
Eric Roberts Handout #33
CS 106A February 3, 2010

String Processing Slides

String Processing

Eric Roberts
CS 106A

February 3, 2010

Enigma

Cryptography at Bletchley Park

I have twice taught courses at
Stanford in Oxford when we have
visited Bletchley Park, which served
as the headquarters for the British
decryption effort during the war.

The museum at Bletchley contains
working models of the decryption
machines designed by Alan Turing,
just as they appeared in the Enigma
trailer.

The first time around, we were lucky
to have Jean Valentine, who worked
in Hut 6 during the war, as our host
at Bletchley.

Stanford’s Contribution to Cryptography

• Stanford has always been in the forefront
of cryptographic research. In 1976,
Professor of Electrical Engineering Martin
Hellman and his students Ralph Merkle
and Whitfield Diffie developed public-key
cryptography, which revolutionized the
process of coding messages.

• Although Hellman, Diffie, and Merkle
were granted a U.S. patent for their work,
it turns out that much the same technology
was invented in England by the successor
to the Government Code and Cipher
School at Bletchley Park. That work,
however, remained classified until the
1990s and had no commercial impact.

Merkle/Hellman/Diffie in 1976

Encryption

Twas brillig, and the slithy toves,

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

Twas brillig, and the slithy toves,

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

A B C D E F G H I J K L M N O P QR S T U V W X Y Z

L Z D R X P E A J Y B QW F V I H C T G N O M K S U

Creating a Caesar Cipher
public void run() {

CaesarCipher

This program implements a Caesar cipher.

Character positions to shift: 3

Enter a message: JABBERWOCKY

Encoded message: MDEEHUZRFNB

private String encodeCaesarCipher(String str, int key) {

 if (key < 0) key = 26 - (-key % 26);

 String result = "";

 for (int i = 0; i < str.length(); i++) {

 char ch = str.charAt(i);

 if (Character.isUpperCase(ch)) {

 ch = (char) ('A' + (ch - 'A' + key) % 26);

 }

 result += ch;

 }

 return result;

}

str

JABBERWOCKY

key

3

i resultch

MDEEHUZRFNB11'B'

– 2 –

Exercise: Letter Substitution Cipher

One of the simplest types of codes is a letter-substitution
cipher, in which each letter in the original message is replaced
by some different letter in the coded version of that message.
In this type of cipher, the key is often presented as a sequence
of 26 letters that shows how each of the letters in the standard
alphabet are mapped into their enciphered counterparts:

LetterSubstitutionCipher

Letter-substitution cipher.

Enter 26-letter key: LZDRXPEAJYBQWFVIHCTGNOMKSU

Plaintext: LEWIS CARROLL

Ciphertext: QXMJT DLCCVQQ

A B C D E F GH I J K L MN O P Q R S T U VWX Y Z

L Z D R X P E A J Y B QW F V I H C T GN OMK S U
| |

A Case Study in String Processing

Section 8.5 works through the design and implementation of a
program to convert a sentence from English to Pig Latin. At least
for this dialect, the Pig Latin version of a word is formed by
applying the following rules:

If the word begins with a consonant, you form the Pig Latin version
by moving the initial consonant string to the end of the word and
then adding the suffix ay, as follows:

1.

scram scrayam

If the word begins with a vowel, you form the Pig Latin version
simply by adding the suffix way, like this:

2.

apple appleway

Starting at the Top

public void run() {

 Tell the user what the program does.

 Ask the user for a line of text.

 Translate the line into Pig Latin and print it on the console.

}

• In accordance with the principle of top-down design, it makes
sense to start with the run method, which has the following
pseudocode form:

public void run() {

 println("This program translates a line into Pig Latin.");

 String line = readLine("Enter a line: ");

 println(translateLine(line));

}

• This pseudocode is easy to translate to Java, as long as you
are willing to include calls to methods you have not yet
written:

Designing translateLine

• The translateLine method must divide the input line into
words, translate each word, and then reassemble those words.

• Although it is not hard to write code that divides a string into
words, it is easier still to make use of existing facilities in the
Java library to perform this task. One strategy is to use the
StringTokenizer class in the java.util package, which
divides a string into independent units called tokens. The
client then reads these tokens one at a time. The set of tokens
delivered by the tokenizer is called the token stream.

• The precise definition of what constitutes a token depends on
the application. For the Pig Latin problem, tokens are either
words or the characters that separate words, which are called
delimiters. The application cannot work with the words
alone, because the delimiter characters are necessary to
ensure that the words don’t run together in the output.

The StringTokenizer Class

• The constructor for the StringTokenizer class takes three
arguments, where the last two are optional:

– A string indicating the source of the tokens.

– A string which specifies the delimiter characters to use. By
default, the delimiter characters are set to the whitespace
characters.

– A flag indicating whether the tokenizer should return delimiters
as part of the token stream. By default, a StringTokenizer
ignores the delimiters.

• Once you have created a StringTokenizer, you use it by
setting up a loop with the following general form:

while (tokenizer.hasMoreTokens()) {

 String token = tokenizer.nextToken();

 code to process the token

}

The translateLine Method

private String translateLine(String line) {

 String result = "";

 StringTokenizer tokenizer =

 new StringTokenizer(line, DELIMITERS, true);

 while (tokenizer.hasMoreTokens()) {

 String token = tokenizer.nextToken();

 if (isWord(token)) {

 token = translateWord(token);

 }

 result += token;

 }

 return result;

}

• The existence of the StringTokenizer class makes it easy to
code the translateLine method, which looks like this:

• The DELIMITERS constant is a string containing all the legal
punctuation marks to ensure that they aren’t combined with
the words.

– 3 –

The translateWord Method

private String translateWord(String word) {

 int vp = findFirstVowel(word);

 if (vp == -1) {

 return word;

 } else if (vp == 0) {

 return word + "way";

 } else {

 String head = word.substring(0, vp);

 String tail = word.substring(vp);

 return tail + head + "ay";

 }

}

• The translateWord method consists of the rules for forming
Pig Latin words, translated into Java:

• The remaining methods (isWord and findFirstVowel) are
both straightforward. The simulation on the following slide
simply assumes that these methods work as intended.

The PigLatin Program

public void run() {

 println("This program translates a line into Pig Latin.");

 String line = readLine("Enter a line: ");

 println(translateLine(line));

}

line

this is pig latin.

This program translates a line into Pig Latin.

isthay isway igpay atinlay.

this is pig latin.Enter a line:

PigLatin

private String translateLine(String line) {

 String result = "";

 StringTokenizer tokenizer =

 new StringTokenizer(line, DELIMITERS, true);

 while (tokenizer.hasMoreTokens()) {

 String token = tokenizer.nextToken();

 if (isWord(token)) token = translateWord(token);

 result += token;

 }

 return result;

}

lineresulttoken

tokenizer

this is pig latin.

this is pig latin.thisispiglatin. isthayisthayisthay iswayisthay iswayisthay isway igpayisthay isway igpayisthay isway igpay atinlayisthay isway igpay atinlay.isthayiswayigpayatinlay

this is pig latin.this is pig latin.this is pig latin.this is pig latin.this is pig latin.this is pig latin.this is pig latin.this is pig latin.this is pig latin.

private String translateWord(String word) {

 int vp = findFirstVowel(word);

 if (vp == -1) {

 return word;

 } else if (vp == 0) {

 return word + "way";

 } else {

 String head = word.substring(0, vp);

 String tail = word.substring(vp);

 return tail + head + "ay";

 }

} word

this

tailheadvp

isth2

private String translateWord(String word) {

 int vp = findFirstVowel(word);

 if (vp == -1) {

 return word;

 } else if (vp == 0) {

 return word + "way";

 } else {

 String head = word.substring(0, vp);

 String tail = word.substring(vp);

 return tail + head + "ay";

 }

} word

is

tailheadvp

0

private String translateWord(String word) {

 int vp = findFirstVowel(word);

 if (vp == -1) {

 return word;

 } else if (vp == 0) {

 return word + "way";

 } else {

 String head = word.substring(0, vp);

 String tail = word.substring(vp);

 return tail + head + "ay";

 }

} word

pig

tailheadvp

igp1

private String translateWord(String word) {

 int vp = findFirstVowel(word);

 if (vp == -1) {

 return word;

 } else if (vp == 0) {

 return word + "way";

 } else {

 String head = word.substring(0, vp);

 String tail = word.substring(vp);

 return tail + head + "ay";

 }

} word

latin

tailheadvp

atinl1

