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ABSTRACT

For several decades, instructors who focus on introductory
computer science courses have recognized the value of graphical
examples. Supporting a graphics library that is appropriate for
beginning students has become more difficult over time. This
paper describes a new approach to building a graphics library that
allows for multiple source languages and a wide range of target
architectures and platforms. The key to this approach is using an
interprocess pipe to communicate between a platform-independent
client library and a Java-based process to perform the graphical
operations specific to each platform.

Categories and Subject Descriptors
K32 [Computer and Information Science Education]:
computer science education.

General Terms
None.

Keywords
Graphics, libraries, CS1, CS2.

1. INTRODUCTION

Ever since Seymour Papert began teaching students to program
using the Project Logo turtle in the 1960s [S], computer science
instructors have recognized the importance of using graphics in
introductory computer science courses and, more recently, in
more general courses that teach computational thinking to a
broader audience. The value of a graphics-based approach is
reflected in the popularity of programming microworlds such as
Alice [3] and Scratch [9] and the success of the media computation
model developed by Mark Guzdial and Barbara Ericson [4, 5]. In
2000, Richard Rasala went so far as to describe graphical toolkits
as a “pedagogical imperative” for introductory computer science
courses [8].

Unfortunately, graphics libraries suitable for introductory courses
have become harder to develop and maintain. For one thing, the
graphics packages that come packaged with a particular platform
or development environment have become so complex that they
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are difficult for most intermediate students, let alone for novices.
In addition, graphics packages tend to evolve so quickly that it is
nearly impossible for universities and colleges—most of which
lack budgets to maintain such tools—to keep up. Finally, the
proliferation of introductory languages and programming
environments means that each specific package serves a smaller
audience.

This paper describes a new approach to building a graphics library
that eliminates most of the maintenance problems by shifting all
platform-specific operations to a separate process implemented in
Java, which is widely supported on the platforms that students are
likely to use. Moreover, by using a text-based interprocess pipe to
communicate with the Java process, the client side of the
application can use any programming language that supports the
creation of processes and pipes. In addition to more traditional
systems-programming languages like C and C++, the necessary
capabilities are available in such languages as Python, Ruby, and
Perl. The new architecture therefore makes it possible to design
compatible, easily maintained libraries that work with any of these
languages without having to write any of the complex rendering
code that leads to the maintenance nightmare.

2. THE QUICKDRAW MODEL

The idea of using an interprocess pipe to drive a Java “back-end”
process was originally suggested by Ben Stephenson and Craig
Taube-Schock at the University of Calgary, who incorporated that
strategy into their QuickDraw system [14, 15]. The QuickDraw
library (not to be confused with the original graphics framework
for the Apple Macintosh, which has the same name) allows
students to create static graphical images by writing a program
that composes and sends graphics commands to the QuickDraw
application. The program itself can be written in any language; all
it needs to do is write the necessary commands to the standard
output channel. To see the graphical output, the student uses a
command-line interpreter to pipe that output to the Java process,
using a command that looks something like this:

StudentApplication.exe | java -jar QuickDraw. jar

The commands themselves are simple text strings. For example,
to draw a circle of radius 50 centered at the point (100, 100), the
student application would print the line

circle 100 100 50

The package described in this paper extends this model by adding
a “thin client” layer to the application that transforms high-level
graphical operations into the necessary commands. As the later
sections of this paper describe, adding this layer makes it possible
for students to write highly interactive applications using libraries
whose structure matches the style of the language they are using.



3. GRAPHICS LIBRARIES AT STANFORD
At Stanford, we decided long ago that students should be able to
write their programs using the computers they bring to campus. In
part, the motivation for this decision is practical: maintaining a
dedicated cluster of computers to support the introductory courses
would be prohibitively expensive given the number of students
involved. Having students develop code using their own machines
also increases the likelihood that they will undertake independent
projects outside of class, which supports a culture of creativity
and experimentation.

The problem with letting students use their own computers is that
doing so forces us to support several different platforms in our
introductory courses. Some students come to campus with
Macintoshes, others bring Windows machines, and a few have
Linux workstations. The languages we use in our introductory
courses run on all these machines, but the APIs available for
implementing graphics differ substantially from platform to
platform. And while there are a few industry-standard packages
like OpenGL that are supported across multiple platforms, the
complexity of those packages puts them out of the range of
novices.

When Stanford shifted its introductory course from Pascal to C in
the early 1990s, we adopted the strategy shown in Figure 1 to
achieve the necessary level of multiplatform support. Applications
that needed to use graphics made calls to functions in a common
interface that was then separately implemented for each of the
supported platforms.

As is typical for software, the implementations for each platform
grew over time as new capabilities were incorporated into the
interface. The individual implementations, moreover, have needed
significant reengineering as the graphics frameworks on which
they are based evolve. As a result, the approach shown in
Figure 1 has required considerable effort to maintain.
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Figure 1. Old multiplatform graphics model

In the early 2000s, we again changed the structure of our
introductory courses, shifting the implementation language from
C to Java. Although Java provides the desired level of platform
independence, we found—as did many other educators who made
the same transition—that the graphics capabilities provided by the
standard Java APIs were difficult for novices to use. We were also
unhappy with the fact that the standard APIs do not use an
object-oriented approach despite Java’s stated design goal of
supporting an object-oriented programming paradigm. Faced with
these problems, we experimented with a set of locally designed
libraries that proved more effective in the classroom [11]. After
refinement over a series of years, these libraries were incorporated
into the acm.graphics package developed by the ACM Java
Task Force [1].

Although we have been happy with the acm.graphics package
and the portability it provides, students have not been able to use
that model after they move beyond our CS1 course. Our version
of CS2 uses C++ as its implementation language, which has
heretofore offered limited graphics support using the strategy
from Figure 1. When we assign graphical applications in CS2 and
more advanced courses, we tend to provide assignment-specific
code written by the instructors. Giving students access to a
graphics model of the sort they had in CS1 would substantially
increase both their capabilities and their excitement level, but the
problems of implementing a multiplatform approach have kept us
from opening up those tools to student use.

We believe that the new graphics model shown in Figure 2 solves
this problem in an exciting way. In essence, the solution combines
the interprocess channel from the Calgary QuickDraw approach
with the object-oriented graphics model from the acm.graphics
package. The end result offers the portability advantages of
QuickDraw along with the flexibility and power of the Java-based
environment that has proven to be so successful in our CSI
course.
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Figure 2. New multilanguage/multiplatform model



GArc || GImage || GLabel || GLine ||

GOval || GPolygon || GRect | |GCompound

G3DRect | |GRoundRect

Figure 3. Graphical object hierarchy used in the portable library

4. THE GRAPHICAL OBJECT MODEL

As in the acm.graphics package on which it is based, the
graphics model used in the portable graphics library defines a set
of classes that represent graphical objects. These classes form the
hierarchy that appears in Figure 3. The root of the hierarchy is the
abstract GObject class, which implements the methods that are
common to all objects, such as setting the position and color.
Each of the concrete subclasses represents a different type of
graphical object, each of which inherits the behavior of the
GObject class while supporting additional methods appropriate to
that specific type. The GLabel class, for example, exports
methods for setting the font and for determining the width of the
displayed text. The GLine class, by contrast, exports methods for
adjusting the endpoints of the line segment. The G3DRect and
GRoundRect classes are subclasses of GRect and therefore inherit
methods from that class. These classes are used infrequently in
practice and are included to illustrate how class hierarchies work.

/*
* File:

This program draws the international "DO NOT ENTER"
symbol in the center of the graphics window.

DoNotEnter. cpp
*

*
*

*/
#include "gobjects.h"

#include "gwindow.h"
using namespace std;

int main()

{

GWindow gw (250, 250);

GOval *circle = new GOval (50, 50, 150, 150);
circle->setFilled(true) ;

circle->setColor ("RED") ;

GRect *bar = new GRect (75, 110, 100, 30);

bar->setFilled(true) ;
bar->setColor ("WHITE") ;
gw.add (circle) ;

gw.add (bar) ;

return 0;

The methods available for the classes in Figure 3 are described in
the online documentation for the package. While the list of
available methods is too extensive to describe in detail, the
general idea is easy to illustrate by example. Figure 4 shows the
code to draw the international symbol for a “DO NOT ENTER”
sign, along with the screen image it produces. The code, which for
this example appears in C++, begins by creating a small GWindow
object that serves as the canvas to which the various Gobject
instances are added. For this figure, the only objects are the red
circle and the superimposed white bar, which are added at explicit
coordinate positions. The calls to the methods setFilled and
setColor indicate that these objects should be filled rather than
outlined and give each its appropriate color. The last statements
before the program returns add the circle and the rectangular bar
to the GWindow, at which point they appear on the screen. The
graphics library keeps track of the order of the objects, so that the
bar appears on top of the circle.

DoNotEnter
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Figure 4. Code for the DoNotEnter program and the screen image it produces



5. IMPLEMENTATION STRATEGY

To understand how the portable library uses the interprocess pipe
to implement the graphics operation, it helps to consider a slightly
more extensive example program, which is interesting in its own
right. The screen image to the right in Figure 5 appears to contain
a white square framed by the cutouts in the arcs. This square,
however, is an optical illusion consisting of a subjective contour,
as defined by Gaetano Kanizsa in Scientific American in 1976 [6].

When compiled using the portable graphics library, the program
shown at the left side of Figure 6 automatically launches the
back-end process at the beginning of execution. As the program
runs and makes graphics calls, it updates its own internal state and
sends messages to the back-end to perform the necessary
rendering operations. The specific messages this program sends
are shown at the right side of Figure 6.

Tracing through the program might make it easier to understand
what these commands do. The first line of the program creates a
GWindow whose client area has size 250 pixels by 250 pixels.
Creating a GWindow implicitly creates a GCompound object, which
holds all the objects added to the window.

The seemingly mysterious hexadecimal strings in the transcript
are simply unique identifiers for the various objects. In this
transcript, for example, the GWindow object has the identifier
0x1001d0 and the top-level GCompound object has the identifier
0x1002e0. These identifiers can be any strings that uniquely
represent the argument. In most cases, they are chosen to be the
addresses of the object on the client side.

There are several things to note about the transcript in Figure 6.
Most importantly—in contrast to the model in QuickDraw—the
student does not ordinarily see these commands, which pass over
a pipe allocated by the implementation.

It is also useful to observe that all communication in this example
is unidirectional. The front-end makes requests of the back-end,
never the other way around. When the front-end needs to
determine the size of the window by calling gw.getHeight (), it
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Figure 5. Example illustrating subjective contours

retrieves that information from its own cache of information. As a
result, no data must be requested and retrieved from the back-end.
Using this approach reduces the need for the two processes to
exchange information, which turns out to be essential in making
the framework efficient enough to use for animation.

Finally, it is essential to note that any program that maintains the
same internal state and issues the same commands to the back-end
will produce exactly the same output as this program. That
program need not have been written in C++; it could just as easily
have been written in C, Java, Python, Perl, Haskell, or even
assembly language. The only platform-dependent code that must
be written in the host programming language is the logic to start
the back-end process and maintain the communication channel,
which is straightforward to accomplish in any of these languages.

#include "gobjects.h"
#include "gwindow.h"
using namespace std;

int main() {

GWindow gw (250, 250);

double cSize = 100;

GArc *nw = new GArc(0, O, cSize, cSize,
0, 270);

nw->setFilled (true) ;

gw.add (nw) ;

GArc *ne = new GArc(gw.getWidth() - cSize, O,
cSize, cSize, 270, 270);

ne->setFilled(true) ;

gw.add (ne) ;

GArc *se = new GArc(gw.getWidth() - cSize,
gw.getHeight () - cSize,
cSize, cSize, 180, 270);

se->setFilled(true) ;

gw.add (se) ;

GArc *sw = new GArc(0, gw.getHeight() - cSize,
cSize, cSize, 90, 270);

sw->setFilled(true) ;

gw.add (sw) ;

return O;

Transcript of the interprocess channel

— GCompound.create("0x1002e0")

— GWindow.create("0x1001d0", 250, 250, "0x1002e0")
— GArc.create("0x100d90", 100, 100, 0, 270)
— GObject.setLocation("0x100d90", 0, 0)

— GObject.setFilled("0x100d90", true)

— GCompound.add("0x1002e0", "0x100d90")
— GArc.create("0x100e20", 100, 100, 270, 270)
— GObject.setLocation("0x100e20", 150, 0)

— GObject.setFilled("0x100e20", true)

— GCompound.add("0x1002e0", "0x100e20")
— GArc.create("0x100e70", 100, 100, 180, 270)
— GObject.setLocation("0x100e70", 150, 150)

— GObject.setFilled("0x100e70", true)

— GCompound.add("0x1002e0", "0x100e70")
— GArc.create("0x100ec0", 100, 100, 90, 270)
— GObject.setLocation("0x100ec0", 0, 150)
— GObject.setFilled("0x100ec0", true)

— GCompound.add("0x1002e0", "0x100ec0")

Figure 6. Code for the SubjectiveContour program and a trace of the method calls sent through the interprocess pipe



6. IMPLEMENTING INTERACTIVITY

Up to this point, the examples in this paper could just as easily
have been implemented using the unidirectional pipe provided by
the Calgary QuickDraw system. The real power of the portable
graphics library is that the interprocess communication can
operate in both directions when doing so is necessary to respond
to events that happen in the graphics window. The library code
implements a rich set of events that includes mouse actions such
as clicks and drags, keyboard actions such as key presses and
releases, window events such as resizing, and events generated by
interval timers that can be used to support animation.

As an example, both versions of the code in Figure 7 implement a
simple line-drawing program. Depressing the mouse button
generates a MOUSE_PRESSED event, which causes the code to
create a zero-length line at the current mouse location. Dragging
the mouse then generates a series of MOUSE_DRAGGED events,
each of which updates the end point of the line—but not its
starting point—to the new mouse coordinates. The effect is to
allow the user to drag the line to its correct position while getting
the necessary visual feedback. In computer graphics, this style of
line drawing is called rubber banding because the mouse appears
to be connected to its starting point by an elastic line.

We have used the new graphics library to reimplement all the
animated applications we use in our CS1 and CS2 courses, and the
performance is entirely acceptable despite the use of text-based
interprocess communication that requires parsing and unparsing
commands. In particular, the strategy works perfectly for video
games like Breakout [13], which we use as the second Java
assignment in CS1. The time required to render the graphical
display on the Java side easily dominates the cost involved in
communicating information across the pipe.

It is, however, important to note that achieving this performance
depends on maintaining a mathematical model of the graphical
objects on both sides of the pipe. When the Breakout application
needs to determine whether the ball has hit any of the bricks, it
must do so entirely on the client side without requesting that
information from the back-end process. Doing so forces the two
processes to complete a round-trip exchange consisting of a
request and the corresponding response. Requiring that handshake
in the exchange of data makes the library far too slow to use in
practical applications.

7. MAINTAINING PORTABILITY

Even though the strategy of using the interprocess pipe makes it
possible to implement the portable library across a range of
languages, the calls that the application makes to the client side of
the library must adapt to fit the structure and syntax of the
implementation language.

One of the goals of the portable library project is to ensure that the
discipline of using the libraries changes as little as possible. The
purpose of including both the C and the C++ versions of the
line-drawing program in Figure 7 is to illustrate how closely
aligned the two versions can be, even when one language supports
the object-oriented paradigm and one does not. In the C version,
the data structures appear as abstract data types (ADTs), which
are implemented in C as pointers to opaque structures. All
operations on these structures are implemented as functions that
take the ADT pointer as the first argument. The C++ version, by
contrast, uses traditional objects and method calls. These
differences, however, are decidedly in the accidental rather than
the essential category. The similarity of the graphics model makes
the process of translating an application from one language to
another almost entirely a mechanical process.

/*

* File: Drawlines.c

* This program allows users to draw lines on the
* window by clicking and dragging with the mouse.

*/

#include "cslib.h"

#include "gevents.h"
#include "gobjects.h"
#include "gwindow.h"

int main() {
GWindow gw = newGWindow (600, 400) ;
GLine line;
while (true) {
GMouseEvent e = waitForEvent (MOUSE_EVENT) ;
EventType type = getEventType (e);
if (type == MOUSE_PRESSED) {
line = newGLine (getX(e), get¥Y(e),
getX(e), getY(e));
add (gw, line);
} else if (type MOUSE_DRAGGED) {

setEndPoint (line, getX(e), get¥(e)):;

/*

*

*

*

*/

#include "gevents.h"
#include "gobjects.h"
#include "gwindow.h"
using namespace std;

int main() {

}

File: DrawLines.cpp

This program allows users to draw lines on the
window by clicking and dragging with the mouse.

GWindow gw (600,

GLine *line;

while (true) {
GMouseEvent e =

400) ;

waitForEvent (MOUSE_ EVENT) ;

EventType type = e.getEventType();

if (type == MOUSE_PRESSED) {
line = new GLine (e.getX(), e.get¥(),

e.getX(), e.get¥());

gw.add(line) ;

} else if (type MOUSE_DRAGGED) {
line->setEndPoint (e.getX(), e.get¥());

Figure 7. Programs in C and C++ that let the user draw lines on the window by dragging with the mouse



8. CONCLUSIONS

We believe that the portable graphics library has tremendous
advantages over our earlier strategies for achieving portability. In
particular, this new approach offers the following benefits:

(1) Simplified maintenance. Responsibility for ensuring that
rendering works on all platforms no longer falls on the developers
and adopters. As Java’s new owner, the Oracle corporation makes
sure that Java runs on each new platform and that it keeps abreast
of changes in the native APIs.

(2) Streamlined migration paths to new languages and platforms.
Good assignments take a long time to develop. One of the biggest
impediments to adopting new languages is the cost of translating
existing assignments to a new paradigm. Having a common model
implemented for a variety of source languages reduces that barrier
considerably.

(3) Enhanced opportunities to analyze trace data. The text
stream that passes between the client code and the back-end
process provides useful information that has not before been
available in the past. Applying machine learning techniques to
these traces may make it possible to provide students with
automatic advice as to whether they are on the right track.

(4) Substantial possibilities for interesting extensions. The
strategy of combining a thin client with an interprocess pipe has
many applications beyond graphics. In its current implementation,
the portable library already includes support for interactors
(buttons, sliders, text fields, and the like) and dialog boxes for
selecting files. Java implements these features, and it is easy to
pass those capabilities along through the interprocess pipe. We are
considering further extensions along these same lines including
methods for reading network data and for manipulating sound and
video.

We hope that other educators consider adopting this model in their
own courses and that they join with us to develop its potential. We
welcome your comments and suggestions.
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