 3.1
and 3.2, leaving the discussion of alternative strategies in section 3.3 for a subsequent
rereading.

3.1 Graphical animation
In computer graphics, the process of updating a graphical display so that it changes over
time is called animation. Implementing animation typically involves displaying an
initial version of the picture and then changing it slightly over time so that the individual
changes appear continuous from one version of the picture to the next. This strategy is
analogous to classical film animation in which cartoonists break up the motion of the
scene into a series of separate frames. The difference in time between each frame is
called a time step and is typically very short. Movies, for example, typically run at 30
frames a second, which makes the time step approximately 33 milliseconds. If you want
to obtain smooth motion in Java, you need to use a time step around this scale or even
faster.

A simple example of animation
The easiest way to animate graphical programs is to include a loop in your run method
that updates the picture from one frame to the next and then pauses for the duration of the
time step. An example of this style of animation appears in Figure 3-1, which moves a
GLabel across the screen from right to left, just the way the headline displays in New
York’s Times Square do.

The TimesSquare program in Figure 3-1 begins by creating a GLabel object and
positioning it so that it is centered vertically in the window. Its starting point in the
horizontal dimension, however, is just at the right edge of the canvas, which means that

ACM Java Task Force Tutorial – 45 –

Figure 3-1. Code to move text across the screen

/*
 * File: TimesSquare.java
 * ----------------------
 * This program displays the text of the string HEADLINE on the
 * screen in an animated way that moves it across the display
 * from left to right.
 */

import acm.graphics.*;
import acm.program.*;

public class TimesSquare extends GraphicsProgram {

/** Runs the program */
public void run() {

GLabel label = new GLabel(HEADLINE);
label.setFont("Serif-72");
add(label, getWidth(), (getHeight() + label.getAscent()) / 2);
while (label.getX() + label.getWidth() > 0) {

label.move(-DELTA_X, 0);
pause(PAUSE_TIME);

}
}

/* The number of pixels to shift the label on each cycle */
private static final int DELTA_X = 2;

/* The number of milliseconds to pause on each cycle */
private static final int PAUSE_TIME = 20;

/* The string to use as the value of the label */
private static final String HEADLINE =
 "When in the course of human events it becomes necessary " +
 "for one people to dissolve the political bands which " +
 "connected them with another . . .";

}

the entire label is outside the visible area of the canvas. The animation is accomplished
by the following lines:

while (label.getX() + label.getWidth() > 0) {
label.move(-DELTA_X, 0);
pause(PAUSE_TIME);

}

This code loops until the label has moved entirely past the left edge of the display,
shifting it DELTA_X pixels to the left on every time step. The call to pause(PAUSE_TIME)
inside the loop causes the program to suspend operation for PAUSE_TIME milliseconds.
This call is necessary to achieve the effect of animation, because computers run so
quickly that the label would instantly zip off the left side of the window if you didn’t
slow things down.

Bouncing a ball
A slightly more sophisticated application of animation appears in Figure 3-2. This
program bounces a ball around the walls of the graphics window and forms the
foundation for such classic video games as Pong or Breakout. Because a static picture in

ACM Java Task Force Tutorial – 46 –

Figure 3-2. Program to bounce a ball off the boundaries of the canvas

/*
 * File: BouncingBall.java
 * -----------------------
 * This file implements a simple bouncing ball using the run method
 * to drive the animation.
 */

import acm.graphics.*;
import acm.program.*;

public class BouncingBall extends GraphicsProgram {

/** Initialize the ball and its velocity components */
public void init() {

ball = new GBall(BALL_RADIUS);
add(ball, getWidth() / 2, getHeight() / 2);
dx = 2;
dy = 1;

}

/** Run forever bouncing the ball */
public void run() {

waitForClick();
while (true) {

advanceOneTimeStep();
pause(PAUSE_TIME);

}
}

/* Check for bounces and advance the ball */
private void advanceOneTimeStep() {

double bx = ball.getX();
double by = ball.getY();
if (bx < BALL_RADIUS || bx > getWidth() - BALL_RADIUS) dx = -dx;
if (by < BALL_RADIUS || by > getHeight() - BALL_RADIUS) dy = -dy;
ball.move(dx, dy);

}

/* Private constants */
private static final double BALL_RADIUS = 10;
private static final int PAUSE_TIME = 20;

/* Private instance variables */
private GBall ball; /* The ball object */
private double dx; /* Velocity delta in the x direction */
private double dy; /* Velocity delta in the y direction */

}

this text would offer little insight into how such an animated program works, it is useful
to run this as an applet. If you are reading this tutorial on the JTF web site, you can bring
up the applet in a separate window by clicking on the applet marker in the caption, but
you can also run any of the applets from the demo site at

http://jtf.acm.org/demos/index.html

ACM Java Task Force Tutorial – 47 –

The code in Figure 3-2 uses the GBall class presented in Figure 2-18 to create a ball
whose reference point is at the center. Doing so makes the geometric calculation simpler
when checking whether a bounce occurs because all four edges can be treated
symmetrically. The program code is also divided between the init method, which
creates the ball and adds it to the window, and the run method, which runs the animation.
The code for the run method is

public void run() {
waitForClick();
while (true) {

advanceOneTimeStep();
pause(PAUSE_TIME);

}
}

which is almost precisely the paradigmatic for an animation loop. The new statement is
the call to the waitForClick method, which is implemented by GraphicsProgram and
suspends the program until a mouse click occurs in the graphics canvas. This call means
that the program does not start up immediately, but instead waits for a mouse click before
proceeding.

The code that implements the underlying physics of the animation appears in the
private method advanceOneTimeStep. This method checks to see whether the ball has
reached one of the edges of the canvas, in which case it changes the sign of the
appropriate component of the ball’s velocity, which is stored in the variables dx and dy.
It then moves the ball by those displacements to update its position on the display.

Simulating randomness in animations
As written, the bouncing ball program from the preceding section is altogether too
predictable. The ball begins with a constant velocity and then makes perfectly reflective
bounces off the edges of the canvas, tracing the same trajectory each time. Many
animated programs will involve some kind of random behavior, and students will quickly
want to know how they can implement random processes in their own code.

Although it is certainly possible to use either the Math.random method or the Random
class in java.util for this purpose, there are pedagogical advantages to using the
RandomGenerator class in the acm.util package instead. Most importantly, he name of
the class emphasizes that a RandomGenerator object is a generator for random values
and not a random value in itself. When students use the Random class, they are much
more likely to create a new Random instance for each value they wish to generate. In
addition, the RandomGenerator class offers several additional methods that are often
much easier to use than those in the base class. These extended methods are listed in
Figure 3-5.

The conventional pattern for using the RandomGenerator class is to declare and
initialize an instance variable to hold the generator using the line

private RandomGenerator rgen = RandomGenerator.getInstance();

Once this declaration is made, every method in this class can then generate new random
values by invoking the appropriate method on the rgen variable. For example, you could
use this strategy in the BouncingBall program to initialize each velocity component of
the ball to a random value between –3 and 3:

dx = rgen.nextDouble(-3, 3);
dy = rgen.nextDouble(-3, 3);

ACM Java Task Force Tutorial – 48 –

Figure 3-5. Useful methods in the RandomGenerator class

Factory method
static RandomGenerator getInstance()

Returns a standard random generator.

Methods inherited from the Random class in java.util
int nextInt(int n)

Returns a random integer chosen from the n values in the range 0 to n - 1, inclusive.
double nextDouble()

Returns a random double d in the range 0 ≤ d< 1.
void nextBoolean()

Returns a random boolean that is true approximately 50% of the time.
void setSeed(long seed)

Sets a “seed” to indicate a starting point for the pseudorandom sequence.

Additional methods defined by RandomGenerator
int nextInt(int low, int high)

Returns a random integer in the specified range (inclusive).
double nextDouble(double low, double high)

Returns a random double in the specified range.
boolean nextBoolean(double p)

Returns a random boolean that is true with probability p (0 = never, 1 = always).
Color nextColor()

Returns a random opaque color.

The RandomShapes program in Figure 3-6 makes more extensive use of the facilities
of the RandomGenerator class. The program generates ten shapes and positions them on
the canvas using randomness in each of the following ways:

• The shapes are randomly chosen to be rectangles, ovals, or stars. The stars are
represented internally using the GStar class defined in Figure 2-15 from Chapter 2.

• The shapes are given a random size that ranges between MIN_SIZE and MAX_SIZE in
each dimension.

• The shapes are positioned randomly on the canvas subject to the condition that the
entire shape must fit inside the boundaries.

• The shape is filled in a random color.

A sample run of the RandomShapes program might look like this:

RandomShapes

ACM Java Task Force Tutorial – 49 –

Figure 3-6. Program to generate random shapes

/*
 * File: RandomShapes.java
 * -----------------------
 * This file creates ten boxes, ovals, and stars at random locations
 * on the screen, pausing for a suitable interval between each one.
 */

import acm.graphics.*;
import acm.program.*;
import acm.util.*;

public class RandomShapes extends GraphicsProgram {

/** Runs the program */
public void run() {

while (true) {
for (int i = 0; i < NOBJECTS; i++) {

addOneRandomShape();
pause(PAUSE_TIME);

}
waitForClick();
removeAll();

}
}

/* Adds a random shape to the canvas */
private void addOneRandomShape() {

GObject gobj = createRandomShape();
gobj.setColor(rgen.nextColor());
if (gobj instanceof GFillable) ((GFillable) gobj).setFilled(true);
double x = rgen.nextDouble(0, getWidth() - gobj.getWidth())
 - gobj.getBounds().getX();
double y = rgen.nextDouble(0, getHeight() - gobj.getHeight())
 - gobj.getBounds().getY();
add(gobj, x, y);

}

/* Generates a random shape whose reference point is the origin */
private GObject createRandomShape() {

double width = rgen.nextDouble(MIN_SIZE, MAX_SIZE);
double height = rgen.nextDouble(MIN_SIZE, MAX_SIZE);
switch (rgen.nextInt(3)) {
 case 0: return new GRect(width, height);
 case 1: return new GOval(width, height);
 case 2: return new GStar(width);
 default: throw new ErrorException("Illegal shape index");
}

}

/* Private constants */
private static final int NOBJECTS = 10;
private static final int PAUSE_TIME = 1000;
private static final double MIN_SIZE = 25;
private static final double MAX_SIZE = 150;

/* Private instance variables */
private RandomGenerator rgen = RandomInteger.getInstance();

}

ACM Java Task Force Tutorial – 50 –

Most of RandomShapes program in Figure 3-6 is reasonably straightforward, but there
are nonetheless a few aspects of the code that are easier to understand with some
additional explanation:

• The code for the run method includes a while loop that allows the user to generate a
new set of shapes by clicking the mouse. The waitForClick method was introduced
earlier in the chapter in the discussion of the bouncing ball programs and simply waits
for a mouse click.

• The calculation of the random coordinate positions seems slightly more complex that
necessary. At first glance, it would seem as if one could ensure that the entire figure
was inside the canvas by writing

double x = rgen.nextDouble(0, getWidth() - gobj.getWidth());
double y = rgen.nextDouble(0, getHeight() - gobj.getHeight());

While that code would be sufficient for the GRect and GOval objects that have their
reference point in the upper left corner, it doesn’t work for figures like GStar for
which the reference point is inside the figure. The getBounds method returns the
actual bounding box of the figure, which means that gobj.getBounds().getX()
returns the actual x coordinate of the left edge of the figure. You can make sure that
the figure fits on the screen by adjusting the coordinates to compensate for the shift in
origin.

The RandomGenerator class from the java.util class has applications in a wide
variety of contexts beyond graphical animation. In our experience it far and away the
most widely used class in the java.util package.

3.2 Interactivity
The animation capability presented in the preceding section certainly helps to make
graphical programs more exciting, but it is not in itself sufficient to implement the kind of
interactive graphical applications that today’s students have come to expect. Interactive
programs must also respond to actions taken by the user. The sections that follow outline
the Java event model and describe one strategy for responding to those events. Several
other paradigms for event handling are described in section 3.3.

The Java event model
Programs like Add2Console that request input from the user are interactive programs of a
sort. Console programs, however, ask the user for input only at certain well-defined
points in the program’s execution history when the program makes an explicit call to an
input method like readInt. This style of interaction is called synchronous, because it is
always in sync with the program operation. Modern user interfaces, however, are
asynchronous in that they allow the user to intercede at any point, typically by using the
mouse or the keyboard to trigger a particular action.

Events that occur asynchronously with respect to the program operation—mouse
clicks, key strokes, and the like—are represented using a structure called an event. When
an event occurs, the response is always the invocation of a method in some object that is
waiting to hear about that event. Such an object is called a listener. In Java, objects that
listen for user-interface events do so by implementing the methods in a specific listener
interface, which is typically defined in the package java.awt.event. This package
contains several interfaces that allow clients to respond to mouse clicks, button presses,
keystrokes, changes in component sizes, and other asynchronous events. The examples
in the next several examples concentrate on the interfaces that define how programs
respond to mouse events, which are described in the following section.

ACM Java Task Force Tutorial – 51 –

Responding to mouse events
The java.awt.event package defines two separate interfaces—MouseListener and
MouseMotionListener—that specify how a program responds to mouse events. The
MouseListener methods are called in response to actions that occur relatively
infrequently, such as pressing a mouse button or moving the mouse entirely outside the
boundary in which the listener is active. The MouseMotionListener methods are called
whenever the mouse moves, which happens much more frequently. Moving the mouse
without pressing the button results in calls to mouseMoved; dragging the mouse with the
button down results in calls to mouseDragged. The methods in each interface are listed in
Figure 3-3.

Figure 3-3. Methods in the MouseListener and MouseMotionListener interfaces

The MouseListener interface
void mousePressed(MouseEvent e)

Called whenever the mouse button is pressed.
void mouseReleased(MouseEvent e)

Called whenever the mouse button is released.
void mouseClicked(MouseEvent e)

Called when the mouse button is “clicked” (pressed and released within a short span of time).
void mouseEntered(MouseEvent e)

Called whenever the mouse enters the canvas.
void mouseExited(MouseEvent e)

Called whenever the mouse exits the canvas.

The MouseMotionListener interface
void mouseMoved(MouseEvent e)

Called whenever the mouse is moved with the button up.
void mouseDragged(MouseEvent e)

Called whenever the mouse is moved with the button down.

Each of the methods listed in Figure 3-3 takes as its argument an object of type
MouseEvent, which is defined in the package java.awt.event, just as the listener
interfaces are. The MouseEvent class includes a rich set of methods for designing
sophisticated user interfaces. For most applications, however, you can get away with
using only two of those methods. Given a MouseEvent stored in a variable named e, you
can determine the location at which the mouse even occurred by calling e.getX() and
e.getY().

The GraphicsProgram class declares itself to be both a MouseListener and a
MouseMotionListener by defining implementations for each of the listener methods in
those interfaces. Those implementations, however, do nothing at all. For example, the
default definition of mouseClicked is simply

public void mouseClicked(MouseEvent e) {
/* Empty */

}

Thus, unless you override the definition of mouseClicked in your GraphicsProgram
subclass, it will simply ignore mouse clicks, just as it ignores all the other mouse events.
If, however, you define a new mouseClicked method, the event handling system will
call your version instead of the empty one. Because any methods that you don’t override
continue to do what they did by default (i.e., nothing), you only have to override the
listener methods you need.

Whenever you write event-handling code in Java, it is important to remember that
defining the listener methods is not sufficient in itself to establish the listener

ACM Java Task Force Tutorial – 52 –

relationship. You also need to make sure that the object that is listening for events adds
itself as a listener to the object that is generating the events. In the case of a
GraphicsProgram, the program is doing the listening, and the embedded GCanvas is
generating the events. You therefore need to have the program register its interest in
events generated by the canvas by executing the following lines in the context of the
program:

getCanvas().addMouseListener(this);
getCanvas().addMouseMotionListener(this);

To make this operation just a little bit simpler—and to avoid having to explain the
getCanvas method and the keyword this—the GraphicsProgram class includes a
method addMouseListeners that performs precisely these two steps. The examples in
the subsections that follow make use of this simplified form.

A line-drawing program
The first example of mouse interaction is a simple line-drawing program that operates—
at least for straight lines—in the way that painting programs like Adobe Illustrator™
does. To create a line on the canvas, you press the mouse at its starting point. From
there, you hold the mouse button down and drag it to the other endpoint. As you do so,
the line keeps itself updated on the canvas so that it connects the starting point with the
current position of the mouse.

As an example, suppose that you press the mouse button somewhere on the screen and
then drag it rightward an inch, holding the button down. What you’d like to see is the
following picture:

DrawLine

If you then move the mouse downward without releasing the button, the displayed line
will track the mouse, so that you might see the following picture:

DrawLine

When you release the mouse, the line stays where it is, and you can go ahead and draw
additional lines using the same sequence of operations.

Because the line joining the initial point and the mouse stretches and contracts as you
move the mouse, this technique is called rubber-banding. The code for a line-drawing
program that uses rubber-banding appears in Figure 3-4. Despite the fact that the
program seems to perform a reasonably interesting task, the code is surprisingly short.
The bodies of the three methods in the program contain a grand total of four lines. Even
so, it is worth going through each of the methods in turn.

ACM Java Task Force Tutorial – 53 –

Figure 3-4. Program to create a line drawing on the screen

/*
 * File: DrawLine.java
 * -------------------
 * This program allows users to create lines on the graphics
 * canvas by clicking and dragging with the mouse. The line
 * is redrawn from the original point to the new endpoint, which
 * makes it look as if it is connected with a rubber band.
 */

import acm.graphics.*;
import acm.program.*;
import java.awt.event.*;

/** This class allows users to draw lines on the canvas */
public class DrawLine extends GraphicsProgram {

/** Initializes the program by enabling the mouse listeners */
public void init() {

addMouseListeners();
}

/** Called on mouse press to create a new line */
public void mousePressed(MouseEvent e) {

line = new GLine(e.getX(), e.getY(), e.getX(), e.getY());
add(line);

}

/** Called on mouse drag to reset the endpoint */
public void mouseDragged(MouseEvent e) {

line.setEndPoint(e.getX(), e.getY());
}

/* Private instance variables */
private GLine line;

}

The first thing to notice is that this program contains an init method rather than a run
method. In this particular case, you could call the method by either name and have the
program run in exactly the same way, but you will soon encounter situations in which
you need to be clear about the role of these two methods. Even though both are called as
part of the program startup process, the two methods serve different conceptual purposes.
The init method is intended for startup operations that are executed before the program
starts; the run method is executed as part of the program operation. In the examples of
animation earlier in the chapter, the run method implemented the animation. In this
program, nothing is actually running after the program starts up. The only time things
happen is when the user presses the mouse button and begins to drag it across the screen.
Such programs are said to be event-driven. Event-driven programs tend to operate by
performing some amount of initialization and then waiting for events to occur. In this
case, the only initialization necessary is to enable the program as a listener for events,
which is accomplished through the call to addMouseListeners.

The mousePressed method is called whenever the user presses the mouse button and
overrides the empty definition implemented by the GraphicsProgram class itself. In the

ACM Java Task Force Tutorial – 54 –

line-drawing program, the body of the mousePressed method simply creates a new
GLine object that starts and ends at the current mouse position. This GLine appears on
the canvas as a dot.

The GLine is stored in the private instance variable line, which means that other
methods in the class have access to it. In particular, dragging the mouse with the button
down calls the mouseDragged method, which resets the endpoint of the line to the current
mouse position.

Dragging objects on the canvas
The second example is a bit more sophisticated but still fits easily on a single page. The
DragObjects program in Figure 3-5 illustrates how to use mouse listeners to support
dragging graphical objects around on the canvas. The code in the init method should
seem familiar, given that its effect is to create two graphical objects—the red rectangle
and the green oval from the FeltBoard program in Chapter 2—and then add them to the
canvas.

The code in Figure 3-5 overrides three of the event methods. The first of these is
mousePressed, which is called when the mouse button first goes down. That method
looks like this:

public void mousePressed(MouseEvent e) {
lastX = e.getX();
lastY = e.getY();
gobj = getElementAt(lastX, lastY);

}

The first two statements simply record the x and y coordinates of the mouse in the
instance variables lastX and lastY. The final statement in mousePressed checks to see
what object on the canvas contains the current mouse position. Here, it is important to
recognize that there are two possibilities. First, you could be pressing the mouse button
on top of an object, which means that you want to start dragging it. Second, you could be
pressing the mouse button somewhere else on the canvas where there is no object to drag.
The getElementAt method looks at the specified position and returns the object it finds
there. If there is more than one object covering that space, it chooses the one that is in
front of the others in the stacking order. If there are no objects at all at the specified
location, getElementAt returns the value null.

The mouseDragged method consists of the following code:

public void mouseDragged(MouseEvent e) {
if (gobj != null) {

gobj.move(e.getX() - lastX, e.getY() - lastY);
lastX = e.getX();
lastY = e.getY();

}
}

The if statement simply checks to see whether there is an object to drag. If the value of
gobj is null, no object is being dragged, so the rest of the method is skipped. If an
object has been selected by a previous call to mousePressed, the mouseDragged method
needs to move that object by some displacement in each direction. That displacement,
however, does not depend on the absolute location of the mouse but rather in how far it
has moved from the point at which you last updated the location of the object. Thus, the
arguments to the move method are—for both the x and y components—the location where
the mouse is now minus where it used to be. Once you have updated the location of the

ACM Java Task Force Tutorial – 55 –

Figure 3-5. Object-dragging program using the addMouseListeners method

/*
 * File: DragObjects.java
 * ----------------------
 * This implementation illustrates the technique of using the
 * addMouseListeners method to register the program itself as
 * a listeners for events in the underlying GCanvas.
 */

import java.awt.*;
import java.awt.event.*;
import acm.graphics.*;
import acm.program.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragObjects extends GraphicsProgram {

/** Initializes the program */
public void init() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);
addMouseListeners();

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed(MouseEvent e) {

last = new GPoint(e.getPoint());
gobj = getElementAt(last);

}

/** Called on mouse drag to reposition the object */
public void mouseDragged(MouseEvent e) {

if (gobj != null) {
gobj.move(e.getX() - last.getX(), e.getY() - last.getY());
last = new GPoint(e.getPoint());

}
}

/** Called on mouse click to move this object to the front */
public void mouseClicked(MouseEvent e) {

if (gobj != null) gobj.sendToFront();
}

/* Private instance variables */
private GObject gobj; /* The object being dragged */
private GPoint last; /* The last mouse position */

}

ACM Java Task Force Tutorial – 56 –

object being dragged, you have to record the mouse coordinates again so that the location
will update correctly on the next mouseDragged call.

The final listener method specified in Figure 3-5 is mouseClicked, which looks like
this:

public void mouseClicked(MouseEvent e) {
if (gobj != null) gobj.sendToFront();

}

The effect of this method is to allow the user to move an object to the front by clicking on
it, thereby bringing it out from under the other objects on the canvas. The only subtlety
in this method is the question of whether it is appropriate to rely on the proper
initialization of the variable gobj, which holds the current object. As it happens, the
mouseClicked event is always generated in conjunction with a mousePressed and a
mouseReleased event, both of which precede the mouseClicked event. The gobj
variable is therefore set by mousePressed, just as if you were going to drag it.

3.3 Alternative strategies for animation and interactivity (optional)
One of the interesting discoveries that we made during the period of review and comment
on the intermediate Java Task Force designs was that people teaching introductory
programming courses have strongly held beliefs about how Java programs should be
coded and how those programs should be presented to students. To the extent that our
approach differs from the style that someone has grown accustomed to, our designs are
often seen as being contrary to the spirit of Java—at least in that person’s mind.
Unfortunately, those reactions did not point in a single direction because those strongly
held views diverge widely. For example, some people argue that the only appropriate
way to declare a listener method is to use an anonymous inner class, while others have
held that exposing Java’s listener mechanism at all will be too confusing for students.

From these reactions, it became clear that the Java Task Force packages had to support
multiple coding styles and allow individual instructors to choose the strategy that seems
most closely aligned with their overall pedagogical approach. The purpose of this section
is to describe several different approaches to animation and interactivity so that you can
have a better sense of the range of options. Those alternative strategies are illustrated by
recoding two of the example programs presented earlier in this chapter—the
BouncingBall program from Figure 3-2 and the DragObjects program from Figure
3-5—using several different strategies. The code for each of these version is available on
the JTF website.

Although we believe that it is important for the Java Task Force packages to support a
range of coding strategies, it is probably not a good idea to try to cover all of these
strategies in an introductory course. Many students find that having multiple strategies to
accomplish the same task is more confusing than liberating. Thus, it is probably best to
choose a particular approach to animation or event handling and then stick with that
model until students gain enough experience to appreciate the strengths and weaknesses
of the alternative styles.

Alternative strategies for implementing animation
The animated applications in section 3.1 use the run defined in the Program class to drive
the animation. The task of dividing the animation into discrete time steps is
accomplished by making periodic calls to pause. Because the run method runs in a
thread of its own, calling pause does not disable system tasks that run, for example, on
Java’s event-handling thread. The remainder of this section describes two alternative

ACM Java Task Force Tutorial – 57 –

animation strategies using the BouncingBall program from Figure 3-2 as a common
point of departure.

The first of these strategies involves giving the ball a thread of its own. The
pedagogical foundation for this approach lies in the belief that students of modern
programming need to learn about concurrency at a much earlier stage. Giving the ball its
own thread makes it easy to see the ball as an active entity in a concurrent world. In this
conceptual model, the ball is moving of its own accord rather than being moved by the
program.

One possible implementation of this strategy appears in Figures 3-8 and 3-9. Figure
3-8 shows the main program, but all the real work takes place in the RunnableGBall
class shown in Figure 3-9, which extends the GBall class. The RunnableGBall class
implements Java’s Runnable interface so that it can serve as the basis for an independent
thread of control. The code for that run method has the same steps as in the original
implementation:

public void run() {
while (true) {

advanceOneTimeStep();
pause(PAUSE_TIME);

}
}

Figure 3-8. Ball bouncing program using a separate thread

/*
 * File: BouncingBallUsingThreads.java
 * -----------------------------------
 * This file implements a simple bouncing ball by creating
 * a RunnableBall class and executing it in its own thread.
 */

import acm.graphics.*;
import acm.program.*;

public class BouncingBallUsingThreads extends GraphicsProgram {

/** Initialize the ball and its velocity components */
public void init() {

ball = new RunnableGBall(BALL_RADIUS);
ball.setEnclosureSize(getWidth(), getHeight());
ball.setVelocity(2, 1);
add(ball, getWidth() / 2, getHeight() / 2);

}

/** Create a thread to bounce the ball */
public void run() {

waitForClick();
new Thread(ball).start();

}

/* Private constants */
private static final double BALL_RADIUS = 10;

/* Private instance variables */
private RunnableGBall ball;

}

ACM Java Task Force Tutorial – 58 –

Figure 3-9. The RunnableGBall class

/*
 * File: RunnableGBall.java
 * ------------------------
 * This file defines an extension to the GBall class that is
 * designed to run as a separate thread of control.
 */

import acm.graphics.*;

public class RunnableGBall extends GBall implements Runnable {

/** Creates a new ball with radius r centered at the origin */
public RunnableGBall(double r) {

super(r);
}

/** Sets the size of the enclosure */
public void setEnclosureSize(double width, double height) {

enclosureWidth = width;
enclosureHeight = height;

}

/** Sets the velocity of the ball */
public void setVelocity(double vx, double vy) {

dx = vx;
dy = vy;

}

/** Run forever bouncing the ball */
public void run() {

while (true) {
advanceOneTimeStep();
pause(PAUSE_TIME);

}
}

/* Check for bounces and advance the ball */
private void advanceOneTimeStep() {

double bx = getX();
double by = getY();
double r = getWidth() / 2;
if (bx < r || bx > enclosureWidth - r) dx = -dx;
if (by < r || by > enclosureHeight - r) dy = -dy;
move(dx, dy);

}

/* Private constants */
private static final int PAUSE_TIME = 20;

/* Private instance variables */
private double enclosureWidth;
private double enclosureHeight;
private double dx;
private double dy;

}

ACM Java Task Force Tutorial – 59 –

In this case, however, the thread that executes this method is associated with the ball as
opposed to being part of the main program. All the BouncingBallUsingThreads
program does on its own behalf is to create the runnable ball, initialize various properties
such as the speed and dimensions of the boundary enclosure, and then start up a separate
thread for the ball by calling

new Thread(ball).start();

At first glance, it would seem that this strategy is better for applications in which there
is more than one animated object. Given that any RunnableBall object can have a
thread of its own, it would be simple to create a second ball, add that to the canvas, and
start it running as well. As it happens, however, that strategy is difficult to manage
because there is no way to ensure that the balls move at the same rate. The pause method
is only approximate in its timing. Depending on the system load, it would be possible for
one ball to advance through several time steps before the other had a chance to move at
all. To avoid this problem, it is often preferable to have a single animation thread that
updates the position of all moving objects during each time step.

The second alternative strategy for animation abandons the idea of pausing a thread
altogether. The code for the BouncingBallUsingTimerCode in Figure 3-10 uses
Swing’s Timer class to alert the main program at regular intervals. When the timer goes
off, the program can advance the ball’s position by one time step. Although the idea
behind this strategy is simple enough, a couple of aspects of the code are worth noting:

• The version of the Timer class used here is called SwingTimer, which is defined in the
acm.util package. SwingTimer is a simple extension of javax.swing.Timer with
absolutely no additional features beyond those provided by the base class. The reason
for including the SwingTimer class in the JTF package collection is to avoid the
unfortunate ambiguity that was introduced into Java in JDK 1.3. There are now two
publicly accessible classes named Timer, one in javax.swing and the other in
java.util. If a Java program imports both of these packages, the compiler cannot
resolve the identity of the Timer class unless it is specifically imported from one
package or the other. Using the class name SwingTimer eliminates the ambiguity and
makes it obvious that the timers in question are of the javax.swing variety.

• The code for responding to the events generated by SwingTimer specifies the
necessary ActionListener using an anonymous inner class. The definition of both
the listener and its response appear in the lines

ActionListener listener = new ActionListener() {
public void actionPerformed(ActionEvent e) {

advanceOneTimeStep();
}

};

Using anonymous inner classes to define listeners has become standard in modern Java
code. Because the definition of the anonymous listener class is nested within the body
of BouncingBallUsingTimer, it has access to the methods and fields defined in the
public class, making it possible to invoke advanceOneTimeStep from inside the
listener object. At the same time, there is considerable disagreement within the Java
education community over when to introduce such classes to new students.
Understanding the semantics of inner classes can be difficult for many students.
Although it is essential to cover this capability eventually, the Task Force felt it was
important to support at least some models that enabled instructors to avoid the use of
inner classes during the early weeks of an introductory course.

ACM Java Task Force Tutorial – 60 –

Figure 3-10. Ball bouncing program using timer events

/*
 * File: BouncingBallUsingTimer.java
 * ---------------------------------
 * This file implements a simple bouncing ball using a Timer to
 * implement the animation.
 */

import acm.graphics.*;
import acm.program.*;
import acm.util.*;
import java.awt.event.*;

public class BouncingBallUsingTimer extends GraphicsProgram {

/** Initialize the ball and its velocity components */
public void init() {

ball = new GBall(BALL_RADIUS);
add(ball, getWidth() / 2, getHeight() / 2);
dx = 2;
dy = 1;

}

/** Create a timer to advance the ball */
public void run() {

waitForClick();
ActionListener listener = new ActionListener() {

public void actionPerformed(ActionEvent e) {
advanceOneTimeStep();

}
};
SwingTimer timer = new SwingTimer(TIMER_RATE, listener);
timer.start();

}

/* Check for bounces and advance the ball */
private void advanceOneTimeStep() {

double bx = ball.getX();
double by = ball.getY();
if (bx < BALL_RADIUS || bx > getWidth() - BALL_RADIUS) dx = -dx;
if (by < BALL_RADIUS || by > getHeight() - BALL_RADIUS) dy = -dy;
ball.move(dx, dy);

}

/* Private constants */
private static final double BALL_RADIUS = 10;
private static final int TIMER_RATE = 20;

/* Private instance variables */
private GBall ball;
private double dx;
private double dy;

}

ACM Java Task Force Tutorial – 61 –

Alternative strategies for responding to mouse events
Just as there is more than one way to implement animation, there are also multiple
approaches that one can take to respond to mouse events. In addition to the strategy of
calling the addMouseListeners method to register the program itself as a listener, the
Java Task Force packages support several additional coding styles, each of which has its
own strengths and weaknesses. The next few paragraphs describe three additional
approaches in the context of the DragObjects example from Figure 3-7

The DragUsingInnerClasses program shown in Figure 3-11 offers the most
straightforward rewrite of the original version. The only change is that the mouse
listeners are now supplied using anonymous inner classes instead of having the program
itself assume that role. The advantage of this structure is that it corresponds most closely
to the style that has become standard in the Java community. The disadvantage is the
additional conceptual overhead involved in presenting inner classes to students. In a way,
the situation is even more problematic here than it was in the case of the
BouncingBallUsingTimer program presented in the preceding section. In that model, it
was possible to use ActionListener as the base class for the listener, because the one
method the interface specifies is defined in the body of the inner class. In the object-
dragging example, the base classes need to be MouseAdapter and MouseMotionAdapter
to ensure that all the methods in the corresponding interfaces are defined.

The DragUsingGObjectEvents program in Figure 3-12 offers a model that initially
seems similar to the original implementation but that actually represents an important
change in point of view. In this implementation, the listeners are attached to the
individual GObjects and not to the canvas. When a mouse event occurs in the screen area
of a GObject, the code for the acm.graphics package generates mouse events that use
the GObject itself as the source of the event and which are then forwarded to any
listeners registered for that object. The advantage here is that the model supports the
notion that objects are active entities that can both generate and accept messages from
other objects. The disadvantage lies in the fact that many applications will also need to
assign a listener to the canvas to respond to events that occur outside the context of any of
the graphical objects currently being displayed. If the canvas listener is required in any
case, it seems easiest to use it for all event handling rather than to adopt two separate
models.

The final version of the object-dragging program appears in Figure 3-13. This strategy
is derived from the objectdraw package developed at Williams College and uses a simpler
model in which the acm.graphics code forwards events to a set of specialized event
handlers defined specifically for this purpose. If a GraphicsProgram subclass defines
any of the methods

mousePressed(GPoint pt)
mouseReleased(GPoint pt)
mouseClicked(GPoint pt)
mouseMoved(GPoint pt)
mouseDragged(GPoint pt)

then that method is called whenever the appropriate event occurs in the GCanvas. The
parameter pt in each of these methods is the point at which the mouse event occurred,
already translated into the real-valued coordinate space of the acm.graphics package.
This model completely hides the details of mouse events and mouse listeners, so that the
student need not, for example, import the java.awt.event package or take any special
steps to register the program as a listener. All of that comes for free. The primary
disadvantage is that students who learn this strategy for event handling will have to learn
how standard Java listeners work at some later point.

ACM Java Task Force Tutorial – 62 –

Figure 3-11. Object-dragging program using inner classes to specify the listeners

/*
 * File: DragUsingInnerClasses.java
 * --------------------------------
 * This implementation illustrates the technique of defining
 * listeners as anonymous inner classes.
 */

import java.awt.*;
import java.awt.event.*;
import acm.graphics.*;
import acm.program.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragUsingInnerClasses extends GraphicsProgram {

/** Initializes the program */
public void init() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);
GCanvas canvas = getGCanvas();
canvas.addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent e) {
last = new GPoint(e.getPoint());
gobj = getElementAt(last);

}

public void mouseClicked(MouseEvent e) {
if (gobj != null) gobj.sendToFront();

}
});
canvas.addMouseMotionListener(new MouseMotionAdapter() {

public void mouseDragged(MouseEvent e) {
if (gobj != null) {

gobj.move(e.getX() - last.getX(),
 e.getY() - last.getY());
last = new GPoint(e.getPoint());

}
}

});
}

/* Private instance variables */
private GObject gobj; /* The object being dragged */
private GPoint last; /* The last mouse position */

}

ACM Java Task Force Tutorial – 63 –

Figure 3-12. Object-dragging program that listens to the GObjects

/*
 * File: DragUsingGObjectEvents.java
 * ---------------------------------
 * This implementation illustrates the technique of assigning
 * listeners to GObjects.
 */

import java.awt.*;
import java.awt.event.*;
import acm.graphics.*;
import acm.program.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragUsingGObjectEvents extends GraphicsProgram {

/** Initializes the program */
public void init() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
rect.addMouseListener(this);
rect.addMouseMotionListener(this);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
oval.addMouseListener(this);
oval.addMouseMotionListener(this);
add(oval);

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed(MouseEvent e) {

last = new GPoint(e.getPoint());
}

/** Called on mouse drag to reposition the object */
public void mouseDragged(MouseEvent e) {

GObject gobj = (GObject) e.getSource();
gobj.move(e.getX() - last.getX(), e.getY() - last.getY());
last = new GPoint(e.getPoint());

}

/** Called on mouse click to move this object to the front */
public void mouseClicked(MouseEvent e) {

GObject gobj = (GObject) e.getSource();
gobj.sendToFront();

}

/* Private instance variables */
private GPoint last; /* The last mouse position */

}

ACM Java Task Force Tutorial – 64 –

Figure 3-13. Object-dragging program using callback methods in the style of objectdraw

/*
 * File: DragUsingObjectDrawModel.java
 * -----------------------------------
 * This implementation illustrates the technique of using callback
 * methods in the style of the objectdraw package.
 */

import java.awt.*;
import acm.graphics.*;
import acm.program.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragUsingObjectDrawModel extends GraphicsProgram {

/** Initializes the program */
public void init() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed(GPoint pt) {

last = pt;
gobj = getElementAt(last);

}

/** Called on mouse drag to reposition the object */
public void mouseDragged(GPoint pt) {

if (gobj != null) {
gobj.move(pt.getX() - last.getX(), pt.getY() - last.getY());
last = pt;

}
}

/** Called on mouse click to move this object to the front */
public void mouseClicked(GPoint pt) {

if (gobj != null) gobj.sendToFront();
}

/* Private instance variables */
private GObject gobj; /* The object being dragged */
private GPoint last; /* The last mouse position */

}

ACM Java Task Force Tutorial – 65 –

Chapter 4
Graphical User Interfaces

One of the most exciting things about coding in Java is that the standard libraries include
a large number of tools for creating applications with sophisticated graphical user
interfaces, usually referred to as GUIs. The Swing package, for example, offers a large
set of interactor classes that support buttons, text fields, selectable lists, sliders, and much
more. Many instructors who have taught Java at the introductory level, however, report
that GUI programming is difficult for beginners, which makes it harder to take advantage
of the many attractive features that Java offers.

4.1 Adding interactors to the borders of a program
To make it possible for students to create simple GUI applications with a minimum of
conceptual overhead, the acm.program package makes it easy to add Java interactors
along the borders of any Program subclass. The usual approach is to pick one of the
borders and add several interactors there, creating a control strip that allows the user to
control the operation of the program.

Layout strategy for border interactors
As an example, suppose that you want to write a program that displays two buttons—
Start and Stop—at the bottom of a program window. Let’s ignore for the moment what
those buttons actually do and concentrate instead on how to make them appear. If you
use the standard layout management tools provided by the Program class, all you have to
do is include the following code as part of the init method:

add(new JButton("Start"), SOUTH);
add(new JButton("Stop"), SOUTH);

The constant SOUTH indicates the bottom of the window and represents one of four
border regions that are automatically created as part of the initialization of any Program
subclass. Those four regions are the ones defined in the standard BorderLayout class
and are arranged like this:

HTRON

RETNEC

HTUOS

E
A
S
T

W
E
S
T

Each border region is initially empty. Empty regions take up no space, so that a
particular region does not actually appear until you add an interactor or some other Java
component to it. The NORTH and SOUTH regions arrange the interactors horizontally; the
WEST and EAST regions arrange them vertically.

Assigning action listeners to the buttons
Creating the buttons, however, accomplishes only part of the task. To make the buttons
active, you need to give each one an action listener so that pressing the button performs

ACM Java Task Force Tutorial – 66 –

the appropriate action. These days, the most common programming style among
experienced Java programmers is to assign an individual action listener to each button in
the form of an anonymous inner class. Suppose, for example, that you want the Start
and Stop buttons to invoke methods called startAction and stopAction, respectively.
You could do so by changing the initialization code as follows:

JButton startButton = new JButton("Start");
startButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
startAction();

}
});
add(startButton, SOUTH);
JButton stopButton = new JButton("Start");
stopButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
stopAction();

}
});
add(stopButton, SOUTH);

Although there are instructors who favor this style even at the level of introductory
courses, the members of the Java Task Force remain concerned that this coding style
introduces too many unfamiliar concepts for novice programmers to comprehend. To
simplify the structure and eliminate the use of inner classes, the Task Force chose to
designate the Program class as an ActionListener. Adopting this strategy means that
the initialization of the buttons can be shortened to

JButton startButton = new JButton("Start");
startButton.addActionListener(this);
add(startButton, SOUTH);
JButton stopButton = new JButton("Start");
stopButton.addActionListener(this);
add(stopButton, SOUTH);
addActionListeners();

When using the program as an action listener, every button in the application triggers
the same actionPerformed method, which must now look at the event to determine what
button triggered the action. One approach is to call e.getActionCommand() method,
which returns an “action command” string that, by default, is the label that appears on the
button. This strategy is illustrated in the following actionPerformed implementation:

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("Start")) {

startAction();
} else if (e.getActionCommand().equals("Stop")) {

stopAction();
} else

}

An alternative strategy would be to call e.getSource() to obtain the identity of the
button that triggered the event. That strategy, however, would be useful only if you had
chosen to store the button objects in instance variables so that you could compare them
against the source of the event.

As a further simplification, the Program class includes an addActionListeners
method that recursively traverses the components displayed on the screen and adds the
program as an action listener for every JButton it encounters. This style means that the

ACM Java Task Force Tutorial – 67 –

initialization of the buttons can be shortened even more dramatically so that the code
requires only the following lines:

add(new JButton("Start"), SOUTH);
add(new JButton("Stop"), SOUTH);

A simple example
As an illustration of how to place interactors along the program border, take a look at the
StoplightConsole program in Figure 4-1. This program creates three buttons—Green,
Yellow, and Red—and places them along the bottom of a console window. In this version
of the program, pressing a button simply prints out the label of the button. For example,
pressing the three buttons in order from left to right would generate the following output
on the display:

Green Yellow Red

StoplightConsole
Green
Yellow
Red

Figure 4-1. Code for the console-based stoplight

/*
 * File: StoplightConsole.java
 * ---------------------------
 * This program illustrates the construction of a simple GUI.
 */

import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * This class displays three buttons at the south edge of the window.
 * The name of the button is echoed on the console each time a button
 * is pressed.
 */
public class StoplightConsole extends ConsoleProgram {

/** Initialize the GUI */
public void init() {

add(new JButton("Green"), SOUTH);
add(new JButton("Yellow"), SOUTH);
add(new JButton("Red"), SOUTH);
addActionListeners();

}

/** Listen for a button action */
public void actionPerformed(ActionEvent e) {

println(e.getActionCommand());
}

}

Although it is perfectly fine as an illustration of how to create a control strip along the
bottom edge of the program window, the StoplightConsole program isn’t particularly

ACM Java Task Force Tutorial – 68 –

exciting as an application, largely because it is console based. The ability to place
interactors around the border of a program is even more equally useful with the other
Program subclasses. The code in Figures 4-2 and 4-3 shows a similar application
redesigned as a GraphicsProgram in which the stoplight is represented graphically on
the display, like this:

Green Yellow Red Advance

StoplightGraphics

The Stoplight class shown in Figure 4-3 extends GCompound to create an object that
responds to the messages setState(color) and advance().

Figure 4-2. A GraphicsProgram version of a stoplight

/*
 * File: StoplightGraphics.java
 * ----------------------------
 * This program illustrates the construction of a simple GUI using a
 * GraphicsProgram as the main class.
 */

import acm.graphics.*;
import acm.program.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * This class displays four buttons at the south edge of the window.
 * Pressing a button lights the indicated lamp in the stoplight or
 * advances the stoplight to its next configuration.
 */

public class StoplightGraphics extends GraphicsProgram {

/** Initialize the buttons and create the stoplight */
public void init() {

add(new JButton("Green"), SOUTH);
add(new JButton("Yellow"), SOUTH);
add(new JButton("Red"), SOUTH);
add(new JButton("Advance"), SOUTH);
signal = new Stoplight();
add(signal, getWidth() / 2, getHeight() / 2);
addActionListeners();

}

ACM Java Task Force Tutorial – 69 –

Figure 4-2. A GraphicsProgram version of a stoplight (continued)

/** Listen for a button action */
public void actionPerformed(ActionEvent e) {

String command = e.getActionCommand();
if (command.equals("Advance")) {

signal.advance();
} else if (command.equals("Red")) {

signal.setState(Stoplight.RED);
} else if (command.equals("Yellow")) {

signal.setState(Stoplight.YELLOW);
} else if (command.equals("Green")) {

signal.setState(Stoplight.GREEN);
}

}

/* Private instance variables */
private Stoplight signal;

}

Figure 4-3. Graphical implementation of the Stoplight class

/*
 * File: Stoplight.java
 * --------------------
 * This class implements a stoplight as a compound graphical object.
 */

import acm.graphics.*;
import acm.util.*;
import java.awt.*;

/**
 * This class represents a graphical stoplight with its origin point
 * at the center.
 */

public class Stoplight extends GCompound {

/* Public constants for the colors */
public static final Color RED = Color.RED;
public static final Color YELLOW = Color.YELLOW;
public static final Color GREEN = Color.GREEN;

/** Creates a new Stoplight object, which is initially red */
public Stoplight() {

GRect frame = new GRect(STOPLIGHT_WIDTH, STOPLIGHT_HEIGHT);
frame.setFilled(true);
frame.setColor(Color.DARK_GRAY);
add(frame, -STOPLIGHT_WIDTH / 2, -STOPLIGHT_HEIGHT / 2);
redLamp = createLamp(0, -STOPLIGHT_HEIGHT / 4);
yellowLamp = createLamp(0, 0);
greenLamp = createLamp(0, STOPLIGHT_HEIGHT / 4);
add(redLamp);
add(yellowLamp);
add(greenLamp);
setState(RED);

}

ACM Java Task Force Tutorial – 70 –

Figure 4-3. Graphical implementation of the Stoplight class (continued)

/** Changes the state of the stoplight to the indicated color */
public void setState(Color color) {

state = color;
redLamp.setColor((state == RED) ? RED : Color.GRAY);
yellowLamp.setColor((state == YELLOW) ? YELLOW : Color.GRAY);
greenLamp.setColor((state == GREEN) ? GREEN : Color.GRAY);

}

/** Returns the current state of the stoplight */
public Color getState() {

return state;
}

/** Advances the stoplight to the next state */
public void advance() {

if (state == RED) {
setState(GREEN);

} else if (state == YELLOW) {
setState(RED);

} else if (state == GREEN) {
setState(YELLOW);

} else {
throw new ErrorException("Illegal stoplight state");

}
}

/* Creates a new GOval to represent one of the three lamps */
private GOval createLamp(double x, double y) {

GOval lamp = new GOval(x - LAMP_RADIUS, y - LAMP_RADIUS,
 2 * LAMP_RADIUS, 2 * LAMP_RADIUS);
lamp.setFilled(true);
return lamp;

}

/* Private constants */
private static final double STOPLIGHT_WIDTH = 50;
private static final double STOPLIGHT_HEIGHT = 100;
private static final double LAMP_RADIUS = 10;

/* Private instance variables */
private Color state;
private GOval redLamp;
private GOval yellowLamp;
private GOval greenLamp;

}

4.2 Numeric fields
The interactors that you can place in the border regions are by no means limited to the
JButton class used in the preceding examples. The javax.swing package includes a
variety of useful interactor classes including JCheckBox , JComboBox , JLabel,
JScrollBar, JRadioButton, JSlider, JSpinner, JToggleButton, JTextField. None
of these interactors are particularly hard to use, and the Java Task Force did not feel there
was any need to extend the set of interactors except in one respect. Unfortunately, none
of the existing classes is suitable for reading numeric data from the user. If students are
required to use JTextField exclusively and perform their own numeric conversion, they
must first master such difficult conceptual issues as the use of wrapper classes for

ACM Java Task Force Tutorial – 71 –

numeric types and the details of exception handling. Hiding that complexity simplifies
such operations considerably.

To this end, the Task Force decided to add two new classes—IntField and
DoubleField—to simplify the development of applications that require numeric input.
Each of these classes extends JTextField but provides additional methods to hide the
complexity involved in numeric conversion and exception handling. The most useful
methods available for DoubleField appear in Figure 4-4; the methods for IntField are
the same except for the expected changes in the argument and result types.

Figure 4-4. Methods defined in the DoubleField class

Constructors
DoubleField()

Creates a DoubleField object with no initial value.
DoubleField(double value)

Creates a DoubleField object with the specified initial value.

Methods to set and retrieve the value of the field
void setValue(double value)

Sets the value of the field and updates the display.
double getValue()

Returns the value in the field. If the value is out of range, errors or retries occur here.

Methods to control formatting
void setFormat(String format)

Sets the format string for the field as specified in the DecimalFormat class in java.text.
String getFormat()

Returns the current format string.

The format control methods at the end of Figure 4-4 turn out to be relatively important.
In the absence of format control, the value of a DoubleField often displays so many
digits that the number becomes unreadable. The setFormat and getFormat methods
eliminate this problem by allowing you to specify the output format. The format itself is
specified using a string as defined in the DecimalFormat class in java.text. The use of
format codes is illustrated in the currency converter program shown in Figure 4-8 later in
this chapter.

4.3 Using interactors to control animation
One of the most common uses of interactors in the border region is to control the state of
an animation running in the primary window. The Java Task Force packages provides
excellent support for this type of animation control through the Animator class in the
acm.util package. At one level, the Animator class is simply an extension of Thread,
so you can use it as the thread of control for an animation as described in section 3.1.
The Animator class, however, exports several methods that are useful for writing simple
animation code. These methods are listed in Figure 4-5.

These methods are most easily illustrated by example. For the last several years, the
Computer Science Advanced Placement course has used a marine biology simulation as
its case study. In that simulation, different species of fish inhabit an environment and
evolve by breeding, moving, and dying as specified by various parameters of the
simulation. A sample run of the applet version of the Marine Biology Simulation appears
in Figure 4-6, which shows both the random initial state of a simulation and a control
panel at the bottom of the window. The Start button starts the simulation, the Step
button advances it a single step, the Stop button stops it, and the Reset button creates a
new initial state. The slider at the right of the control bar sets the speed.

ACM Java Task Force Tutorial – 72 –

Figure 4-5. Useful methods defined in the Animator class

Constructor
Animator()

Creates a new Animator object.

Method to specify the code for the animation thread
void run()

The code to animate the object goes in a run method specific to each subclass.

Methods to control the speed and flow of the animation
void pause(double milliseconds)

Pauses the animation thread for the specified number of milliseconds.
void setSpeed(double speed)

Sets the speed of the animator to speed, which must be between 0.0 (slow) and 1.1 (fast).
double getSpeed()

Returns the speed of the animator set by the last call to setSpeed.
void trace()

Checks for tracing operations from buttons such as Start, Stop, and Step.
void delay()

Calls trace and then delays the animation by a time interval appropriate to the current speed.

Methods to support GUI controls
void buttonAction(String actionCommand)

Invokes the action associated with the action command (Start, Stop, or Step)
void registerSpeedBar(JSlider slider)

Registers the specified slider as the speed bar for this animator.

Figure 4-6. Initial state of the Marine Biology Simulation

Start Step Stop Reset Slow Fast

MarineBiologySimulation

ACM Java Task Force Tutorial – 73 –

In the AP version of the case study, the details of the control panel are hidden from the
student. When this example is recoded using the JTF tools, the code to create the control
panel becomes quite short:

private void initControlPanel() {
add(new JButton("Start"), SOUTH);
add(new JButton("Step"), SOUTH);
add(new JButton("Stop"), SOUTH);
add(new JButton("Reset"), SOUTH);
JSlider speedSlider = new JSlider(JSlider.HORIZONTAL);
speedSlider.setValue(0);
theSimulation.registerSpeedBar(speedSlider);
add(new JLabel(" Slow"), SOUTH);
add(speedSlider, SOUTH);
add(new JLabel("Fast"), SOUTH);
addActionListeners();

}

The code to handle the action events is equally manageable:

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("Reset")) {

theSimulation.buttonAction("Stop");
createInitialPopulation();

} else {
theSimulation.buttonAction(cmd);

}
}

The code in the simulator class—which is stored in the instance variable
theSimulation in the above code fragments—is also straightforward. This class is a
subclass of Animator and includes a run method with the following form:

public void run() {
while (simulation is not complete) {

Locatable[] theFishes = theEnv.allObjects();
for (int index = 0; index < theFishes.length; index++) {

((Fish) theFishes[index]).act();
}
theDisplay.showEnv();
Debug.println(theEnv.toString());
Debug.println("---- End of Timestep ----");
delay();

}
}

This simplification should make it possible for students to see the code for the entire
simulation, and possibly to write more of it themselves.

4.4 The TableLayout Class
As it happens, the biggest problems that students have in creating GUI-based applications
don’t come from the design of the Swing interactor classes themselves but rather from the
problems involved in arranging those interactors inside a window. Java’s traditional
approach is to use a layout manager, which is responsible for managing the arrangement
of the components within a JPanel or other form of container. Layout managers,
however, can be difficult to teach. If nothing else, they introduce yet another source of
complexity into programs that already seem to push the limits of student comprehension.

ACM Java Task Force Tutorial – 74 –

The more serious problem, however, is that the existing layout managers do not strike the
right balance for teaching. On the one hand, simple layout managers like FlowLayout
and BorderLayout are easy to learn, but do not provide enough flexibility to design
many common layout configurations. On the other, “industrial strength” layout managers
like GridBagLayout have all the power you might want, but are extremely hard for
beginners to learn.

To address this problem, the Java Task Force developed the TableLayout class, which
allows you to arrange components in a two-dimensional grid. The TableLayout class is
a layout manager that has all the capabilities of Java’s GridBagLayout manager, but is
much easier to use.

Simple examples of the TableLayout class
The easiest way to understand how the TableLayout class works is to look at some
simple examples. The basic structure of a TableLayout application is illustrated in
Figure 4-7, which implements a simple temperature converter.

The user interface for the TemperatureConverter program looks like this:

TemperatureConverter

Degrees Fahrenheit

Degrees Celsius

32

0

F C

C F

The TemperatureConverter program provides a convenient template for creating
GUI-based applications using TableLayout. The general strategy is to create a new
class that extends the basic Program class and then define an init method that assembles
the interactors into the desired arrangement. The first line of the init method is usually
a call to setLayout, which creates the layout manager and assigns it to the program
window. For TableLayout applications, the call to setLayout is simply

setLayout(new TableLayout(rows, columns));

where rows and columns are integers indicating the dimensions of the table. For example,
to create a 2 x 3 table (two rows running horizontally and three columns running
vertically), you would write

setLayout(new TableLayout(2, 3));

You can also use 0 in place of the number of rows or the number of columns to indicate
an unbounded value. For example, the call

setLayout(new TableLayout(0, 7));

indicates a table with seven columns and as many rows as needed to display the
components in the table. That layout will form the basis for a calendar application in
section 4.6.

Once the layout manager is in place, the rest of the init method then creates the
necessary interactors and adds them to the table, filling each row from left to right and
then each row from top to bottom. In the TemperatureConverter example, the calls to
add create the Fahrenheit row of the table using the lines

ACM Java Task Force Tutorial – 75 –

Figure 4-7. Temperature conversion program

/*
 * File: TemperatureConverter.java
 * -------------------------------
 * This program allows users to convert temperatures
 * back and forth from Fahrenheit to Celsius.
 */

import acm.gui.*;
import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

public class TemperatureConverter extends Program {

/** Initialize the graphical user interface */
public void init() {

setLayout(new TableLayout(2, 3));
fahrenheitField = new IntField(32);
fahrenheitField.setActionCommand("F -> C");
fahrenheitField.addActionListener(this);
celsiusField = new IntField(0);
celsiusField.setActionCommand("C -> F");
celsiusField.addActionListener(this);
add(new JLabel("Degrees Fahrenheit"));
add(fahrenheitField);
add(new JButton("F -> C"));
add(new JLabel("Degrees Celsius"));
add(celsiusField);
add(new JButton("C -> F"));
addActionListeners();

}

/** Listen for a button action */
public void actionPerformed(ActionEvent e) {

String cmd = e.getActionCommand();
if (cmd.equals("F -> C")) {

int f = fahrenheitField.getValue();
int c = (int) Math.round((5.0 / 9.0) * (f - 32));
celsiusField.setValue(c);

} else if (cmd.equals("C -> F")) {
int c = celsiusField.getValue();
int f = (int) Math.round((9.0 / 5.0) * c + 32);
fahrenheitField.setValue(f);

}
}

/* Private instance variables */
private IntField fahrenheitField;
private IntField celsiusField;

}

ACM Java Task Force Tutorial – 76 –

add(new JLabel("Degrees Fahrenheit"));
add(fahrenheitField);
add(new JButton("F -> C"));

and the corresponding Celsius row using the lines

add(new JLabel("Degrees Celsius"));
add(celsiusField);
add(new JButton("C -> F"));

If you look at the sample run diagram that this code produces, you will quickly see that
the sizes of the various interactors in the table have been adjusted according to their
preferred sizes and the constraints imposed by the grid. The JLabel objects are of
different sizes, but the implementation of TableLayout makes sure that there is enough
space in the first column to hold the longer of the two labels. By default, each component
added to a TableLayout container is expanded to fill its grid cell.

The code for the TemperatureConverter example calls the addActionListeners
method to designate the program as an action listener for all buttons within it. This
strategy of using addActionListeners was described in the preceding chapter. This
style gives rise to relatively compact programs that introductory students find easy to
understand, but you could just as well use any of the other styles of event detection
described in section 3.3.

The calls to addActionListener and setActionCommand make it possible for the user
to trigger a conversion either by hitting the appropriate button or by hitting the ENTER key
in the interactor itself. Each of these actions generates an ActionEvent whose action
command is either the string "F -> C" or "C -> F" depending on which button or
interactor generated the event. These events are fielded by the actionPerformed method
in the class, which performs the necessary conversion and then updates the value of the
corresponding field.

The code for the CurrencyConverter program in Figure 4-8 implements a simple
GUI-based program for converting currencies. When it first comes up on the screen, the
application looks like this:

CurrencyConverter

US Dollar Euro

Convert Convert

The interactors at the top are instances of the Swing JComboBox class, which makes it
possible to choose an item from a list. If, for example, someone wanted to convert from
U.S. dollars to British pounds, that user could click on the right JComboBox and then use
the mouse to select the appropriate entry, as follows:

CurrencyConverter

US Dollar British Pound

Convert Convert

ACM Java Task Force Tutorial – 77 –

The user could then enter a currency amount into either of the two numeric entry boxes
and hit the corresponding conversion button. If, for example, the user entered 1000 in the
left entry area and then hit the button below it, the program would compute the
corresponding number of pounds and display the result like this:

CurrencyConverter

US Dollar British Pound

1000.00 570.13

Convert Convert

The user interface code for the CurrencyConverter program is quite similar to that
used in TemperatureConverter, but there are a couple of interesting new features:

• The user interface uses a JComboBox to specify the currencies, thereby illustrating that
the TableLayout strategy can be used with a wide range of Java interactors.

• The code calls setFormat("0.00") on each of the DoubleField values to ensure that
two decimal places are included in these displays.

The CurrencyConverter program depends on a class called CurrencyTable that
encapsulates the information about exchange rates. The CurrencyTable class exports
two methods. The first is

public String[] getCurrencyNames()

which returns an array of the defined currency names. This list is used to create the array
of options for the two JComboBox choosers. The second is

public double getExchangeRate(String name)

which returns a conversion rate for the specified currency. The implementation on the
web site simply provides historical exchange rate values for a small sampling of
currencies. A more ambitious implementation could go out to the web and find the
current rates.

Specifying constraints
Although the ability to assign components to table cells is useful in its own right, you will
soon discover that you often want to exercise more fine-grained control over the
formatting of tables. One of the strengths of Java’s GridBagLayout class is that it offers
considerable flexibility in terms of specifying the format of a table. Unfortunately,
GridBagLayout exposes that complexity from the very beginning, which means that
novices are quickly overwhelmed by the mass of details. The TableLayout class, by
contrast, offers the same flexibility, but in a way that hides the details unless you actually
need them. Using TableLayout makes it possible for students to learn the simple
features of the model quickly but still have access to the more advanced features later on.

The most important factor in terms of simplifying the conceptual model is that
TableLayout allows you to specify constraints for each cell using strings instead of a
GridBagConstraints structure. When you add a component to a TableLayout grid,
you can specify a constraint string that has the following form:

constraint=value

where constraint is the name of one of the GridBagConstraints fields and value is a
value appropriate for that field. For example, to duplicate the effect of setting the

ACM Java Task Force Tutorial – 78 –

Figure 4-8. Currency conversion program

/*
 * File: CurrencyConverter.java
 * ----------------------------
 * This program implements a simple currency converter.
 */

import acm.gui.*;
import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

public class CurrencyConverter extends Program {

/** Initialize the graphical user interface */
public void init() {

setLayout(new TableLayout(3, 2));
currencyTable = new CurrencyTable();
leftChooser = new JComboBox(currencyTable.getCurrencyNames());
leftChooser.setSelectedItem("US Dollar");
rightChooser = new JComboBox(currencyTable.getCurrencyNames());
rightChooser.setSelectedItem("Euro");
leftField = new DoubleField();
leftField.setFormat("0.00");
leftField.setActionCommand("Convert ->");
leftField.addActionListener(this);
rightField = new DoubleField();
rightField.setFormat("0.00");
rightField.setActionCommand("<- Convert");
rightField.addActionListener(this);
add(leftChooser);
add(rightChooser);
add(leftField);
add(rightField);
add(new JButton("Convert ->"));
add(new JButton("<- Convert"));
addActionListeners();

}

/** Listen for a button action */
public void actionPerformed(ActionEvent e) {

String cmd = e.getActionCommand();
if (cmd.equals("Convert ->")) {

double fromValue = leftField.getValue();
double fromRate = getRateFromChooser(leftChooser);
double toRate = getRateFromChooser(rightChooser);
double toValue = fromValue * fromRate / toRate;
rightField.setValue(toValue);

} else if (cmd.equals("<- Convert")) {
double fromValue = rightField.getValue();
double fromRate = getRateFromChooser(rightChooser);
double toRate = getRateFromChooser(leftChooser);
double toValue = fromValue * fromRate / toRate;
leftField.setValue(toValue);

}
}

ACM Java Task Force Tutorial – 79 –

Figure 4-8. Currency conversion program (continued)

/* Gets a rate from the specified chooser */
private double getRateFromChooser(JComboBox chooser) {

String currencyName = (String) chooser.getSelectedItem();
return currencyTable.getExchangeRate(currencyName);

}

/* Private instance variables */
private CurrencyTable currencyTable;
private JComboBox leftChooser;
private JComboBox rightChooser;
private DoubleField leftField;
private DoubleField rightField;

}

gridwidth field of a constraints object to 2 (thereby specifying a two-column entry),
adopters of the acm.gui package can simply specify the constraint string

"gridwidth=2"

As an example, you could use this feature to add a notice to the currency converter
program indicating the date at which the rates are calculated. That information is
provided by the CurrencyTable class using the getDate method. To display that
information at the bottom of the window, you could add a fourth row to the table by
changing the dimensions in the constructor and then adding the following code to the end
of the init method:

String date = "(rates from " + currencyTable.getDate() + ")";
add(new JLabel(date, JLabel.CENTER), "gridwidth=2");

The effect of this call is to add the JLabel reporting the date of the currency data to the
TableLayout model for the program. However, instead of taking up a single column in
the way that the other components do, the constraint string "gridwidth=2" tells the
layout manager that this component should take up two columns in the grid, which ends
up generating the following display:

CurrencyConverter

US Dollar Euro

Convert Convert

(rates from 22-Jul-05)

The strings used as constraint objects can set several constraints at once by including
multiple constraint/value pairs separated by spaces. Moreover, for those constraints
whose values are defined by named constants in the GridBagConstraints class,
TableLayout allows that name to be used as the value field of the constraint string. For
example, the following string indicates that a table cell should span two columns but that
the component should fill space only in the y direction:

"gridwidth=2 fill=VERTICAL"

Constraint strings are checked at run time to make sure that the constraints and values
are defined and are consistent. The case of letters, however, is ignored, which makes it

ACM Java Task Force Tutorial – 80 –

Figure 4-9. Constraints supported by the TableLayout class

gridwidth=columns or gridheight=rows
Indicates that this table cell should span the indicated number of columns or rows.

width=pixels or height=pixels
The width specification indicates that the width of this column should be the specified number of
pixels. If different widths are specified for cells in the same column, the column width is defined
to be the maximum. In the absence of any width specification, the column width is the largest of
the preferred widths. The height specification is interpreted symmetrically for row heights.

weightx=weight or weighty=weight
If the total size of the table is less than the size of its enclosure, TableLayout will ordinarily
center the table in the available space. If any of the cells, however, are given nonzero weightx or
weighty values, the extra space is distributed along that axis in proportion to the weights
specified. As in the GridBagLayout model, the weights are floating-point values and may
therefore contain a decimal point.

fill=fill
Indicates how the component in this cell should be resized if its preferred size is smaller than the
cell size. The legal values are NONE, HORIZONTAL, VERTICAL, and BOTH, indicating the axes along
which stretching should occur. The default is BOTH.

anchor=anchor
If a component is not being filled along a particular axis, the anchor specification indicates where
the component should be placed in its cell. The default value is CENTER, but any of the standard
compass directions (NORTH, SOUTH, EAST, WEST, NORTHEAST, NORTHWEST, SOUTHEAST, or
SOUTHWEST) may also be used.

possible to name the constraints in a way that is consistent with Java’s conventions. Thus,
if you want to emphasize the case convention that has each word within a multiword
identifier begin with an uppercase letter, it is equally effective to write

"gridWidth=2 fill=VERTICAL"

The TableLayout class accepts all of the constraints supported by GridBagLayout, but
the ones students are most likely to find useful are shown in Figure 4-9.

In addition to the standard GridBagLayout constraints, the TableLayout class uses
two additional parameters—hgap and vgap—that apply to the layout as a whole rather
than the individual cell. These parameters have the same interpretation as in other
standard Java layout managers such as FlowLayout and BorderLayout. When the table
is formatted, hgap pixels are left blank at the left and right edges and between each
column; symmetrically, the layout manager leaves vgap blank pixels at the top and
bottom edges and between each row. Although these values are typically positive, the
implementation supports negative gaps, in which cells overlap by the specified number of
pixels. The most common application for negative gaps occurs in displaying bordered
components, which is illustrated in the CalendarDemo program described in section 4.6.

4.5 The TablePanel Classes
The examples presented so far in this chapter use TableLayout as the layout manager for
the central region of a program, which is likely to be its most common application in the
introductory curriculum. The TableLayout manager, however, can be used with any
container and is extremely useful in assembling patterns of interactors.

To make it easier to assemble nested containers hierarchically, the acm.gui package
includes three convenience classes that extend JPanel but install an appropriate
TableLayout manager. These classes and their constructor patterns appear in Figure
4-10. The HPanel and VPanel classes make it easy to create complex assemblages of

ACM Java Task Force Tutorial – 81 –

Figure 4-10. Convenience classes based on TableLayout

TablePanel constructors
public TablePanel(int rows, int columns)

Creates a JPanel with the indicated number of rows and columns.
public TablePanel(int rows, int columns, int hgap, int vgap)

Creates a JPanel with the specified dimensions and gaps.

HPanel constructors
public HPanel()

Creates a JPanel consisting of a single horizontal row.
public HPanel(int hgap, int vgap)

Creates an HPanel with the specified gaps (vgap applies above and below the row).

VPanel constructors
public VPanel()

Creates a JPanel consisting of a single vertical column.
public VPanel(int hgap, int vgap)

Creates an VPanel with the specified gaps (hgap applies to the left and right of the column).

interactors by decomposing them hierarchically into rows and columns. In this respect,
they have a common purpose with the BoxLayout manager introduced in the
javax.swing package. The panel HPanel and VPanel classes, however, offer far more
flexibility because they have the full power of the TableLayout class. The BoxLayout
manager, by contrast, makes it difficult to do anything except to string together
components in a linear form with no control over spacing or format.

Figure 4-11. Sample run of the CalendarDemo application

United States

Calendar

June 2006
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30

4.6 Putting it all together: Creating a calendar display
To give you a sense of how the layout manager for the Program class and the
TableLayout class can be used in a more sophisticated contexts, this section presents the
complete implementation of a program called CalendarDemo program that displays a
calendar page. The user interface for the program appears in Figure 4-11 and the code to
create the display appears in Figure 4-12.

ACM Java Task Force Tutorial – 82 –

Figure 4-12. Calendar program

/*
 * File: CalendarDemo.java
 * -----------------------
 * This program uses the GUI layout mechanism to create a calendar
 * page. The program uses the features of Java's Locale class to
 * internationalize the calendar.
 */

import acm.gui.*;
import acm.program.*;
import acm.util.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;
import javax.swing.*;
import javax.swing.border.*;

public class CalendarDemo extends Program implements ItemListener {

/** Initialize the graphical user interface */
public void init() {

setBackground(Color.WHITE);
initCountryList();
localeChooser = new JComboBox(countries);
String country = Locale.getDefault().getDisplayCountry();
localeChooser.setSelectedItem(country);
localeChooser.addItemListener(this);
add(new JButton("<-"), NORTH);
add(localeChooser, NORTH);
add(new JButton("->"), NORTH);
currentCalendar = Calendar.getInstance();
itemStateChanged(null);
addActionListeners();

}

/** Respond to a button action */
public void actionPerformed(ActionEvent e) {

int delta = (e.getActionCommand().equals("<-")) ? -1 : +1;
currentCalendar.add(Calendar.MONTH, delta);
updateCalendarDisplay(currentCalendar);

}

/** Respond to a change in the locale selection */
public void itemStateChanged(ItemEvent e) {

if (e == null || e.getStateChange() == ItemEvent.SELECTED) {
Date time = currentCalendar.getTime();
Locale locale = LOCALES[localeChooser.getSelectedIndex()];
currentCalendar = Calendar.getInstance(locale);
currentCalendar.setTime(time);
symbols = new DateFormatSymbols(locale);
weekdayNames = symbols.getWeekdays();
monthNames = symbols.getMonths();
firstDayOfWeek = currentCalendar.getFirstDayOfWeek();
updateCalendarDisplay(currentCalendar);

}
}

ACM Java Task Force Tutorial – 83 –

Figure 4-12. Calendar program (continued)

/* Update the calendar display when a new month is selected */
private void updateCalendarDisplay(Calendar calendar) {

removeAll();
setLayout(new TableLayout(0, 7, -1, -1));
add(createMonthLabel(calendar), "gridwidth=7 bottom=3");
for (int i = 0; i < 7; i++) {

add(createWeekdayLabel(i), "weightx=1 width=1 bottom=2");
}
int weekday = getFirstWeekdayIndex(calendar);
for (int i = 0; i < weekday; i++) {

add(createDayBox(null), "weighty=1");
}
int nDays = getDaysInMonth(calendar);
for (int day = 1; day <= nDays; day++) {

add(createDayBox("" + day), "weighty=1");
weekday = (weekday + 1) % 7;

}
while (weekday != 0) {

add(createDayBox(null), "weighty=1");
weekday = (weekday + 1) % 7;

}
validate();

}

/* Generate the header label for a particular month */
private JLabel createMonthLabel(Calendar calendar) {

int month = calendar.get(Calendar.MONTH);
int year = calendar.get(Calendar.YEAR);
String monthName = capitalize(monthNames[month]);
JLabel label = new JLabel(monthName + " " + year);
label.setFont(JTFTools.decodeFont(TITLE_FONT));
label.setHorizontalAlignment(JLabel.CENTER);
return label;

}

/* Create a label for the weekday header at the specified index */
private JLabel createWeekdayLabel(int index) {

int weekday = (firstDayOfWeek + index + 6) % 7 + 1;
JLabel label = new JLabel(capitalize(weekdayNames[weekday]));
label.setFont(JTFTools.decodeFont(LABEL_FONT));
label.setHorizontalAlignment(JLabel.CENTER);
return label;

}

/* Compute the number of days in the current month */
private int getDaysInMonth(Calendar calendar) {

calendar = (Calendar) calendar.clone();
int current = calendar.get(Calendar.DAY_OF_MONTH);
int next = current;
while (next >= current) {

current = next;
calendar.add(Calendar.DAY_OF_MONTH, 1);
next = calendar.get(Calendar.DAY_OF_MONTH);

}
return current;

}

ACM Java Task Force Tutorial – 84 –

Figure 4-12 Calendar program (continued)

/* Compute the index of the first weekday for the current Locale */
private int getFirstWeekdayIndex(Calendar calendar) {

int day = calendar.get(Calendar.DAY_OF_MONTH);
int weekday = calendar.get(Calendar.DAY_OF_WEEK);
int weekdayIndex = (weekday + 7 - firstDayOfWeek) % 7;
return ((5 * 7 + 1) + weekdayIndex - day) % 7;

}

/* Create a box for a calendar day containing the specified text */
private Component createDayBox(String text) {

VPanel vbox = new VPanel();
if (text== null) {

vbox.setBackground(EMPTY_BACKGROUND);
} else {

JLabel label = new JLabel(text);
label.setFont(JTFTools.decodeFont(DATE_FONT));
vbox.add(label, "anchor=NORTHEAST top=2 right=2");
vbox.setBackground(Color.WHITE);

}
vbox.setOpaque(true);
vbox.setBorder(new LineBorder(Color.BLACK));
return vbox;

}

/* Create a list of country names from the list of Locales */
private void initCountryList() {

countries = new String[LOCALES.length];
for (int i = 0; i < LOCALES.length; i++) {

countries[i] = LOCALES[i].getDisplayCountry();
}

}

/* Capitalize the first letter of a word */
private String capitalize(String word) {

return word.substring(0, 1).toUpperCase() + word.substring(1);
}

/* Private constants */
private static final Color EMPTY_BACKGROUND = new Color(0xDDDDDD);
private static final String TITLE_FONT = "Serif-36";
private static final String LABEL_FONT = "Serif-bold-14";
private static final String DATE_FONT = "Serif-18";
private static final Locale[] LOCALES = {

new Locale("fr", "FR", ""), new Locale("de", "DE", ""),
new Locale("es", "MX", ""), new Locale("it", "IT", ""),
new Locale("nl", "NL", ""), new Locale("es", "ES", ""),
new Locale("en", "GB", ""), new Locale("en", "US", "")

};

/* Private instance variables */
private JComboBox localeChooser;
private String[] countries;
private Calendar currentCalendar;
private DateFormatSymbols symbols;
private String[] monthNames;
private String[] weekdayNames;
private int firstDayOfWeek;

}

ACM Java Task Force Tutorial – 85 –

The CalendarDemo program makes use of the full range of capabilities described in
this chapter. The top row of controls uses the layout capabilities of the Program class to
create controls for the calendar, including a JComboBox that can choose the language and
style for a particular country. The main body of the calendar uses a TableLayout
manager with seven columns. The rows and columns are also set to overlap by a pixel to
ensure that there is only a single-pixel line dividing the individual cells. Finally, each day
in the calendar is represented using a VPanel with a Swing border attached. The exciting
thing about the program is that it offers some very sophisticated features—GUI-based
control, tabular formatting, and internationalization—and still fits in three pages of code.
Such is the power of Java in which you have so many resources on which to draw.

