
TO APPEAR IN: IEEE TPAMI SI ON BAYESIAN NONPARAMETRICS 1
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Abstract—In this paper we introduce the Pitman Yor Diffusion Tree (PYDT), a Bayesian non-parametric prior over tree structures
which generalises the Dirichlet Diffusion Tree [Neal, 2001] and removes the restriction to binary branching structure. The generative
process is described and shown to result in an exchangeable distribution over data points. We prove some theoretical properties of
the model including showing its construction as the continuum limit of a nested Chinese restaurant process model. We then present
two alternative MCMC samplers which allows us to model uncertainty over tree structures, and a computationally efficient greedy
Bayesian EM search algorithm. Both algorithms use message passing on the tree structure. The utility of the model and algorithms is
demonstrated on synthetic and real world data, both continuous and binary.
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1 INTRODUCTION

Tree structures play an important role in machine learn-
ing and statistics. Learning a tree structure over data
points gives a straightforward picture of how objects
of interest are related. Trees are easily interpreted and
intuitive to understand. Sometimes we may know that
there is a true hierarchy underlying the data: for example
species in the tree of life or duplicates of genes in the
human genome, known as paralogs. Typical mixture
models, such as Dirichlet Process mixture models, have
independent parameters for each component. We might
expect for example that certain clusters are similar, being
sub-groups of some larger group. By learning this hierar-
chical similarity structure, the model can share statistical
strength between components to make better estimates
of parameters using less data.

Classical hierarchical clustering algorithms employ a
bottom up “agglomerative” approach [Duda et al., 2001]
based on distances which hides the statistical assump-
tions being made. Heller and Ghahramani [2005] use
a principled probabilistic model in lieu of a distance
metric but simply view the hierarchy as a tree consistent
mixture over partitions of the data. If instead a full
generative model for both the tree structure and the data
is used [Williams, 2000, Neal, 2003b, Teh et al., 2008, Blei
et al., 2010] Bayesian inference machinery can be used to
compute posterior distributions over the tree structures
themselves.

An advantage of generative probabilistic models for
trees is that they can be used as a building block for
other latent variable models [Rai and Daumé III, 2008,
Adams et al., 2010]. We could use this technique to build
topic models with hierarchies on the topics, or hidden
Markov models where the states are hierarchically re-
lated. Greedy agglomerative approaches can only cluster
latent variables after inference has been done and hence

they cannot be used in a principled way to aid inference
in the latent variable model.

Both heuristic and generative probabilistic approaches
to learning hierarchies have focused on learning binary
trees. Although computationally convenient this restric-
tion may be undesirable: where appropriate, arbitrary
trees provide a more interpretable, clean summary of the
data. For example, a tree equivalent to a flat clustering
can be learnt if this is appropriate for the data, which
gives a simpler picture of the similarity between objects
than any binary tree. In phylogenetics allowing multifur-
cation is motivated either by situations where the data is
not strong enough to determine the order of binary spe-
ciation events, or by specific models of the evolutionary
process, such as Hedgecock’s sweepstakes [Hedgecock,
1994] where a single or small number of individuals
(species) give rise to a disproportionate fraction of the
next generation. Some recent work has aimed to address
this [Blundell et al., 2010, Adams et al., 2010], which we
discuss in Section 3.

The Dirichlet Diffusion Tree (DDT) introduced in Neal
[2003b], and reviewed in Section 4, is a simple yet
powerful generative model which specifies a distribution
on binary trees with multivariate Gaussian distributed
variables at the leaves. The DDT is a Bayesian nonpara-
metric prior, and is a generalization of Dirichlet Process
mixture models [Antoniak, 1974, Rasmussen, 2000]. The
DDT can be thought of as providing a very flexible
density model, since the hierarchical structure is able
to effectively fit non-Gaussian distributions. Indeed, in
Adams et al. [2008] the DDT was shown to significantly
outperform a Dirichlet Process mixture model in terms
of predictive performance, and in fact slightly outper-
formed the Gaussian Process Density Sampler. The DDT
also formed part of the winning strategy in the NIPS
2003 feature extraction challenge [Guyon et al., 2005].
The DDT is thus both a mathematically elegant nonpara-
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metric distribution over hierarchies and provides state-
of-the-art density estimation performance.

We introduce the Pitman Yor Diffusion Tree (PYDT),
a generalization of the DDT to trees with arbitrary
branching structure. While allowing atoms in the diver-
gence function of the DDT can in principle be used to
obtain multifurcating branch points [Neal, 2003b], our
solution is both more flexible and more mathematically
and computationally tractable. An interesting property
of the PYDT is that the implied distribution over tree
structures corresponds to the multifurcating Gibbs frag-
mentation tree [McCullagh et al., 2008], a very general
process generating exchangeable and consistent trees
(here consistency can be understood as coherence under
marginalization of subtrees).

This paper is organised as follows. Section 2 formalises
the various notions of a “tree” used in this paper.
Section 3 briefly describes related work and Section 4
gives background material on the DDT. In Section 5
we describe the generative process corresponding to the
PYDT. In Section 6 we derive the probability of a tree and
show some important properties of the process. Section 7
describes our hierarchical clustering models utilising the
PYDT. In Section 8 we present two alternative MCMC
samplers and a greedy Bayesian EM algorithm for the
PYDT. We present results demonstrating the utility of
the PYDT in Section 9. An earlier version of this paper
was presented in Knowles and Ghahramani [2011].

2 HIERARCHICAL PARTITIONS, PHENOGRAMS
AND DIFFUSION TREES

A partition of [N ] := {1, . . . , N} is a collection of disjoint,
non-empty subsets {Bk ⊆ [N ] : k = 1, ..,K}, which
we will refer to as “blocks”, whose union is [N ]. The
canonical distribution over the space of partitions is the
Chinese restaurant process [CRP, Aldous, 1983]. We give
the two parameter CRP corresponding to the Pitman Yor
process here: the one parameter CRP corresponding to
the Dirichlet process is recovered by setting α = 0. The
CRP is constructed iteratively for n = 1, 2, ... Data point
n joins an existing block k with probability

|Bk| − α
θ + n− 1

(1)

and forms its own new block with probability

θ +Kα

θ + n− 1
, (2)

where |Bk| is the cardinality of Bk, (θ, α) are the concen-
tration and discount parameter respectively. The canon-
ical parameter range is {0 ≤ α ≤ 1, θ > −α} but other
valid ranges exist.

We can take two closely related views of “tree struc-
tures”: as hierarchical partitions of [N ] or as tree graphs
with labelled leaves [N ] and a special root node. A hi-
erarchical partition is defined recursively: a hierarchical
partition TB of a finite non-empty set B is a collection

of non-empty subsets of B that a) contains B b) if
|B| ≥ 2 is a union of {B} and k “child” hierarchical
partitions TBi where {B1, . . . , Bk} is a partition of B.
We have Bi ∈ TB for all i ∈ [k] by this construction.
To construct the corresponding graph (V,E), let the set
of vertices (nodes) V be the elements of the hierarchical
partition, i.e. V = T[N ], and include an edge between
node u and v if v is a child of u in the hierarchy, i.e.
E = {{u, v} : u, v ∈ V ; v ⊂ u;@w ∈ V s.t. v ⊂ w ⊂ u}. We
specify node [N ] as the root and the singletons {i} for
all i ∈ [N ] as “leaves”. We refer to both the hierarchical
partition and the corresponding graph as TN , and the
space of such objects as TN . In phylogenetics such objects
are referred to as “cladograms”. Our construction of
hierarchical partitions precludes nodes with a single
child (since a set cannot contain duplicate elements), but
extending the graph representation to allow such nodes
is straightforward. The space of such tree graphs is T′N .

We can endow each edge e ∈ E of a tree graph with a
weight we ∈ R known as a branch length. Such trees are
refered to as “phenograms” in phylogenetics. We denote
the space of phenograms on N leaves by PN . Finally, we
will also be interested in phenograms where each node
v is associated with some value xv ∈ X where X will
always be RD for some D in this paper. We refer to such
objects as diffusion trees and the space of diffusion trees
as FN .

3 RELATED WORK

Most hierarchical clustering methods, both distance
based [Duda et al., 2001] and probabilistic [Teh et al.,
2008, Heller and Ghahramani, 2005], have focused on the
case of binary branching structure. In Bayesian hierarchi-
cal clustering [Heller and Ghahramani, 2005] the tradi-
tional bottom-up agglomerative approach is kept but a
principled probabilistic model is used to find subtrees of
the hierarchy TN ∈ TN . Bayesian evidence is then used
as the metric to decide which node to incorporate in the
tree. An extension where the restriction to binary trees
is removed is proposed in Blundell et al. [2010]. They
use a greedy agglomerative search algorithm based on
various possible ways of merging subtrees. As for Heller
and Ghahramani [2005] the lack of a generative process
prohibits modelling uncertainty over the space of tree
structures TN .

Non-binary trees are possible in the model proposed
in Williams [2000] since each node independently picks
a parent in the layer above, but it is necessary to pre-
specify the number of layers and number of nodes
in each layer. Their attempts to learn the number of
nodes/layers were in fact detrimental to empirical per-
formance. Unlike the DDT or PYDT, the model in
Williams [2000] is parametric in nature, so its complexity
cannot automatically adapt to the data.

The nested Chinese restaurant process has been used
to define probability distributions over tree structures in
T′N . In Blei et al. [2010] each data point is drawn from
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a mixture over the parameters on the path from the
root to the data point, which is appropriate for mixed
membership models but not standard clustering. It is
possible to use the nested CRP for hierarchical clustering,
but either a finite number of levels must be pre-specified,
some other approach of deciding when to stop fragment-
ing must be used, or chains of infinite length must be
integrated over [Steinhardt and Ghahramani, 2012]. We
will show in Section 6.8 that the DDT and PYDT priors
on P can be reconstructed as the continuum limits of
particular nested CRP models.

An alternative prior to the PYDT over T′N which also
allows trees of unbounded depth and width is given by
Adams et al. [2010], which is closely related to the nested
CRP. They use a nested stick-breaking representation to
construct the tree, which is then endowed with a diffu-
sion process. At each node there is a latent probability
of the current data point stopping, and so data live
at internal nodes of the tree, rather than at leaves as
in the PYDT. Despite being computationally appealing,
this construction severely limits how much the depth of
the tree can adapt to data [Steinhardt and Ghahramani,
2012].

Kingman’s coalescent [Kingman, 1982, Teh et al., 2008]
is similar to the Dirichlet Diffusion Tree in spirit. Both
can be considered as priors on PN . For Kingman’s co-
alescent (KC) the generative process is defined going
backwards in time as datapoints coalesce together, rather
than forward in time as for the DDT. KC is the dual
process to the Dirichlet diffusion tree, in the following
sense. Imagine we sample a partition of [n] from the
Chinese restaurant process with concentration parameter
θ, coalesce this partition for a small time dt, and then
“fragment” the resulting partition according to the DDT
with constant rate function for time dt. The final partition
will be CRP distributed with concentration parameter θ,
showing that the DDT fragmentation has “undone” the
effect of the coalescent process. This duality is used in
Teh et al. [2011] to define a partition valued stochastic
process through time. A prior on TN can be derived
from KC by marginalising over the possible orderings
of the coalescent events [Boyles and Welling, 2012]. The
generalisation of KC to arbitrary branching structures
has been studied in the probability literature under the
name Λ-coalescent [Pitman, 1999, Sagitov, 1999]. While
Steinrücken et al. [2012], Eldon and Wakeley [2006]
used summary statistics to fit parameters of specific
Λ-coalescent models, we are unaware of attempts to
directly infer the phylogeny itself under this prior.

4 THE DIRICHLET DIFFUSION TREE

The Dirichlet Diffusion Tree was introduced in Neal
[2003b] as a top-down generative model for trees in
FN over N datapoints x1, x2, · · · , xN ∈ RD. We will
describe the generative process for the data in terms
of a diffusion process in fictitious “time” on the unit
interval. The observed data points (or latent variables)

correspond to the locations of the diffusion process at
time t = 1. The first datapoint starts at time 0 at the
origin in a D-dimensional Euclidean space and follows
a Brownian motion with variance σ2 until time 1. If
datapoint 1 is at position x1(t) at time t, the point will
reach position x1(t+ dt) ∼ N(x1(t), σ2Idt) at time t+ dt.
It can easily be shown that x1(t) ∼ Normal(0, σ2It). The
second point x2 in the dataset also starts at the origin
and initially follows the path of x1. The path of x2 will
diverge from that of x1 at some time Td after which x2

follows a Brownian motion independent of x1(t) until
t = 1. In other words, the infinitesimal increments for the
second path are equal to the infinitesimal increments for
the first path for all t < Td. After Td, the increments for
the second path N(0, σ2Idt) are independent. The prob-
ability of diverging in an interval [t, t+dt] is determined
by a “divergence function” a(t) (see Equation 10 below)
which is analogous to the hazard function in survival
analysis.

The generative process for datapoint i is as follows.
Initially xi(t) follows the path of the previous datapoints.
If at time t the path of xi(t) has not diverged, it will
diverge in the next infinitesimal time interval [t, t + dt]
with probability

a(t)dt

m
(3)

where m is the number of datapoints that have previ-
ously followed the current path. The division by m is
a reinforcing aspect of the DDT: the more datapoints
follow a particular branch, the more likely subsequent
datapoints will not diverge off this branch (this divi-
sion is also required to ensure exchangeability). If xi
does not diverge before reaching a previous branching
point, the previous branches are chosen with probability
proportional to how many times each branch has been
followed before. This reinforcement scheme is similar to
the Chinese restaurant process. For the single data point
xi(t) this process is iterated down the tree until diver-
gence, after which xi(t) performs independent Brownian
motion until time t = 1. The i-th observed data point is
given by the location of this Brownian motion at t = 1,
i.e. xi(1).

For the purpose of this paper we use the divergence
function a(t) = c

1−t , with “smoothness” parameter c > 0.
Larger values of c give smoother densities because di-
vergences typically occur earlier, resulting in less de-
pendence between the datapoints. Smaller values of c
give rougher more “clumpy” densities with more local
structure since divergence typically occurs later, closer
to t = 1. We refer to Neal [2001] for further discussion
of the properties of this and other divergence functions.
Figure 1 illustrates the Dirichlet diffusion tree process
for a dataset with N = 4 datapoints.

The probability of generating the tree, latent variables
and observed data under the DDT can be decomposed
into two components. The first component specifies the
distribution over the tree structure and the divergence
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Fig. 1: A sample from the Dirichlet Diffusion Tree with
N = 4 datapoints. Top: the location of the Brownian
motion for each of the four paths. Bottom: the corre-
sponding tree structure. Each branch point corresponds
to an internal tree node.

times, PN ∈ PN . The second component specifies the
distribution over the specific locations of the Brownian
motion when the tree structure and divergence times are
given.

Before we describe the functional form of the DDT
prior we will need two results. First, the probability that
a new path does not diverge between times s < t on
a segment that has been followed m times by previous
data-points can be written as

P (not diverging) = exp [(A(s)−A(t))/m], (4)

where A(t) =
∫ t

0
a(u)du is the cumulative rate function.

For our divergence function A(t) = −c log (1− t). Sec-
ond, the DDT prior defines an exchangeable distribution:
the order in which the datapoints were generated does
not change the joint density. See Neal [2003b] for a proof.

We now consider the tree as a set of segments S(T )
each contributing to the joint probability density. The
tree structure Tn ∈ TN encodes the counts of how
many datapoints traversed each segment. Consider an
arbitrary segment [uv] ∈ S(T ) from node u to node v
with corresponding locations xu and xv and divergence
times tu and tv , where tu < tv . Let m(v) be the number
of leaves under node v, i.e. the number of datapoints
which traversed segment [uv]. Let l(v) and r(v) be the
number of leaves under the left and right child of node
v respectively, so that l(v) + r(v) = m(v).

By exchangeability we can assume that it was the sec-
ond path which diverged at v. None of the subsequent
paths that passed through u diverged before time tv
(otherwise [uv] would not be a contiguous segment). The

probability, P (tv|[uv], tu) of this happening is

2nd branch diverges︷ ︸︸ ︷
a(tv)

1

m(v)−1∏
i=1

(i+1)th branch does not diverge before v︷ ︸︸ ︷
exp[(A(tu)−A(tv))/i]

= a(tv) exp [(A(tu)−A(tv))Hm(v)−1], (5)

where Hn =
∑n
i=1 1/i is the nth harmonic number. This

expression factorizes into a term for tu and tv . Collecting
such terms from the branches attached to an internal
node i the factor for ti for the divergence function a(t) =
c/(1− t) is

a(ti)e
[A(ti)(Hl(i)−1+Hr(i)−1−Hm(i)−1)]

= c(1− ti)cJl(i),r(i)−1, (6)

where Jl,r = Hr+l−1 −Hl−1 −Hr−1.
Each path that went through xv , except the first and

second, had to choose to follow the left or right branch.
Again, by exchangeability, we can assume that all l(v)−1
paths took the left branch first, then all r(v) − 1 paths
chose the right branch. The probability of this happening
is

P ([uv]) =
(l(v)− 1)!(r(v)− 1)!

(m(v)− 1)!
. (7)

Finally, we include a term for the diffusion locations:

P (xv|xu, tu, tv) = N(xv;xu, σ
2(tv − tu)). (8)

The full joint probability for the DDT is now a product
of terms for each segment

P (x, t, T ) =
∏

[uv]∈S(T )

P (xv|xu, tu, tv)P (tv|[uv], tu)P ([uv]).

(9)

5 GENERATIVE PROCESS FOR THE PYDT
The PYDT generative process is analogous to that for the
DDT, but altered to allow arbitrary branching structures.
Firstly, the probability of diverging from a branch having
previously been traversed by m data points in interval
[t, t+ dt] is given by

a(t)Γ(m− α)dt

Γ(m+ 1 + θ)
(10)

where Γ(.) is the standard Gamma function, θ is the
concentration parameter and α is the discount parameter
by analogy to the Pitman Yor process (see Section 6.2
for discussion of allowable parameter ranges). When
θ = α = 0 we recover binary branching and the DDT
expression in Equation 3. Secondly, if xi does not diverge
before reaching a previous branching point, it may either
follow one of the previous branches, or diverge at the
branch point (adding one to the degree of this node in
the tree). The probability of following one of the existing
branches k is

nk − α
m+ θ

(11)
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where nk is the number of samples which previously
took branch k and m is the total number of samples
through this branch point so far. The probability of
diverging at the branch point and creating a new branch
is

θ + αK

m+ θ
(12)

where K is the current number of branches from this
branch point. By summing Equation 11 over k =
{1, . . . ,K} with Equation 12 we get 1, since

∑
k nk = m,

as required. This reinforcement scheme is analogous to
the Pitman Yor process [Teh, 2006, Pitman and Yor, 1997]
version of the Chinese restaurant process [Aldous, 1983].

5.1 Sampling the PYDT in practice

It is straightforward to sample from the PYDT prior.
This is most easily done by sampling the tree structure
and divergence times first, followed by the divergence
locations. We will need the inverse cumulative diver-
gence function, e.g. A−1(y) = 1.0 − exp(−y/c) for the
divergence function a(t) = c/(1− t).

Each point starts at the root of the tree. The cumulative
distribution function for the divergence time of the i-th
sample is

C(t) = 1− exp

{
−A(t)

Γ(i− 1− α)

Γ(i+ θ)

}
(13)

We can sample from this distribution by drawing U ∼
Uniform[0, 1] and setting

td = C−1(U) := A−1

(
− Γ(i+ θ)

Γ(i− 1− α)
log (1− U)

)
(14)

If td is actually past the next branch point, we diverge
at this branch point or choose one of the previous paths
with the probabilities defined in Equations 12 and 11
respectively. If we choose one of the existing branches
then we must again sample a divergence time. On an
edge from node u to v previously traversed by m(v) data
points, the cumulative distribution function for a new
divergence time is

C(t) = 1− exp

{
−[A(t)−A(tu)]

Γ(m(v)− α)

Γ(m(v) + 1 + θ)

}
(15)

which we can sample as follows

td := A−1

(
A(tu)− Γ(m(v) + 1 + θ)

Γ(m(v)− α)
log (1− U)

)
(16)

We do not actually need to be able to evaluate A(tu)
since this will necessarily have been calculated when
sampling tu. If td > tv we again choose whether to follow
an existing branch or diverge according to Equations 12
and 11.

Given the tree structure and divergence times sam-
pling the locations simply involves a sweep down the
tree sampling xv ∼ N(xu, σ

2(tv − tu)I) for each branch
[uv].

6 THEORY

Now we present some important properties of the PYDT
generative process.

6.1 Probability of a tree

The probability of generating a specific tree structure
with associated divergence times and locations at each
node can be written analytically since the specific dif-
fusion path taken between nodes can be ignored. We
will need the probability that a new data point does
not diverge between times s < t on a branch that has
been followed m times by previous data-points. This can
straightforwardly be derived from Equation 10:

P

(
not diverging

in [s, t]

)
= exp

[
(A(s)−A(t))

Γ(m− α)

Γ(m+ 1 + θ)

]
,

(17)

where A(t) =
∫ t

0
a(u)du is the cumulative rate function.

Consider the tree of N = 4 data points in Figure 2. The
probability of obtaining this tree structure and associated
divergence times is:

e−A(tu)
Γ(1−α)
Γ(2+θ)

a(tu)Γ(1− α)

Γ(2 + θ)

× e−A(tu)
Γ(2−α)
Γ(3+θ)

1− α
2 + θ

e[A(tu)−A(tv)]
Γ(1−α)
Γ(2+θ)

a(tv)Γ(1− α)

Γ(2 + θ)

× e−A(tu)
Γ(3−α)
Γ(4+θ)

θ + 2α

3 + θ
. (18)

The first data point does not contribute to the expression.
The second point contributes the first line: the first term
results from not diverging between t = 0 and tu, the
second from diverging at tu. The third point contributes
the second line: the first term comes from not diverging
before time tu, the second from choosing the branch
leading towards the first point, the third term comes
from not diverging between times tu and tv , and the
final term from diverging at time tv . The fourth and final
data point contributes the final line: the first term for
not diverging before time tu and the second term for
diverging at branch point u.

Although not immediately obvious, we will see in Sec-
tion 6.3, the tree probability in Equation 18 is invariant
to reordering of the data points.

The component of the joint probability distribution
resulting from the branching point and data locations
for the tree in Figure 2 is

N(xu; 0, σ2tu)N(xv;xu, σ
2(tv − tu))

×N(x1;xv, σ
2(1− tv))N(x2;xu, σ

2(1− tu))

×N(x3;xv, σ
2(1− tv))N(x4;xu, σ

2(1− tu)) (19)

where we see there is a Gaussian term associated with
each branch in the tree.
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Fig. 2: A sample from the Pitman-Yor Diffusion Tree with
N = 4 datapoints and a(t) = 1/(1 − t), θ = 1, α = 0.
Top: the location of the Brownian motion for each of
the four paths. Bottom: the corresponding tree structure.
Each branch point corresponds to an internal tree node.

6.2 Parameter ranges and branching degree

McCullagh et al. [2008] calculated the valid parameter
ranges for multifurcating Gibbs fragmentation trees on
TN , which correspond to the PYDT after marginalising
over the divergence times (see Section 6.6). Following
their result, there are several valid ranges of the param-
eters (θ, α) :

• 0 ≤ α < 1 and θ > −2α. This is the general
multifurcating case with arbitrary branching degree
which we will be most interested in (although in
fact we will often restrict further to θ > 0). α < 1
ensures the probability of going down an existing
branch is non-negative in Equation 11. θ > −2α
and α ≥ 0 together ensure that the probability of
forming a new branch is non-negative for any K in
Equation 12.

• α < 0 and θ = −κα where κ ∈ Z and κ ≥ 3. Here
κ is the maximum number of children a node can
have since the probability of forming a new branch
at a node with K = κ existing branches given by
Equation 12 will be zero. We require α < 0 to ensure
the probability of following an existing branch is
always positive.

• α < 1 and θ = −2α. This gives binary branching,
and specifically the DDT for α = θ = 0. Interestingly

theta

Fig. 3: The effect of varying θ on the log probability
of two tree structures (i.e. the product of the terms in
Equation 22 over the segments in the tree), indicating the
types of tree preferred. Small θ < 1 favours binary trees
while larger values of θ favors higher order branching
points.

however we see that this gives a parameterised
family of priors over binary trees, which was in fact
proposed by MacKay and Broderick [2007].

There are two other degenerate cases which are of little
interest for statistical modeling. The first is α = 1 and the
second is α = −∞ and θ ∈ {2, 3, . . . }. In both cases we
have instantaneous divergence at time t = 0 (since the
numerator in Equation 10 contains the term Γ(m − α))
so every data point is independent. The first case, α = 1
corresponds to a deterministic split into singleton blocks.
The second case, α = −∞ and θ ∈ {2, 3, . . . }, actually
gives a non-degenerate distribution over cladograms
corresponding to a recursive “coupon collector problem”
conditioned such that at least two coupons are collected
at each split.

Consider the parameter range 0 ≤ α < 1 and θ > −2α.
By varying θ we can move between flat (large θ) and
“bushy” clusterings (small θ), as shown in Figure 3 (here
we have fixed α = 0).

6.3 Exchangeability

Exchangeability is both a key modelling assumption and
a property that greatly simplifies inference. We show that
analogously to the DDT, the PYDT defines an infinitely
exchangeable distribution over the data points. We first
need the following lemma.

Lemma 1: The probability of generating a specific tree
structure, divergence times, divergence locations and
corresponding data set is invariant to the ordering of
data points.

Proof: The probability of a draw from the PYDT can
be decomposed into three components: the probability
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Fig. 4: A sample from the Pitman-Yor Diffusion Tree with
N = 20 datapoints and a(t) = 1/(1 − t), θ = 1, α = 0
showing the branching structure including non-binary
branch points.
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(d) c = 3, θ = 1.5, α = 0

Fig. 5: Samples from the Pitman-Yor Diffusion Tree with
N = 1000 datapoints in D = 2 dimensions and a(t) =
c/(1− t). As θ increases more obvious clusters appear.

of the underlying tree structure, the probability of the
divergence times given the tree structure, and the prob-
ability of the divergence locations given the divergence
times. We will show that none of these components
depend on the ordering of the data. Consider the tree,
T as a set of edges, S(T ) each of which we will see
contributes to the joint probability density. The tree
structure T contains the counts of how many datapoints
traversed each edge. We denote an edge by [uv] ∈ S(T ),
which goes from node u to node v with corresponding
locations xu and xv and divergence times tu and tv .
Let the final number of branches from v be Kv , and
the number of samples which followed each branch be
{nvk : k ∈ [1 . . .Kv]}. The total number of datapoints
which traversed edge [uv] is m(v) =

∑Kv
j=1 n

v
k. Denote

by S ′(T ) = {[uv] ∈ S(T ) : m(v) ≥ 2} the set of all edges
traversed by m ≥ 2 samples (for divergence functions
which ensure divergence before time 1 this is the set of
all edges not connecting to leaf nodes).

Probability of the tree structure. For segment [uv], let i
be the index of the sample which diverged to create the
branch point at v. The first i−1 samples did not diverge
at v so only contribute terms for not diverging (see
Equation 23 below). From Equation 10, the probability
of the i-th sample having diverged at time tv to form
the branch point (conditional on not diverging before
tv) is

a(tv)Γ(i− 1− α)

Γ(i+ θ)
. (20)

We now wish to calculate the probability of final config-
uration of the branch point. Following the divergence
of sample i there are Kv − 2 samples that form new
branches from the same point, which from Equation 12
we see contribute θ + (k − 1)α to the numerator for
k ∈ {3, . . . ,Kv}. Let cl be the number of samples having
previously followed path l, so that cl ranges from 1
to nvl − 1, which by Equation 11 contributes a term∏nvl −1
cl=1 (cl − α) to the numerator for l = 2, ...,Kv . c1 only

ranges from i− 1 to nv1 − 1, thereby contributing a term∏nv1−1
c1=i−1(c1 − α). The j-th sample contributes a factor

j − 1 + θ to the denominator, regardless of whether it
followed an existing branch or created a new one, since
the denominator in Equations 12 and 11 are equal. The
factor associated with this branch point is then:

∏Kv
k=3[θ + (k − 1)α]

∏nv1−1
c1=i−1(c1 − α)

∏Kv
l=2

∏nvl −1
cl=1 (cl − α)∏m(v)

j=i+1(j − 1 + θ)

=

∏Kv
k=3[θ + (k − 1)α]

∏Kv
l=1

∏nvl −1
cl=1 (cl − α)∏m(v)

j=i+1(j − 1 + θ)
∏i−2
c1=1(c1 − α)

=

∏Kv
k=3[θ + (k − 1)α]Γ(i+ θ)

∏Kv
l=1 Γ(nvl − α)

Γ(m(v) + θ)Γ(i− 1− α)Γ(1− α)Kv−1
. (21)
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Multiplying by the contribution from data point i in
Equation 20 we have

a(tv)
∏Kv
k=3[θ + (k − 1)α]

∏Kv
l=1 Γ(nvl − α)

Γ(m(v) + θ)Γ(1− α)Kv−1
. (22)

Each segment [uv] ∈ S ′(T ) contributes such a term. Since
this expression does not depend on the ordering of the
branching events (that is, on the index i), the overall
factor does not either. Since a(tv) is a multiplicative
factor we can think of this as part of the probability factor
for the divergence times.

Probability of divergence times. The m(v)− 1 points that
followed the first point along this path did not diverge
before time tv (otherwise [uv] would not be an edge),
which from Equation 17 we see contributes a factor

m(v)−1∏
i=1

exp

[
(A(tu)−A(tv))

Γ(i− α)

Γ(i+ 1 + θ)

]
= exp

[
(A(tu)−A(tv))H

θ,α
m(v)−1

]
, (23)

where we define Hθ,α
n =

∑n
i=1

Γ(i−α)
Γ(i+1+θ) . All edges [uv] ∈

S ′(T ) contribute the expression in Equation 23, resulting
in a total contribution∏

[uv]∈S′(T )

exp
[
(A(tu)−A(tv))H

θ,α
m(v)−1

]
. (24)

This expression does not depend on the ordering of the
datapoints.

Probability of node locations. Generalizing Equation 19
it is clear that each edge contributes a Gaussian factor,
resulting an overall factor:∏

[uv]∈S(T )

N(xv;xu, σ
2(tv − tu)I). (25)

The overall probability of a specific tree, divergence
times and node locations is given by the product of
Equations 22, 24 and 25, none of which depend on the
ordering of the data.

The term
∏Kv
k=3[θ + (k − 1)α] in Equation 22 can be

calculated efficiently depending on the value of α. For
α = 0 we have

∏Kv
k=3 θ = θKv−2. For α 6= 0 we have

Kv∏
k=3

[θ + (k − 1)α] = αKv−2
Kv∏
k=3

[θ/α+ (k − 1)]

=
αKv−2Γ(θ/α+Kv)

Γ(θ/α+ 2)
. (26)

The factor for the divergence times in Equation 24 itself
factorizes into a term for tu and tv . Collecting such terms
from the branches attached to an internal node v the
factor for tv for the divergence function a(t) = c/(1− t)
is

P (tv|T ) = a(tv) exp

[
A(tv)

(
Kv∑
k=1

Hθ,α
nvk−1 −H

θ,α
m(v)−1

)]
= c(1− tv)cJ

θ,α
nv
−1 (27)

where Jθ,αnv = Hθ,α∑K
k=1 n

v
k−1
−
∑K
k=1H

θ,α
nvk−1 with n ∈ NK

being the number of datapoints having gone down each
branch. Equation 27 is the generalisation of Equation 6
for the DDT to the PYDT. A priori the divergence times
are independent apart from the constraint that branch
lengths must be non-negative.

Theorem 1: The Pitman-Yor Diffusion Tree defines an
infinitely exchangeable distribution over data points.

Proof: Summing over all possible tree structures, and
integrating over all branch point times and locations,
by Lemma 1 we have exchangeability for any finite
number of datapoints, N . As a virtue of its sequential
generative process, the PYDT is clearly projective (i.e. the
model for N−1 datapoints is given by marginalising out
the N -th datapoint from the model with N datapoints).
Being exchangeable and projective, the PYDT is infinitely
exchangeable.

Corollary 1: There exists a prior ν on probability mea-
sures on RD such that the samples x1, x2, . . . generated
by a PYDT are conditionally independent and identically
distributed (iid) according to F ∼ ν, that is, we can
represent the PYDT as

PY DT (x1, x2, . . . ) =

∫ (∏
i

F(xi)

)
dν(F).

Proof: Since the PYDT defines an infinitely exchange-
able process on data points, the result follows directly by
de Finetti’s Theorem [Hewitt and Savage, 1955].

Another way of expressing Corollary 1 is that data
points x1, . . . , xN sampled from the PYDT could equiva-
lently have been sampled by first sampling a probability
measure F ∼ ν, then sampling xi ∼ F iid for all i
in {1, . . . , N}. For divergence functions such that A(1)
is infinite, divergence will necessarily occur before time
t = 1, so that there is zero probability of two data points
having the same location, i.e. the probability measure
F is continuous almost surely. Characterising when F
is absolutely continuous (the condition required for a
density to exist) remains an open question.

6.4 Relationship to the DDT
The PYDT is a generalisation of the Dirichlet diffusion
tree:

Lemma 2: The PYDT reduces to the Dirichlet diffusion
tree [Neal, 2001] in the case θ = α = 0.

Proof: This is clear from the generative process: for
θ = α = 0 there is zero probability of branching at a
previous branch point (assuming continuous cumulative
divergence function A(t)). The probability of diverging
in the time interval [t, t + dt] from a branch previously
traversed by m datapoints becomes:

a(t)Γ(m− 0)dt

Γ(m+ 1 + 0)
=
a(t)(m− 1)!dt

m!
=
a(t)dt

m
, (28)

as for the DDT.
It is straightforward to confirm that the DDT prob-

ability factors are recovered when θ = α = 0. In this
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case Kv = 2 since non-binary branch points have zero
probability, so Equation 22 reduces as follows:

a(tv)
∏Kv=2
l=1 Γ(nvl − 0)

Γ(m(v) + 0)
=
a(tv)(n

b
1 − 1)!(nb2 − 1)!

(m(v)− 1)!
, (29)

as for the DDT. Equation 24 also reduces to the DDT
expression since

H0,0
n =

n∑
i=1

Γ(i− 0)

Γ(i+ 1 + 0)
=

n∑
i=1

(i− 1)!

i!
=

n∑
i=1

1

i
= Hn,

(30)

where Hn is the n-th Harmonic number.

6.5 Prior over T is invariant to a(t)

The following lemma shows that the prior over tree
structures TN resulting from sampling a PYDT and
discarding the divergence times is invariant to the choice
of divergence function a(t), assuming that a(t) is non-
atomic.

Lemma 3: Let a : [0, 1) → R+ be a finite non-atomic
divergence function such that A(1) = ∞ where A(t) :=∫ t

0
a(u)du. Thus A−1 : R+ → [0, 1) exists. The PYDT P1 in

PN with divergence function a(t), and parameters (θ, α)
is equal in distribution to the PYDT P2 with constant
divergence function a′(t) = 1 on R+ and parameters
(θ, α), after remapping the divergence times according
to A−1.

Intuitively Lemma 3 says that one way to sample a
PYDT with divergence function a(t) is to first sample
the tree structure and divergence times from a PYDT
with constant a′(t) = 1, and then remap each the diver-
gence time tv to A−1(tv). Finally the Brownian diffusion
process can be run on the resulting tree.

Proof: We will show the generative process for a
single data point is equal for both processes, so that the
result follows by induction. Equality for the first data
point requires only that A−1(0) = 0 and A−1(∞) = 1.
Consider the generative process for data point i starting
at the root in either tree, where we assume the trees
generated by the two processes up to data point i − 1
are equal. The choice of which branch to follow (or
whether to form a new branch) at an existing branch
point is the same for both processes since this does not
depend on a(t). The time until divergence on a segment
[uv] can be viewed as the waiting time until the first
atom of a Poisson process on [uv] with intensity function
a(t) Γ(m−α)

Γ(m+1+θ) where m is the number of previous data
points having traversed [uv]. If the Poisson process has
no atoms on [uv] then i does not diverge and contin-
ues to the next branch point. The Poisson process on
[uv] in P2 has constant intensity function Γ(m−α)

Γ(m+1+θ) and
therefore rate measure A2([a, b]) = (b − a) Γ(m−α)

Γ(m+1+θ)) for
t′u ≤ a ≤ b ≤ t′v . The rate measure A1 on [uv] in P1

as a result of the mapping A−1 can be calculated using
the Poisson process mapping theorem (see for example

Kingman [1993]) as

A1([a, b]) = A2(A([a, b])) = A2([A(a), A(b)])

= (A(b)−A(a))
Γ(m− α)

Γ(m+ 1 + θ))
(31)

This is equal to the rate measure when the divergence
function is a(t), so the probability of diverging on [uv]
is equal in both processes, and if divergence occurs the
distribution over when is also equal.

Lemma 3 makes it possible to derive the distribution
over the tree structure TN ∈ TN by marginalising over
the divergence times. Under the PYDT with constant
divergence function a(t) = 1 on R+ the probability factor
for the divergence times in Equation 23 simplifies to

exp
[
−(tv − tu)Hθ,α

m(v)−1

]
, (32)

We apply a change of variables to use the branch lengths
b[uv] := tv − tu. This reparameterisation has Jacobian 1
and the b[uv] are conditionally independent given the
counts m(v). Since Equation 32 is of exponential distribu-
tion form integrating over b[uv] we see that each segment
contributes a term

1/Hθ,α
m(v)−1. (33)

6.6 Relationship to Gibbs fragmentation trees
Various models studied in the probability literature re-
late to the PYDT and DDT. We discuss some of the most
closely related here. Gibbs fragmentation trees [McCul-
lagh et al., 2008] define a Markovian, consistent proba-
bility distribution over the space of cladograms, TN . A
random tree is consistent if its subtrees are distributed
like the whole tree, and Markovian if disjoint subtrees
are distributed independently of each other and their
ancestors. Markovian random trees have a distribution
defined by a splitting rule, p, which gives the probability
of a specific tree, T ∈ TN through

P(T ) =
∏

v∈S′(T )

p(nv1, ..., n
v
Kv ) (34)

where S ′(T ) is the set of internal nodes of T , nvk is the
number of leaves below the k-th of v. Gibbs fragmenta-
tion trees have a splitting rule p of the form

p(n1, ..., nK) =
g(K)

Z(m)

K∏
i=1

w(ni) (35)

where m =
∑
i ni. McCullagh et al. [2008] (Theorem 8)

show that for such a splitting rule to be consistent, we
must have

w(n) =
Γ(n− α)

Γ(1− α)
, g(K) = αK−2 Γ(K + θ/α)

Γ(2 + θ/α)
(36)

Comparing g(K) with Equation 26 and the product
over w(ni) with Equation 22, we see that the depen-
dence on the nk’s and K at each node is the same
for the PYDT and the Gibbs fragmentation tree is the
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same, so the distribution over tree structures TN is
the same marginalising over divergence times in the
PYDT (the terms resulting from this marginalisation,
shown in Equation 33, contribute to the normalisation
Z(m) in Equation 35). In the binary case McCullagh
et al. [2008] discuss an embedding into continuous time
which is analogous to that for the PYDT, and which is
extended to the multifurcating case in Haas et al. [2008],
Proposition 3. These references confirm the uniqueness,
up to changes in a(t), of our embedding into continuous
time.

6.7 Relationship to Aldous’ beta-splitting model and
tree balance

Gibbs fragmentation trees generalise the earlier beta
splitting model of Aldous [1996], which correspond to
the binary branching (θ = −2α) PYDT. The valid param-
eter range for the binary PYDT is α < 1. As mentioned in
MacKay and Broderick [2007] the parameter α controls
the balance of the tree. As noted by Aldous [1996], for
α < 0 the reinforcing scheme here can be considered
as the result of marginalising out a latent variable, pv at
every internal node, v with prior, pv ∼ Beta(−α,−α). For
α = −1 this is a uniform distribution. For α close to 0
the distribution will concentrate towards point masses
at 0 and 1, i.e. towards (δ(0) + δ(1))/2, so that one
branch will be greatly preferred over the other, making
the tree more unbalanced. As α → −∞ the mass of
the beta distribution concentrates towards a point mass
at 0.5 encouraging the tree to be more balanced. For
0 ≤ α < 1, pv no longer has a valid prior density but
we see the reinforcing is still valid. A simple measure of
the imbalance of tree is given by Colless’s In [Colless,
1982], given by

In =
∑
v∈T
|l(v)− r(v)| (37)

where n is the number of leaves, v ranges over all
internal nodes in the tree, and l(v) and r(v) are the
number of data points that followed the left and right
branches respectively. The maximum of In is Imax

n =
(n−1)(n−2)/2 so we can define the normalised version
Īn = In/I

max
n ∈ [0, 1]. An alternative is the number of

unbalanced nodes in a tree, Jn [Rogers, 1996], i.e.

Jn =
∑
v∈T

(1− I[l(v) = r(v)]) (38)

where I is the indicator function. The maximum for Jn
is Jmax

n = n− 2 so again we can define J̄n := Jn/J
max
n ∈

[0, 1]. While we are unaware of formulae for EIn or
EJn for general α, using the connection to Aldous’ beta-
splitting trees these expectations are easily calculated for
any n by the recursion

ELn =

n−1∑
i=1

p(n− i, i) [ELi + ELn−i + g(n− i, i)] , (39)
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Fig. 6: Two measures of tree imbalance for samples from
the binary Pitman-Yor Diffusion Tree with θ = −2α for
varying α and N = 100. Solid lines: expected values
calculated using recursion formulae. Points: empirical
indices calculated using generated trees. Left: Colless’s
index of balance, see Equation 37. Right: Proportion of
unbalanced nodes, see Equation 38.
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Fig. 7: A hierarchical partitioning of the integers {1, ..., 7}
showing the underlying tree structure.

where p(., .) is defined as in Equation 35, L ∈ {I, J} and
g(l, r) := |l−r| for In or g(l, r) := 1− I[l = r] for Jn. Both
measures of tree imbalance increase with α, as shown
in Figure 6, with the biggest effects occurring in the
interval α ∈ [0, 1]. Both expected values calculated using
Equation 39 and empirical values calculated by explicitly
sampling trees from the binary PYDT with varying α are
shown.

6.8 The continuum limit of a nested CRP
The PYDT can be derived as the limiting case of a
specific nested Chinese Restaurant Process [Blei et al.,
2004] model (nCRP). We will first show how to construct
the Dirichlet Diffusion Tree as the limit of a simple nCRP
model. We then modify this model so that the limiting
process is instead the PYDT.

The nested CRP gives a distribution over hierarchical
partitions (see Section 2). Denote the K blocks in the
first level as {B1

k : k = 1, ...,K}. We can now imagine
partitioning the elements in each first level block, B1

k,
according to independent CRPs. Denote the blocks in the
second level partitioning of B1

k as {B2
kl : l = 1, ...,Kk}.

We can recurse this construction for as many iterations
S as we please, forming a S deep hierarchy of blocks v.
Each element belongs to just a single block at each level,
and the partitioning forms a tree structure: consider the
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Fig. 8: A draw from a S = 10-level nested Chinese
restaurant process.

unpartitioned set [n] as the root, with children B1
k. Each

B1
k then has children B2

kl, and so on down the tree, see
Figure 7. Nodes with only a single child are allowed
under this construction, resulting in a prior over T′N (see
Section 2). An example draw from an S = 10 level nested
CRP is shown in Figure 8. It is certainly possible to work
with this model directly (see Blei et al. [2004, 2010] and
more recently Steinhardt and Ghahramani [2012]), but
there are disadvantages, such as having to choose the
depth S, or avoid this in some more convoluted way:
Adams et al. [2010] use a stick breaking representation
of the nCRP with unbounded depth S augmented with
a probability of stopping at each internal node, and
Steinhardt and Ghahramani [2012] allow S →∞ but in-
tegrate over countably infinite chains of nodes with only
one child. While the latter is appealing for discrete data
where any bounded diffusion process on the infinitely
deep hierarchy concentrates towards a point mass, it
is not clear how to adapt this approach to modelling
continuous data.

Theorem 2: Associate each level s in an S-level nCRP
on T′N with “time” ts = s−1

S ∈ [0, 1), and let the
concentration parameter at level s be a(ts)/S, where
a : [0, 1] 7→ R+ is Riemann integrable. Taking the limit
S → ∞ recovers the Dirichlet Diffusion Tree [Neal,
2003b] on PN with divergence function a(t).

Intuitively, any connected chains of nodes with only
one child in the nCRP will become branches in the DDT:
the length of the chain in T′N becomes an increasingly
accurate approximation to the branch length in PN .
Nodes in the nCRP which do have multiple children
become branch points in the DDT, but we find that these
will always be binary splits.

Proof: From Equation 2 the probability of forming a
new branch (block) at a node on a chain of nodes with
only single children (a single block) at level u is (from
the definition of the CRP)

a(tu)/S

m+ a(tu)/S
, (40)

where m is the number of previous data points that
went down this chain. This behaves as a(tu)/(Sm) as S
becomes large. Informally associating the time interval
1/S with the infinitesimal time interval dt directly yields
the DDT divergence probability a(t)dt/m. More formally,
we aim to show that the distribution over divergence
times is given by the DDT in the limit S → ∞. The
number of nodes k in a chain starting at level u until
divergence at level v = u+ k is distributed as

a(tu+k)/S

m+ a(tu+k)/S︸ ︷︷ ︸
prob new block at level u+k

k−1∏
i=1

(
1− a(tu+i)/S

m+ a(tu+i)/S

)
︸ ︷︷ ︸

prob not forming new block at level u+i

,

(41)

where tu = u
S+1 is the “time” of the branch point at

the top of the chain. For constant a(.) Equation 41 is a
geometric distribution in k. We now take the limit S →
∞, holding k−1

S = t − tu and u−1
S = tu fixed so that

we also have k → ∞. We analyse how the product in
Equation 41 behaves:

lim
S→∞

k−1∏
i=1

(
1− a(tu+i)/S

m+ a(tu+i)/S

)

= lim
S→∞

k−1∏
i=1

(
1− a(tu+i)

Sm

)

= exp

{
lim
k→∞

k−1∑
i=1

log

(
1−

a(tu + i t−tuk−1 ))

m

t− tu
k − 1

)}
(42)

where we have used that tu+i = tu + i−1
S and 1

S = t−tu
k−1 .

We are able to exchange the order of the exp and lim
operations because of the continuity of exp. Now we use
that log (1− x) = −x−O(x2) to give

log

(
1− a(tu + i(t− tu)/(k − 1))

m

t− tu
k − 1

)
= −a(tu + i(t− tu)/(k − 1))

m

t− tu
k − 1

−O(k−2)

which allows us to see that the limiting value of the
exponent in Equation 42 is simply a Riemann integral

lim
k→∞

k−1∑
i=1

[
a(tu + i(t− tu)/(k − 1)))

m

t− tu
k − 1

−O(k−2)

]
=

1

m

∫ t

tu

a(τ)dτ (43)

Thus taking the limit S →∞ of Equation 41 we find the
divergence time, tv = tu + k−1

S is distributed

a(tv)

m
exp

{
−
∫ tv
tu
a(τ)dτ

m

}
(44)



TO APPEAR IN: IEEE TPAMI SI ON BAYESIAN NONPARAMETRICS 12

as for the Dirichlet Diffusion Tree, the waiting time in a
inhomogeneous Poisson process with rate function a(.).
In the simple case of constant a(.) = a the geometric
distribution becomes an exponential waiting time with
parameter a/m.

At existing branch points the probability of going
down an existing branch k is |Bk|/(m+a(ts)/S) which is
simply |Bk|/m in the limit S →∞, recovering the DDT.
The probability of a third cluster forming at an existing
branch point is given by Equation 40 which clearly tends
to 0 in the limit, resulting in the binary nature of the
DDT.

An alternative construction would use a homogeneous
(constant) rate a(.) = 1 and then use the Poisson process
mapping theorem [Kingman, 1993] to transform this
process into a DDT with arbitrary non-atomic divergence
function a(.), following Lemma 3. This emphasises that
the rate function, a(.) can in reality be any measurable
function but assuming it is Riemann integrable simplifies
the proof.

It was essential in this construction that we drove
the concentration parameter to zero as the depth of
the tree increases. This avoids complete instantaneous
fragmentation of the tree. For any time ε > 0 there
will be infinitely many levels in the nCRP before time
ε when we take S → ∞. If the CRPs in these levels
have strictly positive concentration parameters, the tree
will have completely fragmented to individual samples
before ε almost surely. This is clearly undesirable from a
modelling perspective since the samples are then inde-
pendent.

It is interesting that despite the finite level nCRP
allowing multifurcating “branch points” the continuum
limit taken in Theorem 2 results in binary branch points
almost surely. We will show how to rectify this limitation
in Theorem 3 where we present the analogous construc-
tion for the Pitman-Yor Diffusion Tree. First we men-
tion the possibility of using the two parameter Chinese
restaurant process (the urn representation of the Pitman-
Yor process [Pitman and Yor, 1997]) in the construction
of the DDT in Theorem 2. This in principle does not
introduce any additional difficulty. One can imagine a
nested two parameter CRP, using an analogous rate
function c(t) to give the discount parameter for each
level. The problem is that it would still be necessary
to avoid instantaneous fragmentation by driving the
discount parameters to zero as S → ∞, e.g. by setting
the discount parameter at time t to c(t)/S. It is straight-
forward to see that this will again recover the DDT,
although with rate function a(t) + c(t): the probability
of divergence will be (a(t) + c(t))/(Sm) when there is
one block, i.e. on a chain, so the logic of Theorem 2
follows; the probability of forming a third cluster at any
branch point is (a(t)+2c(t))/(Sm) which tends to zero as
S →∞; and finally the probability of following a branch
k at a branch point is nk−c(ts)/S

m+a(ts)/S
which again recovers the

DDT factor nk/m in the limit.
Thus the construction of the DDT in Theorem 2

destroys both the arbitrary branching structure of the
underlying finite level nCRP and does not allow the
extra flexibility provided by the two parameter CRP.
This has ramifications beyond the construction itself: it
implies that attempting to use a simple nCRP model in
a very deep hierarchy has strong limitations. Either only
the first few levels will be used, or the probability of
higher order branching events must be made exponen-
tially small. This is not necessarily a problem for discrete
data [Steinhardt and Ghahramani, 2012]. Additionally,
the two parameter generalisation cannot be used to any
advantage.

To obtain the multifurcating PYDT rather than the
binary DDT we will modify the construction above.

Associate level s of an S-level nested partitioning
model with time

ts = (s− 1)/S.

For a node at level s with only K = 1 cluster, let
the probability of forming a new cluster be a′(m,s)/S

m+a′(m,s)/S

where

a′(m, s) = ma(ts)
Γ(m− α)

Γ(m+ 1 + θ)
, (45)

where 0 ≤ α < 1, θ > −2α are hyperparameters. At
an existing branch point (i.e. if the number of existing
clusters is K ≥ 2) then let the probabilities be given by
the two parameter CRP, i.e. the probability of joining an
existing cluster k is

nk − α
m+ θ

, (46)

where nk is the number of samples in cluster k and m is
the total number of samples through this branch point
so far. The probability of diverging at the branch point
and creating a new branch is

θ + αK

m+ θ
, (47)

where K is the current number of clusters from this
branch point.

Theorem 3: In the limit S →∞ the construction above
becomes equivalent to the PYDT with rate function a(t),
concentration parameter θ and discount parameter α.

Proof: Showing the correct distribution for the di-
vergence times is analogous to the proof for Theorem 2.
The probability of divergence from a chain at any level s
behaves as a′(m,s)

Sm as S →∞. The number of nodes k in
a chain starting at level v until divergence is distributed:

a′(m, b+ k)

Sm

k−1∏
i=1

(
1− a′(m, b+ i)

Sm

)

=
a(tb+k)Γ(m− α)

SΓ(m+ 1 + θ)

k−1∏
i=1

(
1− a(tb+i)Γ(m− α)

SΓ(m+ 1 + θ)

)
. (48)
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Following the proof of Theorem 2 in the limit S → ∞
this becomes

Γ(m− α)

SΓ(m+ 1 + θ)
a(t) exp

{
− Γ(m− α)

Γ(m+ 1 + θ)

∫ t

tv

a(τ)dτ

}
.

Since Equations 12 and 46, and Equations 11 and 47 are
the same, it is straightforward to see that the probabili-
ties for higher order branching events are exactly as for
the PYDT, i.e. given by Equation 22.

The finite level model of Theorem 3 is not exchange-
able until we take the limit S →∞. Every node at level
s with only K = 1 cluster contributes a factor

m−1∏
i=1

(
1− a′(i, s)/S

j + a′(i, s)/S

)
, (49)

where a′(.) is defined in Equation 45 and m is the total
number of samples having passed through this node.
This factor does not depend on the order of the data
points. Now consider a node with K ≥ 2 clusters at level
s. Assume the i-th sample diverged to create this branch
point initially. The first i − 1 samples did not diverge,
the first contributing no factor, and the subsequent i− 2
contributing a total factor

i−1∏
j=2

(
1− a′(j, s)/S

m+ a′(j, s)/S

)
. (50)

Although this factor tends to 1 as S → ∞, for finite
S it depends on i. The probability of the i-th sample
diverging to form the branch point is

a′(i, s)/S

m+ a′(i, s)/S
=

a(ts)

S + a′(i, s)/i

Γ(i− α)

Γ(i+ 1 + θ)
. (51)

The probability contributed by the samples after i is
exactly the same as Equation 21 in Lemma 1, given by∏Kb

k=3[θ + (k − 1)α]Γ(i+ θ)
∏Kb
l=1 Γ(nbl − α)

Γ(m(v) + θ)Γ(i− 1 + α)
. (52)

Multiplying this by Equation 51 we obtain

a(ts)

S + a′(i, s)/i

∏Kb
k=3[θ + (k − 1)α]

∏Kb
l=1 Γ(nbl − α)

Γ(m(v) + θ)
. (53)

It is easy enough to see that we will recover the correct
expression for the PYDT in the limit S → ∞, using
1/S → dt. However, for finite S this factor, and the
factor in Equation 50, depend on i, so we do not have
exchangeability.

While other, exchangeable, finite S models might exist
that give the PYDT in the continuum limit we are
unaware of such a construction.

7 HIERARCHICAL CLUSTERING MODEL

To use the PYDT as a hierarchical clustering model we
must specify a likelihood function for the data given the
leaf locations of the PYDT, and priors on the hyperpa-
rameters. We use a Gaussian observation model for mul-
tivariate continuous data and a probit model for binary

vectors. We use the divergence function a(t) = c/(1− t)
and specify the following priors on the hyperparameters:

θ ∼ G(aθ, bθ), α ∼ Beta(aα, bα), (54)
c ∼ G(ac, bc), 1/σ2 ∼ G(aσ2 , bσ2), (55)

where G(a, b) is a Gamma distribution with shape, u and
rate, v. In all experiments we used aθ = 2, bθ = .5, aα =
1, bα = 1, ac = 1, bc = 1, aσ2 = 1, bσ2 = 1.

8 INFERENCE

We propose three inference algorithms: two MCMC
samplers and a more computationally efficient greedy
EM algorithm. All three algorithms marginalise out the
locations of internal nodes using belief propagation,
and are capable of learning the hyperparameters Θ :=
{c, σ2, θ, α} if desired. Let P ∈ PN be a tree structure
including branch lengths and D be data observed at the
leaves.

8.1 MCMC sampler
We demonstrate two alternative but related MCMC sam-
pling methods to explore the posterior over the tree
structure and divergence times, i.e. over the space PN of
phenograms. Both sample the structure and divergence
times using moves that detach and reattach subtrees. For
both samplers, subtrees are detached using the function
• (S,R, x0) := RANDOMDETACH(P), which chooses a

node uniformly at random from P and detaches the
subtree S rooted at that node. The detached subtree
S, the remaining treeR and the detachment position
x0 ∈ R are returned.

The subtree may be a single leaf node. Both samplers
make use of the unnormalised posterior f : PN → R+,
i.e. f(P) = P (D|P, σ2)P (P|c, θ, α) ∝ P (P|D,Θ), where
P (D|P, σ2) is the marginal likelihood of the tree struc-
ture P calculated using belief propagation. Let root(S)
be the root node of subtree S and t(u) be the time of
node u.

We confirmed the correctness of both samplers using
joint distribution tests [Geweke, 2004], using test func-
tions such as the time to the first divergence (the root
node).

8.1.1 MH sampler
The simplest sampler is based on Metropolis Hastings,
for which pseudocode is given in Algorithm 1. To pro-
pose a new position in the tree P ∈ PN for the detached
subtree we use the functions
• x′ := PRIOR(R) which follows the procedure for

generating a new sample on the remaining tree R
and returns the divergence position x′ ∈ R and,

• P ′ := ATTACH(S,R, x′) which attaches the subtree
S at x′ ∈ R, which may be on a segment, in which
case a new parent node is created, or at an existing
internal node, in which case the subtree becomes a
child of that node. The resulting tree P ′ is returned.
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If divergence occurred at a time later than the divergence
time of the root of the subtree, t(root(S)), we must repeat
the procedure until this is not the case. The acceptance
ratio a is then calculated using the marginal likelihood
f of the new proposed tree P ′ marginalizing over the
internal node locations, the marginal likelihood for the
original tree, and the proposal and reverse proposal
probabilities, which are simply given by the probabil-
ity of divergence at the reattachment and detachment
positions respectively (since which subtree to detach
is chosen uniformly at random). Denote by qR(x) the
probability under the prior of a new data point diverging
off the remaining subtree R at x.

Algorithm 1 MH sampler

Require: Initial tree P0 ∈ PN , unnormalised posterior
f(.), number of samples S
for i = 1→ S do

(S,R, x0) := RANDOMDETACH(Pi−1)
x′ := PRIOR(R)
while t(x′) > t(root(S)) do
x′ := PRIOR(R)

end while
P ′ := ATTACH(S,R, x′)
a := f(P′)qR(x0)

f(Pi−1)qR(x′)

Sample u ∼ U [0, 1]
if u < a then
Pi := P ′

else
Pi := Pi−1

end if
Sample hyperparameters

end for

8.1.2 Slice sampler

We propose a novel sampler based on slice sampling.
Our slice sampling scheme is distinct from that proposed
in Neal [2003b] in that a detached subtree may be reat-
tached anywhere in the remaining tree, whereas Neal’s
scheme only allows reattachment along the path from
the root to the sibling of the detached node. While slice
sampling is most commonly used for univariate distri-
butions, it is straightforward to extend to a tree. We first
consider the binary setting, and then discuss the exten-
sion to the general multifurcating case. The steps of the
slice sampler are shown in the cartoon in Figure 9 and
described in pseudocode in Algorithm 2. For notational
convenience we define the unnormalised posterior prob-
ability of reattachment at any point on the remaining
tree R as F : R → R+. i.e. F (x) = f(ATTACH(S,R, x)),
where we have suppressed the dependence on S and
R. Slice sampling involves introducing the auxiliary real
variable y, and defining the joint distribution which is
uniform over the region U = {(x, y) : x ∈ R, 0 <
y < F (x)}. Sampling from this joint distribution and

disregarding y gives samples from the normalised F (x)
as required.

The sampler proceeds as follows. As for the MH
sampler, a subtree S is picked uniformly at random from
the initial tree P0 using the function RANDOMDETACH
(see Figure 9a) where we again denote the original
attachment position as x0 ∈ R. We then sample y ∼
U [0, F (x0)], implicitly defining a slice S = {x ∈ R : y <
F (x)}. In Figure 9b the value of F (.) on S is shown
by the width of the grey region perpendicular to the
edge. We must now define a set I1 ⊆ R containing
x0 and most of S. Since R is bounded we simply set
I1 := {x ∈ R : t(x) < t(root(S))} where we have
excluded reattachment positions that would result in a
negative branch length. An analogous method to the
standard stepping out approach for univariate slice sam-
pling might be useful, but maintaining detailed balance
in this setting is more challenging. We sample a potential
reattachment position x1 from the uniform distribution
on I1, an operation we denote by x1 ∼ UNIFORM[I1].
If F (x1) < y then x1 is rejected we shrink I using the
function
• Ij+1 := SHRINK(Ij , x0, xj), which calculates Ij+1 by

removing from Ij all parts of the tree that could only
be reached from x0 by passing through xj .

This is shown in Figure 9c where the extent of the
grey regions specifies the shrunk I ′. We repeat this
procedure: sampling xj ∼ UNIFORM[Ij ], shrinking I and
incrementing j until xj is accepted since F (xj) > y and
R is reattached at xj (see Figure 9d and e). Eventually
xj will be accepted since Ij will concentrate around x0.

The method maintains detailed balance by the
same argument as for the univariate shrinkage pro-
cedure [Neal, 2003a]: the probability of transitioning
from x0 to xj (where xj is accepted) is equal to that
for xj to x0 using the same intermediate rejected x’s.
The advantage of the slice sampling procedure over the
simple MH sampler is that the slice sampler uses rejected
reattachment positions to rapidly narrow down where in
the tree might be a sensible reattachment position, where
MH continues to blindly propose reattachment positions
from the prior.

It is not immediately obvious how to use the slice
sampling approach in the multifurcating setting because
of the atoms at the nodes in the unnormalised posterior
F . Our solution is to represent each atom, i, with mass gi,
by a rectangle of width δ = 0.1 and height gi/δ, inserted
in R at the nodes of the tree: these are the rectangles
shown at the nodes in Figure 9. The approach described
above can then be straightforwardly applied.

8.1.3 Smoothness hyperparameter, c.
From Equation 27 the conditional posterior for c is

G

(
ac + |I|, bc +

∑
i∈I

Jθ,αni log (1− ti)

)
, (56)

where I is the set of internal nodes of the tree.
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Fig. 9: Steps involved in the slice sampling procedure. Width of the grey region perpendicular to each edge shows
the unnormalised posterior F (x) on the remaining tree R, and the extent of this region shows I. Atoms in F (x) at
the nodes are represented both schematically and mathematically as rectangles. a) Initial tree. b) Randomly chosen
subtree is detached at x0 and we sample y ∼ U [0, F (x0)]. c) x1 ∼ Uniform[I1] is rejected because F (x1) < y and I1

is shrunk to give I2. d) x2 ∼ Uniform[I2] is accepted because F (x2) > y. e) Subtree is reattached at x2.

Algorithm 2 Slice sampler

Require: Initial tree P0 ∈ PN , unnormalised posterior
f(.), number of samples S
for i = 1→ S do

(S,R, x0) := RANDOMDETACH(Pi−1)
Sample y ∼ U [0, f(Pi−1)]
I1 := {x ∈ R : t(x) < t(root(S))}
j := 1
Sample x1 ∼ UNIFORM(I1)
P ′ := ATTACH(S,R, x1)
while f(P ′) < y do
Ij+1 := SHRINK(Ij , x0, xj)
Sample xj+1 ∼ UNIFORM(Ij+1)
P ′ := ATTACH(S,R, xj+1)
j := j + 1

end while
Pi := P ′
Sample hyperparameters

end for

8.1.4 Data variance, σ2.
It is straightforward to sample 1/σ2 given divergence
locations. Having performed belief propagation it is easy
to jointly sample the divergence locations using a pass
of backwards sampling. From Equation 25 the Gibbs
conditional for the precision 1/σ2 is then

G(aσ2 , bσ2)
∏

[uv]∈S(T )

G
(
D/2 + 1,

||xu − xv||2

2(tv − tu)

)
, (57)

where || · || denotes Euclidean distance.

8.1.5 Pitman-Yor hyperparameters, θ and α.
We use slice sampling to sample θ and α. We reparam-
eterise in terms of the logarithm of θ and the logit of α
to extend the domain to the whole real line. The terms
required to calculate the conditional probability are those
in Equations 22 and 24.

8.2 Greedy Bayesian EM algorithm

As an alternative to MCMC here we use a Bayesian
EM algorithm to approximate the marginal likelihood

for a given tree structure, which is then used to drive a
greedy search over tree structures, following our work
in Knowles et al. [2011].

8.2.1 EM algorithm.
In the E-step, we use message passing to integrate over
the locations and hyperparameters. In the M-step we
maximize the lower bound on the marginal likelihood
with respect to the divergence times. For each node i
with divergence time ti we have the constraints tp <
ti < min (tl, tr) where tl, tr, tp are the divergence times
of the left child, right child and parent of i respectively.

We jointly optimise the divergence times using
LBFGS [Liu and Nocedal, 1989]. Since the divergence
times must lie within [0, 1] we use the reparameterisation
si = log [ti/(1− ti)] to extend the domain to the real line,
which we find improves empirical performance. From
Equations 25 and 6 the lower bound on the log evidence
is a sum over all branches [pi] of expressions of the form:

(〈c〉Jα,βni − 1) log (1− ti)−
D

2
log (ti − tp)− 〈

1

σ2
〉
b[pi]

ti − tp
(58)

where b[pi] = 1
2

∑D
d=1 E[(xdi − xdp)2], xdi is the location

of node i in dimension d, and p is the parent of node
i. The full lower bound is the sum of such terms over
all nodes. The expectation required for b[pi] is readily
calculated from the marginals of the locations after mes-
sage passing. Differentiating to obtain the gradient with
respect to ti is straightforward so we omit the details.
Although this is a constrained optimization problem
(branch lengths cannot be negative) it is not necessary to
use the log barrier method because the 1/(ti − tp) terms
in the objective implicitly enforce the constraints.

8.2.2 Hyperparameters.
We use variational inference to learn Gamma posteriors
on the inverse data variance 1/σ2 and smoothness c. The
variational updates for c and 1/σ2 are the same as the
conditional Gibbs distributions in Equations 56 and 57
respectively. We optimize the Pitman-Yor parameters, θ
and α by coordinate descent using golden section search
on the terms in Equations 22 and 24.
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8.2.3 Search over tree structures
The EM algorithm approximates the marginal likelihood
for a fixed tree structure P . We maintain a list of K-
best trees (typically K = 10) which we find gives
good empirical performance. Similarly to the sampler,
we search the space of tree structures by detaching and
reattaching subtrees. We choose which subtree to detach
at random. We can significantly improve on reattaching
at random by calculating the local contribution to the
evidence that would be made by attaching the root of the
subtree to the midpoint of each possible branch and at
each possible branch point. We then run EM on just the
three best resulting trees. We found construction of the
initial tree by sequential attachment of the data points
using this method to give very good initializations.

8.3 Likelihood models
Connecting our PYDT module to different likelihood
models is straightforward: we use a Gaussian observa-
tion model and a probit model for binary vectors. The
MCMC algorithm slice samples auxiliary variables and
the EM algorithm uses EP [Minka, 2001] on the probit
factor, implemented using the runtime component of the
Infer.NET framework [Minka et al., 2010].

9 RESULTS

We present results on synthetic and real world data, both
continuous and binary.

9.1 Synthetic data
We first compare the PYDT to the DDT on a simple
synthetic dataset with D = 2, N = 100, sampled from
the density

f(x, y) =
1

4

∑
x̄∈{−1,1}

∑
ȳ∈{−1,1}

N(x; x̄, 1/8)N(y; ȳ, 1/8)

The optimal trees learnt by 100 iterations of the greedy
EM algorithm are shown in Figure 10. While the DDT is
forced to arbitrarily choose a binary branching structure
over the four equi-distant clusters, the PYDT is able to
represent the more parsimonious solution that the four
clusters are equally dependent. Both models find the
fine detail of the individual cluster samples which may
be undesirable; investigating whether learning a noise
model for the observations alleviates this problem is a
subject of future work.

9.2 Density modeling
In Adams et al. [2008] the DDT was shown to be an
excellent density model on a D = 10, N = 228 dataset
of macaque skull measurements, outperforming a kernel
density and Dirichlet process mixture of Gaussians, and
sometimes the Gaussian process density sampler pro-
posed in that paper. We compare the PYDT to the DDT
on the same dataset, using the same data preprocessing
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Fig. 10: Optimal trees learnt by the greedy EM algorithm
for the DDT and PYDT on a synethic dataset with D =
2, N = 100.
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Fig. 11: Density modelling of the D = 10, N = 200
macaque skull measurement dataset of Adams et al.
[2008]. Top: Improvement in test predictive likelihood
compared to a kernel density estimate. Bottom: Marginal
likelihood of current tree. The shared x-axis is computa-
tion time in seconds.

and same three train test splits (Ntrain = 200, Ntest = 28)
as Adams et al. [2008]. The performance using the MH
sampler is shown in Figure 11. The PYDT finds trees
with higher marginal likelihood than the DDT, which
corresponds to a moderate improvement in predictive
performance. The posterior hyperparameters were rea-
sonably consistent across the three train/test splits, with
θ = 2.3 ± 0.4 and α = 0.23 + 0.08 averaged over the
last 100 samples for the first training split for example.
Inference in the PYDT is actually slightly more efficient
computationally than in the DDT because on average
the smaller number of internal nodes reduces the cost of
belief propagation over the divergence locations, which
is the bottleneck of the algorithm (being a subroutine of
the tree search procedure).

9.3 Binary example
To demonstrate the use of an alternative observation
model we use a probit observation model in each dimen-
sion to model 102-dimensional binary feature vectors
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Fig. 12: PYDT structure learnt for the animals dataset
of Tenenbaum and Kemp [2008], learnt using the EM
algorithm.

relating to attributes (e.g. being warm-blooded, having
two legs) of 33 animal species from Tenenbaum and
Kemp [2008]. The MAP tree structure learnt using EM,
as shown in Figure 12, is intuitive, with subtrees corre-
sponding to land mammals, aquatic mammals, reptiles,
birds, and insects (shown by colour coding). Penguins
cluster with aquatic species rather than birds, which is
not surprising since the data includes attributes such as
“swims”, “flies” and “lives in water”.

9.4 Cancer cell line encyclopedia
The Cancer cell line encyclopedia (CCLE) consists of
measurements of the sensitivity of 504 cancer derived
cell lines to 24 drugs [Barretina et al., 2012]. Such data
has the potential to help us understand the relationship
between different cancer types in different tissues and
the drugs’ various mechanisms of action, and to aid in
clinical practice. We use the PYDT slice sampling algo-
rithm to hierarchically cluster the drugs according their
sensitivity patterns across the cell lines, see Figure 13.
Here we also show the known molecular inhibition
targets of the drugs. We see that drugs close in the
tree often have shared inhibition targets, for example
PD 0325901 and AZD6244 are siblings in the tree and

are both MAPK/ERK kinase (MEK) inhibitors. However,
it is interesting that there are both drugs with shared
inhibition targets that are distant in the tree, such as
Nutlin 3 and 17 AAG, suggesting there maybe be bi-
ologically significant differences in their mechanism of
action, and drugs with no known shared target such as
Lapatinib and Erlotinib which are very close in the tree,
suggesting their targets may be part of the same biologi-
cal pathway. Such a hierarchical clustering could be used
clinically, for example if using multiple drugs it could be
beneficial to use distant drugs in the tree to maximise the
diversity of the treatment and therefore the chance of one
of the drugs being effective for the particular patient.
Qualitatively, for clustering the drugs we find that the
trees found using the PYDT are more consistent than
with the DDT since where the ordering of divergence
events is poorly determined by the data, the PYDT can
simply use a higher order branch point. To quantitatively
assess how well the PYDT models this data compared
to the DDT we performed an imputation experiment
where 10% of the cell lines were held out as test data.
Repeating on 10 such random training/test splits the
average predictive log likelihood was 0.08± 0.34 for the
PYDT vs. −3.76 ± 0.84 for the DDT ( in both cases we
used slice sampling with 10, 000 iterations, discarding
the first 5000 iterations as burnin).

We also use the CCLE data to assess the convergence
properties of our two sampling methods: MH and slice
sampling. We first consider hierarchically clustering the
504 cell lines. The marginal likelihood of the inferred
trees under the PYDT during a run of MH and slice
sampling, starting from a random initial tree is shown in
Figure 14. We see that initially MH performs better, but
then slice sampling overtakes it. Initially, MH performs
well because the random tree structure means that sam-
pling reattachment positions from the prior is not that
unreasonable: indeed the initial 1000 proposals obtain
an impressive acceptance rate of just over 0.3. However,
as the tree structure improves, the probability of the
MH proposal being reasonable relative to the current
position becomes much smaller, and the acceptance ratio
shrinks to around 0.02, so that significant computation is
wasted. Slice sampling by contrast maintains roughly the
same efficiency as the tree structure improves because
its shrinkage procedure is able to rapidly rule out large
portions of the tree as unpromising. Throughout the slice
sampling run it takes only on average 6 rejections before
a rettachment position is accepted. It is unclear exactly
why the slice sampling method is less effective than MH
early on, but we suspect it is because MH samples from
the prior, so that proposing reattachment higher (closer
to the root) is more likely than in the slice sampler, where
all branches are treated equally, giving undue weight to
the large number of the branches lower down in the tree.
This could be remedied in the slice sampler, but we leave
this to future work.

As with models such as Dirichlet process mixture
(DPM) models, it is beneficial to know whether our
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Fig. 13: Highest probability hierarchical clustering found using the slice sampling algorithm for the drugs in CCLE
using the PYDT, along with known inhibition targets.

samplers are able to truly explore the space of possible
configurations available to the model. One approach for
DPMs is to run two MCMC chains: one from a config-
uration where every data point is in its own mixture
component, and one where all datapoints are in a single
cluster. One can then monitor how many iterations are
required until both chains have a similar number of
clusters. We perform an analogous experiment for the
PYDT: one chain is initialised with a binary, random
tree (sampled from the DDT), and the other chain with
a flat clustering. We do this for both clustering the 24
drugs and the 504 cell lines, as shown in Figure 15.
Encouragingly we see that even in the more challenging
setting of hierarchically clustering the cell lines, the slice
sampler appears to have burnt in after around 7 minutes,
corresponding to around 2000 iterations. This means
for a binary tree each subtree would only have been
attached and reattached by the slice sampler only an
average of twice (since a binary tree over 504 leaves
has 504 + 503 = 1007 potential subtrees). Typically
at convergence the learnt tree has around 290 internal
nodes (out of a possible maximum of 503 for a fully
binary tree), with an average branching factor of around
2.5 (although the maximum branching factor varies in
the range 8 − 12), corresponding to a moderate but
significant level of multifurcation.

10 CONCLUSION

We have introduced the Pitman-Yor Diffusion Tree, a
Bayesian nonparametric prior over tree structures with
arbitrary branching structure at each branch point. We
have shown the PYDT defines an infinitely exchangeable
distribution over data points. We demonstrated two al-
ternative MCMC samplers and Bayesian EM with greedy

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time(s)

8500

8000

7500

7000

6500

6000

5500

5000

4500

4000

e
n
e
rg

y

slice
MH

Fig. 14: Marginal likelihood of trees for hierarchically
clustering the cell lines in CCLE under the PYDT, using
MH and slice sampling.

search, all of which using message passing on the tree
structure. In ongoing work we are investigating more
advanced MCMC methods based on the uniformisation
approach introduced by Rao and Teh [2011]. We are
also interested in better understanding the underlying
process conditional on which individual paths through
the PYDT are iid. Informally such an object will be a
continuously branching tree with branch weights. Rele-
vant prior work includes Haas et al. [2008] who formally
studied the convergence of discrete fragmentation trees
to continuum trees [Aldous, 1991]. Quantitatively we
have shown a modest improvement relative to the DDT
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Fig. 15: Running the samplers from two different initial states: a binary random clustering, or a flat clustering.

on a density estimation task. However, we see improved
interpretability as the key benefit of removing the re-
striction to binary trees, especially since hierarchical
clustering is typically used as a data exploration tool.
Qualitatively, we have shown the PYDT can find simpler
and more consistent representations of data than the
DDT.
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