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Abstract
Machine learning inference applications have proliferated
through diverse domains such as healthcare, security, and
analytics. Recent work has proposed inference serving sys-
tems for improving the deployment and scalability of mod-
els. To improve resource utilization, multiple models can
be co-located on the same backend machine. However, co-
location can cause latency degradation due to interference
and can subsequently violate latency requirements. Although
interference-aware schedulers for general workloads have
been introduced, they do not scale appropriately to hetero-
geneous inference serving systems where the number of co-
location configurations grows exponentially with the num-
ber of models and machine types.

This paper proposes an interference-aware scheduler for
heterogeneous inference serving systems, reducing the la-
tency degradation from co-location interference. We charac-
terize the challenges in predicting the impact of co-location
interference on inference latency (e.g., varying latency degra-
dation across machine types), and identify properties of mod-
els and hardware that should be considered during schedul-
ing. We then propose a unified prediction model that esti-
mates an inference model’s latency degradation during co-
location, and develop an interference-aware scheduler that
leverages this predictor. Our preliminary results show that
our interference-aware scheduler achieves 2× lower latency
degradation than a commonly used least-loaded scheduler.
We also discuss future research directions for interference-
aware schedulers for inference serving systems.

CCS Concepts: • Computer systems organization; •
Computing methodologies → Machine learning;
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1 Introduction
The prevalence of applications using machine learning infer-
ence is high and is expected to increase. Applications across
various domains, such as healthcare [16], security [22], and
analytics [17, 27, 33] are now relying on the inference pro-
cess of the machine learning lifecycle (which accounts for
over 90% of infrastructure cost on AWS [5]). Recently, several
inference serving systems have been proposed to meet the
growing demand for machine learning inference. These sys-
tems provide unified APIs for selecting and querying models
across heterogeneous backends [10], automate resource scal-
ing [32], configure model batch size based on application
latency Service-Level Objectives (SLOs) [4, 15], and even
select which model is most cost-effective for meeting appli-
cation requirements [26].
To improve resource utilization and reduce cost, infer-

ence serving systems co-locate models on backend machines.
To choose a backend machine for deploying new models, a
common scheduling policy for existing systems is to choose
the least-loaded worker (i.e., with lowest resource utiliza-
tion). The least-loaded scheduler is heavily studied in the
context of VM task scheduling and is a popular baseline in
state-of-the-art task scheduling studies [11, 13, 29]. While
the least-loaded scheduling policy has low overhead, model
co-location can cause inference latency degradation due to
interference, which can result in SLO violations. Further,
the least-loaded policy is indifferent to varying inference
latency across machine types, and thus least-loaded place-
ment is likely to result in a sub-optimal inference latency.
Interference-aware schedulers that leverage techniques such
as collaborative filtering [11, 12, 25] and Bayesian Optimiza-
tion [2, 24] have been previously proposed; however, they
focus on long-running or static workloads, require exten-
sive workload profiling, or cannot be used in heterogeneous
execution environments.
To quantify the limitations of the least-loaded scheduler

in inference serving, we performed 100 simulations in which
a least-loaded scheduler places three models on two backend
workers. We collected the latency degradation of each model



VM Type Options Least-Loaded Min
{V100, V100} 2.57 0.96

{V100, 32vCPU} 8.14 3.22
{V100, 16vCPU} 11.51 4.34

Table 1. Cumulative latency degradation (seconds) from 100
random inference workloads. V100 is an Nvidia GPU. The least-
loaded scheduler is over 2× worse than an oracular minimum.

– the difference between the inference latency of serving
a request during co-location and the inference latency of
serving a request in isolation – and recorded the cumulative
latency degradation over all simulations. Table 1 shows the
cumulative latency degradation using the least-loaded sched-
uler compared to an oracular minimum that places models
according to the lowest possible co-location latency degrada-
tion. By not considering the co-location impact on a model’s
inference latency, the least-loaded scheduler is more than
2× worse than the oracular minimum. Furthermore, existing
systems either reactively re-schedule models that are inter-
fered [26], which is often too late to avoid SLO violations, or
do not mitigate interference at all [9, 10, 15].
Ideally, an inference serving system should determine

what models can be safely co-located together on a hard-
ware platform when deploying them to avoid SLO viola-
tions. However, this would require the system to assess how
each model’s latency is affected by being co-located with
one or more models across different machine types. Fur-
thermore, having to measure how co-location affects each
new model is infeasible, especially as the number of models
deployed continues to grow [26]. While there have been sev-
eral prior frameworks and schedulers, such as Quasar [12],
Paragon [11], Mage [25], Clite [24], and CherryPick [2] that
have accounted for the interference effects of co-locating
workloads on cluster machines, they are not suitable for
inference serving systems for the following reasons. First,
they focus on batch and long-running workloads where in-
accurate profiling can be corrected as the application runs.
Inference models typically serve requests on the order of
milliseconds, and thus cannot be live migrated without in-
curring significant latency degradation. Second, they require
substantial amounts of co-location configuration exploration
and profiling. This makes it difficult to explore or profile
an exponentially large number of co-located models regis-
tered for use by the inference serving system. Third, existing
frameworks fix themselves to homogeneous systems and can
only be applied to CPU only systems or GPU only systems.
Thus, an inference serving system’s scheduler should utilize
a data-driven predictor that learns how co-locating model
architectures on different machine types affects their latency.

In this paper, we discuss the challenges of co-locating in-
ference models in an inference serving system, where models
are deployed and scaled on heterogeneous machine types.

Figure 1. Utilization versus time (ms) for DenseNet201 (left)
and VGG16 (right). Each curve shows the fluctuation in hard-
ware utilization through inference execution, and illustrates
the challenge in predicting co-location inference latency.

We propose an interference-aware scheduler that proac-
tively considers the impact of co-location interference on
latency to minimize latency degradation and reduce SLO
violations. When deploying models to serve queries, the
interference-aware scheduler predicts the latency degrada-
tion of co-location configurations, and selects the backend
worker that minimizes the total predicted latency degrada-
tion from interference. To address the exponentially large
number of possible co-location configurations, we propose
a prediction model that is capable of exploiting the simi-
larity of co-location configurations across inference model
attributes and machine types to maximize prediction ac-
curacy. Our initial evaluation on 14 models across 7 ma-
chine types on Google Cloud Platform [14] shows that our
interference-aware scheduler reduces latency degradation
by 2.6× compared to the least-loaded scheduler approach
used by existing systems. We also discuss open research
directions for scheduling in inference serving systems.

2 Motivation
In this section, we describe the challenges of developing an
interference-aware scheduler for inference serving systems,
and discuss why existing solutions are insufficient.

2.1 Challenges
Variations in hardware utilization. While a model

serves an inference request, its hardware utilization can fluc-
tuate throughout its execution. For instance, Figure 1 shows
the utilization for a single request served by DenseNet201
and VGG16 on a 16vCPUVM. In both cases, the earlier phases
of the execution exhibit higher utilization than the conclud-
ing layers since both models employ parallel convolution op-
erations in the beginning of the inference execution followed
by sequential matrix multiply operations in the concluding
fully connected layers. This illustrates the complexity of the
interaction between models and the hardware, and high-
lights the challenge of predicting how co-location will affect
inference latency.

Latency variations from co-locating models across
different machine types. As observed by INFaaS [26], the
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(a) 24vCPU VM (b) V100 GPU
Figure 2. Slowdown of DenseNet201 during co-location against isolation on a 24vCPU VM (left) and V100 GPU (right). Slowdown is
the ratio of inference latency during co-location versus run in isolation. This result exemplifies the high variance of latency degradation
across co-located models and machine types.

amount of latency degradation due to co-location inter-
ference varies based on the model and its underlying ma-
chine type. For example, Figure 2 shows the slowdown for
DenseNet201 when co-located with different model archi-
tectures on a 24vCPU VM and on an NVIDIA V100 GPU.
Slowdown is the ratio of inference latency during co-location
versus isolation. We observe that the slowdown differs across
models: co-location with models such as NASNetLarge can
be as high as 1.8× while others such as ResNet101 are less
than 1.2×. This variation is caused by the architecture and
resource requirements of different models. For instance, the
architecture of NASNetLarge is highly parallel and con-
tains more weights compared to the other 13 models, and
thus highly demands compute and memory resources. Thus,
NASNetLarge causes higher resource contention during co-
location. Furthermore, the slowdown varies on different ma-
chine types. For instance, DenseNet201 caused high slow-
down on V100 but low slowdown on a 24vCPUVM. However,
for a few models, such as NASNetLarge, the slowdown is
similar on both machine types.

More than twomodels may co-locate on the samemachine.
We refer to the number of co-located inference models on
a single machine as the degree of co-location (e.g., two in
Figure 2). We have also observed the pattern between the co-
location degree and the latency degradation varies based on
the underlying hardware andmodels, whichmakes analyzing
latency degradation more difficult. This further motivates
the need for an efficient and accurate latency degradation
predictor as the degree of co-location varies.

2.2 Related Work and Existing Frameworks
The fluctuating hardware utilization, and the latency degra-
dation caused by co-location across different models and ma-
chine types makes predicting latency degradation difficult.
Existing work in interference-aware scheduling does not ad-
dress these complexities. Bayesian Optimization approaches

such as CherryPick [2] and Clite [24] automatically find the
best static resource partitioning for general workloads on
CPUs. However, static resource partitioning does not fit well
for inference serving, since resource demand constantly fluc-
tuates as inference queries are served. Inference execution
is likely to either, on average, under-utilize or over-utilize a
static resource partitioning due to fluctuation of utilization.
Quasar [12], Paragon [11], and Mage [25] use a collaborative
filtering-based technique for interference-aware scheduling
on CPU servers. These frameworks focus on periodic and
long-running workloads. Thus, their co-location configura-
tion can be adjusted if needed. In inference serving, models
are frequently loaded and unloaded based on the input query
rate and application requirements. This makes it difficult for
co-location decisions to be revisited and adjusted.
The frameworks discussed above require profiling co-

location configurations on every worker machine type in
the system. Given that inference serving systems often
have thousands of inference models, and the number of co-
location configurations is exponentially large, the profiling
requirement of these systems is likely computationally in-
feasible.
Xu et al. proposed an interference-aware framework for

inference workloads on GPU servers [31]. However, this
framework is limited to models running on GPUs, and only
considers pairs of models being co-located.

3 Interference-Aware Scheduling
Our proposed interference-aware scheduler predicts the la-
tency degradation of co-locating models, and decides when
it is safe to do so without violating application latency re-
quirements. The interference-aware scheduler uses a pre-
dictor that estimates the latency degradation of a model
co-located with one or more of the models that are running
on each backend worker machine. Given the complexities
of fluctuating hardware utilization and varying co-locating
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Figure 3. Diagram of separate predictors on each machine
type.

behaviors across machine types and models, there is no clear
mapping between metrics of the inference models and the
co-location latency degradation. Thus, we propose using a
machine learning model that learns the mapping between
the characteristics of inference models and the co-location
latency degradation.

3.1 Separate Predictors
To predict latency degradation, one approach to is to train
multiple predictors for different co-location degrees and ma-
chine types (shown in Figure 3). Each predictor is dedicated
to predicting the latency degradation on a particular machine
type and captures a different architecture’s behavior. The
separation of tasks allows for each predictor to be developed
independently from each other, which makes this approach
amenable to highly varying co-location latency degradation
across machine types. However, the approach also has a
few disadvantages. Given a maximum co-location degree
𝐶 and number of unique machines types 𝑀 , the approach
requires training and maintaining𝐶×𝑀 latency degradation
predictors. Further, the separate predictors cannot exploit
similarity across co-location configurations. As we will show,
the co-location behavior of certain models are similar for
some machine types, such as CPUs with different number
of cores or GPUs. Given the large space of possible model
co-location configurations, exploiting similarity across them
for predictions is important to train an accurate predictor
for minimizing the amount of profiling needed.

3.2 Unified Predictor
To address the inability of separate predictors to exploit sim-
ilarity across machines types, we propose a unified predictor
that can identify similarities across model co-location con-
figurations (i.e., similarity of co-location behavior between
models and machine types). Figure 4 illustrates the unified
prediction approach. The unified predictor’s inputs are (a)
each inference model’s metrics, and (b) a machine type en-
coding.

Advantages over separate predictors. The unified pre-
dictor has several advantages over separate predictors. First,
the unified predictor leverages similarity across machine
types for accurate prediction. For instance, models co-located
on a 8vCPU VM may exhibit similar co-location behavior

Figure 4. Diagram of a unified predictor across machine types.

Figure 5. Learned 2D encodings of machine types.
8/16/32vCPU VMs have similar encodings, while T4/P4/P100
GPU VMs have similar encodings.

running on a 32vCPU VM; a unified predictor trained on
both 8vCPU VM and 32vCPU VM data can exploit this simi-
larity to improve accuracy. Second, the unified predictor is
capable of using profiled model metrics on one machine type
to predict on another machine type. This enables developing
a latency degradation prediction approach for machine types
that do not have tools for profiling, such as TPUs [18]. Third,
only one unified predictor needs to be trained as opposed to
𝐶𝑀 models in the separate prediction approach.

To show the advantage of the unified approach against the
separate approach, we implemented the separate predictors
and unified predictor using a random forest regressor. Each
prediction approach was trained on an identical 70-30 train-
test split containing co-location latency degradation data
from 8/16/32vCPU VMs and V100/P100/T4/P4 GPUs. The
unified predictor approach achieved a 12.5% lower Mean
Absolute Error (MAE) than the separate predictors method.

Machine type encodings. The unified approach for pre-
dicting model co-location latency degradation requires a
machine type encoding as input to specify the machine type
for the co-location configuration. A simple encoding scheme
is a one-hot encoding for each machine type (used in the
comparison to the separate predictor approach). However,
this approach does not represent the similarity of co-location
behavior across machine types well. For instance, intuitively,
an 8vCPU VM may have similar co-location behavior as a
16vCPU VM. An encoding that captures similarity is likely
to improve the prediction accuracy.
To capture similarity across machine types, we propose

to learn the embedding, as is done with natural language
models. As a prototype, we implemented a neural network
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that learns machine type encoding to predict the similarity
between machine types (based on the pearson correlation
coefficient [7]). Figure 5 shows the results of a learned 2D
encoding. As we expect, the CPU machine type encodings
are closely clustered, and are thus similar. We see a similar
clustering with GPU machine types. These encodings aid
the latency degradation predictor in identifying similarities
of co-location behavior across machine types and improve
prediction accuracy, especially in data-limited settings in
which not much data for a given machine type is available.

To test whether the encodings actually improve prediction
accuracy in situations where profiling on every machine
type is infeasible, we experimented with a situation in which
a latency degradation prediction model is trained without
16vCPU VM data. Table 2 shows the MAE on the test set of a
random forest regression model that is trained without any
16vCPU VM data. We note that using the learned machine
type encodings reduced MAE by 32% compared to the one-
hot encoding approach.

Approach MAE on all machines MAE on 16vCPU VM
One-hot 0.0305 0.1069
Learned 0.0206 0.0432
Table 2.Mean Absolute Error (MAE) on test split for latency
degradation predictor trained without 16vCPU VM data. By
learning the machine type encoding, we reduce the MAE.

Prediction features. To predict the latency degradation
for co-located models, we need to provide the unified predic-
tor with input features that relate to co-location behavior of
the model on each machine type. We use hardware metrics
of models running in isolation on each machine type. These
metrics are outlined in Table 3 for each machine type.

Machine Type Model Metrics
CPU Util., DRAM usage
GPU Util., Global buffer usage,

PCIE read BW, PCIE write BW
Table 3. Hardware metrics used as features for prediction on
CPU and GPU machine types.

When profiling hardware metrics is not possible, our in-
sight is that we can instead profile metrics on a subset of all
machine types in a heterogeneous system. The profiled met-
rics across machine types may be capturing similar informa-
tion (e.g., an inference model in isolation that exhibits high
CPU utilization may also exhibit high GPU utilization). If the
metrics capture the similar information, then we expect that
profiling on a subset of machine types would result in low
loss in prediction accuracy. For instance, we implemented the
unified predictor using a random forest regressor trained on

a 70-30 train-test split trained on co-location latency degra-
dation data on a 8/16/32vCPU VM, and V100/P100/T4/P4
GPUs. First, we trained the model with the input features
as the hardware profiled metrics from both CPU and the
V100. Next, we trained another model with the input fea-
tures as the hardware profiled metrics from only the V100
and excluded the CPU metrics. In Table 4, we observe that
excluding CPU metrics in the input features for the model
increases the MAE on the test set by only 2%. These results
suggest that collecting hardware profiled metrics on a subset
of all machine types in the heterogeneous system is sufficient
for training an accurate latency degradation predictor.

Features CPU & GPU Metrics GPU Metrics Architectural
MAE 0.0146 0.0149 0.0164
Table 4.Mean Absolute Error (MAE) on test split (using 70-30
train-test split) of the unified predictor trained with both CPU
and GPU metrics, with only GPU metrics, and with inference
model architecture features. Profiling on a subset of all machine
types incurs a negligible accuracy loss.

Model architecture features can also be directly used as a
set of features for the predictor. As we noted in Section 2.1,
the architecture’s layout (e.g., number of input layers, hidden
layers, and output layers) has an impact on the utilization,
and the inference latency. Thus, we also evaluated the unified
predictor trained with architectural features of the inference
models. The architectural features are inputted as a list con-
taining an entry for each layer in the model. Each entry
consists of the layer’s operation type (e.g., dense versus con-
volutional) and the number of weights in the layer. As we
see in Table 4, the unified predictor with the architectural
features perform slightly (9%) worse than using just hard-
ware metrics. Further investigation into how to best use
architectural features with the unified predictor is part of
our future work (see Section 5). However, we suspect the dif-
ference in MAE is caused by the high dimensionality of the
architectural approach when comparison to the hardware-
profiled metrics approach, since inference models have tens
to hundreds (or even thousands) of layers.

3.3 Proactive Scheduling
With a proactive scheduler, decisions are quantitatively eval-
uated a-priori, and actions are chosen to optimize the evalu-
ation metric. In inference serving systems, a latency degra-
dation predictor can be used to evaluate model placement
for each query.

We now describe how the co-location latency degradation
predictor is used for interference-aware scheduling. Let 𝜏 𝑗

𝑖

denote the predicted inference latency for inference model 𝑖
running on worker machine 𝑗 . The interference-aware sched-
uler selects an inference model 𝑖 and places the model onto
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a worker machine 𝑗 that minimizes:

𝐶
𝑗

𝑖
= 𝜏

𝑗

𝑖
+

∑
𝑦 ∈Workers

∑
𝑥 ∈Running(𝑦)

𝜏
𝑦
𝑥

For model deployment of a given inference model 𝑣 , the
scheduler places the model 𝑣 on machine 𝑢 which has the
lowest 𝐶𝑢

𝑣 . For each inference model 𝑖 and worker machine
𝑗 , 𝐶 𝑗

𝑖
is pre-computed and stored so that predictions occur

off of the critical path of serving queries and deploying mod-
els. When a new model is loaded or unloaded on a worker
machine 𝑧, for each inference model 𝑖 , 𝐶𝑧

𝑖
is concurrently re-

computed given the new state of the worker machine. This
update to 𝐶𝑧

𝑖
is linear in the number of registered inference

models, and is embarrassingly parallel across each inference
model (i.e., 𝐶𝑧

𝑖
can be computed in parallel).

Scheduler scalability. Since latency degradation predic-
tions for each inference model are computed prior to query
serving, determining the model placement involves finding
the minimum element of a list whose size is equal to the
number of worker machines. Thus, the worst case time com-
plexity to identify the model placement is linear according
to the number of worker machines. In addition, finding the
minimum element in a list is parallelizable, which in the best
case achieves logarithmic time complexity according to the
number of worker machines. The scheduler can also trade off
accuracy for speed by leveraging the power-of-two choice
technique, which exhibits constant time complexity irrespec-
tive of the number of worker machines [23]. Therefore, we
expect the scheduling overhead to remain low even as we
scale from tens to hundreds of worker machines. We also
note that the optimality of scheduling decisions is based on
the accuracy of the latency degradation predictor. Since the
latency degradation prediction performance is independent
of the number of worker machines, we do not expect the op-
timality of scheduling decisions to be impacted when scaling
the number of worker machines.

4 Preliminary Results
Implementation. We implemented the interference-

aware scheduler as a simulation. The simulation framework
is the same used to obtain the results in Table 1. We executed
100 simulations in which the interference-aware scheduler
needed to choose and place three models on two worker
machines. The framework emulates an inference applica-
tion with three independent query sources with fixed accu-
racy constraints at maximum query rate and two worker
machines. We collected the inference latency profiles of 14
pre-trained Keras [20] image recognition models that include
DenseNet, NASNet, VGG, and ResNet architectures. We used
three machine types on Google Cloud Platform [14]: 16vCPU
VM (n1-standard-16), 32vCPU VM (n1-standard-32) and
V100 GPU (n1-standard-12 with V100).

Preliminary results. We now show that an interference-
aware scheduler can improve latency degradation compared
to a least-loaded scheduler. Table 5 shows the total cumula-
tive latency degradation of the same random workload exe-
cuted by the interference-aware scheduler, the least-loaded
scheduler, and the minimum possible latency degradation on
a given system of worker machines (i.e., the oracular sched-
uler). The interference-aware scheduler outperforms the
least-loaded scheduler and achieves more than 2× less cumu-
lative latency degradation. Further, the interference-aware
scheduler with each system of worker machines close to the
minimum possible latency degradation. The interference-
aware scheduler exhibits an advantage over the least-loaded
approach since it is able to reduce co-location latency degra-
dation, which is important for avoiding SLO violations.

In future work, we plan to evaluate the interference-aware
scheduler on an inference serving system with tens to hun-
dreds of diverse worker machines. However, since the la-
tency degradation prediction accuracy is independent of the
number of workers, we expect our preliminary results to con-
tinue outperforming the baselines as the number of worker
machines grows.

VM Type Options Least-Loaded Inter-Aware Min
{V100, V100} 2.57 1.51 0.96

{V100, 32vCPU} 8.14 4.11 3.22
{V100, 16vCPU} 11.51 4.49 4.34

Table 5. Cumulative latency degradation (in seconds) from
100 random inference workloads. Interference-aware sched-
uler nearly matches the oracular minimum, and has latency
degradation more than 2× lower than least-loaded scheduler.

5 Future Work and Research Directions
Active learning for predictor training. Developing a

co-location latency degradation predictor requires collecting
training data by profiling the different co-location configu-
rations. The exponentially-large model co-location configu-
ration space makes it infeasible to profile all possible config-
urations. Thus, selecting which configurations to profile is
important to both minimize training time and maximize ac-
curacy. However, selecting which configurations to profile is
non-trivial. Figure 6 shows the expected MAE of the unified
predictor on a 16vCPU VM given 14 unique CNNs against
the size of the training set when randomly sampling training
examples over 2000 simulations. The red curve shows the
average performance of randomly sampling training data,
while the blue curve shows the minimum MAE observed
over 2000 simulations. The blue curve shows that the pre-
dictor benefits from strategically selecting which samples to
profile and train with.
To strategically select which samples to use for training

the predictor, we plan to explore active learning algorithms.
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Figure 6. Expected Mean Absolute Error (MAE) when train-
ing the co-location latency degradation predictor. Random ran-
domly samples training inputs, while Observed Min. is the
observed minimum MAE.

These algorithms identify a subset of the space that can be
profiled in a tractable amount of time to maximizes predic-
tion accuracy [6]. Active learning methods have shown to
perform better than random sampling [28], which can help in
developing accurate latency degradation predictors without
having to exhaustively profile all co-location configurations.

Few-shot transfer learning. Inference serving environ-
ments continue to become more complex as the number
of machine types, models, hardware platforms, and compil-
ers [1, 8] or graph optimizers [3] continue to increase. These
factors make it difficult to maintain accurate latency degra-
dation predictors, which will need to be frequently retrained,
each time with a growing number of data points. We plan
to explore whether few-shot transfer learning can be lever-
aged for quickly adapting our proposed predictor to support
new hardware platforms and models (including optimized
versions of models).

Extensibility to co-location prediction for power.
When deploying models, especially at scale, providers typi-
cally want to minimize power consumption. We would like
to explore whether our unified predictor can be extended to
also predicting the power dissipation of inference models
during co-location. Given some characteristics of co-located
inference model and a machine type encoding, it may be
possible to train the predictor to estimate the power dissi-
pation of co-located inference models on a worker machine.
The challenge lies in determining whether our proposed ma-
chine type encodings and model metrics are sufficient for
predicting power consumption, or whether we would need
to extract further metrics from the underlying hardware.

Clear-box architectural features for predicting co-
location latency. Our initial results using clear-box archi-
tectural features (e.g., output dimension of each layer and
layer types) show that the unified predictor exhibits slightly
higher MAE than if trained on the hardware-profiled met-
rics. However, there are other architectural aspects of the

inference models which may be indicative of co-location be-
havior, such as layer connectivity, that we plan to explore in
future work. For instance, prior studies have shown success
in predicting the inference latency during isolation on TPUs
with architectural features of the inference models [19].

Reinforcement learning for scheduling. Another re-
search direction is to investigate Reinforcement Learning
(RL) approaches for scheduling. RL planning methods are
guided by regret, which is a quantity that measures how
undesirable the effect of an action is at a certain state. An
RL planning algorithm chooses actions that minimizes esti-
mates of future regret. Interference-aware scheduling can be
framed as a planning problem, and its regret can be defined
as the cumulative inference latency overhead. However, accu-
rately estimating future regret is challenging since the future
query workload is unpredictable. Decima [21] is an example
of a scheduler that uses RL for Spark jobs. However, Dec-
ima is likely not suitable for inference serving as Spark jobs
tend to be long running and do not run on heterogeneous
hardware platforms.
The interference-aware scheduling problem can also be

framed as a contextual multi-armed bandit. The classic multi-
armed bandit problem is introduced as a slot machine prob-
lem where there are 𝑛 arms each associated with a proba-
bility of success [30]. Systems such as Clipper [10] use the
multi-armed bandit approach for model selection to pro-
vide more accurate and robust predictions. In the context
of interference-aware scheduling, the arms represent the
worker machines of the system where the scheduler must
choose which worker machine to place an inference model.
This approach frames interference-aware scheduling as an
end-to-end prediction task, which is likely to exhibit fast
model deployment. However, end-to-end prediction tasks
often require orders of magnitude more training data.

Accurately modeling a future workload may improve fea-
sibility of RL planning and multi-armed bandit methods for
interference-aware scheduling.

6 Conclusion
We proposed a interference-aware scheduler for inference
serving systems. We observed unique characteristics of in-
ference workloads in heterogeneous environments, and pro-
posed an strategy to predict the latency degradation due
to co-locating inference models. We showed that our pre-
diction approach enables exploitation of similarity across
inference model and machine types to achieve more accurate
predictions with less training data. We implemented a simu-
lation framework to prototype our scheduler, and showed
the interference-aware approach achieved up to 2.6× lower
total latency degradation compared to a least-loaded sched-
uler. Finally, we discussed future research directions that will
be key to designing and implementing efficient and accurate
interference-aware schedulers for inference serving systems.
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