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Abstract

The goal of the multiway cut problem is to find a minimum-cost set of edges whose
removal disconnects a certain set of k distinguished vertices in a graph. Calinescu,
Karloff, and Rabani gave a geometric relaxation of the multiway cut problem and
a rounding scheme that yield an approximation algorithm for the problem that has
an approximation ratio of 3/2 — 1/k. In subsequent work, Karger, Klein, Stein,
Thorup and Young improved the approximation ratio of the algorithm by using dif-
ferent rounding schemes, which they found through the assistance of computational
experiments. Their rounding schemes are based on a single class of partitions of
the k-simplex. We extend their computational experiments by introducing additional
types of partitions of the 4-simplex. Our experimental results suggest that an optimal
rounding scheme for £ > 3 cannot be defined purely in terms of the partitions of the
simplex that Karger et al. studied. Furthermore, we specify a rounding scheme for
k = 4 that improves upon the best approximation ratio for which an analytic proof
has been given.
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Chapter 1

Introduction

In the multiway cut problem, the goal is to find a minimum-cost set of edges whose
removal disconnects a certain set of k£ distinguished vertices in a graph. The tech-
nique of using a geometric embedding to develop an approximation algorithm for a
graph optimization problem was successfully employed for the multiway cut problem
by Calinescu, Karloff, and Rabani, who gave a geometric relaxation of the problem
and a rounding scheme that lead to an algorithm with an approximation ratio of
3/2 — 1/k. Subsequently, Karger, Klein, Stein, Thorup and Young showed that the
approximation ratio of the algorithm may be improved through the use of different
rounding schemes, which they found through the assistance of computational experi-
ments. All of the rounding schemes they consider are based on one class of partitions

of the k-simplex.

In the present work, we extend the computational experiments of Karger et al. by
introducing several additional types of partitions of the 4-simplex. The results of our
experiments suggest that an optimal rounding scheme for £ > 3 cannot be defined
purely in terms of the partitions of the simplex that Karger et al. studied. We also
specify a rounding scheme for k£ = 4 that yields an approximation ratio better than

the smallest known ratio for which an analytic proof has been given.
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1.1 Problem Definition

The minimum (s, t)-cut problem is a classic graph-optimization problem. Given an
undirected graph G = (V, E) in which the edges have nonnegative costs, and two
distinct vertices s,t € V, an (s, t)-cut is a subset of the edges satisfying the property
that if the edges in the cut are removed from the graph, s and ¢ are in different con-
nected components of the resulting graph. Such a cut is said to separate or disconnect
the two vertices s and t. The cost of a particular (s,t)-cut is defined as the sum of
the costs of the edges in the cut. In the minimum (s,¢)-cut problem, the inputs are
a graph and two vertices s and ¢ in the graph, and the goal is to find an (s,t)-cut of

the graph with the minimum cost.

This problem has a natural generalization known as the multiway cut problem
that involves more than two distinguished vertices. The inputs in the multiway cut
problem are a graph G = (V, E) and a subset 7' C V of the vertices. Each vertex in
T is referred to as a terminal. Given that there are |T'| = k terminals, a k-way cut of
the graph is a set of edges that, when removed, will produce a graph in which each of
the k terminals is in a distinct connected component. As in the minimum (s, t)-cut
problem, the cost of a cut is the sum of the costs of the edges in the cut, and the
goal of the multiway cut problem is to find a k-way cut with minimum cost in the
graph. The minimum (s, t)-cut problem is the special case k = 2 of the more general

multiway cut problem.

The multiway cut problem arises in several applications. One may formulate
the scheduling of jobs on multiple processors in distributed computing systems as a
multiway cut problem [5]. Other applications include partitioning files among the
nodes of a network, assigning users to computers in an environment with multiple
computers, and partitioning the elements of a circuit during the design of electronic
chips into the subcircuits that are placed on different chips [2]. Note that the standard
multiway cut problem does not require the connected components that remain in the
graph after the edges in the cut have been removed to be balanced in the sense that

their relative sizes under some measure must satisfy additional constraints. Placing
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such a requirement on the connected components would produce a more general
balanced multiway cut problem that would have more potential applications than the

standard multiway cut problem.

1.2 Prior Work

The multiway cut problem was first studied by Dahlaus, Johnson, Papadimitriou,
Seymour, and Yannakakis [2]. They showed that for all fixed £ > 3, multiway cut
is MAX-SNP hard, and that multiway cut is NP-hard even when the costs of all
of the edges are fixed at 1. Studies of the multiway cut problem have therefore
focused on the development of approximation algorithms for the problem. In the
context of multiway cut, an approximation algorithm for the problem is said to have
an approximation ratio of « if, for any input, the ratio of the cost of the k-way cut
produced by the algorithm to the cost of the minimum k-way cut for the input is at
most a. We seek an algorithm with the smallest possible approximation ratio, though
of course there is no algorithm that has an approximation ratio less than 1. The fact
that multiway cut is MAX-SNP hard implies that there exists some constant b > 1
such that no polynomial-time approximation algorithm for multiway cut can have an
approximation ratio less than b unless P = NP.

In addition to demonstrating the hardness of approximation of multiway cut,
Dahlaus et al. gave the first approximation algorithm for the problem. This algorithm
is based on an isolation heuristic. For each terminal in the graph, it uses an algorithm
for the minimum (s,t)-cut problem to find the minimum-cost cut separating the
terminal from the remaining (k — 1) terminals. The algorithm outputs the set of
edges obtained by forming the union of the (k — 1) smallest-cost cuts. Because each
of the (k—1) cuts, when removed from the graph, eliminates all paths between one of
the terminals and any other terminal, removing the union of the cuts from the graph
will leave no paths between any pair of terminals in the graph. Dahlaus et al. show
that this algorithm achieves an approximation ratio of 2 — 2/k.

The Dahlaus et al. approximation algorithm was the best known approximation
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algorithm for the general multiway cut problem on arbitrary graphs until the work
of Calinescu, Karloff, and Rabani [1]. They developed a new approach to finding
a k-way cut that approximates the minimum. At the core of their algorithm is a
geometric embedding of the input graph into the k-simplex. The nodes of the graph
are mapped to points in the simplex, with the terminals mapping to the & vertices of

the simplex.

Once the graph has been embedded into the simplex, the simplex is partitioned
into regions, one for each terminal. A partition of the simplex naturally induces a
k-way cut of the graph, with the nodes in the connected component that contains
each terminal mapping to points in the region for that terminal. In this context, an
edge in the input graph is in the cut if its endpoints map to different regions of the
partitioned simplex. Calinescu et al. exploit this geometric embedding of the graph
into the simplex to give an approximation algorithm for multiway cut that has an

approximation ratio of 3/2 — 1/k.

Furthering the study of the Calinescu et al. approximation algorithm, Karger,
Klein, Stein, Thorup, and Young showed that by modifying the way in which the
algorithm partitions the simplex, its approximation ratio can be improved [4]. Their
work is based on computational experiments involving probability distributions over
a class of partitions of the simplex that they refer to as side-parallel cuts, abbreviated
sparcs. For the case of k = 3 terminals, they present a probability distribution over
partitions of the simplex that, when used in the Calinescu et al. algorithm, leads
to an approximation ratio that is the best possible for any algorithm based on the
Calinescu et al. framework. In this sense, their work demonstrates the limits of the
Calinescu et al. method for the case of £ = 3 terminals. Karger et al. also give a
probability distribution over sparcs that leads to improved approximation ratios for

all £ > 3, but do not show that this distribution is optimal.
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1.3 QOur Approach

In this project, we use computational experiments to study approximation algorithms
for the multiway cut problem. Our approach is to extend the work of Karger et
al. by considering alternatives to sparcs for partitioning the simplex. The types of
cuts that we introduce in addition to sparcs are defined based on the 4-simplex, a
regular tetrahedron, and as such our work focuses on the case k£ = 4 of the multiway
cut problem. We analyze several natural probability distributions over these cuts,
and we develop discrete linear programs that form the basis for the computational
experiments.

Our work also involves sparcs. For & = 4, we describe a class of probability
distributions over sparcs, and specify a particular distribution for which we obtain an
upper bound on the approximation ratio achieved by the algorithm when it uses the
distribution as the rounding scheme. This approximation ratio improves upon the

best approximation ratio for which an analytic proof has been presented.

1.4 Presentation Overview

In Chapter 2, we describe in detail the geometric embedding and the approximation
algorithm for multiway cut of Calinescu et al., and the work of Karger et al. that
improves the algorithm. Chapter 3 defines the cuts of the 4-simplex that we introduce
to complement sparcs, and analyzes several probability distributions over these cuts.
Next, Chapter 4 describes the computational experiments that we performed using
the various types of cuts with which we worked. In Chapter 5, we define and analyze a
probability distribution over sparcs that leads to an improved analytic approximation
ratio for £ = 4. Finally, Chapter 6 provides concluding remarks and suggestions for

future work.
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Chapter 2

Background

In this chapter, we describe the approximation algorithm of Calinescu, Karloff, and
Rabani for the multiway cut problem. We also present the subsequent work of Karger,
Klein, Stein, Thorup, and Young on probability distributions over partitions of the

k-simplex that we extend in this project.

2.1 The Approximation Algorithm of Calinescu,
Karloff, and Rabani

The Calinescu et al. algorithm is based on a geometric embedding of the input graph
into the k-simplex A = {z € R*¥ | z > 0,)_,z; = 1}. Although the k-simplex is a
(k — 1)-dimensional convex polytope, it is convenient to use k-dimensional vectors to
describe it. The k-simplex has k vertices, with the ith vertex being the point identified
by the unit vector e, which has coordinates (¢'); = 0 for all j # i and (€*); = 1. To
avoid ambiguity, we refer to the vertices of the input graph, the elements of V', as
nodes, and we reserve the term vertex for references to vertices of the simplex.
Throughout this work, we will use one-half the L; norm as our distance measure.
We denote the L; norm of a vector x by |z|, and the distance between two points z
and y by d(z,y), and thus |z| = Zle |z;| and d(z,y) = (1/2)|z — y|. The length of

a line segment is the distance between its endpoints. Note that the distance between
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any two vertices i and j of the simplex is (1/2)]e’ — e7| = (1/2) S2b_, [(€')¢ — (e7),] =

(1/2)(|(e")i = ()il + 1(e"); = (¢));]) = (1/2)(1 = 0] + [0 = 1[) = L.

2.1.1 Geometric embedding

In the embedding of the graph into the simplex, each node of the graph is mapped to
a point in the simplex. Each edge is mapped to the line segment joining the points to
which its endpoints map. We define the length of an embedded edge as the distance,
under the one-half L; norm measure, between the points to which its endpoints map.

The cost of an edge (u,v) € E in the graph is denoted by c¢(u, v).

Suppose all of the nodes map to vertices of the simplex and the ith terminal maps
to the ith simplex vertex. Then every embedded edge has a length of either 0 (in the
case that its endpoints map to the same vertex) or 1 (in the case that its endpoints
map to different vertices). A mapping of this type naturally induces a k-way cut of
the graph. In this context, the set of nodes that map to a particular simplex vertex
are in one connected component after the edges in the cut have been removed, and
the edges in the cut are the edges whose endpoints are mapped to different vertices.
Thus, the cost of the cut is the sum of the costs of the edges whose endpoints map

to different vertices.

These observations provide the basis for the following nonlinear integer program,
which is a formulation of the multiway cut problem. The variables in the program
are vectors z* for all nodes u € V. For a node u, the variable z* represents the point

in the simplex to which u maps in the embedding.

Minimize Z c(u,v)d(z", ") subject to
(uw)EE

te{e|i=1,....k} YueV (2.1)

zt=¢et VteT (2.2)
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The integrality constraints (2.1) require that the nodes map to vertices of the simplex.
For the terminals, the program has additional constraints (2.2), which ensure that
the terminals map to different vertices of the simplex. Since the distance between any
two points at which nodes of the graph have been embedded is 0 if the points map to
the same vertex and 1 if they map to different vertices, the integer program minimizes
the sum of the costs of the edges whose endpoints map to different vertices, which
is the cost of the induced k-way cut. As such, a solution to this integer program

identifies the edges in a minimum-cost k-way cut of the input graph.

2.1.2 Linear programming relaxation

To further the development of their approximation algorithm for the multiway cut
problem, Calinescu et al. provide a linear programming relaxation of an integer
program for multiway cut. They show that their relaxed linear program is equivalent
to the following relaxed formulation for multiway cut, which has one vector-valued

variable z* for each node u € V.

Minimize Z c(u,v)d(z", ") subject to

(u,v)EE
e YueV (2.3)
zt=¢e" VteT (2.4)

The integrality constraints (2.1) in the integer program have been relaxed to obtain
the constraints (2.3). Under the relaxed constraints, nodes may map to any points in
the simplex, not only to simplex vertices.

As in the integer program, the terminals must map to different vertices of the
simplex, but the other nodes may be placed anywhere in the simplex. Clearly, a
solution to this formulation in which all of the nodes in the graph map to vertices

is also a solution to the integer program. This formulation allows more solutions
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than the integer program, however, and therefore may have a smaller optimal value
than the integer program. For any feasible solution to this formulation, which is
an embedding of the graph into the simplex, we refer to the value of the objective

function for that solution as the volume of the embedding.

2.1.3 The algorithm

The approximation algorithm of Calinescu et al. for multiway cut first finds a solution
to the relaxed formulation of multiway cut by linear programming. It then converts
this solution to a solution to the integer program by using randomized rounding
methods. The basis for the rounding scheme employed by the algorithm is a k-way
cut of the simplex, which is a partition of the simplex into k subsets, each containing
exactly one vertex of the simplex. Given a particular k-way cut of the simplex, a
solution to the integer program may be obtained by placing all of the nodes that map
to a particular partition of the simplex at the vertex contained in that partition. In
this way, a k-way cut of the simplex induces a k-way cut of the embedded graph. An
edge is in the k-way cut of the graph if its endpoints map to different partitions of

the simplex.

The rounding scheme used by the algorithm selects a k-way cut of the simplex
from a certain distribution. Its choice of a cut is not affected by the input graph. The
k-way cut of the graph induced by the k-way cut of the simplex has an expected cost
that is greater than the volume of the embedding, which is the optimal value of the
linear programming relaxation, by at most a factor of 3/2—1/k. As the optimal value
of the linear programming relaxation is at most the cost of the minimum-cost k-way
cut of the graph, the ratio of the expected cost of the cut produced by the rounding
scheme to the cost of the minimum-cost k-way cut is at most 3/2 — 1/k. Calinescu
et al. show how to convert this randomized rounding scheme into a deterministic
algorithm, thus providing a guarantee that their algorithm has an approximation

ratio of at most 3/2 — 1/k.
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2.1.4 Integrality gap of the geometric relaxation

In the context of a relaxation formulated from a geometric embedding of a graph
for a minimization problem, the integrality gap of the relaxation is the worst-case
ratio between the value of the optimal solution to the problem and the value of the
solution to the relaxation. For the Cilinescu et al. relaxation, the integrality gap
is the ratio, in the worst case, between the cost of the minimum-cost k-way cut of
the input graph and the optimal value of the relaxed linear program. Because the
integer program captures the multiway cut problem exactly, the optimal solution to
the integer program is equal to the minimum k-way cut cost. Therefore, the integrality
gap of the Calinescu et al. relaxation is equal to the ratio of the optimal value of
the integer program to the optimal value of the linear programming relaxation. The
work of Calinescu et al. shows that the integrality gap of the relaxation is at most
3/2 — 1/k. Subsequent work by Freund and Karloff [3] demonstrates a lower bound

of 8/(7+ =) on the integrality gap.

2.2 A Study of the Relaxation by Karger, Klein,

Stein, Thorup, and Young

The work of Karger et al. on the geometric relaxation of Calinescu et al. provides
additional insight into the relaxation, as well as further results about its integrality
gap. Given the algorithmic framework established by Calinescu et al., Karger et al.
note that the problems of determining the integrality gap of the relaxation and finding
a rounding scheme to be used in the approximation algorithm may be expressed as a
geometric question. The integrality gap and the approximation ratio of the algorithm
may be obtained by studying the simplex itself, without considering particular input

graphs or embeddings.

23



2.2.1 Density

Much of the work of Karger et al. focuses on the notion of a cutting scheme, which is
a probability distribution P over k-way cuts of the simplex. A line segment e is said
to be cut by a k-way cut of the simplex if two points on the segment lie in different
partitions of the simplex after the simplex is partitioned according to the k-way cut.
In general, we say that a segment is cut x times by a k-way cut if the cut partitions
the segment into (x+1) smaller segments. The cuts that we consider are all composed
of several different slices, where a slice is a partition of the simplex into two subsets,
each containing at least one simplex vertex. We say that an individual slice cuts the
segment if points on the segment lie in both subsets of the simplex induced by the

slice.

For a cutting scheme P and any line segment e, Karger et al. define the density of
P on e, denoted 7 (P, e), to be the ratio of the expected number of times a k-way cut
chosen randomly from P cuts e to the length of e. They then define the mazimum

density of P, 7,(P), and the minimal mazimum density, 7;;, as follows.

7, (P) = sup 7% (P, €)

e

T = illlf 7, (P)

Intuitively, the maximum density of P is the greatest density that P has on any
segment, and the minimal maximum density is the maximum density of the cutting
scheme that has the smallest maximum density. Because any line segment can be
divided into two smaller segments, at least one of which has a density no less than
the original segment, the segment with the maximum density will be a segment of

infinitesimal length.

Since a k-way cut of the simplex converts a solution to the relaxed linear program

to a solution to the integer program for multiway cut, thereby inducing a k-way cut
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of the input graph, any cutting scheme may be used as the randomized rounding
scheme in the Calinescu et al. approximation algorithm. Karger et al. show that
for any cutting scheme P and any embedded graph, the expected cost of the k-way
cut of the input graph induced by a k-way cut of the simplex chosen randomly from
P is greater than the volume of the embedding by at most a factor of 7(P). As
a corollary, they conclude that the approximation ratio achieved by the algorithm
when a cutting scheme P is used as the rounding scheme is at most 74(P). These
facts imply that the maximum density 7,(P) of any cutting scheme P is at least the
integrality gap of the relaxation.

Furthermore, Karger et al. demonstrate that there exists a cutting scheme whose
maximum density is equal to the integrality gap. It follows that 7} is the integrality

gap of the geometric relaxation.

2.2.2 Alignment

The work of Karger et al. demonstrates that the property of a cutting scheme that
determines its performance as the rounding scheme for the approximation algorithm
is the maximum density the cutting scheme has on any line segment. Calinescu et
al. showed that it is only necessary to consider segments in certain orientations. A
line segment in the simplex is ¢, j-aligned if it is parallel to the edge whose endpoints
are vertices ¢ and j of A. Because vertices ¢ and j are €' and e/, the absolute value
of the difference in coordinate £ of the vertices is |(e'), — (¢/),| = 1 for £ € {i,j}
and |(e*), — (e’)¢| = 0 for £ & {i,j}. Therefore, an 1, j-aligned segment (x,y) satisfies
|zg—ye| = d(z,y) for £ € {i,5} and |z, —y,| = 0 for £ & {7, j}. We say that a segment
is aligned if it is 1, j-aligned for some pair of vertices 7 and j.

Calinescu et al. noted that the endpoints of any segment can be connected by a
piecewise linear path whose total length is equal to the length of the original segment
and whose linear pieces are aligned segments. This follows from the linear relationship
between length and the L; norm, and the fact that, under the distance measure, an
aligned segment is the shortest line segment between points that may be connected

with an aligned segment. Figure 2-1 shows an example of the endpoints of a segment
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being connected by a piecewise linear path consisting of aligned pieces. A particular
segment in the simplex is cut if and only if some segment on the piecewise linear path
of aligned segments between its endpoints is cut. For any embedding of a graph, the
Calinescu et al. approximation algorithm applies this transformation to each segment
between two embedded points, without affecting the value of the optimal solution to
the relaxed linear program. The implication of this transformation for the concept
of density introduced by Karger et al. is that in order to determine the maximum
density of a cutting scheme, one must consider only aligned segments. As a result,
without loss of generality one may consider only embeddings of the graph into the

simplex in which all edges are aligned.

Figure 2-1: The points x = (1/4,1/8,5/8) and y = (7/16,7/16,1/8) in the 3-simplex
may be connected in several ways. While the segment (x,y) is not aligned, it is
possible to connect  and y by a piecewise linear path through a third point, z =
(1/4,7/16,5/16), such that (z, z) is 2, 3-aligned and (z,y) is 1, 3-aligned. The length
of (z,y) is (1/2)(|1/4 — 7/16| + [1/8 — 7/16| + |5/8 — 1/8|) = (1/2)(3/16 + 5/16 +
1/2) = 1/2. As the sum of the lengths of (z,2) and (z,y) is (1/2)(|]1/4 — 1/4| +
11/8 — 7/16| + |5/8 — 5/16|) + (1/2)(|1/4 — 7/16| + |7/16 — 7/16| + |5/16 — 1/8]) =
(1/2)(0+5/16+5/16) + (1/2)(3/16+0+3/16) = 5/16+3/16 = 1/2, the total length
of the piecewise linear path consisting of (z, z) and (z, y) is equal to the length of the
segment (z,y).

2.2.3 Side-parallel cuts

Karger et al. performed a series of computational experiments with the goal of iden-

tifying cutting schemes that lead to small approximation ratios. Their experiments
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involved a particular type of k-way cut of the simplex that they refer to as a side-
parallel cut, or sparc. A sparc is composed of a sequence of side-parallel slices, where
an individual slice is defined as A,,—, = {x € A | z; = p}. A slice A,;—, is a
hyperplane that is parallel to the face opposite terminal ¢ and is at a distance p
from that face. It partitions the simplex into two regions, one of which is defined as
Ag;>p = {x € A|z; > p} and may be considered to be the “corner” of the simplex
containing terminal 1.

A side-parallel cut is defined by Karger et al. as the following procedure, which

yields a k-way cut of the simplex.

1. Choose a permutation ¢ of the simplex vertices.

2. Process the vertices in the order specified by o. For each vertex i (except

possibly the last), choose a slice distance p; € [0, 1].

3. When a vertex i is processed, assign to vertex ¢ all the points in A, >, that have
not already been assigned to a previous terminal. We say that terminal ¢, the
node in the graph mapped to vertex 7, captures the points assigned to it, and
cuts an edge if it captures some of the points in the edge, but not the entire

edge.

Each of the hyperplane slices A;,—, used in a sparc assigns a region of the simplex
to a particular vertex 7. Once a sparc has applied k — 1 slices to the simplex, there
are k — 1 regions of the simplex that are associated with vertices. At that point, it
is natural to assign all of the remaining unassigned points in the simplex to the final
vertex in the permutation. In this way, k£ — 1 side-parallel slices produce a k-way cut
of the simplex.

Consider an i, j-aligned segment (z,y). Terminal ¢ cuts the segment with a side-
parallel slice A,,—, only if p lies between x, and y,. Because |z, —y,| = 0for ¢ & {i, j},
terminal ¢ cannot cut the segment if £ ¢ {i,j}. As a result, an 4, j-aligned segment
is cut by a sparc only if it is cut by terminal ¢ or terminal j.

Karger et al. show that there is an optimal sparc cutting scheme in which the

slice distances are chosen from some probability distribution, and then the simplex
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is partitioned using the slices by processing the vertices in the order specified by a
permutation selected uniformly at random from the set of all permutations of the
vertices. They note that an analogous “order-independence” property also applies
to the best possible cutting scheme, which may not be a distribution over sparcs.
As such, the approximation ratio of the algorithm cannot be improved by using a
particular ordering of the terminals to partition the simplex in lieu of a uniformly-
random ordering.

The randomized rounding scheme given by Calinescu et al. for their approximation
algorithm may be expressed as a probability distribution over sparcs. Their rounding
scheme selects a value p uniformly at random from [0, 1]. It randomly chooses one of
two candidate permutations of the vertices, and applies the side-parallel slices using
slice distances p; = p for all . Calinescu et al. show that this cutting scheme has a

maximum density of 3/2 — 1/k.

2.2.4 Computational experiments

To find distributions over k-way cuts of the simplex that minimize the maximum
density of a segment in the simplex, Karger et al. formulated an infinite-dimensional
linear program in which there is one variable for each cut of the simplex, which may
be interpreted as the probability that the cut is selected in a rounding scheme. For
every aligned and infinitesimal line segment in the simplex, the linear program has
a constraint that captures the density on the segment induced by the probability
distribution specified by the values of the variables. The solution to the program is
an assignment of probabilities to the various k-way cuts of the simplex, which may
be considered to be a cutting scheme. While an infinite-dimensional linear program
cannot be solved in practice using computational techniques, Karger et al. were able
to solve discrete versions of the linear program and use the solutions to improve the
approximation ratio of the Calinescu et al. algorithm.

For the general case of k£ terminals, Karger et al. used sparcs as the only type
of k-way cut present in the linear program. Based on their observation that there

is an optimal sparc cutting scheme in which the vertices are permuted uniformly at
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random before the slices are applied, they worked only with sparcs that choose the
permutation of the vertices uniformly at random from the set of possible permuta-
tions. To obtain a discrete linear program, they first fixed an integer grid size N. For
a particular vertex i, the set [0, 1] of possible side-parallel slice distances is divided
into N disjoint slabs, where slab j is the set [j/N,(j +1)/N] for j =0,...,N — 1.
A discrete sparc is identified by a sequence (u1, ..., ux—1) of slabs, where u; is an
integer in the range [0, N — 1], which specifies the slab in which the ith slice lies. The
conditional distribution of a slice distance is uniform over the slab in which the slice
lies. That is, given that the ¢th slice is in slab u;, the slice distance of the ith slice
is chosen uniformly at random from [u;/N, (u; + 1)/N]. The discrete linear program
has one variable for each discrete sparc. Given a particular solution to the linear
program, which is a probability distribution over discrete sparcs, a cutting scheme
may be obtained by using the conditional distributions of the slice distances within

the slabs to compute a probability distribution over continuous sparcs.

In order to limit the number of constraints in the linear program to a finite number,
Karger et al. made use of the slabs defined as a partition of the set of possible side-
parallel slice distances. A cell of the simplex is described by a vector (qi,...,q),
where ¢; is an integer in the range [0, N — 1] that specifies the slab along the ith
coordinate axis that contains the cell. The cell consists of the points in the set
{z | ¢/N <z; <(g¢; +1)/N,i=1,...,k}. Figure 2-2 shows the cells in the simplex
for k = 3 and N = 3. For each cell, the discrete linear program has one constraint.

The purpose of each constraint is to provide an upper bound on the density of any
segment with a certain alignment in the cell. If the cells are sufficiently small, then,
under any continuous distribution over k-way cuts, all segments with a particular
alignment in a cell would have approximately the same density, and so one would
expect that the upper bound for that cell would be nearly tight. Karger et al. compute
the density bound for segments with a certain alignment a in a cell ¢ by applying
the total probability theorem, conditioning on the choice of the discrete sparc. Let
U be the set of discrete sparcs in the program, H, be the event that a discrete sparc

u is chosen, and ¥(u, ¢, a) be the upper bound on the density of the discrete sparc u
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Figure 2-2: Discrete cells of the simplex formed by the intersection of the slabs for
k =3 and N = 3. The side-parallel slices illustrate the different locations relative to a
segment where a slice may fall. Slices labelled NC do not cut or capture the segment.
The slice labelled CUT cuts the segment, while the slice labelled CAP captures it,
but does not cut it. The subscript in the label for each slice indicates the vertex of
the simplex that is captured by the slice.

on any segment with alignment a in the cell g. Denote by C' the number of times a
segment of length d with alignment o in the cell is cut by a sparc chosen randomly
according to the distribution induced by the discrete sparcs. The expected number

of times the segment is cut is E[C] =) _, Pr[H,|E[C | H,]. Thus, an upper bound

uelU
on the density of the distribution induced by the discrete sparcs on any segment
with alignment @ in the cell ¢ may be computed as ) ., Pr[H,]1)(u,q,a). Note
that Pr[H,] is the value of variable for the discrete sparc u in the program, while
¥ (u,q,a) is an upper bound on the density of the discrete sparc v on any segment

with alignment a in the cell ¢ that is computed for each choice of discrete sparc wu,

cell ¢, and alignment a.

In the constraint, Karger et al. require that the density bound for each alignment

a and cell ¢ be less than the value of a variable A. The objective of the linear program
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is to minimize A. Since ) is required by the constraints to be an upper bound on the
density of any segment in any cell of the simplex, it will be the maximum density of
the cutting scheme when the linear program is solved. By minimizing A, the linear
program, subject to the discrete formulation of the problem, finds the cutting scheme

with the minimal maximum density.

For a particular discrete sparc u, the upper bound v (u, g, a) on the density of u
on any segment with a certain alignment a in a cell ¢ is computed as follows. Each of
the k! permutations of the vertices is considered in turn. Because each permutation
is equally likely to be selected by the sparc, the final density bound is the average of
the density bounds for the different permutations. For each permutation, the vertices
are processed in the order specified by the permutation, and the fth slice distance
ug of the discrete cut is applied to the ¢th vertex in the permutation, o(¢). The
expected number of cuts of a segment in the cell by the /th slice is determined by
the relative values of the slice distance u, and the slab along coordinate o(¢) in which
the cell lies, gy(¢). If uy < go(r), as shown in Figure 2-2 for the slice CAP;, then
terminal o(¢) captures all the segments in the cell because the cell lies in the corner
containing terminal o(¢), and so it does not cut any segments in the cell. In the case
that uy > g5y, as illustrated by the slice NC; in Figure 2-2, the slice does not pass

through the cell, nor does it capture any segment in the cell.

When u; = g, (g, the slice passes through the cell, so it may cut some segments in
the cell. In Figure 2-2, the slices NC; and CUT; both pass through the cell containing
the segment shown, but only the slice CUT; cuts the segment. An 4, j-aligned segment
(x,y) can be cut only if o(¢) € {i,7}. Note that in Figure 2-2, the segment shown is
1, 2-aligned, and therefore is parallel to the slice NC3 for terminal 3 and cannot be
cut by it. Because the conditional distribution of the slice distance within the slab
identified by u, is uniform, and |z; — y;| = |z; — y;| = d(z,y), the expected number
of times the segment (z,y) is cut is d(z,y)/(1/N) = Nd(z,y), and thus the density
on the segment is (Nd(z,y))/d(x,y) = N. As this calculation applies to any segment
in the cell, the density of the slice on any segment in the cell, conditional on the

choice of the discrete sparc, is at most N. Thus, the density bound for the cell is N
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if exactly one of the slices for terminals 7 and j pass through the cell, and 2N if both

slices pass through it.

Karger et al. exploited the symmetry of the random permutations to limit the
number of alignments explicitly examined during the process of generating the linear
program. Since all of the sparcs that they consider permute the vertices uniformly at
random, two segments that have the same endpoints under permutation of coordinates
will have the same densities, and thus only one of them must be present in the
program. The linear program includes only cells (g, ..., gx) in which the coordinates
g; are in nondecreasing order, and the segments within the cells are assumed to be
1, 2-aligned.

The resulting discrete linear program has the following form. Denote the set of
discrete sparcs by U, and the set of cells by (). Let p, be the variable for a discrete
sparc v in the program. For a discrete sparc u and a cell g, let 1(u,q) denote
the computed upper bound on the density of any 1, 2-aligned segment, within cell ¢,
conditional on the event that the sparc used to partition the simplex is chosen from

the continuous distribution induced by the discrete sparc u.

Minimize A subject to

ZUEU pu - 1 (2 6)
ZUEU 1/)(U,Q)pu S )\ Vq S Q (27)

As the variables p, represent the probabilities Pr[H,] of choosing the various discrete
sparcs, the constraints (2.5) and (2.6) require that they form a probability distribu-
tion. The constraints (2.7) ensure that the objective value A is the maximum density

of the cutting scheme.

The dual of the discrete linear program conforms to the following structure. It
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has one variable ¢, for each cell ¢ in the simplex.

Maximize u subject to

cg >0 Vg e @ (2.8)
quQ Cq = 1 (2.9)
YoV, q)cg > p Yu el (2.10)

This discrete program is indicative of the dual of the infinite-dimensional primal
linear program in which the variables are cuts of the simplex. In the dual program,
the variables are line segments in the simplex, and there is one constraint for each cut
of the simplex. The value of a variable may be considered to be a cost assigned to the
line segment corresponding to that variable. If we consider constructing an embedded
graph in which all segments that have positive costs are present, we may interpret
a solution to the dual program as a particular embedded graph. For any k-way cut
u of the simplex, the quantity quQ Y(u, ¢)c, may be interpreted as the cost of the
k-way cut. Because the constraints require that this quantity be at least u for every
cut, and the linear program maximizes u, the program attempts to ensure that the

minimum cost of a k-way cut over all cuts in the program is as large as possible.

In the primal linear program, the objective is to assign probability to the various
cuts of the simplex such that the maximum density induced by the cuts on any line
segment is minimized. A solution to the program is a probability distribution over
cuts of the simplex, which is a cutting scheme. In the dual program, the objective
is to assign a total of one unit of cost to the line segments such that the cost of the
minimum-cost k-way cut of the simplex is maximized. Effectively, an optimal solution
to the primal program is an optimal cutting scheme, while an optimal solution to the
dual program is an embedded graph whose edges have been assigned a fixed amount

of total cost on which any cut will have a high cost.
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2.2.5 Results

For the case of k£ = 3 terminals, Karger et al. exploited the planarity of the 3-simplex
to develop primal and dual linear programs that were specific to the 3-terminal case.
The dual solutions led them to construct a particular embedded graph that they used
to prove a lower bound of 75 > 12/11 on the integrality gap of the relaxation. They
then used the general form of the dual solution to determine the necessary structure
of any optimal primal solution. They present a cutting scheme that has a maximum
density of 12/11, thus demonstrating an upper bound of 75 < 12/11 on the integrality
gap. From the matching lower and upper bounds, they conclude that the integrality

gap in the three-terminal case is precisely 73 = 12/11.

In the general case of k > 4 terminals, Karger et al. used observations from their
computational experiments to specify improved cutting schemes. The cutting scheme
that they give for £ terminals is a probability distribution over sparcs, and involves
corner cuts. Since a side-parallel slice A, —, is a hyperplane parallel to the face
opposite vertex ¢ of the simplex that is at a distance p; from that face, the larger
the value of the slice distance p;, the closer the slice is to the corner of the simplex
containing terminal ¢. A corner cut is a sparc in which the slice distances p; are
all selected from some range [c, 1], where ¢ is a parameter that determines the size
of the corner. The cutting scheme chooses a corner cut with a certain probability,
and otherwise selects each slice distance p; independently and uniformly from [0, c|.
Karger et al. show that their cutting scheme for general k£ achieves an approximation
ratio of at most 1.3438 for all £, and that the integrality gap is therefore at most
1.3438 for all k.

Karger et al. noted that when k£ is small, it is possible to refine the analysis
that they used to prove the upper bound on the maximum density of their cut-
ting scheme for general k. This approach allowed them to improve the approxi-
mation ratios produced by the cutting scheme for particular values of k. For k €
{3,4,5,6,7,8,9,10,12, 20,35}, they tuned the parameters of the cutting scheme for

each value of k, with the goal of minimizing the approximation ratio. The resulting
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approximation ratios are the smallest ones that they report for £ > 6. In the cases
of kK =4 and k = 5 terminals, respectively, Karger et al. give analytic upper bounds
of 1.189 and 1.223 on the approximation ratio achieved by the cutting scheme.

The discrete primal linear programs that Karger et al. solved for the general case
of k terminals included upper bounds on the densities induced by cuts on segments
in the constraints. These upper bounds ensure that the optimal value of the discrete
linear program is an upper bound on the maximum density of the cutting scheme
specified by the solution to the linear program. Thus, the solutions to the discrete
linear programs serve as computational proofs of upper bounds on the maximum den-
sities of the cutting schemes. Moreover, because the primal linear program solutions
are distributions over discrete sparcs, and each discrete sparc induces a distribution
over continuous sparcs, it would be possible to verify analytically the maximum den-
sities of the cutting schemes corresponding to the solutions by a case analysis on each
cell of the simplex. For the cases of £k = 4 and k£ = 5 terminals, the smallest approxi-
mation ratios obtained by Karger et al. come from the solutions to the discrete linear
programs, as each solution to the primal program specifies a cutting scheme whose
maximum density is an upper bound on the approximation ratio of the Calinescu et
al. algorithm when the cutting scheme is used as the rounding scheme in the algo-
rithm. In particular, for ¥ = 4, Karger et al. report an upper bound of 1.1539 on the

approximation ratio achieved by the optimal cutting scheme.
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Chapter 3

Additional Cuts of the 4-Simplex

Our extensions to the computational experiments of Karger et al. are based on
including alternatives to sparcs in the set of cuts of the simplex used in the linear
programs. The cuts that we introduce are defined for the 4-simplex in particular,
and thus our experiments focus on the case of £ = 4 terminals. In this chapter,
we describe the cuts that we consider as alternatives to sparcs in the experiments.
We also analyze two natural cutting schemes that use these cuts in which the slice
distances are chosen uniformly at random from the range of possible values.

A side-parallel slice isolates a single vertex of the simplex from the other vertices
by dividing the simplex into two regions, one of which is the corner containing the
vertex. As a sparc is comprised of side-parallel slices, it partitions the simplex by
isolating vertices one at a time. The cuts that we introduce in addition to sparcs first
isolate two pairs of vertices from each other, then separate each pair of vertices. In
general, we refer to any cut that partitions the 4-simplex by isolating pairs of vertices
and then separating the pairs as a pair-isolating cut. We define two different types of
pair-isolating cuts that differ in the way in which they separate the pairs of vertices.

In the analysis that we present, we demonstrate that the two natural cutting
schemes that use only pair-isolating cuts both have maximum densities of 4/3. The
analogous sparc cutting scheme in which the slice distances are chosen uniformly
at random from the range of possible values has a maximum density of 5/4, and

therefore the results of the analysis suggest that pair-isolating cuts are not as effective
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as sparcs when used as the sole type of cut in the rounding scheme of the Calinescu
et al. approximation algorithm for the multiway cut problem. The results of the
computational experiments that we describe in Chapter 4, however, provide evidence
that combining pair-isolating cuts with sparcs in a cutting scheme may yield a better

approximation ratio than using either type of cut in isolation.

3.1 Pair-Isolating Slices

The symmetry of the k-simplex ensures that using k-way cuts of the simplex that are
not symmetric with respect to all vertices in a cutting scheme will not be effective.
Sparcs that use random permutations of the vertices are attractive cuts because they
exhibit symmetry. For the 4-simplex, a regular tetrahedron, there is another type of
symmetry that we attempt to exploit with our additional cuts. The key observation
is that the 4-simplex may be divided into two regions that have the same shape, each
containing two vertices. This symmetry between the two regions containing pairs of
vertices provides a starting point for our cuts.

A sparc partitions the simplex into k subsets by isolating vertices into their own
regions one at a time. The cuts that we introduce for the tetrahedron first apply a
slice that we refer to as a pair-isolating slice to isolate one pair of vertices from the
other pair. A pair-isolating slice divides the simplex into two regions, each of which
contains two vertices. To obtain a four-way cut of the simplex, we then use one slice
in each of these two regions to separate the two vertices in the region.

To ensure a symmetry between the two regions of the simplex produced by the
pair-isolating slice, we use hyperplanes that are parallel to the two edges of the simplex
connecting the pairs of vertices that they isolate. These hyperplanes are normal to a
particular set of vectors. Consider the problem of choosing a slice that isolates vertices
s1 and s9 from vertices t; and ty, where s1, s9,11, %9 is a permutation of 1,2, 3,4. Let
my denote the midpoint of the edge that connects vertices s; and s, and let m; denote
the midpoint of the edge that joins ¢; and ¢,. We will isolate the pairs of vertices by

applying as our slice a hyperplane that is normal to the line segment (m;,m;). Such
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a hyperplane is parallel to the edge that joins vertices s; and sy, and to the edge that
joins vertices ¢ and . It partitions the simplex into two regions of the same shape,
though the regions will have different sizes that depend on where the slice hyperplane
intersects the line segment. Figure 3-1 shows an example of a hyperplane that isolates

vertices s, so from vertices %1, to.

Figure 3-1: A pair-isolating slice that isolates the pair of vertices s, so from the pair
11,19, using ny,;, as the basis vector. Note that in this diagram, the edge connecting
vertices s, and so, of which my is the midpoint, is perpendicular to the plane of the

page.

As in the sparc case, we choose the slice distance for the hyperplane from the range
[0, 1]. Either m, or m; may be considered as the point at which a hyperplane for slice
distance 0 intersects the normal line segment, with the other point the intersection
of the segment and the hyperplane for distance 1. If m; is chosen to correspond to
distance 0, then we refer to the vector m; —mg as the basis vector of the pair-isolating
slice, and we denote it by n4,;, = m; — m,. Note that choosing vertices s; and sy to

be in the same pair leads to the same group of two pairs as choosing ¢; and 5 to be in

4

,)/2 = 3 distinct choices of two pairs of four

a single pair, and as a result there are (
vertices. For each choice of pairs, there are two choices for the point that corresponds
to slice distance 0, and so there are 3 x 2 = 6 distinct basis vectors that may be used

for the application of the pair-isolating slice. There is one basis vector n;; for each of
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the (;1) = 6 pairs of distinct vertices 7, j.

The point my, the midpoint of the edge that connects vertices s; and so, has
coordinates (ms)s, = (ms)s, = 1/2 and (my)y, = (Mms)y, = 0. Similarly, the coordinate
values for my; are (m¢)y, = (M), = 1/2 and (my)s, = (my)s, = 0. Therefore, the

basis vector ngy, = m; — mg has coordinate values (n44,)y;, = (n4,)e, = 1/2 and
(nt1t2)81 = (nt1t2)52 = _1/2'

A hyperplane normal to the vector my,;, may be described by (1/2)(xy, + x4,) —
(1/2)(zs, + z5,) = C for some constant C. The hyperplane normal to 7y, that
passes through m; satisfies C' = —1/2, whereas the hyperplane that goes through
my corresponds to C' = 1/2. In general, the constant C' and the slice distance p are
related by C = p — 1/2. Using the fact that points in the simplex satisfy (z,, +
Tsy) + (24, + x1,) = 1, as well as the relationship p = C' 4+ 1/2, we may substitute
for (zs, + x5,) and C in the equation for the hyperplane to obtain z;, + z;, = p as a
description of the points in the simplex that lie on the hyperplane for slice distance p.
Accordingly, we define Ay, y4,—, = {z € A | z;+2; = p}. To describe the two regions
on either side of the pair-isolating slice, we define Ay ;. <, = {7 € A | 2, +2; < p}

and Ag, 14> = {7 € A | z; + 35 > p}.

3.2 Separating Pairs of Vertices

A pair-isolating slice Ay, y,,—, partitions the simplex into two regions. We refer to
Az, ye;<p as the source region, and to Ay, 44>, as the sink region. Each region contains
two vertices. In order to complete a 4-way cut of the simplex, it is necessary at this
point to partition each of the two regions so that there is exactly one vertex in each
partiton of the simplex. Any method of dividing a region containing a pair of vertices
such that the vertices are separated into different subsets may be referred to as a

pair-separating slice. We consider two types of pair-separating slices.
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3.2.1 Side-parallel slices

One way to separate a pair of vertices is to use a side-parallel slice. In this case, one
of the two vertices in the region is selected. We refer to this vertex as the reference
vertex for the side-parallel slice. A slice parallel to the face opposite to the reference
vertex is used to divide the region into two subsets. If vertex i is the reference vertex,
then the side-parallel slice may be described as Ag,—, for some slice distance p. All
of the points in the region and in A, >, are assigned to vertex 7, and the points that
are in the region but not in A,,>, are assigned to the other vertex in the region.

The side-parallel slice intersects the pair-isolating slice in a line. For the purpose
of determining whether a segment is cut by the 4-way cut, we may consider the side-
parallel slice to terminate at this line. That is, the slice that we use to separate the
vertices in one region will not cut any segments in the other region, as we do not
partition the other region based on the slice that separates the vertices. Effectively,
the source or the sink region captures segments so that pair-separating slices in the
other region will not cut those segments. Note, however, that because each pair-
separating slice is used to divide only one region and there is only one such slice per
region, the capture of segments by a pair-separating slice does not provide a benefit
in the area of a reduction in the number of cuts on segments by other slices.

We define a pair-isolating side-parallel cut, abbreviated pair-side cut, of the 4-

simplex as follows.

1. Choose a basis vector n;; from the set of six possibilities.
2. Choose a slice distance p, € [0, 1] for the pair-isolating slice.

3. Select a slice distance p; € [0, 1] for the source region. Choose a vertex i from
the set of two vertices in the source region. Assign to vertex iy all the points in
Awiﬂj@p N Az, >p,, and assign to the other vertex in the source region all the

remaining points in the source region.

4. Select a slice distance p; € [0, 1] for the sink region. Choose a vertex i; from

the set of two vertices in the source region. Assign to vertex ¢; all the points
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in Agiiz;5p, N Az, >p,, and assign to the other vertex in the sink region all the

remaining points in the sink region.

Figure 3-2 shows how the sink region is partitioned by a pair-isolating side-parallel

cut.

Figure 3-2: The partition of the sink region produced by a pair-side cut. For the
source region, the side-parallel slice does not appear because it is not perpendicular
to the plane of the page and therefore would be difficult to visualize. The reference
vertex for the side-parallel slice in the sink region is vertex ¢;, and the two parts of the
sink region induced by the side-parallel slice are labelled with the vertices to which
they are assigned.

3.2.2 Edge-perpendicular slices

When a side-parallel slice is used to partition a region produced by a pair-isolating
slice, the resulting two regions are polytopes that are not similar, as Figure 3-2
illustrates. An alternative to a side-parallel slice for the separation of a pair of vertices
is a slice that is symmetric with respect to the region containing the two vertices to
be separated. Using such a slice would result in a symmetry among the regions
containing the various vertices of the simplex.

A hyperplane normal to the edge that joins two vertices divides a region on one

side of a pair-isolating cut into two regions of the same shape. As a result, we consider
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these types of hyperplanes as our candidates for separating pairs of vertices. Fix two
vertices 7 and j, and consider the vector e/ — ¢’. This vector may be considered
to be a directed representation of the edge from i to j, and has coordinate values
(e —¢e'); =1, (e —e'); = —1, and (e/ —e'), =0 for £ & {i,j}. A hyperplane normal
to this vector satisfies ; —x; = C for some constant C. Such a hyperplane partitions
a subset of the simplex resulting from a pair-isolating cut into two regions of the same
shape.

The hyperplane normal to e/ — ¢’ that passes through vertex i is the one for
C = —1. Similarly, the hyperplane normal to the vector that contains vertex j
corresponds to C' = 1. As such, the hyperplanes that we consider as candidates for
separating pairs of vertices are those with constants C' in the range [—1, 1], which are
the hyperplanes that pass through and therefore divide the simplex. For these slices,
we allow the slice distance p to be drawn from the range [—1,1], so that the slice
distance is equal to the value of C for the hyperplane that it specifies.

We define an edge-perpendicular slice as Ay, _y,—p = {v € A | 1; — x; = p}. We
refer to the vector e/ — e’ as the basis vector of the edge-perpendicular slice. As with
the other types of slices, an edge-perpendicular slice partitions the simplex into two
regions, Ay, _z,<p = {7 € A | x5 —2; < p} and Ay, _z>, = {7 € A | 15 — z; > p}.
When a region is divided using an edge-perpendicular slice A, ;,—,, the points in
the region in A, , <, are assigned to vertex 7, and in the points in the region in
ij,wizp are assigned to vertex j.

Analogous to a pair-isolating side-parallel cut, we define a pair-isolating edge-
perpendicular cut of the 4-simplex, abbreviated pair-edge cut, as the following proce-

dure.

1. Choose a basis vector n,;, for the pair-isolating slice from the set of six pos-
sibilities. The sink region will contain the vertices ¢; and 5, while the source

region will contain two vertices s; and ss.
2. Choose a slice distance p, € [0, 1] for the pair-isolating slice.

3. Select a slice distance ps € [—1,1] for the source region. Choose one of the
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two possible basis vectors for the edge-perpendicular slice by identifying one of
the vertices s;, sy in the source region as the vertex s, corresponding to slice
distance p = —1, and the other vertex as the vertex s, corresponding to slice
distance p = 1. Assign to vertex s, all the points in Ay, 44, <p, N A$Sh,$s£<ps,

and to vertex s, all the points in Ay, 14, <p, N Dz, —s,,>p,-

4. Select a slice distance p; € [—1,1] for the sink region. Choose one of the two
possible basis vectors for the edge-perpendicular slice by identifying one of the
vertices 11, t5 in the sink region as the vertex ¢, corresponding to slice distance
p = —1, and the other vertex as the vertex ¢, corresponding to slice distance
p = 1. Assign to vertex ¢, all the points in Ay, 44, >, N Az, —z, <p,, and to

vertex tp, all the points in Ay, 4z,,5p, N Az, —ay,>p0

Figure 3-3 displays the separation of the sink region by a pair-isolating edge-

perpendicular cut.

Figure 3-3: The partition of the sink region produced by a pair-edge cut. Note that
in this diagram, the edge-perpendicular slice in the source region is parallel to the
plane of the page, and so the partition of the source region is not visible. The two
parts of the sink region induced by the edge-perpendicular slice are labelled with the
vertices to which they are assigned.
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3.3 Analysis of Uniform Distributions Over Pair-

Isolating Cuts

To illustrate some of the properties of the two types of pair-isolating cuts that we
have defined, we analyze cutting schemes involving each type. We focus on natural
cutting schemes in which each slice distance is drawn uniformly at random from the
range of possible slice distances, independently of the other slice distances.

Because of the symmetry of the simplex and the order-independence property
shown by Karger et al. for the optimal cutting scheme, we consider cutting schemes
that are symmetric with respect to all coordinates. To ensure that the cutting schemes
over pair-isolating cuts are symmetric with respect to all coordinates, the choice of the
basis vector for the pair-isolating slice is made uniformly at random from the set of
six possibilities. For pair-side cuts, in each region produced by the pair-isolating cut,
the reference vertex is chosen uniformly at random from the set of two vertices in the
region. In the case of pair-edge cuts, the basis vector for the the edge-perpendicular
slice in each region is chosen uniformly at random from the two possibilities.

When a cutting scheme is symmetric with respect to all coordinates, any aligned
segment may be mapped to a corresponding 1, 2-aligned segment for which the den-
sity of the cutting scheme will be equal on the two segments. As a result, to compute
the maximum density of a cutting scheme that is symmetric with respect to all coor-
dinates, it is sufficient to compute the maximum density of the scheme on 1, 2-aligned
segments. Therefore, we consider only 1, 2-aligned segments in our analysis when we
study the maximum densities of these cutting schemes.

We determine the maximum density of a cutting scheme by computing the density
of the scheme on a 1, 2-aligned segment s of length d in the simplex. As the density of
a cutting scheme on a segment is defined as the ratio between the expected number
of times a random cut from the cutting scheme cuts the segment and the length of
the segment, we compute the expected number of times the segment is cut when a
cut is chosen according to the specified distribution, and divide that quantity by d.

Let the endpoints of the segment be (s; + d, sq, $3, 54) and (s1, so + d, s3, $4). For
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any particular segment s, the quantities si, ss, s3, s4 and d are fixed constants.
Because the segment is in the simplex, the coordinates of its endpoints and its length
satisfy the relationship s; + so 4+ s3 + s4 +d = 1. Moreover, the fact that x5 = s3 and
x4 = 84 for any point x on the segment implies that z; + o = 1 — (53 + s4). As a
result, the segment consists of all points x in the simplex such that x5 = s3, 4 = s4,
s1 <m <s1+d,and xo =1 — (83 + s4) — 1. If we substitute the lower and upper

bounds for z; into this expression for z9, we obtain sy < 9 < 9 + d.

3.3.1 Pair-isolating side-parallel cuts

The first cutting scheme that we study, which we denote by Ps, uses only pair-
isolating side-parallel cuts. Each of the three slices comprising the pair-side cut used
to partition the simplex is chosen by selecting a slice distance uniformly at random

from [0, 1]. For this cutting scheme, we prove the following lemma.
Lemma 3.1. The mazimum density of Py is 4/3.

For each of the six possible basis vectors of the pair-isolating slice, we compute
the expected number of times the segment is cut by the pair-side cut, conditional on
the event that the vector is chosen as the basis vector of the pair-isolating slice.
Case 1: Basis vector nis

The pair-isolating slice is Az, 44,—,,, Where p, is chosen uniformly at random from
[0,1]. This slice, which isolates the pair of vertices 1, 2 from the pair 3, 4, is a
hyperplane parallel to the edge that connects vertices 1 and 2. Since a 1, 2-aligned
segment, is also parallel to the edge that connects vertices 1 and 2, the slice hyperplane
is parallel to the segment and therefore cannot cut it. An alternative way to see this
is to note that 1 + 9 = 1 — (s3 + s4) for any point z on the segment. Because s3
and s, are constants, the quantity x; + x5 is fixed for any point on the segment. This
implies that the pair-isolating slice cannot cut the segment, because different points
on the segment can lie in the different regions Az, 44,<,, and Az 4z,>,, produced by
the pair-isolating slice only if z; + z2 < p, for some points z and z; + z2 > p, for

others. The segment will lie entirely in one of the two regions on either side of the
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pair-isolating slice.

Because the entire segment is in one of the regions resulting from the pair-isolating
slice, it can only be cut by a side-parallel slice used to divide the region in which it
lies. If it is in the source region A i;,<,,, then the only slices that can cut it are
side-parallel slices for a reference vertex 3 or 4, as vertices 3 and 4 are the two vertices
in the source region. A 1, 2-aligned segment, however, can only be cut by side-parallel
slices with a reference vertex of 1 or 2, and thus the segment cannot be cut by the
4-way cut of the simplex when the basis vector of the pair-isolating slice is ni5 and

the segment is in the source region.

If the segment is in the sink region Ay, 14,>,,, however, then the reference vertex
for the side-parallel slices in its region will be either 1 or 2. Regardless of which of
these two vertices is selected as the reference vertex, the slice may cut the segment. If
the reference vertex is 1, then the segment will be cut by the side-parallel slice if the
slice distance p; is chosen such that s; < p; < s; + d, as all points x on the segment
satisfy s; < x; < s;+d. Similarly, if the reference vertex is 2, then the segment is cut
if 55 < py < s9 + d. Figure 3-4 illustrates the ranges of slice distances for which the
side-parallel slice will cut the segment. Since the slice distance is chosen uniformly at
random from [0, 1], in either case the probability that the segment is cut is d/1 = d.
Thus, the expected number of times the segment is cut when the basis vector of the

pair-isolating slice is nio and the segment falls in the sink region is d.

We use the fact that the slice distance for the pair-isolating slice is chosen uni-
formly at random from [0, 1] to determine the probability that the segment is in the
sink region produced by the pair-isolating slice. For any point z on the segment,
x1+ 22 = 1 — (s3+ s4). As a result, the segment is in the sink region if the slice
distance p, for the pair-isolating slice is less than or equal to z; + z,. Figure 3-5
shows the location of the segment in relation to pair-isolating slices of various slice
distances. Because p, < 1 + x5 if and only if p, <1 — (s3+ s4) and p, is distributed
uniformly at random over [0, 1], the probability that the segment falls in the sink
region created by the pair-isolating slice is (1 — (s3 + s4))/1 = 1 — (s3 + s4). We

conclude that, conditional on the choice of nis as the basis vector of the pair-isolating
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Figure 3-4: If the basis vector of the pair-isolating slice is n15 and the segment is in the
sink region, the side-parallel slice in the sink region cuts the segment if the reference
vertex is 1 and s; < p; < s1 + d, or if the reference vertex is 2 and sy < p; < 59 + d.

slice, the expected number of times the segment is cut is (1 — (s3 + s4))d.
Case 2: Basis vector nsy

The case in which the basis vector of the pair-isolating slice is n34 is symmetric to
the nqo case, with the roles of the source and sink regions reversed in the two cases.
As a result, the expected number of times the segment is cut, conditional on the

choice of ng4 as the basis vector of the pair-isolating slice, is again (1 — (s3 + s4))d.
Case 3: Basis vector nq3

In this case, the pair-isolating slice is Az, 44,—,, for a slice distance p, distributed
uniformly at random over [0,1]. For any point x on the segment, z3 = s3 and
s1 <x; <s1+d,and so s1+ 53 < 1+ 13 < 51+ S3+d. Because the segment contains
all the points = in the simplex with x5 = s3, 4 = s4, and s; < 21 < 51 4+ d, it will be
cut by the pair-isolating slice if and only if s;+s3 < p, < s14+53+d. If s1+53+d < pp,
then the segment lies entirely in the source region, while if p, < s; + s3, the segment
lies entirely in the sink region. Since the slice distance p, is chosen uniformly at
random from [0, 1], the segment is cut with probability d/1 = d, falls in the source
region with probability (1 — (s; +s3+d))/1 =1 — (s; + s3 + d), and falls in the sink
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Figure 3-5: The basis vector of the pair-isolating slice is n15. If the pair-isolating slice
is a hyperplane such as S with a slice distance p, greater than 1 — (s3 + s4), then
the segment lies in the source region. On the other hand, if the pair-isolating slice
is a hyperplane such as T that has a slice distance less than 1 — (s3 + s4), then the
segment is in the sink region.

region with probability (s; + s3)/1 = s1 + s3.

Suppose that the entire segment ends up in the source region. The source region
contains vertices 2 and 4, so the segment can be cut only if the reference vertex for the
side-parallel slice in the source region is vertex 2. Because each of the two candidates
for the reference vertex is chosen with probability 1/2, the probability that vertex 2
is selected as the reference vertex is 1/2. If vertex 2 is the reference vertex, then the
segment is cut if the slice distance ps for the side-parallel slice in the source region
is in the range s; < p; < sy + d. The probability of this occurrence is d/1 = d.
Therefore, if the basis vector of the pair-isolating slice is ni3 and the segment falls
in the source region, the expected number of times it is cut is (1/2)d = d/2. The
case in which the segment is in the sink region is entirely analogous. In this case, the
segment can only be cut if the reference vertex is 1 and the slice distance p; satisfies

s1 < pp < 1+ d. Again, the expected number of times the segment is cut is d/2.

If the segment is cut by the pair-isolating slice, then it is divided such that subsets
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of it lie in both regions, and so it may be cut by side-parallel slices in both regions.
Let v be the quantity that satisfies p, = s; + s3 + vd. We may consider 7 to be the
fraction of the segment that is in the source region when the simplex is partitioned
according to the pair-isolating slice. Since x3 = s3 for all points z on the segment,
the point at which the pair-isolating slice intersects the segment is the point x on the
segment with z; = s; + vd. By the fact that zo = 1 — (s3 + s4) — z; for points on
the segment, this point has 2o =1 —s; —s3 — 84 —yd = so +d — yd = s5 + d(1 — 7).
Points x on the segment with z; < s; + 7yd and x5 > so + d(1 — 7y) are in the source
region, while points x on the segment with z; > s; + yd and x5 < so + d(1 — ) are
in the sink region. Figure 3-6 shows the boundaries of the portions of the segment in

each of the regions.

Figure 3-6: The basis vector of the pair-isolating slice is ny3. All the points z in the
sink region satisfy ;1 > s; + vd. As a result, a side-parallel slice in the sink region
with a slice distance p; in the range s; < p; < s1 + 7yd, such as NC, does not cut the
segment. In order for the slice in the sink region to cut the segment, it must satisfy
s14+7d < py < s1+d, as does C.

In the source region, the segment may be cut if the reference vertex is vertex 2
and the slice distance p; is in the range s, < ps < so+ d. Because all of the points on
the segment that lie in the source region have x5 > s + d(1 — ), however, the slice

distance must satisfy s, + d(1 — ) < ps < 53 + d in order for the side-parallel slice
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to cut the segment. The points on the segments with coordinate values x5 less than
So + d(1 — 7) have been captured by the pair-isolating slice, ending up in the sink
region, and therefore cannot be cut by a side-parallel slice in the source region. As the
reference vertex is vertex 2 with probability 1/2 and ps is chosen uniformly at random
from [0, 1], we conclude that the expected number of times the segment is cut by the
side-parallel slice in the source region is (1/2)((s2 +d) — (s2 +d(1 —7)))/1 = (yd)/2.

For the sink region, the calculation of the expected number of times the segment
is cut by the side-parallel slice is similar. The reference vertex must be vertex 1 for
the segment to be cut, and all points x in the region satisfy z1 > s; + vd. Therefore,
the segment is cut only if the slice distance p; is in the range s; + vd < p; < s7 + d.
Figure 3-6 illustrates the ranges of slice distances for which the side-parallel slice cuts
the segment. The expected number of times the segment is cut by the side-parallel
slice in the sink region is (1/2)((s1 +d) — (s1 +7d))/1 = (d/2)(1 — ). By linearity of
expectation, the expected number of times the segment is cut by side-parallel slices
is (vd)/2 + (d/2)(1 — ) = d/2. As the cut by the pair-isolating slice itself increases
this count of the number of cuts by one, when the segment is cut by the pair-isolating
slice, the expected number of times the segment is cut by the 4-way cut of the simplex
is 14d/2.

Now that we have the probability that the segment is cut by the pair-isolating
slice, the probabilities that it lies in each of the regions produced by that slice, and
the expected number of times it is cut in all of these cases, we use the total probability
theorem to compute the expected number of times the segment is cut, conditional
on the choice of ni3 as the basis vector of the pair-isolating slice. This quantity is
(d)(14+d/2)+(1—(s1+s3+d))(d/2)+(s1+5s3)(d/2) = d(1+d/2)+(d/2)(1—d) = (3/2)d.
Cases 4, 5, 6: Basis vectors ni4, nag, and ngy

The cases in which the basis vector of the pair-isolating slice is n14, 193, OT Noy
are all symmetric to the case of ny3. In each of these instances, one of the vertices
in each region produced by the pair-isolating slice is either vertex 1 or vertex 2, and
the remaining vertex in the region is either vertex 3 or vertex 4. For a 1, 2-aligned

segment, there is a symmetry between coordinates 1 and 2 and a symmetry between
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coordinates 3 and 4 that together cause the calculation of the expected number of
times the segment is cut for the basis vector ni4, n93, Or ngs to be symmetric to the
calculation for the basis vector nq3. In all four cases, the expected number of times
the segment is cut is (3/2)d.
Conditioning on choice of basis vector

Because each of the six possible basis vectors is chosen as the basis vector of the
pair-isolating slice with probability 1/6, by the total probability theorem the expected
number of times the segment is cut by a 4-way cut of the simplex chosen according
to the cutting scheme is (1/6)(2(1 — (s34 s4))d+4(3/2)d) = (1/6)d(8 —2(s3+ 84)) =
d(4/3 — (1/3)(s3 + s4)). Therefore, the density of the cutting scheme on a segment
s of length d in the simplex with endpoints (s1 + d, 9, $3, $4) and (s1, $2 + d, s3, S4)
is 4/3 — (1/3)(s3 + s4). Since s3 + s4 > 0 for all points in the simplex, and there are
points in the simplex with s3 4+ s, = 0, the maximum density of this cutting scheme,
in which the slice distances for the pair-isolating slice and the side-parallel slices are

all distributed uniformly at random over [0, 1], is 4/3.

3.3.2 Pair-isolating edge-perpendicular cuts

The second cutting scheme that we analyze is a probability distribution P, over pair-
isolating edge-perpendicular cuts. Again, the slice distance for each slice is chosen
uniformly at random from the range of possible values. While the slice distance p, for
the pair-isolating slice, as in the pair-side cutting scheme, is drawn from [0, 1], the slice
distances ps and p; for the edge-perpendicular slices are both drawn from [—1,1]. We

calculate the maximum density of the cutting scheme, obtaining the following result.
Lemma 3.2. The mazimum density of P, is 4/3.

Our analysis is very similar to the analysis for the pair-side cutting scheme. We
again separate the analysis into cases based on the choice of the basis vector of the
pair-isolating slice, and compute the expected number of times the segment s is cut
in each case. Because the pair-isolating slice is chosen from the same distribution in

these two cutting schemes, all of our analysis of the pair-isolating slice for the pair-
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side cutting scheme holds for the pair-edge cutting scheme as well. In particular, the
probability that the segment is cut by the pair-isolating slice and the probabilities that
it falls in each of the two regions produced by the pair-isolating slice are all equal to
the corresponding probabilities for the pair-side cutting scheme. Thus, it remains to
compute the expected number of times the segment is cut by the edge-perpendicular

slices for the various cases.

First, consider the case that the basis vector of the pair-isolating slice is nis.
The segment cannot be cut by the pair-isolating slice, so it falls entirely in one of
the two regions produced by the pair-isolating slice. If the segment is in the source
region, then the only edge-perpendicular slice that may cut it is the one for the source
region. The edge connecting any pair of vertices of the 4-simplex is perpendicular to
the edge connecting the other pair of vertices. For this reason, a 1, 2-aligned segment
is perpendicular to the edge joining vertices 3 and 4. Since the source region contains
vertices 3 and 4, and an edge-perpendicular slice in a region containing vertices 3
and 4 is a hyperplane normal to the edge joining vertices 3 and 4, it follows that the
edge-perpendicular slice hyperplane in the source region is parallel to a 1,2-aligned
segment and thus cannot cut it. An alternative way of reaching this conclusion is
to note that the edge-perpendicular slice in the source region will be A;, ., —, or
Ag,—z5=p, for some slice distance p,. Because z3 = s3 and z4 = s4 for all points
x on the segment, the two quantities 3 — x4 = s3 — s4 and x4 — x3 = s4 — s3 are
both fixed for all points on the segment. Therefore, the segment cannot be cut by an
edge-perpendicular slice in a region that contains vertices 3 and 4, and as a result the
segment lies entirely in one of the two partitions induced by the edge-perpendicular

slice.

The edge-perpendicular slice in the sink region is Ay, 5,—,, or Ay, 5 —, for some
slice distance p;. This slice may cut the segment if the segment is in the sink region.
Because any point = on the segment satisfies s; < 21 < s;+d and zo = 1—(s3+54) —21,
the quantities 1 — 9 and o —x; are in the ranges s1—so—d < 1 —2x9 < 51 —S2+d and
S9—81—d < x9—x1 < s9—8s1+d. Furthermore, since the segment consists of all points

x in the simplex with x3 = s3, T4 = 84, 51 < 21 < 81+d, and £ = 1 —(s3+84) — 21, it
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will be cut if and only if the basis vector is e! —e? and s —sy—d < p; < 81 —82+d, or
the basis vector is e? — e! and sy —s; —d < p; < sy — 51 +d. Figure 3-7 demonstrates
the hyperplanes that cut the segment for the basis vector e? — e!. We use the fact
that the slice distance p; for the edge-perpendicular slice is distributed uniformly at
random over [—1,1] to conclude that the expected number of times the segment is
cut, regardless of the choice of the basis vector, is (2d)/2 = d. The probability that
the segment falls in the sink region produced by the pair-isolating slice is 1 — (s3+s4),
and so the expected number of times the segment is cut, conditional on the choice of
nio as the basis vector of the pair-isolating slice, is (1 — (s3 + s4))d. An analogous
calculation shows that, as in the pair-side cutting scheme, the expected number of
times the segment is cut when the basis vector of the pair-isolating slice is ng4 is also

(1 — (83 + 84))d.

Figure 3-7: The ranges of slice distances for which edge-perpendicular slices cut
segments. On the left, the basis vector of the edge-perpendicular slice is e? — ¢!, and
the hyperplane cuts the segment if its slice distance is in the range sy —s; —d < p; <
s9 — s1 + d. The right diagram shows the separation of vertices 1 and 3 in the sink
region. The basis vector of the edge-perpendicular slice is €* — e!, and the slice cuts
the segment if s3 — s; — d < p; < 53 — s71.

If the basis vector of the pair-isolating slice is ny3, then the segment may be cut

by the pair-isolating slice or may lie entirely in one of the two regions induced by the
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slice. Suppose that the segment is in the source region. The source region contains
vertices 2 and 4, and so the edge-perpendicular slice is either Ag,_;,—, or Ay, _,—,..
For any point z on the segment, sy < x5 < s9 + d and x4 = s4, and so the segment,
is cut if and only if the basis vector of the edge-perpendicular slice is e — e* and
59— 54 < ps < 89— 54 +d, or the basis vector is e* —e? and 54— 55 —d < p; < 54— 9.
In either of these two cases, the range of values of the slice distance p, that will lead
to a cut of the segment by the edge-perpendicular slice is d, and so the probability
that the segment is cut by the edge-perpendicular slice is d/2. A similar calculation
shows that if the segment is in the sink region, then it is cut by the edge-perpendicular
slice in that region with probability d/2. Figure 3-7 includes an illustration of this

situation.

In the case that the segment is cut by the pair-isolating slice, we again set v such
that p, = s; + s3+yd. For points = on the segment in the source region, z; < s; +~vd
and Ty > Sy + d(1 — ), and thus the segment is cut by the edge-perpendicular
slice in the source region if and only if the basis vector of the edge-perpendicular
slice is € — e* and sy — 54 +d(1 — ) < ps; < s — 84 + d, or the basis vector is
et —e? and 54 — 59 —d < p; < 84— 89 — d(1 — ). We conclude that the expected
number of times the edge-perpendicular slice in the source region cuts the segment is
(d—d(1—7))/2 = (yd)/2. Similarly, points x in the sink region satisfy z; > s1 + vd
and zo < s +d(1 —7), and the segment is cut by the edge-perpendicular slice in the
sink region if and only if the basis vector of the slice is e! — €2 and s; — s3 + 7d <

3—eland s3—5;—d < p; < 53— 51 —d. The

ot < s1— s3+d, or the basis vector is e
expected number of times that the edge-perpendicular slice in the sink region cuts
the segment is therefore (d —yd)/2 = (d/2)(1 — ). As a result, the expected number
of times the segment is cut by the 4-way cut when the pair-isolating slice cuts it is
1+ (yd)/24 (d/2)(1 —~) =1+d/2.

We now use the total probability theorem to compute the expected number of
times the segment is cut when the basis vector of the pair-isolating slice is ni3 as
d(1+d/2)+(1—(s1+s3+d))(d/2)+(s1+s3)(d/2) = d(1+d/2)+(1—d)(d/2) = (3/2)d.

Again, the cases in which the basis vector of the pair-isolating slice is n14, nos, Or no4
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are all symmetric to the case of ny3, and so the expected number of cuts of the segment
in each case is (3/2)d.

As in the pair-side cutting scheme, we compute the density of the pair-edge cutting
scheme on the segment s by applying the total probability theorem, using the fact that
each of the possible basis vectors of the pair-isolating slice is chosen with probability
1/6. Because the expected number of times the segment is cut for each of the basis
vectors is the same for the pair-edge cutting scheme as for the pair-side cutting scheme,
the calculation of the density for the pair-edge cutting scheme is identical to that of
the pair-side cutting scheme and the result is a density of 4/3 — (1/3)(s3 + s4). This
quantity leads to the conclusion that the maximum density of this pair-isolating edge-
perpendicular cutting scheme in which the slice distances are all distributed uniformly

at random over the ranges of possible values is 4/3.

3.3.3 Comparison to sparc cutting scheme with uniform slice

distances

The analogue for sparcs of the pair-isolating cutting schemes that we have analyzed
is a cutting scheme in which all of the slice distances p; for the side-parallel slices
are drawn uniformly at random from [0, 1]. One may show that this cutting scheme
has a maximum density of 5/4, which is smaller than the 4/3 of these pair-isolating
cutting schemes with uniform slice distances. As such, when slice distances are all
chosen uniformly at random from the ranges of possible values, sparcs yield a better
approximation ratio for the Calinescu et al. algorithm than pair-side cuts and pair-
edge cuts. This fact could be interpreted as a suggestion that for cutting schemes that
are distributions over a single type of cut, sparcs are more effective than pair-isolating
cuts.

It is worth noting that the density of the pair-isolating cutting schemes on seg-
ments is not uniform over the simplex. The cutting scheme over sparcs in which the
slice distances are all selected uniformly at random from [0, 1] also has this property

of non-uniform density over the simplex. In the case of pair-isolating cutting schemes,
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the density of each scheme we have studied on a 1,2-aligned segment (z,y) whose
endpoints have coordinate values 3 = y3 = s3 and 24 = ys = s4184/3—(1/3)(s3+54)-
Thus, the density is maximized for segments with s3+s, = 0, and it decreases linearly

as S3 + S4 Increases.

Our analysis of the pair-isolating slice in the cutting schemes implies that for a
point z, the quantity x3 + x4 may be considered to be the distance of the point z,
measured along a vector that goes from the midpoint of the edge that connects vertices
1 and 2 to the midpoint of the edge that connects vertices 3 and 4. As a result, the
smaller the value of s3 + s4, the closer the segment is to the edge that joins vertices 1
and 2. We conclude that the density of the pair-side and pair-edge cutting schemes on
a 1, 2-aligned segment is a function of the distance of the segment from the edge that
connects vertices 1 and 2. The closer the segment is to the edge joining vertices 1 and
2, the higher the density of the cutting schemes on the segment. Figure 3-8 shows
the relationship between the distance from the and the edge connecting vertices 1
and 2 to the segment and the density of the cutting schemes on the segment. By the
symmetry of the cutting scheme, an analogous relationship holds for any #, j-aligned

segment, with the edge connecting vertices ¢ and j.

For an 17, j-aligned segment, the closer the segment is to the edge that connects
vertices ¢ and j, the greater the density of the cutting schemes on the segment. In
particular, the density of the cutting schemes on the edge joining vertices 7 and j
is the maximum density of the cutting schemes. For the sparc cutting scheme in
which the slice distances are chosen uniformly at random from [0,1], as well as for
the cutting schemes using pair-isolating cuts, the maximum density of the scheme on

the edges joining the simplex vertices is the maximum density of the cutting scheme.

Consider a cutting scheme in which a sparc is chosen with probability p, and a
pair-isolating cut is chosen with probability 1 — p. Regardless of which type of cut
is chosen, all the slice distances are chosen uniformly at random from the range of
possible values. For any segment in the simplex, the density of this cutting scheme
on the segment is a convex combination of the density of the sparc cutting scheme

on it and the density of the cutting scheme involving pair-isolating cuts on it. If the
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Figure 3-8: Density of the two cutting schemes using uniform pair-isolating cuts on a
1, 2-aligned segment as a function of the distance from the edge connecting vertices
1 and 2 to the segment.

sparc cutting scheme had high density on segments on which the cutting scheme using
pair-isolating cuts had low density, and the cutting scheme involving pair-isolating
cuts had high density on segments on which the sparc cutting scheme had low density,
then the combined cutting scheme could have a maximum density lower than both
the maximum densities of the individual cutting schemes. In general, however, the
density of the sparc cutting scheme on segments in the simplex varies over the simplex
in much the same way as the density of the cutting schemes involving pair-isolating
cuts. Furthermore, because the densities of both individual cutting schemes on the
edges connecting vertices of the simplex are the maximum densities of the respective
schemes, any cutting scheme that chooses a sparc with probability p and a pair-
isolating cut with probability 1 —p and selects all slice distances uniformly at random
from the range of possible values must have a maximum density at least as large as

the smaller maximum density of the two individual cutting schemes, 5/4.
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Chapter 4

Computational Experiments

Involving Pair-Isolating Cuts

The focus of our work is an extension of the computational experiments of Karger
et al. to use pair-isolating 4-way cuts of the 4-simplex in addition to side-parallel
cuts. In this chapter we describe how we introduce pair-isolating side-parallel and
pair-isolating edge-perpendicular cuts into the linear programs developed by Karger
et al. to study cutting schemes. We present the results of our experiments and some

observations about the solutions to the discrete linear programs.

Our experimental results suggest that for cutting schemes involving a single type
of cut, sparcs are preferable to pair-isolating cuts because they yield smaller approx-
imation ratios in the Calinescu et al. algorithm. On the other hand, cutting schemes
including both sparcs and pair-isolating cuts have smaller maximum densities than
schemes that use a single type of cut, and therefore pair-isolating cuts are appar-
ently useful in combination with sparcs for improving the cutting schemes obtained
from the solutions to the discrete linear programs. In the results of our experiments,
cutting schemes involving pair-isolating side-parallel cuts generally lead to smaller

approximation ratios than schemes involving pair-isolating edge-perpendicular cuts.
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4.1 Adding Pair-Isolating Cuts to the Linear Pro-

gram

Karger et al. developed a discrete linear program that generates cutting schemes that
yield small approximation ratios when used in the Calinescu algorithm, and provides
computational proofs of upper bounds on the maximum densities of these cutting
schemes. To ensure that the objective value of the primal linear program was at
least as large as the maximum density of the cutting scheme specified by a solution
to the program, they computed the constraints using upper bounds on the density
induced by specific cuts on segments. When we introduce pair-isolating cuts into the
linear program, our principal task is to compute an upper bound on the density of a
particular pair-isolating cut on any segment in a particular cell of the simplex, so that
the objective value of the linear program for a solution will remain an upper bound

on the maximum density of the cutting scheme corresponding to the solution.

4.1.1 Discrete pair-isolating cuts

To limit the number of pair-isolating cuts represented by variables in the linear pro-
gram, we define discrete pair-isolating cuts in much the same way as Karger et al.
define discrete sparcs. We add variables to the linear program that correspond to
discrete pair-isolating cuts, with the value of a variable specifying the probability of
choosing the associated pair-isolating cut. As in our analysis of the pair-side and
pair-edge cutting schemes with uniform distributions over the slice distances, we only
consider pair-isolating cuts in which the basis vector of the pair-isolating slice is chosen
uniformly at random from the set of six possible basis vectors, the reference vertex of
each side-parallel slice is chosen uniformly at random from the set of two candidates,
and the basis vector of each edge-perpendicular slice is chosen uniformly at random
from the set of two possibilities. Because each pair-isolating cut we consider chooses
basis vectors and reference vertices from the same distribution, individual cuts differ

only in the slice distances pp, ps, and p; of the slices that partition the simplex.
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A discrete pair-isolating cut is a triple (uy, us, u;) of integers. For simplicity and
ease of calculation, we use a common grid size /N to partition the ranges over which
the slices are drawn for both pair-isolating slices and side-parallel slices. On the other
hand, we found that, in the interests of obtaining small objective values from the solu-
tions to the primal linear programs, it was necessary to divide the range [—1, 1] from
which edge-perpendicular slices are drawn into 2N slabs, giving each slab a length of
1/N. Figure 4-1 illustrates the slabs for pair-isolating and edge-perpendicular slices.
The integers u,, us, and u; for a discrete pair-isolating side-parallel cut are all in the
range [0, N —1]. For a discrete pair-isolating edge-perpendicular cut, u, is an integer

in the range [0, N — 1], and u; and u, are integers in [0,2N — 1].

From a discrete pair-isolating cut, we obtain a distribution over continuous pair-
isolating cuts by applying the conventions established by Karger et al. for sparcs.
We choose the slice distance p, for the pair-isolating slice by choosing p, uniformly
at random from [u,/N, (u, + 1)/N]. For pair-isolating side-parallel cuts, we set the
slice distances ps and p; for the side-parallel slices in the source and sink regions,
respectively, by choosing p, uniformly at random from [u, /N, (us+1)/N] and selecting
p¢ uniformly at random from [u;/N, (u; + 1)/N]. In the case of pair-isolating edge-
perpendicular slices, ps is chosen uniformly at random from [—1 + u,/N, —1 + (us +

1)/N] and p; is chosen uniformly at random from [—1 + u;/N, —1 + (u; + 1)/N].

Discrete pair-isolating cuts exhibit symmetry that we exploit to reduce the number
of discrete cuts that we must include in the linear programs. Suppose the vertices
of the simplex are paired such that one pair contains vertices v; and vy, and the
other pair has vertices w; and ws. Because the slice distances are chosen uniformly
at random from the slab in which they fall, when the basis vector of the pair-isolating
slice is n,,,, and the pair-isolating slice slab is u, = i, the slice distance of the pair-
isolating slice has the same conditional distribution as it would have if the basis vector
were Ny, and the slice slab were (N — 1) — i. Figure 4-1 illustrates this situation.
As a result of this symmetry, the source slab in the case of the basis vector n,,,, will
be determined by the same distribution as the sink slab in the case of the basis vector

Nuw,w,, and the same relationship holds for the sink region for n,,, and the source
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region for m,,,,. Since each of the candidate basis vectors is chosen as the basis
vector of the pair-isolating slice with equal probability, it follows that for any discrete
pair-isolating cut (uy, us, u;), there is a corresponding discrete cut (N —1) —uyp, uy, uy)
that will have the same density as (u,,us,u;) on any segment in the simplex. For
this reason, we need only include discrete pair-isolating cuts with u, < N/2 in the

discrete linear program.

V.

Figure 4-1: Symmetries of discrete pair-isolating cuts. In the left diagram, the grid
size is N = 6, and the slab u, = 2 for the basis vector n,,,, of the pair-isolating slice
is the same as the slab u, = (N — 1) — 2 = 3 for the basis vector ny,4,,. On the
right, there are 2N = 12 slabs, and the slab u; = 3 for the basis vector e”> — €' of an
edge-perpendicular slice is the same as the slab u; = (2N — 1) — 3 = 8 for the basis
vector et — e"2.

Edge-perpendicular slices also have a symmetry that allows us to reduce the num-
ber of discrete cuts that we consider. For an edge-perpendicular slice with a slice
distance p; that separates vertices v; and vy, either e”? — e"* or e”* — e"? is the basis
vector. If the basis vector is e — €' and p; is drawn from the slab specified by
u; = 1, then the slice distance of the edge-perpendicular slice has the same condi-
tional distribution as it would have if the basis vector were e"* — e and the slice
were in the slab (2N — 1) — 4. Figure 4-1 shows an example of this symmetry. As
each of the two vectors is chosen as the basis vector with probability 1/2, a dis-

crete pair-edge cut (uy, us, u;) has the same density as another discrete pair-edge cut

62



(up, (2N —1) —us, (2N —1) —uy). Thus, we consider only discrete pair-edge cuts that

have u;, < N and u; < N.

4.1.2 Cells of the simplex

In the discrete linear program developed by Karger et al., the side-parallel slice slabs
partition the k-simplex into cells. For each of the £ coordinates ¢, dividing the simplex
into the slabs {z | j/N < z; < (j+1)/N} for j =0,..., N — 1 produces a distinct
partition of the simplex. As such, a cell is identified by k slabs ¢;, and is described
by {z | ¢/N <z; <(g; +1)/Nyi=1,....k} =t {z]q/N <z; < (g +1)/N}. A
cell is the intersection of k side-parallel slice slabs, one for each coordinate.

When we introduce pair-isolating cuts into the discrete linear program, we divide
up the cells defined by Karger et al. for sparcs so that each cell in the linear program
spans exactly one slab for each type of slice included in the program. Consider the
slabs of an edge-perpendicular slice that has a basis vector of e”> — e, as depicted in
Figure 4-2. For a cell that is characterized by the side-parallel slice slabs (q1, g2, g3, ¢4),
the range of values of the quantity z,, — z,, for points = in the cell determines where
the cell lies in relation to the edge-perpendicular slice slabs. Since g,, /N < z,, <
(gy, +1)/N and ¢, /N < z,, < (g, +1)/N, this range of values is (¢, — o, —1)/N <
Tyy — Toy < (Quy — @, + 1)/N. As an edge-perpendicular slice slab is a range of the
form [—14u;/N, =1+ (u; + 1) /N], the cell spans the two slabs u; = ¢,, — g,, — 1+ N
and u; = @y, — Gu, + N.

A cell that spans two slabs for the edge-perpendicular slice will have a weak
upper bound on the density of a cutting scheme on any segment within it. To see
this, consider a segment that lies entirely in one of the two pair-isolating slice slabs
within the cell. This segment can only be cut by the edge-perpendicular slice when
the slab u; takes on one particular value. All cuts that have either of the two values of
u; such that the edge-perpendicular slice passes through the cell, however, cut some
segments in the cell. For this reason, in order to obtain an upper bound on the density
of a probability distribution over discrete pair-isolating cuts on any segment within

the cell, we must assign positive upper bounds to the densities induced by cuts whose
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Figure 4-2: This diagram shows the face of the 4-simplex opposite vertex v, for the
grid size N = 3. On the edge connecting vertices v; and vz are labels that identify
the side-parallel slice slabs for coordinate 1. The edge joining vertices v, and vz has
the corresponding labels for coordinate 2. Below the edge connecting vertices v; and
vy, the labels identify the edge-perpendicular slice slabs for the basis vector e”> — e"'.

edge-perpendicular slices are in either of the two slabs. The result is that the density
bound computed for the cell is not tight for a segment that lies entirely in one of the

slice slabs.

For a segment that contains points in both slabs for the pair-isolating slice, we
may divide the segment into two subsets using the hyperplane boundary shared by
the two slabs, A, 4 =(¢,, ¢.,)/n- We may then compute a density bound for each
subset by considering only the cuts that have an edge-perpendicular slice in the one
slab in which the subset falls. The density on the entire segment is at most the larger
of the upper bounds for the subsets, and so we need assign positive upper bounds
only to the densities of cuts whose edge-perpendicular slices are in one particular
slab to obtain a valid upper bound on the total density of the cutting scheme on the

segment. Thus, for all segments in the cell that spans multiple pair-isolating slice
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slabs, the upper bound computed for the density of a cutting scheme on any segment
in the cell is not tight.

Our experiences working with the discrete linear programs showed that in order
for the optimal solutions to the programs to be cutting schemes that achieve low
approximation ratios, the density bounds for the cells must be tighter than the ones
that arise when cells span multiple slabs for a particular type of slice. In general,
for the solutions to have small maximum densities, each cell that has a constraint
in the linear program must span exactly one slab for each type of slice. As a result,
the cells that we account for in the discrete linear program are formed by taking
the intersection of different slabs. For a particular instance of the discrete program,
only the slabs for a type of slice that is included in the cuts in the program need be
accounted for in the intersections of slabs, and so the cells in the constraints of the
program vary from one instance to another based on the types of cuts included in the

different instances.

There are six possible basis vectors of the pair-isolating slice. Note, however, that
for a pair-isolating slice that isolates the pair of vertices vy, vy from the pair wq, wo,
the two possible basis vectors, n,,,, and n,,.,,, are parallel but point in opposite
directions. For this reason, the slabs for the two basis vectors are the same, as
illustrated in Figure 4-1. Thus, there are only three distinct sets of slabs for pair-
isolating slices, one for each distinct grouping of the vertices into two pairs.

We identify a particular pairing of the vertices by specifying the vertex that is
paired with vertex 1. As a result, a cell induced by pair-isolating slices is obtained
by taking the intersections of the three pair-isolating slice slabs g,,,, gp,5, and g,,,,
where a slab g,,; is the set {z | gp,; /N < z; + 2; < (gp,; + 1)/N}. For the purpose of
consistency, we refer to the side-parallel slice slabs that determine a cell as gs,, ¢s,,
gss, and gs,, where a slab g, is {z | ¢5,/N < x; < (g5, +1)/N}.

In the case of edge-perpendicular slices, there are (3) = 6 distinct pairs of vertices
that may be separated by these slices. As Figure 4-1 shows, for a particular pair of
vertices vy, vy, the slabs for the basis vector e”> — e¥' are the same as the slabs for

the basis vector e"* — e”2, so we need only one slab per pair of vertices to identify
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a cell. As a result, when computing a density bound for segments in a cell with a
particular alignment, we use 6 edge-perpendicular slice slabs to determine the cell.
We refer to those slabs as ge,,, Gess Gera Gerss Gess> AN Geyy, Where a slab g, is the set
{# | =1+4¢e,; /N < z;—2; < —1+(ge;; +1)/N}. Note that an edge-perpendicular slice
that separates vertices 3 and 4 is parallel to 1, 2-aligned segments, and therefore has
a density of 0 on any 1, 2-aligned segment, regardless of the range of values of x4, — x5
for points x on the segment. As such, when we compute a density bound for segments
of a particular alignment in a cell, we may ignore one of the edge-perpendicular slice
slabs.

To obtain a cell that has a constraint in the discrete linear program, we take
the intersection of different cell slabs, including in the intersection slabs for each
type of cut that the program contains. If sparcs or pair-side cuts are present in the
program, we include in the intersection the side-parallel slice slabs g¢s,, ¢s,, ¢s;, and
gs,- For a program that has pair-isolating cuts, we must include the pair-isolating slice
slabs gp.,, Qpis, and ¢,,,. If pair-edge cuts are present, we include in the intersection
the edge-perpendicular slice slabs Ge,5, Geiss Gersr Gessy Gess, AN Gesy. A cell in a
program that contains all three types of 4-way cuts of the simplex is identified by
a tuple (¢s;, Gsys Tsss Tsa> Ipras Iprss pras Qerns Qerss Qerss Qesss Qesq> Jes) that consists of 13
integers. The program has a constraint for each cell described by a tuple for which

the intersection of the slabs identified by the integers in the tuple is not empty.

4.1.3 Upper bound on segment density

Since all of the pair-isolating cuts that we consider are symmetric with respect to all
coordinates, it is sufficient to account for only 1, 2-aligned segments when we compute
the upper bound on the density induced by a discrete pair-isolating cut on any segment,
within a cell of the simplex. Karger et al. showed how to determine an upper bound
on the density of a discrete sparc on any segment within a cell by comparing the
side-parallel slice slabs u; with the cell slabs ¢,;). We perform the same type of

calculation to develop an upper bound on the density of a discrete pair-isolating cut

on any Segment Wlthln a Ce]l (qs17 QSza QSsa q547 qp127 qp137 QP14’ qe127 qe137 q6147 qe237 qeg47 Qe34)
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of the 4-simplex.

Location of pair-isolating slice in relation to cell

Consider a pair-isolating slice that has a slice distance of p, and a basis vector n;;.
Let s1, s denote the two vertices in the source region produced by the pair-isolating
slice, so that i, j, s1, so is a permutation of the vertices 1,2,3,4. For a pair-isolating
slice obtained from a discrete pair-isolating cut (u,, us, u;), the slice distance is in the
range p, € [u,/N, (u, +1)/N]. If the basis vector n;; is one of ny2, ny3, n14, then the
pair-isolating slice slab for the basis vector containing the cell is g, = gp,;. Otherwise,
as depicted in Figure 4-1, the slab containing the cell is g, = (N — 1) — g, ,, - If the
slab u, containing the pair-isolating slice is not the same as the slab ¢, containing
the cell, then the slice does not pass through the cell. In this case, no segment in the
cell can be cut by the slice, and any segment in the cell lies entirely in one of the two
regions produced by the pair-isolating slice. If u, = g,, then the pair-isolating slice

may go through the cell, and thus a segment in the cell may be cut by it.

Density bound for edge-perpendicular slice

In addition to the pair-isolating slice, the segments in a cell may be cut by the
pair-separating slices of the pair-isolating cut. The upper bound on the density of a
side-parallel slice in one of the regions of the simplex induced by the pair-isolating slice
on any segment within the cell may be computed using the Karger et al. approach.
For edge-perpendicular slices, we compute an upper bound on the density of a slice
on any segment in the cell by again determining where the slice falls in relation to
the cell.

For an edge-perpendicular slice in either the source or the sink region that is in
the slab u, and has a basis vector of e/ — ¢, the slice distance p, is in the range
pe € [-1+ue/N,—1+ (u.+ 1)/N]. If i < j, then the slab for the basis vector that
contains the cell is g. = g¢,;. As Figure 4-1 illustrates, if j < 7, then the cell is in the
slab g, = q.;;- Again, a segment in the cell can be cut only if the edge-perpendicular

slice passes through the cell, which can occur only if u, = ¢.. If the slice does not
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pass through the cell, then the density of it on any segment in the cell is 0.

Consider a segment in the cell of length d that has endpoints (s; +d, sa, s3, 54) and
(s1,82 + d, s3,84). Let p; and pp, be the minimum and maximum values, respectively,
of the quantity z; — x; for points  on the segment. Because the slice cuts the
segment if and only if p. € [py, pr], and the slice distance p, is uniformly distributed
over [—1+ ue/N,—1+ (ue + 1)/N], the probability that the slice cuts the segment is
(pr — pe)/(1/N) = N(pn — p¢). The value of p, — p; depends on the vertices ¢ and j
of the simplex. For i =1 and j = 2, p, — py = 2d. When 7 € {1,2} and j € {3,4},
pn —pe =d. Fori =3 and j =4, p, — p, = 0, and so the edge-perpendicular slice
cannot cut the segment because it is parallel to it. Note that in all of these cases,
swapping the values of 7 and 7 will not change the value of p, — pg, so these are the
values of p, — py for all basis vectors e/ — e’ of the edge-perpendicular slice.

Once we have the value of p, — py for the basis vector ¢/ — e of the edge-
perpendicular slice, we may compute the density of the slice on the segment as
(N(pr, — pe))/d. The quantity p, — pe is 2d for {i,j} = {1,2}, d for {i,j} €
{{1,3},{1,4},{2,3},{2,4}}, and O for {i,5} = {3,4}. Thus, p, — p, is always the
product of d and a constant, and so the density has no dependence on d. It follows
that (N(pn — pe))/d is an upper bound on the density of the edge-perpendicular slice

on any segment in the cell.

Density bound for pair-isolating cut

With this method for bounding the density of an edge-perpendicular slice on any
segment in the cell, we compute an upper bound on the density of a discrete pair-
isolating cut (u,,us,u;) by considering each of the six possible basis vectors of the
pair-isolating slice in turn. Because each of these vectors is chosen as the basis vector
with probability 1/6, the density bound will be an average of the density bounds for
each of the six basis vectors. For a particular basis vector n;;, we consider each of the
ways of choosing the reference vertices for the side-parallel slices or the basis vectors
for the edge-perpendicular slices in the two regions induced by the pair-isolating slice.

As there are two possible reference vertices or basis vectors for each region, there are
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four cases that must be handled. In each region, each of the two possible reference
vertices or basis vectors is selected with probability 1/2, and so the density bound
for a particular basis vector n;; of the pair-isolating slice is the average of the four
density bounds for the different choices of the reference vertices for side-parallel slices
or basis vectors of edge-perpendicular slices when the basis vector of the pair-isolating
slice is m;;.

Given a basis vector n;; of the pair-isolating slice and a set of reference vertices
or basis vectors for the slices that separate the two regions produced by the pair-
isolating slice, we first determine the slab g, for the pair-isolating slice that contains
the cell. We then compare this slab to the slab u, that contains the pair-isolating
slice. If ¢, < u,, then the pair-isolating slice does not pass through the cell and the
cell lies entirely in the source region produced by the pair-isolating slice. If g, > u,,
then the entire cell is in the sink region. In either of these two cases, we compute a
bound on the density of the slice in the region in which the cell lies on any segment
in the cell using the approach of Karger et al. for a side-parallel slice, or our method
for an edge-perpendicular slice. Since the density of the pair-isolating slice on any
segment in the cell is 0, we use this bound as the upper bound on the density of the

pair-isolating cut on any segment in the cell.

The other case to consider is g, = u,, in which the pair-isolating slice may pass
through the cell. Our next step is determined by the basis vector of the pair-isolating
slice. If the basis vector is n15 or ns4, as depicted in Figure 4-3, then the pair-isolating
slice hyperplane is parallel to all 1, 2-aligned segments and therefore has a density of
0 on any segment in the cell. Furthermore, a segment in the cell can be cut by a slice
that separates a pair of vertices only if it is in the region containing vertices 1 and 2,
which is the sink region when the basis vector of the pair-isolating slice is 11 and the
source region when the basis vector is n34. To obtain an upper bound on the density
of the pair-isolating cut on any segment in the cell, we assume that the segment is
in the region containing vertices 1 and 2, and we compute a bound on the density of

the pair-separating slice in that region on any segment in the cell.

Suppose that g, = u, and the basis vector of the pair-isolating slice is n13. This

69



3,4 2 2,4 3

Figure 4-3: If the pair-isolating slice passes through the cell, portions of the segment
may end up in both regions produced by the slice. On the left, the basis vector of
the pair-isolating slice is njo, and the segment can be cut only if it is in the region of
the simplex containing vertices 1 and 2. In the right diagram, the basis vector of the
pair-isolating slice is n;3. The pair-isolating slice and both pair-separating slices may
cut the segment.

situation is shown in Figure 4-3. For a segment in the cell of length d with endpoints
(s1 + d, s9, 83,54) and (s1, s2 + d, s3, 54), the range of values of the quantity z; + 3
for points on the segment is z1 + z3 € [s1 + s3, 51 + 53 + d]. Because the slice distance
of the pair-isolating slice is chosen uniformly at random from [u,/N, (u, + 1)/N], the

probability that the segment is cut by the pair-isolating slice is d/(1/N) = Nd.

Since the pair-isolating slice may pass through the cell, subsets of a segment in
the cell may be in either the source or the sink region produced by the pair-isolating
slice, and thus may be cut by the pair-separating slice in either of the two regions.
We compute an upper bound on the density of the slice in the source region on any
segment in the cell, and an upper bound on the density of the slice in the sink region
on any segment in the cell. Let 6 denote the maximum of the two bounds. If the
pair-isolating slice does not cut a segment, then the segment lies entirely in either the
source or the sink region, and so the density of the pair-isolating cut on the segment

is at most 9.

In the event that the pair-isolating slice does cut a segment, the density bounds
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computed for the source and sink regions apply to the parts of the segment that end
up in each region. Note that if any part of the segment lies in the region in which
the pair-separating slice has the smaller density, then the density of the cut on the
segment, would increase if the pair-isolating slice were moved such that this part of
the segment ended up in the region in which the slice has the larger density. As such,
the density of the cut on the segment is maximized when the pair-isolating slice cuts
the segment near an endpoint such that nearly all of the segment falls in the region
in which the pair-separating slice has the greater density. It follows that the density
of the pair-separating slices on any segment in the cell is at most ¢.

By linearity of expectation, the expected number of times a segment is cut when
the pair-isolating slice cuts it is at most 1 4 dd, as the pair-isolating slice contributes
1 cut in expectation and the pair-separating slices contribute at most dd cuts in
expectation. Thus, the density of the pair-isolating cut on any segment in the cell
is at most 1/d + ¢ in the case in which the pair-isolating slice cuts the segment.
Conditioning on the event that the pair-isolating slice cuts the segment, we now use
the total probability theorem to compute an upper bound on the density of the pair-
isolating cut on any segment in the cell of Nd(1/d +6) + (1 — Nd)d = N + ¢ for the
case in which the basis vector is n;3. The cases involving the remaining basis vectors,
N14, No3, and ngy, are symmetric to this case of n;3 and therefore the computation of
the upper bound on the density uses the same sequence of steps and yields the same

result.

4.2 Experimental Results

To obtain the discrete primal linear programs for which the solutions are cutting
schemes, we developed a program that performs the density bound computations
to generate the programs automatically. We then used the optimization software
CPLEX to solve the programs. The sizes of the programs that we were able to solve
were limited by the finite computational resources to which we had access. For some

values of the grid size IV less than 30, however, we were able to solve discrete linear
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programs that included sparcs, pair-isolating side-parallel cuts, and pair-isolating
edge-perpendicular cuts.

Table 4.1 shows the maximum densities of the cutting schemes specified by optimal
solutions to the discrete primal linear programs for different combinations of types
of cuts and a grid size of N = 15. For each combination of types of cuts, the table
presents the number of cells for which the discrete program including those types of
cuts has a constraint. As the discrete primal program has one variable for each cut of
the simplex, a solution is a joint distribution over cuts of the simplex. For programs
that contain more than one type of cut, we may capture the relative importance of
the various types of cuts in the solution by computing the sum of the probabilities
assigned to all the variables for each type of cut. In the table, when multiple types
of cuts are included in a cutting scheme, the total probability assigned to the cuts of

each type is indicated.

Cut types Cells | Max. dens. | sparc pair-side | pair-edge
sparc 512 | 1.175393 1 N/A N/A
pair-side 1688 | 1.191196 N/A 1 N/A
pair-edge 17728 | 1.218656 N/A N/A 1
pair-side, pair-edge 17728 | 1.191196 N/A 1 0

sparc, pair-side 1688 | 1.17233 0.729301 | 0.270699 | N/A
sparc, pair-edge 17728 | 1.174643 0.881157 | N/A 0.118843
sparc, pair-side, pair-edge | 17728 | 1.172152 0.743059 | 0.228798 | 0.028143

Table 4.1: The maximum densities of the cutting schemes specified by the optimal
solutions to the discrete linear programs for a grid size of N = 15 and various com-
binations of types of cuts. The number of cells in a particular discrete program may
not be as small as the minimum possible value because the program that generated
the linear programs may not have detected all empty slab intersections and thus may
have included constraints in the program for extraneous cells.

The solutions to the linear programs suggest that for cutting schemes involving a
single type of cut, sparcs are more effective than pair-isolating cuts for the purpose
of obtaining small approximation ratios. In general, we found that for a fixed grid
size N, when only one type of cut is included in the program, an optimal solution
involving sparcs has a smaller maximum density than an optimal solution involving

either type of pair-isolating cut. When sparcs are combined with either type of pair-
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isolating cut, however, the resulting linear program has a smaller optimal value than
the optimal value of the program that contains only sparcs. This suggests that pair-
isolating cuts, when introduced in addition to sparcs, are useful in improving the best
approximation ratio that can be achieved.

A logical postulate is that an optimal cutting scheme for £ = 4 cannot be described
as a probability distribution over sparcs. It is possible, however, that pair-isolating
cuts improve the maximum density when introduced into a program containing sparcs
only because the linear program is a discrete version of an infinite-dimensional pro-
gram. For discrete linear programs including only pair-side cuts, the probability that
the optimal solution assigns to the sparcs increases as the grid size N increases. It
is conceivable that pair-isolating cuts only improve the approximation ratio for small
grid sizes, and, as the grid size increases so that the discrete program better approx-
imates the infinite-dimensional continuous program, the total probability assigned to
the pair-isolating cuts decreases, reaching zero in the limit.

Table 4.2 shows the best approximation ratios we found for various combinations

of types of cuts by solving the discrete primal linear programs.

Cut types Grid | Max. density | sparc pair-side | pair-edge
pair-side 31 | 1.176081 N/A 1 N/A
pair-edge 18 | 1.212101 N/A N/A 1
pair-side, pair-edge 16 | 1.189131 N/A 0.999878 | 0.000122
sparc, pair-side 30 | 1.15683 0.966739 | 0.033262 | N/A
sparc, pair-edge 16 | 1.172248 0.877365 | N/A 0.122635
sparc, pair-side, pair-edge 15 | 1.172152 0.743059 | 0.228798 | 0.028143

Table 4.2: The maximum densities of the cutting schemes specified by the optimal
solutions to the discrete primal linear programs for various combinations of types of
cuts.

Of the cutting schemes that we found as solutions to the primal linear programs, the
one that achieves the best approximation ratio when used as the rounding scheme in
the Calinescu et al. algorithm is a probability distribution over sparcs and pair-side
cuts. This may be the result of the fact that we were able to solve the discrete linear

programs including sparcs and pair-side cuts for higher grid sizes than the programs
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including sparcs and pair-edge cuts. Our results showed, however, that for a fixed
grid size N, an optimal solution to a program with sparcs and pair-side cuts would
lead to a smaller approximation ratio than an optimal solution to a program with

sparcs and pair-edge cuts.

4.3 Observations

In general, the solutions to the discrete linear programs exhibit little obvious struc-
ture. Detecting patterns in the probability distributions over 4-way cuts of the simplex
is not a straightforward task. Because a solution to the primal linear program is a
joint distribution over cuts of the various types included in the program, examining
the solutions themselves does not provide immediate insight into the properties of the
slices that comprise the cuts. An understanding of the distributions of the various
component slices would be a natural approach to take in an attempt to extrapolate
from the solutions to the discrete linear programs to an analysis of a cutting scheme
that demonstrates an approximation ratio close to the objective values of the solu-
tions. While we computed marginal distributions of the component slices over the
slice slabs, and conditional distributions of the slices, given the slabs in which the
other slices fall, we did not make significant progress in the use of these distributions
to develop insight into the properties of the component slices of the cuts.

Corner cuts appear to diminish in structure when pair-isolating side-parallel cuts
are added to a discrete linear program containing sparcs, especially for higher grid
sizes. Karger et al. note that in the optimal solutions to the programs including only
sparcs, the slice distances in a corner cut are all chosen uniformly at random from the
corner region. In general, optimal solutions to the programs that contain both sparcs
and pair-side cuts show that when one of the slice distances is in the corner near
pi = 1, then the other slice distances are likely to also be in the corner. However, the
slice distances do not appear to be distributed uniformly over the corner slabs. On
the other hand, in the case of the discrete linear programs including sparcs and pair-

edge cuts, corner cuts appear to remain intact, with the slice distances distributed
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uniformly over the corner slabs.

The dual of the discrete linear program that we solved to obtain a cutting scheme
contains one variable for each cell in the simplex. We may consider the value of the
variable for a cell to be a cost assigned to each segment in the cell. Intuitively, the
objective of the dual program is to assign a fixed amount of cost to the cells such that
any k-way cut of the simplex will have a high cost. In this sense, a solution to the dual
program identifies regions in the simplex that contain segments on which any cutting
scheme must have high density. While solutions to the dual linear programs may offer
insight into how the density of an optimal cutting scheme varies in different regions
of the simplex, we did not find a way to exploit this information in the development
and analysis of cutting schemes that achieve small approximation ratios. We had
difficulty in visualizing solutions to the dual programs, as the task of representing the
cells in a visual form such that one may understand how the costs are assigned to the

different cells is formidable.

To obtain a simple visual representation of the regions of high and low density
in the simplex for a certain cutting scheme, we worked with another discrete primal
linear program in addition to the one that has constraints for cells in the simplex. In
the alternate program, rather than considering regions of the simplex for computing
density bounds, we instead focus on the aligned line segments in the simplex of
length 1/N whose endpoints are of the form (¢;/N,q2/N,q3/N,qs/N) for integers
gi € [0, N — 1]. The variables of the program remain the discrete 4-way cuts of the
simplex, but we replace the constraints for the cells with one constraint for each of

the line segments.

Each constraint requires that the density of the cutting scheme on the segment be
at most the value of the objective function. Minimizing the objective function thus
leads to a solution in which the value of the objective function is the maximum density
of the cutting scheme specified by the values of the variables for the 4-way cuts of the
simplex. Generating the constraint in the program for a particular segment involves
computing the density of each discrete cut on the segment. The calculation is similar

to the computation of an upper bound on the density of a cut on any segment in a

75



cell, but is less complicated because the density must be computed for a particular

known line segment, rather than an arbitrary segment within a cell.

A solution to this linear program is a cutting scheme that has a small maximum
density when the set of possible embedded edges is restricted to include only aligned
segments of length 1/N whose endpoints are of the form (¢;/N, g2/N,qs/N,qs/N).
Because the program does not account for every possible embedded edge in the sim-
plex, the objective value of a solution to it does not provide an upper bound on the
approximation ratio achieved by the cutting scheme specified by the solution. If the
grid size N is large enough, however, we may hope that many graphs have optimal
embeddings in which all the edges map to segments accounted for in this program.
In this event, a solution to the linear program may illustrate properties of a cut-
ting scheme that has a small maximum density when all segments in the simplex are

considered.

When this linear program includes only variables for sparcs, the objective value
of an optimal solution to it is a lower bound on the maximum density of any cutting
scheme that is a probability distribution over sparcs. To see this, first note that the
objective value of a solution is the maximum density of the cutting scheme specified
by the solution over the segments for which the program has constraints. Because
the set of segments for which the program has constraints is a subset of the set of all
segments, the maximum density of the cutting scheme specified by a solution to the
program is at least the maximum density of the scheme over the segments for which

the program has constraints.

The line segments for which the program has constraints form a particular embed-
ded graph. This embedded graph is constructed such that each embedded edge in it
spans precisely one side-parallel slice slab. As such, for any particular slab, any slice
chosen from that slab will cut the same set of embedded edges, regardless of the exact
slice distance within the slab. It follows that two sparc cutting schemes that have
the same distribution over the slice slabs will have the same density on any edge in
the embedded graph, even if the conditional distributions of the slice distances within

the slabs differ. We may conclude from this that no sparc cutting scheme can have
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a smaller maximum density over the segments for which the program has constraints
than the cutting scheme over continuous sparcs induced by the optimal solution to the
linear program. As the maximum density of any cutting scheme over the segments for
which the program has constraints is a lower bound on the maximum density of the
cutting scheme, it follows that no sparc cutting scheme can have a maximum density
less than the objective value of an optimal solution to the program.

Given a solution to this discrete primal linear program with constraints corre-
sponding to segments, we may determine the density of any set of discrete cuts on
a particular segment by applying the total probability theorem using the values of
the cut variables in the set from the solution and the densities of the cuts on the
segments computed for the constraints. Figure 4-4 shows the density of pair-side cuts
in a optimal solution to a linear program including sparcs and pair-side cuts on the
different 1, 2-aligned segments in the simplex. In the figure, the higher the density of
the cuts on a segment, the thicker and darker the segment appears.

For the pair-side cuts, the regions containing segments on which the cuts have
high density include several areas near the edges of the simplex. The edge connecting
vertices 3 and 4 of the simplex, however, does not have an area of high density near
it. The segments with the highest densities are concentrated near the corners of the

simplex closest to vertices 1 and 2.
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Figure 4-4: The density of the pair-isolating side-parallel cuts on the 1,2-aligned
segments in the simplex. For each segment, the density of the cuts on the segment is
represented by its thickness and darkness.

78



Chapter 5

Cutting Schemes Involving

Dependent Side-Parallel Slices

While the cutting schemes found by Karger et al. that have the smallest maximum
densities are probability distributions that they obtained from solutions to the dis-
crete primal linear programs, those cutting schemes have the disadvantage that the
proofs of the upper bounds on the approximation ratios they achieve are computer-
generated. In their study of the Calinescu et al. relaxation, Karger et al. give a sparc
cutting scheme for arbitrary k£ that achieves approximation ratios that may be proven
analytically to be smaller than those of the Calinescu et al. algorithm. This cutting
scheme involves a random choice between a corner cut and another cutting scheme
in which the slice distance for each side-parallel slice is chosen, independently of the
other slice distances, uniformly at random from the portion of the range of the slice
distances obtained by removing the corner region from the full range.

For k£ = 4, this cutting scheme achieves the smallest approximation ratio among
all known cutting schemes for which upper bounds on the maximum densities have
been proven analytically. In this chapter, we present a cutting scheme for the 4-
simplex involving side-parallel cuts in which there is a dependence between the slice
distances of the different side-parallel slices. Our analysis of the maximum density
of this cutting scheme shows that the approximation ratio it achieves improves upon

the approximation ratio of the Karger et al. cutting scheme.
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5.1 A General Class of Cutting Schemes

To specify the cutting scheme, we first describe a class of sparc cutting schemes for
which the distributions of the slice distances of different slices have dependencies. We
then give a set of parameters that identify a particular cutting scheme, and compute

an upper bound on the maximum density of this cutting scheme.

5.1.1 Description of cutting schemes

Divide the range [0, 1] from which the slice distances are drawn into ¢ slabs, with slab
i being the range [b;, b; + w;] of length w; for ¢ = 1,...,t. Note that b;11 = b; + w;
and Zle w; = 1. We partition the simplex into four subsets by choosing three slice
distances p;, and processing the vertices in the order specified by a permutation o
of the vertices chosen uniformly at random from the set of possible permutations.
The ith vertex in the permutation, o(i), is separated from the other vertices by the
1th side-parallel slice, A%(i):pi. As in the case of discrete sparcs, we specify the
distribution of a slice distance by providing the slab r € {1,...,¢} in which the slice
falls. The slice distance is then chosen uniformly at random from the range of values
for the slab, [b,, b, + w,].

Let pi(i) denote the probability that the first slice is in slab i, ps(j | @) be the
conditional probability that the second slice is in slab j, given that the first slice
is in slab 4, and p3(¢ | 4,j) be the conditional probability that the third slice is in
slab ¢, given that the first slice is in slab 7 and the second slice is in slab j. By
using conditional distributions in the description of the cutting schemes, we allow for
dependencies between the different slice distances. Given these parameters, we may
specify a probability distribution over sparcs by defining the slabs and providing the
probabilities p; (i), po(j | 7), and p3(£ | i, 7) for all the slabs.

5.1.2 Density analysis

We obtain an upper bound on the maximum density of a cutting scheme of this

form through the same approach that we used to compute the constraints for the
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discrete linear program. Again, we consider cells of the simplex induced by the slabs
for the slice distances. For each cell, we compute an upper bound on the density
of the cutting scheme an any segment in the cell. Because the permutation of the
vertices used to determine the order in which they are processed is selected uniformly
at random from the set of possible permutations, the cutting scheme is symmetric
with respect to all coordinates, and so it is sufficient to consider only 1, 2-aligned
segments in the computations of the density bounds. Note that any segment that lies
in more than one cell may be divided into several parts, each contained entirely in
one cell, such that the density bounds for each cell may be applied to the portion of
the segment in that cell. The maximum density of the cutting scheme is at most the

largest of the upper bounds for the different cells.

Consider the cell in the simplex identified by the slabs (ri, 72,73, 74), Where r;
denotes the slab containing coordinate ¢ of the points in the cell. For all points x in
the cell, then, x; € [by,, b, +w,,]. Since the cell is in the simplex, Zle z; = 1 for points
z in it, and therefore the slab boundaries must satisfy Y75, b,, <1< 31 (b, +w,,).
Note that if either of these inequalities holds with equality, then each coordinate x;
must be precisely equal to the boundary value b,, or b,, + w,, in order for the point
z to be in the cell. It follows that there can be only one point in the cell. Because a
cell consisting of only one point cannot contain a line segment, we need only consider
cells for which 37 b, <1< 30 (b, +wy,)-

For a 1, 2-aligned segment of length d with endpoints (s1+d, s9, $3, s4) and (s1, so+
d, s3,54) in the cell (r1,79,73,74), let C denote the number of times the segment is
cut by a sparc obtained by choosing the slice distances according to the distributions
specified by the parameters of the cutting scheme. We denote the slab that contains
the ith slice by u;. To compute the expected value of C, we consider several cases.
Case 1: 0(4) =2

Since a 1, 2-aligned segment can be cut only by terminal 1 or terminal 2, and the
last vertex in the permutation does not cut any segments, if the last vertex in the
permutation is 2, then the segment can be cut only by terminal 1. The probability that

terminal 1 cuts the segment depends on the position of vertex 1 in the permutation.
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Case 1A:0(1)=1,0(4) =2

If vertex 1 is the first vertex in the permutation, then the segment may be cut by
the first side-parallel slice if the slab containing the slice is ;. Because the conditional
distribution of the slice distance, given that the slice is in a particular slab, is uniform
over the slab, in the event that the slab containing the first slice is r;, the probability
that the slice cuts the segment is d/w,,. As a result, the expected number of times
the segment is cut is E[C' | 0(1) = 1,0(4) = 2] = (p1(r1)/wy,)d when vertex 1 is the
first vertex in the permutation.
Case 1B: 0(2) =1, 0(4) =2

In the case that vertex 1 is the second vertex in the permutation, the segment
can be cut by the second slice only if it is not captured by the terminal whose cor-
responding vertex is first in the permutation. The segment will not be captured if
the slab u; in which the first slice falls satisfies uy > r4(1), or if uy = 7,1y and the
slice distance p; satisfies p; > s,(1). To compute the probability that the segment is
cut, we determine the probability that the second slice is in slab 7, given that the
segment is not captured, and we multiply that probability by the probability that
the segment is not captured and the probability that the segment is cut, given that
it is not captured and the second slice is in slab r;. Let NC; be the event that the
segment is not captured or cut by the terminal corresponding to the ith vertex in
the permutation, o(7). The probability that the slab us containing the second slice is
the same as the slab r;, given that the segment is not captured, may be obtained by

conditioning on the slab u; of the first slice.

PI'[’LLQ =T ‘ NCl,O'(Q) = 1,0’(4) = 2]
= > (Prlug=r1|u =4,NCy,0(2)=1,0(4) =2

1=rs1)+1
x Prluy =4 | NCi,0(2) =1,0(4) = 2])
+ (Prlug =7y | uy =150y, NC1,0(2) =1,0(4) = 2]

X Prlu; = o1y | NCy,0(2) =1,0(4) = 2])
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For ¢ > r,(1), the probability that the first slice is in slab ¢, given that the segment
is not captured, is Prfu; =i | NCy,0(2) = 1,0(4) = 2| = Pru; = i, NC, | 0(2) =
1,0(4) = 2]/Pr[NC; | 0(2) = 1,0(4) = 2] = p1(i)/Pr[NC; | 0(2) = 1,0(4) = 2]. If
the first slice is in slab r,(;), then, since the slice distance is distributed uniformly over

[br,1ys b1y T Wr, )], the probability that the segment is not captured is (b, ,, +wy, ;) —

50(1))/Wr, «- For any coordinate 7, let y; = by, +wy, —s;. The probability that the first
slice is in slab 74(1), given that the segment is not captured, is then given by Pr[u; =
To() | NC1,0(2) =1,0(4) = 2] = Prjuy = r,q), NCi | 0(2) = 1,0(4) = 2]/Pr[NC |
0(2) = 1,0(4) = 2] = (p1(ro(1))Yo))/ (wr, ,, PT[NC1 | 0(2) = 1,0(4) = 2]). Using
these probabilities and the fact that Prjus = ry | uy =i, NC1,0(2) = 1,0(4) = 2] =
pa(ry | @) for all ¢ > 7,4y, we may compute Prluy = r, | NCy,0(2) = 1,0(4) = 2].
This allows us to calculate the expected number of times the segment is cut in this

case.

E[C|0o(2)=1,0(4) = 2]
=Pr[NC; | 0(2) =1,0(4) =2] X Prlus =7 | NC1,0(2) = 1,0(4) = 2]
X E[C ‘ Uy = rl,Ncl,a(Z) = 1,0’(4) = 2]

P1(ro))P2(r1 | 7o) Yo(1) ) d
wy, \Pr[NC1 [ 0(2) =1,0(4) = 2]/ wy,

t
= d Z pl(i)pZ('f‘l | '[,) + pl("'a(l))pQ(’f’l | 7'0-(1)):[/0_(1))

wrl i:TU(1)+1 ch’(l)

Given that vertex 2 is the last vertex in the permutation and vertex 1 is the second,
the first vertex in the permutation is vertex 3 with probability 1/2 and vertex 4 with
probability 1/2. Thus, the expected number of times the segment is cut when vertex

1 is the second vertex may be expressed as follows.
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< Z p1(i)p2(r1 | 4) + pr(rs)pa(ri | 73)ys

2w,«1 M W,
t
T Tyl
4 Z p1 p2 r | ) pl( 4)]92( 1 | 4)94)
i=rqa+1 Wry

Case 1C: 0(3) =1, 0(4) =2

If vertex 1 is the third vertex in the permutation, then we calculate the expected
number of cuts of the segment in a manner analogous to that of the case that vertex
1 is the second vertex. The segment can be cut only if neither of the terminals
corresponding to the first two vertices in the permutation captures it. Let NCio
be the event that the segment is not captured or cut by either of the terminals
corresponding to the first two vertices in the permutation. The event NC'5 can occur
only if u1 > 741y and up > rs). We condition on these values of u; and uy to

compute the expected number of times the segment is cut.

E[C |0(3) = 1,0(4) = 2]
= Pr[NCy, | 0(3) = 1,0(4) = 2] x Pr[us =11 | NCis,0(3) = 1, 0(4) = 2]
X E[C | Uz = T‘1,N012,0'(3) = 1,0’(4) = 2]

PI'[Ug =T | N01270'(3) = 1,0’(4) :2]

t t
= Z Z (Prlug =71 | ug = i,us = J, NCi2,0(3) = 1,0(4) = 2]
1=Tg(1) J=T0(2)
X Pr[u1 =1 , Ug :] | N012,0'(3) = 1,0'(4) = 2])
_ Z Z )p2(J | 9)p3(ry | 4,7)
Pr[N012 |o(3) =1,0(4) = 2]

= To(l)-f—l] =rs(2)+1
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N Z P1(8)p2(To2) | D)P3(r1 | 4, 70(2))Yo(2)
wy_ o Pr[NCi2 | 0(3) =1,0(4) = 2]

1= 7‘0.(1)+1 a(2)

n Z p17“a p2]‘7°a )P3(T1\7’a j)ya(1)

J=re)t1 cr(l)Pr[NCm 10(3) = 1,0(4) = 2]

i y41 (%(1))102(7“0(2) | Ta(1))p3(7“1 | Ta(1),7“a(2))ya(1)ya(2)
wra(l)wra(z)Pr[NClg |o(3) =1,0(4) = 2]

E[C | o(3) =1,0(4) = 2]

t t t t
= 9 ( Z Z p1(9)p2(J | 9)ps(re | 4, 5) + Z Z p1(@)p2(J [ 9)ps(re | 2, 7)
(R r3+1] ra+1 i=ra+1j=r3+1
. . t . . .
) T4 |2 e, ) r3 |1 | %7
+ Z pl( )P2( 4 | )P3( 1 | 4)2/4 i Z pl( )p2( 3 | )ps( 1 | 3)1/3
: Wy, A Wy,
1=r3z+1 1=raq+1
t ) )
T T T1 | T3,
4 Z p1( 3)102(] | 3)P3( 1 | 3 ])y3
) W
j=ra+1 3
t ) }
T T 71 | T4,
+ Z p1( 4)102(] ‘ 4)p3( 1 | 4 .7)2/4
. w7'4
Jj=r3+1
+ (101(7“3)172(7"4 | 7‘3)103(7‘1 | 7’3,7“4) +p1(7“4)p2(7“3 \ 7’4)p3(7“1 \ 7“4,7“3))3/33/4)
Wyy Wy,

Conditioning on position of vertex 1 in permutation

We may now compute the expected number of times the segment is cut in the case
that vertex 2 is the last vertex in the permutation by noting that, given that vertex

2 is last, vertex 1 is equally likely to be first, second, and third in the permutation.

E[C[o(4) =2] =
%(E[C |o(1) = 1,0(4) = 2] + E[C | 0(2) = 1,0(4) = 2]

+E[C|o(3)=1,0(4) =2])

Case 2: 0(4) =1
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The case in which vertex 1 is the last vertex in the permutation is symmetric to the
case in which vertex 2 is the last vertex. Each of these cases occurs with probability
1/4.

Case 3: 0(4) =4

Because both vertices 1 and 2 are within the first three vertices of the permutation,
the segment may be cut by both terminals 1 and 2. The calculation of the expected
number of times the segment is cut, conditional on the last vertex in the permutation
being vertex 4, is similar to the calculation for the case of vertex 2 as the last vertex,
though we must now account for the possibility that each of two terminals cuts the
segment.

Case 3A:0(1)=1,0(2)=2,0(4) =4

Let CUT; be the event that the segment is cut by the terminal corresponding
to the ith vertex in the permutation. Terminal 1 cuts the segment with probability
Pr[CUT: | 0(1) = 1,0(2) = 2,0(4) = 4] = (p1(r1)/w,,)d. If terminal 1 cuts the
segment, then it will capture part of the segment that terminal 2 cannot subsequently
cut.

Let 7 be the fraction of the segment not captured by terminal 1, so that p; = s1 +
vd. Since x1+2x9 = $1+52+d for all points x on the segment, the points on the segment
that are not captured by terminal 1 are those for which z; = —x9+s14+s9+d < s1+7d,
or £y > sg+ (1 —y)d. Thus, terminal 2 cuts the segment if so+ (1 —7)d < ps < 59+,
and the probability that the segment is cut by terminal 2, given that it is cut by
terminal 1, is (p2(r2 | 71)(d — (1 — ¥)d))/w,, = (p2(r2 | 1)7d)/w,,. Because the slice
distance p; is distributed uniformly throughout the slab r;, given that the segment
is cut by terminal 1, v is distributed uniformly over [0,1], and therefore it has an
expected value of 1/2. It follows that the expected number of times the segment is
cut, conditional on the event that terminal 1 cuts it, is 1 + (p2(r2 | 71)/(2w,,))d.

In the event that the segment is not cut by terminal 1, it can be cut by terminal
2 only if it is not captured by terminal 1. Terminal 1 will not capture it if u; > rq, or
if u; = ry and p; > s; +d. If u; = ry, then the probability that terminal 1 does not
capture the segment is (b,, + w,, — s1 — d)/w,, = (y1 — d)/w,,. We condition on the
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different values of u; to determine an upper bound on the expected number of times

the segment is cut.

E[C | o(1) = 1,0(2) = 2, 0(4) = 4]
— PLCUT, | o(1) = 1,0(2) = 2,0(4) = 4]
< E[C | CUTy, (1) = 1,0(2) = 2,0(4) = 4]
+PING, | o(1) = 1,0(2) = 2,0(4) = 4]
X E[C | NCy,o(1) = 1,0(2) = 2,0(4) = 4]
_ M(1+p2(T2 | Tl)d)

Wy 2wy,
+ (Pr[NCi | 0(1) =1,0(2) = 2,0(4) = 4]
RS p1(i)pa(rs | 9)
;1 Pr[NCy | o(1 )—1 0(2) =2,0(4) = 4]
p1(r1)pa(re | 71) (Y1 — d) d
T OnPINC: [0(1) = 1,0(2) 2, (4) = 4]>w_,2)

Case 3B: 0(1) =2,0(2)=1,0(4) =4

The case of o(1) = 2, 0(2) = 1, and o(4) = 4 is symmetric to the case of o(1) = 1,
0(2) =2, and 0(4) = 4. Thus, the same calculation may be performed to obtain an

upper bound on E[C | o(1) =2,0(2) =1,0(4) = 4].
Case 3C: 0(1)=1,0(3)=2,0(4) =4

The computation of the upper bound on the expected value of the number of
times the segment is cut is similar to the calculations in the previous cases, with the
difference being that we must consider the possibility of the segment being captured
by terminal 3. To account for this possibility, we use the same approach that we used

for the case in which the last vertex in the permutation is 2.
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E[C | o(1) =1,0(3) = 2,0(4) = 4]
= Pr{CUT; | 0(1) = 1,0(3) = 2,0(4) = 4]
x E[C'| CUT,,0(1) = 1,0(3) = 2,0(4) = 4]
+PI[NCis | 0(1) = 1,0(3) = 2,0(4) = 4]
x E[C' | NCia,0(1) = 1,0(3) = 2,0(4) = 4]

=2 NG, | CUTL, 0(1) = 1,0(3) = 2,0(4) = 4]

T1

x E[C | NCy, CUT:,0(1) = 1,0(3) = 2, 0(4) = 4))

+PI[NCs | 0(1) = 1,0(3) = 2,0(4) = 4]

x (Z N (Prlus =72 | uy = iy us = §, NCiz,0(1) = 1,0(3) = 2,0(4) = 4]

1=r1 j=r3

X Prluy = i,us = j | NCig,0(1) =1,0(3) =2,0(4) :4])>

X E|C | u3 =19, NC12,0(1) =1,0(3) = 2,0(4) = 4]
_ pi(r)d

Wy,

X (1+Pr[NCy | CUTy,0(1) =1,0(3) = 2,0(4) = 4]
X (i(Pr[ug = 1y | ug = j, NCy, CUT,, 0(1) = 1,0(3) = 2,0(4) = 4]

Jj=rs3

% Prlus = j | NCy, CUT1,0(1) = 1,0(3) = 2, 0(4) = 4]))
X E[C ‘ U3 =To | NCQ,CUTl,O'(l) = 1,0’(3) = 2,0’(4) = 4])

+PINCs | 0(1) = 1,0(3) = 2,0(4) = 4]

p2(J | 9)ps(ra | 4 j)
< Z Z r[NCm ) =1,0(3) =2,0(4) = 4]

1= r1+1] r3+1

p2(7"3 | )p3(7“2 | i,T3)y3
* Z wrsPr[NCm o) =1,0(3) = 2,0(4) = 4]

i=ri1+1

' pa(r)p2(j | r1)ps(ra [ r1,5) (1 — d)
+jz+1 wr PIINCy, | 0(1) = 1,0(3) = 2,0(4) = 4]

38



+

pl(T1)p2(T3 \ Tl)ps(TQ | 7“1,7°3)(?J1 - d)y3 )i
Wy, W Pr{NCho | 0(1) = 1,0(3) = 2,0(4) = 4]/ w,,

_ 101(7“1)d(1 +Pr[NC, | CUTy,0(1) =1,0(3) = 2,0(4) = 4]

T1

t

p2(J | r1)ps(ra | 71, 5)
X Zl Pr[NCy | CUTy,0(1) =1,0(3) =2,0(4) = 4]

Jj=rs+

p2(rs | T1)ps(re [ 71,73)Ys ) d
w, Pr[NCy | CUTy,0(1) =1,0(3) = 2,0(4) = 4]/ 2w,,

F LY nml st |0.9)

w
T2 =141 j=r3+1

n i p1(8)p2(rs | )ps(ra | 4,73)y3

+

i=r1+1 Wry
t ) )
r r ro | 71, —d

n Z pi(r)p2(J | r1)ps(ra | 71, 5) (0 )

. le

j=r3+1
i p1(7“1)p2(7“3 | Tl)p3(7'2 | T1, 7"3)(311 - d)y3>

Wry Wy,

t t

~olndd @SS it | sl | )

w Wy,
’"1 T2 Ci=ri41 j=ra+1

+ zt: p1(0)pa(rs | )ps(r2 | 4, 73)ys

i=r1+1 Wrs
n i p1(7“1)p2(j | 7’1)173(7“2 | rlaj)(yl - %d)
. Wry
j=r3+1
n p1(r1)pa(rs | r1)p3(re | r1,73) (v — %d)yi’))
Wy, Wy

Case 3D: 0(1)=2,0(3)=1,0(4) =4
This case is symmetric to the case o(1) =1, 0(3) =2, 0(4) = 4.
Case 3E: 0(2)=1,0(3)=2,0(4) =4

Again, we compute the expected number of times the segment is cut by terminals

1 and 2, taking into consideration the possibility of terminal 3 capturing the segment.

E[C|0(2)=1,0(3) =2,0(4) = 4]
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= P1{CUTy, NC, | 0(2) = 1,0(3) = 2,0(4) = 4]
x E[C'| CUTy, NCy,0(2) = 1,0(3) = 2,0(4) = 4]
+PI[NCiy | 0(2) = 1,0(3) = 2,0(4) = 4]

x E[C'| NCis,0(2) = 1,0(3) = 2,0(4) = 4]

= P1{CUT,, NC, | 0(2) = 1,0(3) = 2,0(4) = 4]

x (1+ (Z(Pr[ug =1y | uy = i, CUTy, NC1,0(2) = 1,0(3) = 2,0(4) = 4]

i=r3

x Prfuy = i | CUTy, NCy,0(2) = 1,0(3) = 2,0(4) = 4]))
X E[C | ug = TQ,CUTQ,NC1,0’(2) = 1,0’(3) = 2,0’(4) = 4])

+ Pr[NCis | 0(2) =1,0(3) = 2,0(4) = 4]

X (Z Z(Pr[ug =ry|u =i,up =75 NC,0(2) =1,0(3) =2,0(4) =4]

1=T3 j=T1

X Prluy = i,us = j | NCis,0(2) = 1,0(3) =2,0(4) = 4]))
X E[C | ug = TQ,N012,0(2) = 1,0’(3) = 2,0’(4) = 4]
=Pr[CUT;, NCy | 0(2) =1,0(3) = 2,0(4) = 4]

p1(1)pa(r1 | )p3(7”2 | i,71)d
X (1+ <i:7"3 ’IUTIPI"[CUTQ NC; | ( ) ( )_ 2 0’(4) :4]
p1(r3)p2(r1 | 73)p3(ra \ T3,71)Y3d ) d )
@) =1,003) =2,0(4) = 4]/ 2wy,

Wy, Wy Pr[CUT,, NCY | 03
+Pr[NCis | 0(2) =1,0(3) = 2,0(4) = 4]
’ ' p1()pa (g | 9)p3(ra | 4, j)
X (Z _Z Pr[NCrs [ 0(2) = 1,0(3) = 2,0(d) = 4]
p1(@)pa(r1 | 9)ps(ra | 4,71)(y1 — d)
+ Z W PINCy; [ 0(2) = 1,0(3) = 2,0(4) = 4]

N : pi(r3)pa(J | 7“3) a(r2 | 73,5)Y3
Pt wr Pr[NCio | 0(2) = 1,0(3) =2,0(4) = 4]
p1(7’3)p2(7"1 \ 7’3) (7“ \ 1)(1/1 - d)y3 ) d
wr, W, PT[NChy | 0(2) =1 a( )y =2,0(4) = 4]/ w,,

=Pr[NC; | 0(2) =1,0(3) =2,0(4) = 4]



X Pr[CUT, | NCy,0(2) =1,0(3) =2,0(4) = 4]

LSS il sl 4.3)

w
"2 Ci=rg+1j=r1+1

N i p(8)pa(ry | i)ps(rs | i,71) (g1 — 3d)

i=r3+1 le
t ) :
4 Z Pl(rs)m(J | 7’3)103(7“2 | 7“3,])93
. ng,
j=ri+1

N p1(r3)pa(ry | T3)P;(Tju| 73,71) (Y1 — %d)y?,)
= Pr[NC, | 0(2) = 1,0(3) = 2,0(4) = 4]
X (Xt:(Pr[CUT2 luy =4, NCy,0(2) = 1,0(3) = 2,0(4) = 4]

i=r3

x Prluy =i | NCy,0(2) = 1,0(3) = 2,0(4) = 4]))

L@ (> 3 m@pali | pslra |3,9)

w
"2 Ci=rg41j=r1+1

n Zt: p1(D)p2(r1 | D)ps(ra | 4,71) (Y1 — 5d)

Wy,

i=r3+1

t . .
T T T s,
n Z Pl( 3)P2(J | 3)193( 2 | 3 J)ys

. Wrg
Jj=r1+1
. p1(7°3)p2(7“1 | 7“3)])3(7”2 | 7“3#"1)(?11 - %d)y3>
Wry Wry

=Pr[NC; | 0(2) =1,0(3) = 2,0(4) = 4]

t

(
% (2;1 wy, Pr[NC} | 0(2) = 1,0(3) = 2,0(4) = 4]

1=r3

i d ( Z Z p1(9)pa2(7 | ©)p3(ra | i, 4)

w
"2 Ci=ra4+1j=ri+1

n zt: pr(0)pa(ry | 9)ps(ra | 4,71) (y1 — 3d)

Wy,
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T T To | T3,
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N it W,
3
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w
T2 =ra41 j=r1+1

+ Zt: p1(9)p2(r1 | D)ps(ra | 3,71) (Y1 — 2d)

Wy,
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t . .
T T To | T3,
+ Z p1( 3)P2(] | 3)]73( 2 | 3 J)y3

w
j=ri+1 3

N p1(rs)p2(r1 | r3)ps(re | 3, 71) (Y1 — %d)y:a)
Wry Wry

Case 3F: 0(2) =2,0(3)=1,0(4) =4
This case is symmetric to the case 0(2) =1, 0(3) = 2, 0(4) = 4.
Conditioning on permutation of vertices

Given the expected number of times the segment is cut for each of these permuta-
tions, we now compute an upper bound on the expected number of times the segment
is cut when o(4) = 4 by applying the total probability theorem, using the fact that

each permutation is equally likely to be chosen.

ElC[o(4) = 4]
= %(E[C’ | 0(1) = 1,0(2) = 2,0(4) = 4] + E[C | 0(1) = 2,0(2) = 1,0(4) = 4]
+E[C |o(1) =1,0(3) =2,0(4) = 4] + E[C | 0(1) = 2,0(3) = 1,0(4) = 4]
+E[C|0(2) =1,0(3) =2,0(4) = 4] + E[C | 0(2) = 2,0(3) = 1,0(4) = 4])

Case 4: 0(4) =3

This case is symmetric to the case in which the last vertex in the permutation is
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vertex 4. The probability that each case occurs is 1/4.
Conditioning on last vertex in permutation

We apply the total probability theorem again to compute an upper bound on the
expected number of times the segment is cut over all permutations of the vertices.
This allows us to obtain an upper bound on the density 6(ry, 79, 73,74) of the cutting

scheme on any 1, 2-aligned segment in the cell.

E[C] = %(E[C | 0(4) = 1] + E[C | 0(4) = 2] + E[C | o(4) = 3] + E[C' | o(4) = 4])

E|C
(5(T1,T2,T3,T4) == L

d

The maximum density of the cutting scheme is at most the largest of the upper

bounds on the density of the cutting scheme for all the cells in the simplex.

5.2 Improved Approximation Ratio

We present a cutting scheme P, that achieves a smaller approximation ratio than
the 1.189 of the Karger et al. cutting scheme for arbitrary k. This cutting scheme
is a member of the class of cutting schemes described above, with the following

parameters.

For the cutting scheme, there are ¢ = 3 slabs. The boundaries of the slabs are
by = 0, by = 2/5, and b3 = 3/5, so that the lengths of the slabs are w; = 2/5,
wy = 1/5, and w3 = 2/5. The conditional distributions of the slabs in which the

various slices fall are as follows.
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1343
20007

21
100°?

p1(U1):<0, up =2 p2(“2‘“1:1):<%, Uy = 2

657 _
s0000 U1 =3 0, Uy = 3
\ \
4 {
0, up=1 0, us=1

p2(u2 | U1 =3) =140, wuy=2 p3(us |ur=1lupg=1) =<1, y3=2

1, Us = 3 0, U3:3

p3(uz | ur =lup =2)=q 13 uz = 2 pg(u3\u1:3,u2:3)=<0’ ug = 2

0, U3:3 1, U3:3

\ \

We show the following upper bound on the maximum density of this cutting
scheme. This result represents an improvement of approximately 0.013 over the
Karger et al. bound of 1.189 in the approximation ratio achieved by the rounding

scheme in the Calinescu et al. algorithm.
Theorem 5.1. The maximum density of P; is at most 1.1762.

Note that because, for a 1, 2-aligned segment, coordinates 1 and 2 are symmetric
and coordinates 3 and 4 are symmetric, we need not consider all the cells of the
simplex. For the different cells of the simplex, when we compute the upper bounds
on the density of the cutting scheme on any segment within the various cells, we

obtain the following values.

1343 5335759 5335759

60(1,1,1,1) < —d) 4+ 2

— 1600 192000000 (Y3 + va)
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1343 6745889 6745889
§(1,1,1,2) <

< 7600 t 38400000 T ¥2) * To300000%
3925589( ty—d) ., 3925580
7680000 7 T Y2 T DYL T 3e40000 7Y

1343~ 6745889 6745889
1,1,1,3) < + + 1y —d) + -

— 1600 38400000
(y1 + Y2 — d)(ys + ya)

1343 0401 3925589
Yoo 7680000

0(1,1,2,2) <
(1,1,2, )_1600+128000

1343 2228037 d. 33482333
§(1,2,1,1) <

< 3200 " 3200000 ~ 2) * 38200000 %2 T ¥

9401 d 3925589 d

+ ome00 (W1 — ) s+ a) +ysya) + 2o (e — ) (ys + ya)

1343 11988961 d 13399111 9401 d

§5(1.2.1.2) < _ ¢ _ e
(1,2,1,2) < 506 * 79200000 ¥ ~ 20 19200000 T 25600 ¥ ~ 2%

1379261 d 3925589 d 2228037

3840000 " ~ 2% T 7680000 2 ™ 2)%3 * 2560000 V5Y
11988961( . )+_1379261( 1 Dy )+ 9401
79600000 Y3 T Ya Y1 T Y2 Yz T Y4 o~ Y3lYs

3840000 12800
1657 6745889
1.3.1.1) <

0(1,3,1,1) < 7605+ 38300000 ¥ T V)

§(2,2,1,1) <

Since y; = b, +w,, — si, Z;l:l Y; = Z;l:l (by, +wyp, — 8;) = Z?ﬂ(bm +w,,)—(1=d).
For any particular cell, the quantity Y+, v —d = Y5, (b, + w,,) — 1 is a constant.
The value of y; may be thought of as the distance, in coordinate i, between the
segment, and the upper boundary of the cell. If we sum these distances over all 4
coordinates, and then subtract the length of the segment, we obtain some fixed value.
Because b, < s; < b,, + w,,, the distances must be in the range 0 < y; < w,,. In
order for the segment to lie within the cell, it must be the case that s; +d < b, +w,,
and sy +d < by, + w,,. As y; = b, + w,, — s;, these inequalities imply that d < y;
and d < y,.

To obtain an upper bound on the density of the cutting scheme on any seg-
ment in each cell, we solve a constrained optimization problem. For a particular cell
(r1,79,73,74), We maximize §(ry, 9,73, 74) Over the variables y; and d, subject to the
constraints Z?Zl Y —d= Z?Zl(bn +w,)—1,0<y; <w,,and 0 < d < y;,ys. We
may perform the optimization using Lagrange multipliers. Alternatively, because all
the density bounds are functions of terms that are only quadratic in the variables, we

may use quadratic programming techniques to maximize the bounds. The resulting
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upper bounds that we obtain for the different cells are as follows.

18765739

16000000
21451739

19200000
26890889

24000000
32195739

32000000
56447633

48000000
106149377

96000000
28177483

24000000
56455889

48000000

5(1,1,1,1) <
§(1,1,1,2) <
5(1,1,1,3) <
5(1,1,2,2) <
§(1,2,1,1) <
5(1,2,1,2) <
§(2,2,1,1) <

5(1,3,1,1) <

Of these upper bounds, the largest is 56455889/48000000. This shows that the max-
imum density of the cutting scheme is at most 56455889,/48000000 < 1.1762. There-
fore, when this cutting scheme is used as the rounding scheme in the Céalinescu et al.

algorithm, the approximation ratio will be at most 1.1762.
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Chapter 6

Conclusion

In this project, we have studied rounding algorithms for the case of k = 4 terminals
of the geometric relaxation given by Calinescu, Karloff, and Rabani for the multiway
cut problem. We have defined several types of cuts of the 4-simplex, which we refer
to as pair-isolating cuts, that were not previously studied by Calinescu et al. or
by Karger, Klein, Stein, Thorup, and Young. Our interest in pair-isolating cuts is
based on the assumption that the symmetry that they exhibit with respect to pairs
of vertices makes them candidates for inclusion in cutting schemes that achieve small
approximation ratios when used in the Calinescu et al. approximation algorithm for
the multiway cut problem.

We have analyzed several natural cutting schemes in which a pair-isolating cut
is chosen uniformly at random from a set of possible cuts. Our analysis suggests
that pair-isolating cuts are not as effective as side-parallel cuts when used in the
rounding scheme for the Calinescu et al. algorithm. This conclusion gains additional
support from the results of our computational experiments, in which we have found
cutting schemes involving sparcs and pair-isolating cuts by formulating the problem
of producing an optimal cutting scheme as a discrete linear program. Based on our
experiments, we may postulate that when only one of the different types of cuts is
used in a cutting scheme, sparcs will yield a smaller approximation ratio than pair-
isolating cuts.

When included in a cutting scheme in combination with sparcs, however, pair-
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isolating cuts appear to be useful. For each of the discrete primal linear programs
involving sparcs and pair-isolating cuts that we solved, the optimal solution assigned
positive probability to some pair-isolating cuts. For a fixed grid size N, the approx-
imation ratio of an optimal solution to a primal program including both sparcs and
pair-isolating cuts was smaller than the corresponding ratio for a program includ-
ing only sparcs. While the discrete nature of the linear programs could distort the
optimal solutions, these results provide evidence that, unlike in the case of £ = 3,
an optimal cutting scheme for £ = 4 may not be specified purely as a probability
distribution over sparcs.

Finally, we have given a sparc cutting scheme for £ = 4 for which we may guar-
antee that it achieves a certain approximation ratio through an analytic proof. In
this cutting scheme, there is a dependence among the probability distributions of the
different slices that comprise the cut. The approximation ratio of this cutting scheme
improves upon the smallest previously-known approximation ratio proven analyti-

cally.

6.1 Future Work

There are several natural directions in which to pursue the further study of the
Calinescu et al. geometric relaxation for multiway cut. First, the question of the
integrality gap for £ = 4 remains open. Limited computational resources prevented
us from solving the discrete linear programs involving pair-isolating cuts for most grid
sizes larger than 30, and we did not observe a convergence in the objective values of
the optimal solutions, as Karger et al. did for sparcs in the case of £k = 3.

Despite a number of attempts, we were unable to find a cutting scheme using
only pair-isolating cuts for which we could prove a maximum density less than 5/4.
For sparcs, the work of Calinescu et al. and Karger et al. shows that there are
relatively simple cutting schemes with maximum densities less than or equal to 5/4.
It is possible that by proving that some pair-isolating cutting scheme has a small

maximum density, one could gain some insight into the behavior of pair-isolating cuts
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that would allow for the development of better cutting schemes.

The results of our computational experiments suggest that sparcs alone are not
sufficient for the construction of an optimal cutting scheme for k¥ = 4. As such,
introducing other k-way cuts as alternatives to sparcs for £ > 4 is also a promising
direction that one could pursue. When a side-parallel hyperplane is used to partition
the simplex, the subset in which a particular point falls is determined by the value
of a single coordinate of the point. In this work, we have defined hyperplanes for
which a combination of two of the coordinate values of a point determine where the
point lies in relation to the hyperplane. For pair-isolating slices, the relevant quantity
is the sum of two coordinate values of a point, while for edge-perpendicular slices,
the quantity of importance is the difference between two coordinate values. In the
case of k = 4, three coordinate values of a point in the simplex determine the fourth
coordinate value, and so it is unlikely that it would be useful to use hyperplanes
for which more than two coordinate values would determine where a point lies in
relation to the hyperplane. When k£ > 4, however, such hyperplanes could be helpful

in furthering our understanding of the geometric relaxation.
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