Eric Roberts
CS 106A

Handout #33
February 3, 2010

String Processing Slides

String Processing

Eric Roberts
CS 106A
February 3, 2010

Cryptography at Bletchley Park

| have twice taught courses at
Stanford in Oxford when we have
visited Bletchley Park, which served
as the headquarters for the British
decryption effort during the war.

The museum at Bletchley contains
working models of the decryption
machines designed by Alan Turing,
just as they appeared in the Enigma
trailer.

The first time around, we were lucky
to have Jean Valentine, who worked
in Hut 6 during the war, as our host
at Bletchley.

Stanford’s Contribution to Cryptography

« Stanford has always been in the forefront
of cryptographic research. In 1976,
Professor of Electrical Engineering Martin
Hellman and his students Ralph Merkle
and Whitfield Diffie developed public-key
cryptography, which revolutionized the
process of coding messages.

¢ Although Hellman, Diffie, and Merkle
were granted a U.S. patent for their work,
it turns out that much the same technology
was invented in England by the successor
to the Government Code and Cipher
School at Bletchley Park. That work,
however, remained classified until the
1990s and had no commercial impact.

Merkle/Hellman/Diffie in 1976

Encryption

ABCDEFGHI JKLMNOPQRSTUVWXY Z
LZDRXPEAJYBQWFV IHCTGNOMKSU

Twas brillig, and the slithy toves, Twas brillig, and the slithy toves,
Did gyre and gimble in the wabe: Did gyre and gimble in the wabe:
Al mimsy were the borogoves, Al mimsy were the borogoves,
And the mome raths outgrabe. And the mome raths outgrabe.

Creating a Caesar Cipher

public void runQ {

private String encodeCaesarCipher(String str, int key) {
if (key < 0) key = 26 - (-key % 26);
String result = H
for (int i = 0; i < str.lengthQ); i++) {
char ch = str.charAt(i);
if (Character.isUpperCase(ch)) {
ch = (char) (A" + (ch - "A" + key) % 26);

3
result += ch;

3 - ch i result str key
} retarn resules [21] [woEeruzreNe | [aasserwocky |[3]

806
This program implements a Caesar cipher.
Character positions to shift: 3

Enter a message: JABBERWOCKY
Encoded message: MDEEHUZRFNB

Exercise: Letter Substitution Cipher

One of the simplest types of codes is a letter-substitution
cipher, in which each letter in the original message is replaced
by some different letter in the coded version of that message.
In this type of cipher, the key is often presented as a sequence
of 26 letters that shows how each of the letters in the standard
alphabet are mapped into their enciphered counterparts:

ABCDE

GHIJKLMNOPQRSTUVWXYZ
| |
LZDRX

FLELErrrr il
YBQWFV IHCTGNOMKSU

FGH I
I |
PEAJ

I
EA

ann LetterSubstitutionCipher |
Letter-substitution cipher.

Enter 26-letter key: LZDRXPEAJYBQWFVIHCTGNOWKSU
Plaintext: LEWIS CARROLL

Ciphertext: QXMJT DLCCVQQ

A Case Study in String Processing

Section 8.5 works through the design and implementation of a
program to convert a sentence from English to Pig Latin. At least
for this dialect, the Pig Latin version of a word is formed by
applying the following rules:

1. If the word begins with a consonant, you form the Pig Latin version
by moving the initial consonant string to the end of the word and
then adding the suffix ay, as follows:

scram — amscray

2. If the word begins with a vowel, you form the Pig Latin version
simply by adding the suffix way, like this:

apple — appleway

Starting at the Top

< In accordance with the principle of top-down design, it makes
sense to start with the run method, which has the following
pseudocode form:

public void runQ) {
Tell the user what the program does.
Ask the user for a line of text.
Translate the line into Pig Latin and print it on the console.

¥

« This pseudocode is easy to translate to Java, as long as you
are willing to include calls to methods you have not yet
written:

public void run() {
printIn("This program translates a line
string line = readLine(“Enter a line: "
printin(translateLine(line));

into Pig Latin.");

Designing translateLine

¢ The translateLine method must divide the input line into
words, translate each word, and then reassemble those words.

« Although it is not hard to write code that divides a string into
words, it is easier still to make use of existing facilities in the
Java library to perform this task. One strategy is to use the
stringTokenizer class in the java.util package, which
divides a string into independent units called tokens. The
client then reads these tokens one at a time. The set of tokens
delivered by the tokenizer is called the token stream.

« The precise definition of what constitutes a token depends on
the application. For the Pig Latin problem, tokens are either
words or the characters that separate words, which are called
delimiters. The application cannot work with the words
alone, because the delimiter characters are necessary to
ensure that the words don’t run together in the output.

The StringTokenizer Class

* The constructor for the StringTokenizer class takes three
arguments, where the last two are optional:

— A string indicating the source of the tokens.

— A string which specifies the delimiter characters to use. By
default, the delimiter characters are set to the whitespace
characters.

— A flag indicating whether the tokenizer should return delimiters
as part of the token stream. By default, a StringTokenizer
ignores the delimiters.

« Once you have created a StringTokenizer, you use it by
setting up a loop with the following general form:

while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
code to process the token

The translateLine Method

« The existence of the StringTokenizer class makes it easy to
code the translateLine method, which looks like this:

private String translateLine(String line) {
String result = ""';
StringTokenizer tokenizer =
new StringTokenizer(line, DELIMITERS, true);
while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
if (isWord(token)) {
token = translateWord(token);

result += token;

return result;

¥

« The DELIMITERS constant is a string containing all the legal
punctuation marks to ensure that they aren’t combined with
the words.

The translateWord Method

¢ The translateWord method consists of the rules for forming
Pig Latin words, translated into Java:

private String translateWord(String word) {
int vp = findFirstVowel(word);
if (vp ==-1) {
return word;
} else if (vp == 0) {
return word + “way";

} else {
String word.substring(0, vp);
String word.substring(vp);

return tail + head + "ay";

¥

¥

« The remaining methods (iswWord and findFirstvowel) are
both straightforward. The simulation on the following slide
simply assumes that these methods work as intended.

The PigLatin Program

public void runQ {

rivate String translateLine(String line) {

private String translateWord(String word) {
int vp = findFirstvowel(word);
if (vp==-1){
return word;
Yelse if (vp==0) {
return word + “way";

return tail

} else {
String head = word.substring(0, vp);
String tail = word.substring(vp);
+ head + "ay";

¥

} vp head tail

word

[

1 H 1 H atin

H latin

866 PigLatin
This program translates a line into Pig Latin.
Enter a line: this is pig latin.

isthay isway igpay atinlay.

