Lazy Event Prediction using Defining Trees and
Schedule Bypass for Out-of-Order PDES

Daniel Mendoza, Zhongqi Cheng, Emad Arasteh, Rainer Domer
Center for Embedded and Cyber-physical Systems
University of California, Irvine, USA

Abstract—Out-of-order parallel discrete event simulation
(PDES) has been shown to be very effective in speeding up system
design by utilizing parallel processors on multi- and many-core
hosts. As the number of threads in the design model grows larger,
however, the original scheduling approach does not scale. In
this work, we analyze the out-of-order scheduler and identify
a bottleneck with quadratic complexity in event prediction. We
propose a more efficient lazy strategy based on defining trees
and a schedule bypass with O(m log, m) complexity which shows
sustained and improved performance gains in simulation of
SystemC models with many processes. For models containing
over 1000 processes, experimental results show simulation run
time speedups of up to 90x using lazy event prediction against
the original out-of-order PDES approach.

Index Terms—Discrete event simulation, SystemC

I. INTRODUCTION

As system developers desire to increase the functionality of
their products, the complexity of the design process increases.
Fast and accurate embedded system simulation is important to
aid system developers to make and validate design decisions.
However, simulating complex systems is often time consuming
and can become a bottleneck in the design process. SystemC
[1] is the official IEEE standard for modeling and simulating
embedded systems. The Accellera proof-of-concept simulator
runs simulations with only one active simulation thread at
any time. With the wide-spread availability of multi-core and
many-core hosts, exploitation of thread-level parallelism is an
appealing way to speedup simulation time.

Out-of-Order (Oo00) Parallel Discrete Event Simulation
(PDES) [2] for SystemC has been shown to provide significant
speedup against the reference sequential approach. One state-
of-the-art OoO PDES approach [3] utilizes the Recoding
Infrastructure for SystemC (RISC) compiler for static analysis
of data conflicts and event notifications between SystemC
processes. The RISC compiler then passes the analysis results
to an OoO scheduler for dynamic decision making to enable
highly parallel multi-threading.

Algorithm 1 illustrates the original OoO scheduling ap-
proach with event prediction [2]. OOOSCHEDULE exe-
cutes event prediction, event delivery, and process dispatch.
OOOSCHEDULE is then called whenever a process calls WAIT
in order to deliver events or dispatch more threads.

This work has been supported in part by substantial funding from Intel
Corporation for the project titled “Scaling the Recoding Infrastructure for
Parallel SystemC Simulation.”

978-3-9819263-4-7/DATE20/©)2020 EDAA

In order to run a simulation in OoO fashion, the scheduler
must perform event prediction, which involves predicting the
simulated earliest wake up time of all waiting processes.
Consider a process p, that is waiting on an event that has
been notified at time ¢, by process p,. With event prediction,
we determine that p,. can potentially wake up at time ¢, where
t, < t, due to a possible event notification from another
process p.. Then the event at ¢, that wakes up p, should
not be triggered yet since p, may wake up at an earlier time
than ¢,. Without event prediction, the OoO scheduler avoids
this situation by only delivering the earliest event notifications
at each OOOSCHEDULE call [4].

Thus with event prediction, the OoO scheduler can accu-
rately perform event delivery early while ensuring that no
event notifications are lost or incorrectly triggered.

Algorithm 1 OoOScheduling

1: function WAIT(p) 1: function OOOSCHEDULE(p)

2: LocK(L) 2 EVENTPREDICTION()

3 WAITING <« p 3: DELIVEREVENTS()

4: OOOSCHEDULE(p) 4: DISPATCHTHREADS ()

5 UNLOCK(L) S: HANDLEENDOFSIMULATION()
6: end function 6: end function

A. Problem Definition

The objective of event prediction is to conservatively predict
the earliest possible wake up time 7, of all processes p.
This task can be mapped to a directed graph algorithm
which calculates the minimum distances between all pairs.
The well-known Floyd-Warshall algorithm [5] can complete
this task with O(N?3) time complexity. The original OoO
PDES approach uses a modified Floyd-Warshall algorithm to
execute it with O(N?) time complexity. However, the approach
does not maintain any event prediction information between
OOOSCHEDULE calls and requires the all pairs minimum
distances algorithm to be executed every time. As a result,
redundant event prediction information is often recalculated.
This places a heavy limitation on the scalability of speedup
with OoO PDES.

In contrast, we propose a lazy event prediction tech-
nique that only calculates event prediction information when
needed. We introduce the defining tree data structure that
allows event prediction information to be maintained between
OOOSCHEDULE calls and thus avoids redundant operations.
In order to increase scalability, we present an OoO PDES
scheduling algorithm that is effectively O(mlog,m), where
m < N and m is often significantly less than V.

885

Fig. 1 shows a simple demonstration model. A manager
sends data to w workers waiting on event e and then notifies e
to wake up all w workers (in the same delta cycle) where each
worker spends a total of ¢,, time executing its total workload.
The sequential run time of the model’s simulation is effectively
o+t * w, where o denotes the time spent in the scheduler.

000 PDES is very effective in the simulation of the model
in Fig. 1 as all w workers can safely execute in parallel.
With unlimited cores, the theoretical run time of the model’s
simulation with the OoO PDES scheduler is 3+ t,, where (3 is
the time spent in the OoO scheduler. 5 has a time complexity
of O(w?) with the original OoO scheduler since w ~ N. If
the parallel work done by the workers is the dominating factor
of the simulation run time, then the speedup of OoO against
sequential simulation is =*% — qp,

However, w may be l%rge such that S (which grows
quadratic with w) becomes the dominating factor in the
run time. In this case, the theoretical speedup is effectively
tl'u“g—**“c’ = ﬁ where c represents a constant unit of time spent
in OOOSCHEDULE. When w * ¢ > t,,, speedup is less than 1.
In other words, simulation actually slows down.

In this paper, we propose a novel lazy event prediction
approach based on defining trees and a scheduling bypass strat-
egy that reduces the effective time complexity of scheduling
to O(mlogy, m), where m < w and m is often significantly
less than w. This enables sustained and improved speedup
with OoO PDES against standard sequential simulation and
the simulation of Fig. 1 becomes more scalable with a large
number of workers. In the worst case, our new lazy event
prediction strategy is w/log,(w) times faster than the OoO
approach.

void worker_thread()

{ while(1)

viRan il Workers
inport->nb_read();

0

il

2

3

4 work();

n W @ @
6 }

7

8

void manager thread()

{ while (1)
9 { wait (SC_TIME);
10 outport0->nb_write(..);
13 outportl->nb write(..);
= . Manager
13 outportw->nb_write(..);
14 e.notify(SC_ZERO_TIME) ;

15 }
16 }

Fig. 1: Example model with 1 manager and w workers

B. Related Work

PDES was first proposed in [6] and then OoO PDES was
introduced in [2] to further decrease simulation run time. [4]
and [7] proposed event prediction for OoO thread dispatch and
event delivery respectively, and is the state-of-the-art approach
which we use as comparison to our new OoO PDES strategy
with lazy event prediction.

Other techniques to speedup system simulation have been
proposed. In standard sequential simulation, time decoupling

886

has been implemented which allows processes to execute in
an unsynchronized fashion for reduced context switches [8].
However, time decoupling results in lower accuracy of the
simulation [8]. Our OoO PDES strategy does not suffer from
any loss of simulation accuracy. Furthermore, [9], [10], and
[11] proposed techniques to enable parallel multi-threading but
each require developers to manually translate the sequential
design into a parallel design. In contrast, our approach supports
an automatic source transformation framework that does not
require any manual manipulation from the developers.

II. DEFINING TREES

In original OoO PDES [2], [7], event prediction out of
all scheduling tasks has the highest order time complexity of
O(N?) where N is the number of processes in the simulation.
In this section, we outline how we can effectively reduce this
time complexity to O(m log, m), where m < N.

Our newly proposed defining tree data structure keeps track
of which processes determine the earliest possible wake up
time 7 of other processes. As an example, Fig. 2 illustrates
the 4 different defining trees each represented by a unique
color on top of the existing process graph of a model. Each
vertex in the graph represents a process p with a corresponding
Tp and at any time p must be in a defining tree. All defining
trees in the simulation make a defining forest. A directed edge’
indicates that a process p, may wake up process p,, in 16 from
its current 7, . For instance, vertex A represents a process
whose 74 is 19 and defines the 7p and 7o of vertices D
and C' where 7p = 7¢ = 2. Since vertex A defines the 7p
and 7¢, vertices A, D, and C' are part of the same defining
tree. Furthermore, vertex G has 7¢ = 30 and is defined by
vertex D and thus vertex G is also part of the same defining
tree. Vertex F is in the defining tree with the root B since
B provides the minimum 7p = 2§. Furthermore, vertex K
represents a process that waits on an event notified by itself,
and thus K is the root of its own defining tree.

Fig. 2: Example of defining tree data structure.

A. Algorithm Definition

Algorithm 2 formally defines our proposed approach for
000 PDES lazy event prediction. In line 1, we introduce a
set of weighted vertices V that represents the processes in the
simulation and the weights represent the 7 of the processes.

'Without loss of generality, we assume all event notifications carry a delay
of a single delta cycle.

Design, Automation And Test in Europe (DATE 2020)

In line 2, we introduce a set of directed weighted edges E that
represent that p, can wake up vertex p, by event notification.
The weights indicate the notification delay.

Algorithm 2 Lazy Event Prediction with Defining Trees

1: V= {po,p1,p2,---}

2: E = {(po,p1), (P1,p0), (o, p2), (P2,P0); .-}

33U+ o > Set of new waiting threads
4:

5: function WAIT(p) > U is filled by WAIT
6: Lock(L)

7 U<+ UuU{p}

8: OOOSCHEDULE(p)

9: UNLOCK(L)

10: end function

11:

12: function EVENTPREDICTION(U)

13: Q+ o > Set of updated threads
14: D+ &

15: RESETDEFININGTREES (U, D)

16: CHECKEVENTNOTIFICATIONS (ID)

17: UPDATEDEFININGTREES (D, Q)

18: MULTISOURCEDIKSTRA(Q)

19: end function

20:

21: function RESETDEFININGTREES(U, D)
22: for all p € U do > all new waiting threads in U inserted to WAITING

23: WAITING « p

24: end for

25: while 3p, € U do > reset all threads in defining tree
26: for all p,, € getNeighborsDefinedByMe(p,,) do
27: if 3notify € getEventofWaitProcess(p,,) then
28: if getweight(notify) # getweight(p,,) then
29: U« UU{py}

30: end if

31: end if

32: end for

33: weight(py) 1= co

34: DefiningNeighbor(p,) := &

35: D+« DU {pa}

36: U+ U\ {pa}

37: end while

38: end function

39: > check all active notifications
40: function CHECKEVENTNOTIFICATIONS(D, Q)

41: for all p € D do

42: if notify € getEventofWaitProcess(p) then

43: if getweight(notify) < getweight(p) then

44: weight(p) := getweight(notify)

45: DefiningNeighbor(p) := &

46: Q<+~ QU {p}

47: end if

48: end if

49: end for

50: end function

51: > update all threads in defining tree and place into Q

52: function UPDATEDEFININGTREES(D, Q)
53: for all (ps, p:) € getlncomingEdges(D) do

54: if getweight(ps, p) + getweight(p,) < getweight(p;) then
55: weight(py) := getweight(ps, p+) + getweight(ps)

56: Q QU {p}

57: end if

58: end for

59: end function

For example, Fig. 3 illustrates the execution of lazy event
prediction with defining trees. Step 0 shows the initial state of
the defining forest. Blue vertices indicate that the correspond-
ing process is currently in the running or ready state while
green vertices imply the waiting state. In step 1, vertex A goes
into the waiting state and its 74 is set to infinity. Furthermore,
RESETDEFININGTREES is executed and all vertices who were
in the same defining tree as vertex A and were on a directed
path that stemmed from A have their 7 set to infinity and
are colored red. In step 2, UPDATEDEFININGTREES and
CHECKEVENTNOTIFICATIONS are called. We check the event

Design, Automation And Test in Europe (DATE 2020)

notifications and all incoming edges of each vertex that was
reset in order to set their new 7. Each vertex that is set to a
finite value is colored yellow. Notice after this step all other
vertices in the defining forest still have a valid 7. Thus, we
can simply omit these vertices in the defining forest except the
yellow and red vertices to complete the lazy event prediction
algorithm.

Step 3 is the final step where we call
MULTISOURCEDIJKSTRA. Algorithm 3 formally defines
this procedure as a multi-source variation of Dijkstra’s
algorithm which calculates the remaining 7 of the yellow
and red vertices. Other vertices are marked gray since the
algorithm no longer considers those vertices. In step 3a, we
create a min-priority queue of yellow vertices whose 7 has
already been computed. In step 3b, we pop the min-priority
queue and check each of its outgoing edges to calculate the
7 of its neighbors. The popped vertex is then marked green
as it has already been visited by the multi-source Dijkstra’s
algorithm. In step 3c, we visit vertices C' and A which are
marked green and do not affect any others in the defining
forest. In step 3d, first vertex G is visited which updates
vertex .J, and then vertex .J is visited and the algorithm
terminates.

Algorithm 3 Multi-Source Variation of Dijkstra’s Algorithm

1: function MULTISOURCEDIJKSTRA(Q)

2 heapify(Q)

3 while 3p € Q do

4: pa := PopPriorityQueue(Q)

S: for all p,, € getNeighbors(p;) do

6: if getweight(pg, py) + getweight(p,) < getweight(p,,) then
7 weight(p,) := getweight(p,, py) + getweight(p,)

8: PushPriorityQueue(p,, , Q)
9: end if

10: end for

11: end while

12: end function

B. Maintaining Defining Trees

Lazy event prediction with defining trees only updates the
Tp of a process p if need be. When a process p changes from
waiting to ready or ready to running, 7, does not change.
However, 7, may change due to process p changing from
running to waiting state. When a process p goes from running
to waiting, 7, is set to infinity. If the previously running and
now waiting process p did not notify any events, then all the
processes in the same defining tree as p that are on a path
stemming from p each have their 7 reset to infinity as well.
However, in the case where p notifies a process n whose 7,
was defined by p at 7, then only 7, is reset to infinity.

In addition, p may enter a new segment in the segment
graph [2]. For brevity, we omit the discussion of segments in
this paper (but our implementation supports them). Whenever
a process changes its segment, there are implicit changes to
the weights of the edges in the defining forest. Our current
implementation handles segment changes dynamically with
linear time complexity of the number of processes in the
simulation. Future work can be done to implement a static
analysis approach which would remove the necessity to handle
segment changes dynamically.

887

Step 0:
A, B, | are RUNNING

Step 1: Step 2:

UpdateDefiningTrees()

Step 3a: {D, C}
ResetDefiningTrees() CheckEventNotifications() and MultiSourceDijkstra()

Step 3b: {C, A, G} Step 3c: {G} Step 3d: {}

Fig. 3: Illustration of EVENTPREDICTION with defining trees

C. Complexity Analysis

In the following discussion, we analyze the complexity of
lazy EVENTPREDICTION with defining trees. Let:

o N be the total number of processes

o D be a defining tree of m vertices

o Ep be the number of edges in defining tree D

o E iawon(p) be the number of incoming edges of immediate
neighbors of defining tree D

Only when process p in defining tree D calls WAIT can
the m processes in D be updated. In the case where p
calls WAIT, the time complexity of RESETDEFININGTREES
is m since the algorithm executes in breadth first
search fashion via the function getNeighborsDefinedByMe
through D and functions getEventofWaitProcess and getweight
have constant time complexity. Next, the complexity of
CHECKEVENTNOTIFICATIONS is m because the number of
elements in D is at most m and getDefiningNeighbor has
constant time complexity. Furthermore, the complexity of
UPDATEDEFININGTREES is at most Ep + E, e (p)- Finally,
the time complexity of MULTISOURCEDIIKSTRA is m+ Ep+
mlog, m because we execute Dijkstra’s algorithm with a bi-
nary heap and the only edges and vertices visited must be in D.
Thus the cumulative time complexity of EVENTPREDICTION
is Ep + 2E, 0 (p) + 3m + mlogy m. Observe that m logy, m
is the highest order of complexity and thus the effective total
time complexity is O(m log, m).

In the worst case, m = N, thus the worst case time
complexity is N log, N. As previously stated, the time com-
plexity of the original OoO PDES event prediction strategy
is O(N?) and thus the worst case complexity is N2. Thus
the worst case speedup of EVENTPREDICTION is effectively
% = $ with the lazy approach against the original
strategy .

Notice that the time complexity of EVENTPREDICTION
with defining trees is only affected by edges and vertices of
the defining tree and its neighbors. The lazy algorithm only
visits the minimum subset of vertices that are necessary for
correctly updating the defining forest. The 7, of a process p,
is only updated if 7, of process p, that defines 7, is reset to
infinity and there is no event notification that wakes up process
py at a time less than or equal to 7.

888

III. SCHEDULE BYPASS

We observe that the original OoO scheduler is often called
only to produce redundant information that is immediately
overwritten. In this section, we propose a lazy technique to
largely eliminate redundant work by inserting a bypass into
the algorithm.

In 00O PDES, there often is contention for OOOSCHEDULE
where processes are blocked by the kernel lock into the sched-
uler. In the original approach, if there are N processes calling
WAIT, then OOOSCHEDULE is called N times. However,
many of these calls are repeating the same operations. Thus
we propose the schedule bypass strategy to avoid redundant
work. The essential idea is that whenever another process
is attempting to grab the kernel lock L in a call to WAIT,
the process owning the lock skips OOOSCHEDULE because
there exists another process that will call OOOSCHEDULE
immediately thereafter.

Algorithm 4 formally defines our proposed schedule bypass.
Line 1 introduces a new set K of processes currently request-
ing kernel lock L. In line 2, we begin redefining WAIT. Instead
of calling OOOSCHEDULE unconditionally, whenever there is
another process in K, the OOOSCHEDULE call is skipped and
the process goes directly to sleep.

Algorithm 4 Schedule Bypass Strategy

I: K« o
2: function WAIT(p)
: LOCK(K)

> Processes requesting kernel lock L protected by lock K

4 K« KU {p}
5: UNLOCK(K)

6: Lock(L)

7: WAITING « p
8 LOCK(K)

9 K«K\{p}
K « K

11: UNLOCK(K)
12: if K/ = @ then

13: OOOSCHEDULE(p)

14: else

15: SLEEP(p) > implies atomic UNLOCK(L)/LOCK(L)
16: end if

17: UNLOCK(L)
18: end function

Fig. 4 demonstrates the effect of our bypass when there
are N processes simultaneously calling WAIT. The left side
illustrates the existing OoO PDES approach in which there
are N calls to OOOSCHEDULE. The right side shows the
lazy approach with schedule bypass with only two calls to

Design, Automation And Test in Europe (DATE 2020)

OOOSCHEDULE. As one can observe, only the first and last
process that call WAIT closely after another actually enter the
scheduler. Note that there is no deadlock possible since we
have no circular locking.

th, th, th, - th

th, th, thy - th,

ggZ=g

Fig. 4: Tllustration of schedule bypass

IV. EXPERIMENTAL RESULTS

We have implemented the defining tree and schedule bypass
optimizations on top of the RISC open-source implementation
[12]. We show experimental results of five different models,
specifically the sequential reference, the original RISC simu-
lator, and our lazy OoO PDES simulator. Execution times are
measured on an Intel Xeon CPU ES5-2680 with 16 physical
cores at 2.70GHz with CPU frequency scaling turned off.

A. Manager and Workers SystemC Model

We have implemented the model discussed in Section I
with 500 worker processes. Table I shows the elapsed time,
speedup against the sequential simulation, and the total time
spent in event prediction. Notice that with the original OoO
PAR approach, there is no speedup because event prediction
becomes the dominating factor in the elapsed time. However,
enabling defining trees drastically decreases the time spent for
event prediction to less than 1%. Together, defining tree and
schedule bypass achieve an overall speedup of more than 10x.

TABLE I: 1 Manager and 500 Workers Simulation Results

Scheduler SEQ 000 PAR
Orig. Defining | Schedule Both
Trees Bypass
Elapsed Time | 84.54s | 179.79s 12.82s 128.13s 8.28s
Speedup 1x 0.47x 6.59x 0.66x 10.21x
Pred. Time N/A 160.43s 1.30s 118.19s 0.27s

B. Mandelbrot Renderer

The Mandelbrot Renderer is an existing demo example in
RISC. The model resembles the computations performed in
a graphics rendering pipeline and generates 20 Mandelbrot
frames with varying zoom factor. Fig. 5 shows the speedup
of our lazy scheduling strategy compared to the original
000 PDES approach. We varied the number of processes
rendering the images from 1 to 1024. Event prediction with
the original OoO PDES increases quadratically with the num-
ber of processes while our new lazy algorithm is at worst
O(NV log, N). From Fig. 5, we can see that with increasing
N, the lazy scheduler can sustain speedup while the original
000 scheduler crashes early to below 1x speedup. In the
case of 1024 rendering processes, our proposed scheduler

Design, Automation And Test in Europe (DATE 2020)

maintains 4x speedup over the sequential simulation and is
90x faster than the simulation running with the original OoO
PDES scheduler. For lower NV, the original and our lazy OoO
PDES perform equally well. This is because for lower N,
event prediction is not the dominating factor in the elapsed
time for the original OoO PDES approach.

Speedup

=== Lazy 000 vs. SEQ Lazy vs. Orig.
100

== QOrig. 000 vs. SEQ

90
80
70
60
50
40
30
20
10

1 2 4 8 16 32 64 128 256

Rendering Processes

Fig. 5: Speedup of Lazy OoO PDES for Mandelbrot

512 1024

C. Fibonacci

The Fibonacci model, also provided with RISC, computes
the 45th number in the Fibonacci sequence. The model struc-
ture is a perfect binary tree where a child of a parent computes
fibo(n — 1) and the other child of the same parent computes
fibo(n — 2). We varied the number of leaf nodes NN; in the
binary structure from 2 to 1024. The total number of processes
in the simulation is 222N+l _ 1 g0 N; = 1024 means
there are 2047 processes. Fig. 6 displays the speedup of our
proposed lazy approach against both the original OoO PDES
strategy and the sequential simulation. We can see that the
lazy event prediction results in drastic speedup against the
original approach while having sustained speedup against the
sequential simulation. For V; = 1024, our proposed scheduler
maintains 4x speedup over the sequential simulation and is
close to 50x faster than the simulation running with the
original OoO PDES scheduler. For lower values of N;, again
both OoO PDES approaches perform the same since event
prediction is not a dominating factor in the elapsed time for
the original OoO PDES approach.

Speedup

=== | azy 000 vs. SEQ Lazy vs. Orig.

=== Orig. 000 vs. SEQ

50

40

30
\ 20

0 10

—)

2 4 8 16 32 64 128 256 512 1024

N,

Fig. 6: Speedup of Lazy OoO PDES for Fibonacci

D. Network-on-Chip Particle Simulation

The Network-on-Chip (NoC) Particle Simulation model [13]
resembles a realistic embedded system model. Fig. 7 shows

889

the model structure resembling a 2-D torus in which a tile
represents a process that communicates with its neighbor
tiles via blocking communication. The NOC particle model
simulates the physical behavior of 24,000 particles in vacuum
using NxN tiles. Fig. 8 shows the same speedup plot as
before, with N varied from 1 to 8. We can see again the
same sustained speedup behavior, confirming the benefits of
our lazy approach for models with many processes.

Tile 1,1 Tile 1,2 Tile 1,y
H H '
Tile 2,1 Tile 2,2 Tile 2,y
! ' !

v

v v
Tile x,1 Tile x,2 Tile x.y

Fig. 7: Tllustration of Network-on-Chip Particle Simulation

Speedup)
- === Lazy 000 vs. SEQ Lazy vs. Orig. ,
“ Orig. 000 vs. SEQ

5 6
4 5
4

3
\ :
. 2
4 1
0 0

x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8

Fig. 8: Speedup of Lazy OoO PDES for NoC

E. Image Classifier System using GoogleNet DNN

The image classifier SystemC model [14] represents a real-
world device using deep neural networks (DNN) for image
classification. The application’s purpose is to use frames from
video to detect an attack in any of the images. During the
simulation, the camera module sends images to the GoogleNet
DNN [15] for classification. Each node in the DNN is modeled
as a SystemC thread. In total, the model contains 145 threads.
The detector module then receives the image classification
from the DNN and sends a signal to the control terminal if it
detects a threat.

We ran two versions of the classifier system by varying the
number of parallel DNNs. In both cases, our proposed lazy
event prediction shows high speedup against the sequential
simulator and the original OoO PDES approach, as listed in
Table II.

Tep Classifier Device
& g e
Control
Terminal Shared
T O3
Memory
K
Fig. 9: Illustration of the Image Classifier Model
890

TABLE II: Classifier System Simulation Results

Lazy
Scheduler SEQ 000 PAR | 00O PAR
Elapsed Time | 39.04s 12.79 7.37s
I DNN Speedup 1x 3.05x 5.30x
Elapsed Time | 39.49s 31.63s 6.64s
2DNN g edup Ix 1.25x 5.95x

V. CONCLUSION

In this paper, we proposed a lazy event prediction strategy
for OoO PDES that reduces the time complexity of scheduling
from O(N?) to O(m log, m) where m is often significantly
less than N. Through the use of defining trees and schedule
bypass, our lazy event prediction approach only updates ver-
tices in the defining forest if need be. This in turn increases
the scalability of OoO PDES with the number of processes
in the simulation. For simulations containing many processes,
we showed improved and sustained speedups with lazy event
prediction. A real world image classification application shows
increased speedup of OoO PDES vs. sequential simulation
from 1.25x to 5.95x. Experimental results show up to 90x
speedup of OoO PDES with lazy event prediction against the
original OoO PDES approach.

REFERENCES

[1] TEEE Standard 1666-2011 for Standard SystemC® Language Reference
Manual, IEEE Computer Society, January 2012.

[2] W. Chen, X. Han, C. Chang, G. Liu, R. Domer, ”Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
33(12):1859-1872, 2014.

[3] T. Schmidt, G. Liu, R. Domer, "Exploiting Thread and Data Level
Parallelism for Ultimate Parallel SystemC Simulation”, DAC 2017,
Austin, TX, June 2017.

[4] W. Chen, R. Domer, “Optimized Out-of-Order Parallel Discrete Event
Simulation Using Predictions”, DATE, Grenoble, France, March 2013.

[5] R. Floyd, ”Algorithm 97: Shortest Path”, Commun. ACM, June 1962.

[6] R. Fujimoto, “Parallel discrete event simulation”, Commun. ACM,
33:3053, Oct. 1990.

[7] Z. Cheng, E. Arasteh, R. Domer, “Event Delivery using Prediction for
Faster Parallel SystemC Simulation”, accepted for publication at the
Asia and South Pacific Design Automation Conference, Beijing, China,
January 2020.

[8] G. Glaser, G. Nitschey, and E. Hennig, “Temporal Decoupling with
Error-Bounded Predictive Quantum Control,” in FDL, 2015.

[9] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and A. Hoffmann,

“SystemC-Link: Parallel SystemC Simulation using Time-Decoupled

Segments,” in DATE, 2016.

M. Moy, “Parallel Programming with SystemC for Loosely Timed

Models: A Non-Intrusive Approach”, in DATE, 2013.

N. Ventroux and T. Sassolas, “A New Parallel SystemC Kernel Lever-

aging Manycore Architectures,” in DATE, 2016.

G. Liu, T. Schmidt, Z. Cheng, D. Mendoza, R. Démer, "RISC Com-

piler and Simulator, Release V0.5.0: Out-of-Order Parallel Simulatable

SystemC Subset”, CECS Technical Report 18-03, September 2018.

K. Moazzemi, R. Domer, and A. Chandramowlishwaran, ”A SystemC

Model for N-body Problems and its Parallel Design Space Exploration”,

CECS Technical Report 16-09, November 2016.

E. Arasteh, R. Domer, ”An Untimed SystemC Model of GoogLeNet”,

Proceedings of the International Embedded Systems Symposium,

Springer, Friedrichshafen, Germany, September 2019.

C. Szegedy, et.al., "Going Deeper with Convolutions”, CVPR, 2015.

[10]
[11]

[12]

[13]

[14]

[15]

Design, Automation And Test in Europe (DATE 2020)

