
Lazy Event Prediction using Defining Trees and
Schedule Bypass for Out-of-Order PDES

Daniel Mendoza, Zhongqi Cheng, Emad Arasteh, Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine, USA

Abstract—Out-of-order parallel discrete event simulation
(PDES) has been shown to be very effective in speeding up system
design by utilizing parallel processors on multi- and many-core
hosts. As the number of threads in the design model grows larger,
however, the original scheduling approach does not scale. In
this work, we analyze the out-of-order scheduler and identify
a bottleneck with quadratic complexity in event prediction. We
propose a more efficient lazy strategy based on defining trees
and a schedule bypass with O(m log2 m) complexity which shows
sustained and improved performance gains in simulation of
SystemC models with many processes. For models containing
over 1000 processes, experimental results show simulation run
time speedups of up to 90x using lazy event prediction against
the original out-of-order PDES approach.

Index Terms—Discrete event simulation, SystemC

I. INTRODUCTION

As system developers desire to increase the functionality of

their products, the complexity of the design process increases.

Fast and accurate embedded system simulation is important to

aid system developers to make and validate design decisions.

However, simulating complex systems is often time consuming

and can become a bottleneck in the design process. SystemC

[1] is the official IEEE standard for modeling and simulating

embedded systems. The Accellera proof-of-concept simulator

runs simulations with only one active simulation thread at

any time. With the wide-spread availability of multi-core and

many-core hosts, exploitation of thread-level parallelism is an

appealing way to speedup simulation time.

Out-of-Order (OoO) Parallel Discrete Event Simulation

(PDES) [2] for SystemC has been shown to provide significant

speedup against the reference sequential approach. One state-

of-the-art OoO PDES approach [3] utilizes the Recoding

Infrastructure for SystemC (RISC) compiler for static analysis

of data conflicts and event notifications between SystemC

processes. The RISC compiler then passes the analysis results

to an OoO scheduler for dynamic decision making to enable

highly parallel multi-threading.

Algorithm 1 illustrates the original OoO scheduling ap-

proach with event prediction [2]. OOOSCHEDULE exe-

cutes event prediction, event delivery, and process dispatch.

OOOSCHEDULE is then called whenever a process calls WAIT

in order to deliver events or dispatch more threads.

This work has been supported in part by substantial funding from Intel
Corporation for the project titled ”Scaling the Recoding Infrastructure for
Parallel SystemC Simulation.”

In order to run a simulation in OoO fashion, the scheduler

must perform event prediction, which involves predicting the

simulated earliest wake up time of all waiting processes.

Consider a process px that is waiting on an event that has

been notified at time ty by process py . With event prediction,

we determine that px can potentially wake up at time tz where

tz < ty due to a possible event notification from another

process pz . Then the event at ty that wakes up px should

not be triggered yet since px may wake up at an earlier time

than ty . Without event prediction, the OoO scheduler avoids

this situation by only delivering the earliest event notifications

at each OOOSCHEDULE call [4].
Thus with event prediction, the OoO scheduler can accu-

rately perform event delivery early while ensuring that no

event notifications are lost or incorrectly triggered.

Algorithm 1 OoOScheduling

1: function WAIT(p)
2: LOCK(L)
3: WAITING← p
4: OOOSCHEDULE(p)
5: UNLOCK(L)
6: end function

1: function OOOSCHEDULE(p)
2: EVENTPREDICTION()
3: DELIVEREVENTS()
4: DISPATCHTHREADS()
5: HANDLEENDOFSIMULATION()
6: end function

A. Problem Definition
The objective of event prediction is to conservatively predict

the earliest possible wake up time τp of all processes p.

This task can be mapped to a directed graph algorithm

which calculates the minimum distances between all pairs.

The well-known Floyd-Warshall algorithm [5] can complete

this task with O(N3) time complexity. The original OoO

PDES approach uses a modified Floyd-Warshall algorithm to

execute it with O(N2) time complexity. However, the approach

does not maintain any event prediction information between

OOOSCHEDULE calls and requires the all pairs minimum

distances algorithm to be executed every time. As a result,

redundant event prediction information is often recalculated.

This places a heavy limitation on the scalability of speedup

with OoO PDES.
In contrast, we propose a lazy event prediction tech-

nique that only calculates event prediction information when

needed. We introduce the defining tree data structure that

allows event prediction information to be maintained between

OOOSCHEDULE calls and thus avoids redundant operations.

In order to increase scalability, we present an OoO PDES

scheduling algorithm that is effectively O(m log2 m), where

m ≤ N and m is often significantly less than N .

885978-3-9819263-4-7/DATE20/ c©2020 EDAA



Fig. 1 shows a simple demonstration model. A manager

sends data to w workers waiting on event e and then notifies e
to wake up all w workers (in the same delta cycle) where each

worker spends a total of tw time executing its total workload.

The sequential run time of the model’s simulation is effectively

α+ tw ∗ w, where α denotes the time spent in the scheduler.
OoO PDES is very effective in the simulation of the model

in Fig. 1 as all w workers can safely execute in parallel.

With unlimited cores, the theoretical run time of the model’s

simulation with the OoO PDES scheduler is β+tw where β is

the time spent in the OoO scheduler. β has a time complexity

of O(w2) with the original OoO scheduler since w ≈ N . If

the parallel work done by the workers is the dominating factor

of the simulation run time, then the speedup of OoO against

sequential simulation is tw∗w
tw

= w.
However, w may be large such that β (which grows

quadratic with w) becomes the dominating factor in the

run time. In this case, the theoretical speedup is effectively
tw∗w
w2∗c = tw

w∗c where c represents a constant unit of time spent

in OOOSCHEDULE. When w ∗ c > tw, speedup is less than 1.

In other words, simulation actually slows down.
In this paper, we propose a novel lazy event prediction

approach based on defining trees and a scheduling bypass strat-

egy that reduces the effective time complexity of scheduling

to O(m log2 m), where m ≤ w and m is often significantly

less than w. This enables sustained and improved speedup

with OoO PDES against standard sequential simulation and

the simulation of Fig. 1 becomes more scalable with a large

number of workers. In the worst case, our new lazy event

prediction strategy is w/ log2(w) times faster than the OoO

approach.

Fig. 1: Example model with 1 manager and w workers

B. Related Work

PDES was first proposed in [6] and then OoO PDES was

introduced in [2] to further decrease simulation run time. [4]

and [7] proposed event prediction for OoO thread dispatch and

event delivery respectively, and is the state-of-the-art approach

which we use as comparison to our new OoO PDES strategy

with lazy event prediction.
Other techniques to speedup system simulation have been

proposed. In standard sequential simulation, time decoupling

has been implemented which allows processes to execute in

an unsynchronized fashion for reduced context switches [8].

However, time decoupling results in lower accuracy of the

simulation [8]. Our OoO PDES strategy does not suffer from

any loss of simulation accuracy. Furthermore, [9], [10], and

[11] proposed techniques to enable parallel multi-threading but

each require developers to manually translate the sequential

design into a parallel design. In contrast, our approach supports

an automatic source transformation framework that does not

require any manual manipulation from the developers.

II. DEFINING TREES

In original OoO PDES [2], [7], event prediction out of

all scheduling tasks has the highest order time complexity of

O(N2) where N is the number of processes in the simulation.

In this section, we outline how we can effectively reduce this

time complexity to O(m log2 m), where m ≤ N .
Our newly proposed defining tree data structure keeps track

of which processes determine the earliest possible wake up

time τ of other processes. As an example, Fig. 2 illustrates

the 4 different defining trees each represented by a unique

color on top of the existing process graph of a model. Each

vertex in the graph represents a process p with a corresponding

τp and at any time p must be in a defining tree. All defining

trees in the simulation make a defining forest. A directed edge1

indicates that a process px may wake up process py in 1δ from

its current τpx . For instance, vertex A represents a process

whose τA is 1δ and defines the τD and τC of vertices D
and C where τD = τC = 2δ. Since vertex A defines the τD
and τC , vertices A, D, and C are part of the same defining

tree. Furthermore, vertex G has τG = 3δ and is defined by

vertex D and thus vertex G is also part of the same defining

tree. Vertex E is in the defining tree with the root B since

B provides the minimum τE = 2δ. Furthermore, vertex K
represents a process that waits on an event notified by itself,

and thus K is the root of its own defining tree.

Fig. 2: Example of defining tree data structure.

A. Algorithm Definition

Algorithm 2 formally defines our proposed approach for

OoO PDES lazy event prediction. In line 1, we introduce a

set of weighted vertices V that represents the processes in the

simulation and the weights represent the τ of the processes.

1Without loss of generality, we assume all event notifications carry a delay
of a single delta cycle.

886 Design, Automation And Test in Europe (DATE 2020)



In line 2, we introduce a set of directed weighted edges E that

represent that px can wake up vertex py by event notification.

The weights indicate the notification delay.

Algorithm 2 Lazy Event Prediction with Defining Trees

1: V = {p0, p1, p2, ...}
2: E = {(p0, p1), (p1, p0), (p0, p2), (p2, p0), ...}
3: U← ∅ � Set of new waiting threads
4:
5: function WAIT(p) � U is filled by WAIT

6: LOCK(L)
7: U← U ∪ {p}
8: OOOSCHEDULE(p)
9: UNLOCK(L)

10: end function
11:
12: function EVENTPREDICTION(U)
13: Q← ∅ � Set of updated threads
14: D← ∅

15: RESETDEFININGTREES(U,D)
16: CHECKEVENTNOTIFICATIONS(D)
17: UPDATEDEFININGTREES(D,Q)
18: MULTISOURCEDIJKSTRA(Q)
19: end function
20:
21: function RESETDEFININGTREES(U,D)
22: for all p ∈ U do � all new waiting threads in U inserted to WAITING
23: WAITING← p
24: end for
25: while ∃px ∈ U do � reset all threads in defining tree
26: for all py ∈ getNeighborsDefinedByMe(px) do
27: if ∃notify ∈ getEventofWaitProcess(py) then
28: if getweight(notify) �= getweight(py) then
29: U← U ∪ {py}
30: end if
31: end if
32: end for
33: weight(px) :=∞
34: DefiningNeighbor(px) := ∅

35: D← D ∪ {px}
36: U← U \ {px}
37: end while
38: end function
39: � check all active notifications
40: function CHECKEVENTNOTIFICATIONS(D,Q)
41: for all p ∈ D do
42: if ∃notify ∈ getEventofWaitProcess(p) then
43: if getweight(notify) ≤ getweight(p) then
44: weight(p) := getweight(notify)
45: DefiningNeighbor(p) := ∅

46: Q← Q ∪ {p}
47: end if
48: end if
49: end for
50: end function
51: � update all threads in defining tree and place into Q

52: function UPDATEDEFININGTREES(D,Q)
53: for all (ps, pt) ∈ getIncomingEdges(D) do
54: if getweight(ps, pt) + getweight(ps) < getweight(pt) then
55: weight(pt) := getweight(ps, pt) + getweight(ps)
56: Q← Q ∪ {pt}
57: end if
58: end for
59: end function

For example, Fig. 3 illustrates the execution of lazy event

prediction with defining trees. Step 0 shows the initial state of

the defining forest. Blue vertices indicate that the correspond-

ing process is currently in the running or ready state while

green vertices imply the waiting state. In step 1, vertex A goes

into the waiting state and its τA is set to infinity. Furthermore,

RESETDEFININGTREES is executed and all vertices who were

in the same defining tree as vertex A and were on a directed

path that stemmed from A have their τ set to infinity and

are colored red. In step 2, UPDATEDEFININGTREES and

CHECKEVENTNOTIFICATIONS are called. We check the event

notifications and all incoming edges of each vertex that was

reset in order to set their new τ . Each vertex that is set to a

finite value is colored yellow. Notice after this step all other

vertices in the defining forest still have a valid τ . Thus, we

can simply omit these vertices in the defining forest except the

yellow and red vertices to complete the lazy event prediction

algorithm.
Step 3 is the final step where we call

MULTISOURCEDIJKSTRA. Algorithm 3 formally defines

this procedure as a multi-source variation of Dijkstra’s

algorithm which calculates the remaining τ of the yellow

and red vertices. Other vertices are marked gray since the

algorithm no longer considers those vertices. In step 3a, we

create a min-priority queue of yellow vertices whose τ has

already been computed. In step 3b, we pop the min-priority

queue and check each of its outgoing edges to calculate the

τ of its neighbors. The popped vertex is then marked green

as it has already been visited by the multi-source Dijkstra’s

algorithm. In step 3c, we visit vertices C and A which are

marked green and do not affect any others in the defining

forest. In step 3d, first vertex G is visited which updates

vertex J , and then vertex J is visited and the algorithm

terminates.

Algorithm 3 Multi-Source Variation of Dijkstra’s Algorithm

1: function MULTISOURCEDIJKSTRA(Q)
2: heapify(Q)
3: while ∃p ∈ Q do
4: px := PopPriorityQueue(Q)
5: for all py ∈ getNeighbors(px) do
6: if getweight(px, py) + getweight(px) < getweight(py) then
7: weight(py) := getweight(px, py) + getweight(px)
8: PushPriorityQueue(py,Q)
9: end if

10: end for
11: end while
12: end function

B. Maintaining Defining Trees
Lazy event prediction with defining trees only updates the

τp of a process p if need be. When a process p changes from

waiting to ready or ready to running, τp does not change.

However, τp may change due to process p changing from

running to waiting state. When a process p goes from running

to waiting, τp is set to infinity. If the previously running and

now waiting process p did not notify any events, then all the

processes in the same defining tree as p that are on a path

stemming from p each have their τ reset to infinity as well.

However, in the case where p notifies a process n whose τn
was defined by p at τp, then only τp is reset to infinity.

In addition, p may enter a new segment in the segment

graph [2]. For brevity, we omit the discussion of segments in

this paper (but our implementation supports them). Whenever

a process changes its segment, there are implicit changes to

the weights of the edges in the defining forest. Our current

implementation handles segment changes dynamically with

linear time complexity of the number of processes in the

simulation. Future work can be done to implement a static

analysis approach which would remove the necessity to handle

segment changes dynamically.

Design, Automation And Test in Europe (DATE 2020) 887



Fig. 3: Illustration of EVENTPREDICTION with defining trees

C. Complexity Analysis

In the following discussion, we analyze the complexity of

lazy EVENTPREDICTION with defining trees. Let:

• N be the total number of processes

• D be a defining tree of m vertices

• ED be the number of edges in defining tree D

• Eneighbors(D) be the number of incoming edges of immediate

neighbors of defining tree D

Only when process p in defining tree D calls WAIT can

the m processes in D be updated. In the case where p
calls WAIT, the time complexity of RESETDEFININGTREES

is m since the algorithm executes in breadth first

search fashion via the function getNeighborsDefinedByMe

through D and functions getEventofWaitProcess and getweight

have constant time complexity. Next, the complexity of

CHECKEVENTNOTIFICATIONS is m because the number of

elements in D is at most m and getDefiningNeighbor has

constant time complexity. Furthermore, the complexity of

UPDATEDEFININGTREES is at most ED +Eneighbors(D). Finally,

the time complexity of MULTISOURCEDIJKSTRA is m+ED+
m log2 m because we execute Dijkstra’s algorithm with a bi-

nary heap and the only edges and vertices visited must be in D.

Thus the cumulative time complexity of EVENTPREDICTION

is ED +2Eneighbors(D) +3m+m log2 m. Observe that m log2 m
is the highest order of complexity and thus the effective total

time complexity is O(m log2 m).

In the worst case, m = N , thus the worst case time

complexity is N log2 N . As previously stated, the time com-

plexity of the original OoO PDES event prediction strategy

is O(N2) and thus the worst case complexity is N2. Thus

the worst case speedup of EVENTPREDICTION is effectively
N2

N log2 N = N
log2 N with the lazy approach against the original

strategy .

Notice that the time complexity of EVENTPREDICTION

with defining trees is only affected by edges and vertices of

the defining tree and its neighbors. The lazy algorithm only

visits the minimum subset of vertices that are necessary for

correctly updating the defining forest. The τy of a process py
is only updated if τx of process px that defines τy is reset to

infinity and there is no event notification that wakes up process

py at a time less than or equal to τy .

III. SCHEDULE BYPASS

We observe that the original OoO scheduler is often called

only to produce redundant information that is immediately

overwritten. In this section, we propose a lazy technique to

largely eliminate redundant work by inserting a bypass into

the algorithm.
In OoO PDES, there often is contention for OOOSCHEDULE

where processes are blocked by the kernel lock into the sched-

uler. In the original approach, if there are N processes calling

WAIT, then OOOSCHEDULE is called N times. However,

many of these calls are repeating the same operations. Thus

we propose the schedule bypass strategy to avoid redundant

work. The essential idea is that whenever another process

is attempting to grab the kernel lock L in a call to WAIT,

the process owning the lock skips OOOSCHEDULE because

there exists another process that will call OOOSCHEDULE

immediately thereafter.
Algorithm 4 formally defines our proposed schedule bypass.

Line 1 introduces a new set K of processes currently request-

ing kernel lock L. In line 2, we begin redefining WAIT. Instead

of calling OOOSCHEDULE unconditionally, whenever there is

another process in K, the OOOSCHEDULE call is skipped and

the process goes directly to sleep.

Algorithm 4 Schedule Bypass Strategy

1: K← ∅ � Processes requesting kernel lock L protected by lock K
2: function WAIT(p)
3: LOCK(K)
4: K← K ∪ {p}
5: UNLOCK(K)
6: LOCK(L)
7: WAITING← p
8: LOCK(K)
9: K← K \ {p}

10: K′ ← K

11: UNLOCK(K)
12: if K′ = ∅ then
13: OOOSCHEDULE(p)
14: else
15: SLEEP(p) � implies atomic UNLOCK(L)/LOCK(L)
16: end if
17: UNLOCK(L)
18: end function

Fig. 4 demonstrates the effect of our bypass when there

are N processes simultaneously calling WAIT. The left side

illustrates the existing OoO PDES approach in which there

are N calls to OOOSCHEDULE. The right side shows the

lazy approach with schedule bypass with only two calls to

888 Design, Automation And Test in Europe (DATE 2020)



OOOSCHEDULE. As one can observe, only the first and last

process that call WAIT closely after another actually enter the

scheduler. Note that there is no deadlock possible since we

have no circular locking.

Fig. 4: Illustration of schedule bypass

IV. EXPERIMENTAL RESULTS

We have implemented the defining tree and schedule bypass

optimizations on top of the RISC open-source implementation

[12]. We show experimental results of five different models,

specifically the sequential reference, the original RISC simu-

lator, and our lazy OoO PDES simulator. Execution times are

measured on an Intel Xeon CPU E5-2680 with 16 physical

cores at 2.70GHz with CPU frequency scaling turned off.

A. Manager and Workers SystemC Model

We have implemented the model discussed in Section I

with 500 worker processes. Table I shows the elapsed time,

speedup against the sequential simulation, and the total time

spent in event prediction. Notice that with the original OoO

PAR approach, there is no speedup because event prediction

becomes the dominating factor in the elapsed time. However,

enabling defining trees drastically decreases the time spent for

event prediction to less than 1%. Together, defining tree and

schedule bypass achieve an overall speedup of more than 10x.

TABLE I: 1 Manager and 500 Workers Simulation Results

Scheduler SEQ OoO PAR
Orig. Defining Schedule Both

Trees Bypass
Elapsed Time 84.54s 179.79s 12.82s 128.13s 8.28s

Speedup 1x 0.47x 6.59x 0.66x 10.21x
Pred. Time N/A 160.43s 1.30s 118.19s 0.27s

B. Mandelbrot Renderer

The Mandelbrot Renderer is an existing demo example in

RISC. The model resembles the computations performed in

a graphics rendering pipeline and generates 20 Mandelbrot

frames with varying zoom factor. Fig. 5 shows the speedup

of our lazy scheduling strategy compared to the original

OoO PDES approach. We varied the number of processes

rendering the images from 1 to 1024. Event prediction with

the original OoO PDES increases quadratically with the num-

ber of processes while our new lazy algorithm is at worst

O(N log2 N ). From Fig. 5, we can see that with increasing

N , the lazy scheduler can sustain speedup while the original

OoO scheduler crashes early to below 1x speedup. In the

case of 1024 rendering processes, our proposed scheduler

maintains 4x speedup over the sequential simulation and is

90x faster than the simulation running with the original OoO

PDES scheduler. For lower N , the original and our lazy OoO

PDES perform equally well. This is because for lower N ,

event prediction is not the dominating factor in the elapsed

time for the original OoO PDES approach.

Fig. 5: Speedup of Lazy OoO PDES for Mandelbrot

C. Fibonacci
The Fibonacci model, also provided with RISC, computes

the 45th number in the Fibonacci sequence. The model struc-

ture is a perfect binary tree where a child of a parent computes

fibo(n− 1) and the other child of the same parent computes

fibo(n − 2). We varied the number of leaf nodes Nl in the

binary structure from 2 to 1024. The total number of processes

in the simulation is 2log2 Nl+1 − 1, so Nl = 1024 means

there are 2047 processes. Fig. 6 displays the speedup of our

proposed lazy approach against both the original OoO PDES

strategy and the sequential simulation. We can see that the

lazy event prediction results in drastic speedup against the

original approach while having sustained speedup against the

sequential simulation. For Nl = 1024, our proposed scheduler

maintains 4x speedup over the sequential simulation and is

close to 50x faster than the simulation running with the

original OoO PDES scheduler. For lower values of Nl, again

both OoO PDES approaches perform the same since event

prediction is not a dominating factor in the elapsed time for

the original OoO PDES approach.

Fig. 6: Speedup of Lazy OoO PDES for Fibonacci

D. Network-on-Chip Particle Simulation
The Network-on-Chip (NoC) Particle Simulation model [13]

resembles a realistic embedded system model. Fig. 7 shows

Design, Automation And Test in Europe (DATE 2020) 889



the model structure resembling a 2-D torus in which a tile

represents a process that communicates with its neighbor

tiles via blocking communication. The NOC particle model

simulates the physical behavior of 24,000 particles in vacuum

using NxN tiles. Fig. 8 shows the same speedup plot as

before, with N varied from 1 to 8. We can see again the

same sustained speedup behavior, confirming the benefits of

our lazy approach for models with many processes.

Fig. 7: Illustration of Network-on-Chip Particle Simulation

Fig. 8: Speedup of Lazy OoO PDES for NoC

E. Image Classifier System using GoogleNet DNN

The image classifier SystemC model [14] represents a real-

world device using deep neural networks (DNN) for image

classification. The application’s purpose is to use frames from

video to detect an attack in any of the images. During the

simulation, the camera module sends images to the GoogleNet

DNN [15] for classification. Each node in the DNN is modeled

as a SystemC thread. In total, the model contains 145 threads.

The detector module then receives the image classification

from the DNN and sends a signal to the control terminal if it

detects a threat.
We ran two versions of the classifier system by varying the

number of parallel DNNs. In both cases, our proposed lazy

event prediction shows high speedup against the sequential

simulator and the original OoO PDES approach, as listed in

Table II.

Fig. 9: Illustration of the Image Classifier Model

TABLE II: Classifier System Simulation Results

Lazy
Scheduler SEQ OoO PAR OoO PAR

1 DNN
Elapsed Time 39.04s 12.79 7.37s

Speedup 1x 3.05x 5.30x

2 DNN
Elapsed Time 39.49s 31.63s 6.64s

Speedup 1x 1.25x 5.95x

V. CONCLUSION

In this paper, we proposed a lazy event prediction strategy

for OoO PDES that reduces the time complexity of scheduling

from O(N2) to O(m log2 m) where m is often significantly

less than N . Through the use of defining trees and schedule

bypass, our lazy event prediction approach only updates ver-

tices in the defining forest if need be. This in turn increases

the scalability of OoO PDES with the number of processes

in the simulation. For simulations containing many processes,

we showed improved and sustained speedups with lazy event

prediction. A real world image classification application shows

increased speedup of OoO PDES vs. sequential simulation

from 1.25x to 5.95x. Experimental results show up to 90x

speedup of OoO PDES with lazy event prediction against the

original OoO PDES approach.

REFERENCES

[1] IEEE Standard 1666-2011 for Standard SystemC® Language Reference
Manual, IEEE Computer Society, January 2012.

[2] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer, ”Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
33(12):1859-1872, 2014.

[3] T. Schmidt, G. Liu, R. Dömer, ”Exploiting Thread and Data Level
Parallelism for Ultimate Parallel SystemC Simulation”, DAC 2017,
Austin, TX, June 2017.

[4] W. Chen, R. Dömer, ”Optimized Out-of-Order Parallel Discrete Event
Simulation Using Predictions”, DATE, Grenoble, France, March 2013.

[5] R. Floyd, ”Algorithm 97: Shortest Path”, Commun. ACM, June 1962.
[6] R. Fujimoto, ”Parallel discrete event simulation”, Commun. ACM,

33:3053, Oct. 1990.
[7] Z. Cheng, E. Arasteh, R. Dömer, ”Event Delivery using Prediction for

Faster Parallel SystemC Simulation”, accepted for publication at the
Asia and South Pacific Design Automation Conference, Beijing, China,
January 2020.

[8] G. Glaser, G. Nitschey, and E. Hennig, “Temporal Decoupling with
Error-Bounded Predictive Quantum Control,” in FDL, 2015.

[9] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and A. Hoffmann,
“SystemC-Link: Parallel SystemC Simulation using Time-Decoupled
Segments,” in DATE, 2016.

[10] M. Moy, ”Parallel Programming with SystemC for Loosely Timed
Models: A Non-Intrusive Approach”, in DATE, 2013.

[11] N. Ventroux and T. Sassolas, “A New Parallel SystemC Kernel Lever-
aging Manycore Architectures,” in DATE, 2016.

[12] G. Liu, T. Schmidt, Z. Cheng, D. Mendoza, R. Dömer, ”RISC Com-
piler and Simulator, Release V0.5.0: Out-of-Order Parallel Simulatable
SystemC Subset”, CECS Technical Report 18-03, September 2018.

[13] K. Moazzemi, R. Dömer, and A. Chandramowlishwaran, ”A SystemC
Model for N-body Problems and its Parallel Design Space Exploration”,
CECS Technical Report 16-09, November 2016.

[14] E. Arasteh, R. Dömer, ”An Untimed SystemC Model of GoogLeNet”,
Proceedings of the International Embedded Systems Symposium,
Springer, Friedrichshafen, Germany, September 2019.

[15] C. Szegedy, et.al., ”Going Deeper with Convolutions”, CVPR, 2015.

890 Design, Automation And Test in Europe (DATE 2020)


