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ABSTRACT 
For several decades, instructors who focus on introductory 
computer science courses have recognized the value of graphical 
examples. Supporting a graphics library that is appropriate for 
beginning students has become more difficult over time. This 
paper describes a new approach to building a graphics library that 
allows for multiple source languages and a wide range of target 
architectures and platforms. The key to this approach is using an 
interprocess pipe to communicate between a platform-independent 
client library and a Java-based process to perform the graphical 
operations specific to each platform. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
computer science education. 

General Terms 
None. 

Keywords 
Graphics, libraries, CS1, CS2. 

1. INTRODUCTION 
Ever since Seymour Papert began teaching students to program 
using the Project Logo turtle in the 1960s [5], computer science 
instructors have recognized the importance of using graphics in 
introductory computer science courses and, more recently, in 
more general courses that teach computational thinking to a 
broader audience. The value of a graphics-based approach is 
reflected in the popularity of programming microworlds such as 
Alice [3] and Scratch [9] and the success of the media computation 
model developed by Mark Guzdial and Barbara Ericson [4, 5]. In 
2000, Richard Rasala went so far as to describe graphical toolkits 
as a “pedagogical imperative” for introductory computer science 
courses [8]. 

Unfortunately, graphics libraries suitable for introductory courses 
have become harder to develop and maintain. For one thing, the 
graphics packages that come packaged with a particular platform 
or development environment have become so complex that they 

are difficult for most intermediate students, let alone for novices. 
In addition, graphics packages tend to evolve so quickly that it is 
nearly impossible for universities and colleges—most of which 
lack budgets to maintain such tools—to keep up. Finally, the 
proliferation of introductory languages and programming 
environments means that each specific package serves a smaller 
audience. 

This paper describes a new approach to building a graphics library 
that eliminates most of the maintenance problems by shifting all 
platform-specific operations to a separate process implemented in 
Java, which is widely supported on the platforms that students are 
likely to use. Moreover, by using a text-based interprocess pipe to 
communicate with the Java process, the client side of the 
application can use any programming language that supports the 
creation of processes and pipes. In addition to more traditional 
systems-programming languages like C and C++, the necessary 
capabilities are available in such languages as Python, Ruby, and 
Perl. The new architecture therefore makes it possible to design 
compatible, easily maintained libraries that work with any of these 
languages without having to write any of the complex rendering 
code that leads to the maintenance nightmare. 

2. THE QUICKDRAW MODEL 
The idea of using an interprocess pipe to drive a Java “back-end” 
process was originally suggested by Ben Stephenson and Craig 
Taube-Schock at the University of Calgary, who incorporated that 
strategy into their QuickDraw system [14, 15]. The QuickDraw 
library (not to be confused with the original graphics framework 
for the Apple Macintosh, which has the same name) allows 
students to create static graphical images by writing a program 
that composes and sends graphics commands to the QuickDraw 
application. The program itself can be written in any language; all 
it needs to do is write the necessary commands to the standard 
output channel. To see the graphical output, the student uses a 
command-line interpreter to pipe that output to the Java process, 
using a command that looks something like this: 

StudentApplication.exe | java -jar QuickDraw.jar 

The commands themselves are simple text strings. For example, 
to draw a circle of radius 50 centered at the point (100, 100), the 
student application would print the line 

circle 100 100 50 

The package described in this paper extends this model by adding 
a “thin client” layer to the application that transforms high-level 
graphical operations into the necessary commands. As the later 
sections of this paper describe, adding this layer makes it possible 
for students to write highly interactive applications using libraries 
whose structure matches the style of the language they are using. 
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3. GRAPHICS LIBRARIES AT STANFORD 
At Stanford, we decided long ago that students should be able to 
write their programs using the computers they bring to campus. In 
part, the motivation for this decision is practical: maintaining a 
dedicated cluster of computers to support the introductory courses 
would be prohibitively expensive given the number of students 
involved. Having students develop code using their own machines 
also increases the likelihood that they will undertake independent 
projects outside of class, which supports a culture of creativity 
and experimentation. 

The problem with letting students use their own computers is that 
doing so forces us to support several different platforms in our 
introductory courses. Some students come to campus with 
Macintoshes, others bring Windows machines, and a few have 
Linux workstations. The languages we use in our introductory 
courses run on all these machines, but the APIs available for 
implementing graphics differ substantially from platform to 
platform. And while there are a few industry-standard packages 
like OpenGL that are supported across multiple platforms, the 
complexity of those packages puts them out of the range of 
novices. 

When Stanford shifted its introductory course from Pascal to C in 
the early 1990s, we adopted the strategy shown in Figure 1 to 
achieve the necessary level of multiplatform support. Applications 
that needed to use graphics made calls to functions in a common 
interface that was then separately implemented for each of the 
supported platforms. 

As is typical for software, the implementations for each platform 
grew over time as new capabilities were incorporated into the 
interface. The individual implementations, moreover, have needed 
significant reengineering as the graphics frameworks on which 
they are based evolve.  As a result, the approach shown in 
Figure 1 has required considerable effort to maintain. 

In the early 2000s, we again changed the structure of our 
introductory courses, shifting the implementation language from 
C to Java. Although Java provides the desired level of platform 
independence, we found—as did many other educators who made 
the same transition—that the graphics capabilities provided by the 
standard Java APIs were difficult for novices to use. We were also 
unhappy with the fact that the standard APIs do not use an 
object-oriented approach despite Java’s stated design goal of 
supporting an object-oriented programming paradigm. Faced with 
these problems, we experimented with a set of locally designed 
libraries that proved more effective in the classroom [11]. After 
refinement over a series of years, these libraries were incorporated 
into the acm.graphics package developed by the ACM Java 
Task Force [1]. 

Although we have been happy with the acm.graphics package 
and the portability it provides, students have not been able to use 
that model after they move beyond our CS1 course. Our version 
of CS2 uses C++ as its implementation language, which has 
heretofore offered limited graphics support using the strategy 
from Figure 1. When we assign graphical applications in CS2 and 
more advanced courses, we tend to provide assignment-specific 
code written by the instructors. Giving students access to a 
graphics model of the sort they had in CS1 would substantially 
increase both their capabilities and their excitement level, but the 
problems of implementing a multiplatform approach have kept us 
from opening up those tools to student use. 

We believe that the new graphics model shown in Figure 2 solves 
this problem in an exciting way. In essence, the solution combines 
the interprocess channel from the Calgary QuickDraw approach 
with the object-oriented graphics model from the acm.graphics 
package. The end result offers the portability advantages of 
QuickDraw along with the flexibility and power of the Java-based 
environment that has proven to be so successful in our CS1 
course. 

 
Figure 1. Old multiplatform graphics model 

 
Figure 2. New multilanguage/multiplatform model 



4. THE GRAPHICAL OBJECT MODEL 
As in the acm.graphics package on which it is based, the 
graphics model used in the portable graphics library defines a set 
of classes that represent graphical objects. These classes form the 
hierarchy that appears in Figure 3. The root of the hierarchy is the 
abstract GObject class, which implements the methods that are 
common to all objects, such as setting the position and color.  
Each of the concrete subclasses represents a different type of 
graphical object, each of which inherits the behavior of the 
GObject class while supporting additional methods appropriate to 
that specific type. The GLabel class, for example, exports 
methods for setting the font and for determining the width of the 
displayed text. The GLine class, by contrast, exports methods for 
adjusting the endpoints of the line segment. The G3DRect and 
GRoundRect classes are subclasses of GRect and therefore inherit 
methods from that class. These classes are used infrequently in 
practice and are included to illustrate how class hierarchies work. 

The methods available for the classes in Figure 3 are described in 
the online documentation for the package. While the list of 
available methods is too extensive to describe in detail, the 
general idea is easy to illustrate by example. Figure 4 shows the 
code to draw the international symbol for a “DO NOT ENTER” 
sign, along with the screen image it produces. The code, which for 
this example appears in C++, begins by creating a small GWindow 
object that serves as the canvas to which the various GObject 
instances are added. For this figure, the only objects are the red 
circle and the superimposed white bar, which are added at explicit 
coordinate positions. The calls to the methods setFilled and 
setColor indicate that these objects should be filled rather than 
outlined and give each its appropriate color. The last statements 
before the program returns add the circle and the rectangular bar 
to the GWindow, at which point they appear on the screen. The 
graphics library keeps track of the order of the objects, so that the 
bar appears on top of the circle. 

 
Figure 3. Graphical object hierarchy used in the portable library 

/* 
 * File: DoNotEnter.cpp 
 * -------------------- 
 * This program draws the international "DO NOT ENTER" 
 * symbol in the center of the graphics window. 
 */ 
 

#include "gobjects.h" 
#include "gwindow.h" 
using namespace std; 
 

int main() { 
   GWindow gw(250, 250); 
   GOval *circle = new GOval(50, 50, 150, 150); 
   circle->setFilled(true); 
   circle->setColor("RED"); 
   GRect *bar = new GRect(75, 110, 100, 30); 
   bar->setFilled(true); 
   bar->setColor("WHITE"); 
   gw.add(circle); 
   gw.add(bar); 
   return 0; 
}  

Figure 4. Code for the DoNotEnter program and the screen image it produces 



5. IMPLEMENTATION STRATEGY 
To understand how the portable library uses the interprocess pipe 
to implement the graphics operation, it helps to consider a slightly 
more extensive example program, which is interesting in its own 
right. The screen image to the right in Figure 5 appears to contain 
a white square framed by the cutouts in the arcs. This square, 
however, is an optical illusion consisting of a subjective contour, 
as defined by Gaetano Kanizsa in Scientific American in 1976 [6]. 

When compiled using the portable graphics library, the program 
shown at the left side of Figure 6 automatically launches the 
back-end process at the beginning of execution.  As the program 
runs and makes graphics calls, it updates its own internal state and 
sends messages to the back-end to perform the necessary 
rendering operations.  The specific messages this program sends 
are shown at the right side of Figure 6. 

Tracing through the program might make it easier to understand 
what these commands do.  The first line of the program creates a 
GWindow whose client area has size 250 pixels by 250 pixels.  
Creating a GWindow implicitly creates a GCompound object, which 
holds all the objects added to the window. 

The seemingly mysterious hexadecimal strings in the transcript 
are simply unique identifiers for the various objects. In this 
transcript, for example, the GWindow object has the identifier 
0x1001d0 and the top-level GCompound object has the identifier 
0x1002e0. These identifiers can be any strings that uniquely 
represent the argument. In most cases, they are chosen to be the 
addresses of the object on the client side. 

There are several things to note about the transcript in Figure 6. 
Most importantly—in contrast to the model in QuickDraw—the 
student does not ordinarily see these commands, which pass over 
a pipe allocated by the implementation. 

It is also useful to observe that all communication in this example 
is unidirectional.  The front-end makes requests of the back-end, 
never the other way around.  When the front-end needs to 
determine the size of the window by calling gw.getHeight(), it 

retrieves that information from its own cache of information. As a 
result, no data must be requested and retrieved from the back-end. 
Using this approach reduces the need for the two processes to 
exchange information, which turns out to be essential in making 
the framework efficient enough to use for animation. 

Finally, it is essential to note that any program that maintains the 
same internal state and issues the same commands to the back-end 
will produce exactly the same output as this program.  That 
program need not have been written in C++; it could just as easily 
have been written in C, Java, Python, Perl, Haskell, or even 
assembly language. The only platform-dependent code that must 
be written in the host programming language is the logic to start 
the back-end process and maintain the communication channel, 
which is straightforward to accomplish in any of these languages. 

 
Figure 5. Example illustrating subjective contours 

#include "gobjects.h" 
#include "gwindow.h" 
using namespace std; 
 

int main() { 
   GWindow gw(250, 250); 
   double cSize = 100; 
   GArc *nw = new GArc(0, 0, cSize, cSize, 
                       0, 270); 
   nw->setFilled(true); 
   gw.add(nw); 
   GArc *ne = new GArc(gw.getWidth() - cSize, 0, 
                       cSize, cSize, 270, 270); 
   ne->setFilled(true); 
   gw.add(ne); 
   GArc *se = new GArc(gw.getWidth() - cSize, 
                       gw.getHeight() - cSize, 
                       cSize, cSize, 180, 270); 
   se->setFilled(true); 
   gw.add(se); 
   GArc *sw = new GArc(0, gw.getHeight() - cSize, 
                       cSize, cSize, 90, 270); 
   sw->setFilled(true); 
   gw.add(sw); 
   return 0; 
} 

Transcript of the interprocess channel 
 
 
 

 
→ GCompound.create("0x1002e0") 
→ GWindow.create("0x1001d0", 250, 250, "0x1002e0") 
→ GArc.create("0x100d90", 100, 100, 0, 270) 
→ GObject.setLocation("0x100d90", 0, 0) 
→ GObject.setFilled("0x100d90", true) 
→ GCompound.add("0x1002e0", "0x100d90") 
→ GArc.create("0x100e20", 100, 100, 270, 270) 
→ GObject.setLocation("0x100e20", 150, 0) 
→ GObject.setFilled("0x100e20", true) 
→ GCompound.add("0x1002e0", "0x100e20") 
→ GArc.create("0x100e70", 100, 100, 180, 270) 
→ GObject.setLocation("0x100e70", 150, 150) 
 
→ GObject.setFilled("0x100e70", true) 
→ GCompound.add("0x1002e0", "0x100e70") 
→ GArc.create("0x100ec0", 100, 100, 90, 270) 
→ GObject.setLocation("0x100ec0", 0, 150) 
→ GObject.setFilled("0x100ec0", true) 
→ GCompound.add("0x1002e0", "0x100ec0") 

 

Figure 6. Code for the SubjectiveContour program and a trace of the method calls sent through the interprocess pipe 



6. IMPLEMENTING INTERACTIVITY 
Up to this point, the examples in this paper could just as easily 
have been implemented using the unidirectional pipe provided by 
the Calgary QuickDraw system. The real power of the portable 
graphics library is that the interprocess communication can 
operate in both directions when doing so is necessary to respond 
to events that happen in the graphics window. The library code 
implements a rich set of events that includes mouse actions such 
as clicks and drags, keyboard actions such as key presses and 
releases, window events such as resizing, and events generated by 
interval timers that can be used to support animation. 
As an example, both versions of the code in Figure 7 implement a 
simple line-drawing program. Depressing the mouse button 
generates a MOUSE_PRESSED event, which causes the code to 
create a zero-length line at the current mouse location.  Dragging 
the mouse then generates a series of MOUSE_DRAGGED events, 
each of which updates the end point of the line—but not its 
starting point—to the new mouse coordinates. The effect is to 
allow the user to drag the line to its correct position while getting 
the necessary visual feedback. In computer graphics, this style of 
line drawing is called rubber banding because the mouse appears 
to be connected to its starting point by an elastic line. 

We have used the new graphics library to reimplement all the 
animated applications we use in our CS1 and CS2 courses, and the 
performance is entirely acceptable despite the use of text-based 
interprocess communication that requires parsing and unparsing 
commands. In particular, the strategy works perfectly for video 
games like Breakout [13], which we use as the second Java 
assignment in CS1. The time required to render the graphical 
display on the Java side easily dominates the cost involved in 
communicating information across the pipe. 

It is, however, important to note that achieving this performance 
depends on maintaining a mathematical model of the graphical 
objects on both sides of the pipe. When the Breakout application 
needs to determine whether the ball has hit any of the bricks, it 
must do so entirely on the client side without requesting that 
information from the back-end process. Doing so forces the two 
processes to complete a round-trip exchange consisting of a 
request and the corresponding response. Requiring that handshake 
in the exchange of data makes the library far too slow to use in 
practical applications. 

7. MAINTAINING PORTABILITY 
Even though the strategy of using the interprocess pipe makes it 
possible to implement the portable library across a range of 
languages, the calls that the application makes to the client side of 
the library must adapt to fit the structure and syntax of the 
implementation language. 

One of the goals of the portable library project is to ensure that the 
discipline of using the libraries changes as little as possible. The 
purpose of including both the C and the C++ versions of the 
line-drawing program in Figure 7 is to illustrate how closely 
aligned the two versions can be, even when one language supports 
the object-oriented paradigm and one does not. In the C version, 
the data structures appear as abstract data types (ADTs), which 
are implemented in C as pointers to opaque structures. All 
operations on these structures are implemented as functions that 
take the ADT pointer as the first argument. The C++ version, by 
contrast, uses traditional objects and method calls. These 
differences, however, are decidedly in the accidental rather than 
the essential category. The similarity of the graphics model makes 
the process of translating an application from one language to 
another almost entirely a mechanical process. 

/* 
 * File: DrawLines.c 
 * ----------------- 
 * This program allows users to draw lines on the 
 * window by clicking and dragging with the mouse. 
 */ 
 

#include "cslib.h" 
#include "gevents.h" 
#include "gobjects.h" 
#include "gwindow.h" 
 

int main() { 
   GWindow gw = newGWindow(600, 400); 
   GLine line; 
   while (true) { 
      GMouseEvent e = waitForEvent(MOUSE_EVENT); 
      EventType type = getEventType(e); 
      if (type == MOUSE_PRESSED) { 
         line = newGLine(getX(e), getY(e), 
                         getX(e), getY(e)); 
         add(gw, line); 
      } else if (type == MOUSE_DRAGGED) { 
         setEndPoint(line, getX(e), getY(e)); 
      } 
   } 
} 

/* 
 * File: DrawLines.cpp 
 * ------------------- 
 * This program allows users to draw lines on the 
 * window by clicking and dragging with the mouse. 
 */ 
 

#include "gevents.h" 
#include "gobjects.h" 
#include "gwindow.h" 
using namespace std; 
 

int main() { 
   GWindow gw(600, 400); 
   GLine *line; 
   while (true) { 
      GMouseEvent e = waitForEvent(MOUSE_EVENT); 
      EventType type = e.getEventType(); 
      if (type == MOUSE_PRESSED) { 
         line = new GLine(e.getX(), e.getY(), 
                          e.getX(), e.getY()); 
         gw.add(line); 
      } else if (type == MOUSE_DRAGGED) { 
         line->setEndPoint(e.getX(), e.getY()); 
      }  
   } 
} 

Figure 7. Programs in C and C++ that let the user draw lines on the window by dragging with the mouse 



8. CONCLUSIONS 
We believe that the portable graphics library has tremendous 
advantages over our earlier strategies for achieving portability. In 
particular, this new approach offers the following benefits: 

(1) Simplified maintenance. Responsibility for ensuring that 
rendering works on all platforms no longer falls on the developers 
and adopters. As Java’s new owner, the Oracle corporation makes 
sure that Java runs on each new platform and that it keeps abreast 
of changes in the native APIs. 

(2) Streamlined migration paths to new languages and platforms. 
Good assignments take a long time to develop. One of the biggest 
impediments to adopting new languages is the cost of translating 
existing assignments to a new paradigm. Having a common model 
implemented for a variety of source languages reduces that barrier 
considerably. 

(3) Enhanced opportunities to analyze trace data. The text 
stream that passes between the client code and the back-end 
process provides useful information that has not before been 
available in the past. Applying machine learning techniques to 
these traces may make it possible to provide students with 
automatic advice as to whether they are on the right track. 

(4) Substantial possibilities for interesting extensions. The 
strategy of combining a thin client with an interprocess pipe has 
many applications beyond graphics. In its current implementation, 
the portable library already includes support for interactors 
(buttons, sliders, text fields, and the like) and dialog boxes for 
selecting files. Java implements these features, and it is easy to 
pass those capabilities along through the interprocess pipe. We are 
considering further extensions along these same lines including 
methods for reading network data and for manipulating sound and 
video. 
We hope that other educators consider adopting this model in their 
own courses and that they join with us to develop its potential. We 
welcome your comments and suggestions. 
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