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We developed the Genomic Regions Enrichment of Annotations 
Tool (GREAT) to analyze the functional significance of cis-
regulatory regions identified by localized measurements of DNA 
binding events across an entire genome. Whereas previous 
methods took into account only binding proximal to genes, 
GREAT is able to properly incorporate distal binding sites 
and control for false positives using a binomial test over the 
input genomic regions. GREAT incorporates annotations from 
20 ontologies and is available as a web application. Applying 
GREAT to data sets from chromatin immunoprecipitation 
coupled with massively parallel sequencing (ChIP-seq) of 
multiple transcription-associated factors, including SRF, 
NRSF, GABP, Stat3 and p300 in different developmental 
contexts, we recover many functions of these factors that are 
missed by existing gene-based tools, and we generate testable 
hypotheses. The utility of GREAT is not limited to ChIP-seq, 
as it could also be applied to open chromatin, localized 
epigenomic markers and similar functional data sets, as well  
as comparative genomics sets.

The coupling of chromatin immunoprecipitation with massively par-
allel sequencing, ChIP-seq, is ushering in a new era of genome-wide 
functional analysis1–3. Thus far, computational efforts have focused 
on pinpointing the genomic locations of binding events from the 
deluge of reads produced by deep sequencing4–8. Functional inter-
pretation is then performed using gene-based tools developed in the 
wake of the preceding microarray revolution9–11. In a typical analysis, 
one compares the total fraction of genes annotated for a given ontol-
ogy term with the fraction of annotated genes picked by proximal 
binding events to obtain a gene-based P value for enrichment (Fig. 1 
and Online Methods).

This procedure has a fundamental drawback: associating only pro-
ximal binding events (for example, under 2–5 kb from the transcrip-
tion start site) typically discards over half of the observed binding 
events (Fig. 2a). However, the standard approach to capturing distal 
events—associating each binding site with the one or two nearest 

genes—introduces a strong bias toward genes that are flanked by large 
intergenic regions12,13. For example, though the Gene Ontology14 
(GO) term ‘multicellular organismal development’ is associated with 
14% of human genes, the ‘nearest genes’ approach associates over 
33% of the genome with these genes. This biological bias results in 
numerous false positive enrichments, particularly for the input set 
sizes typical of a ChIP-seq experiment (Fig. 2b and Supplementary 
Fig. 1). Building on our experience in addressing these pitfalls12,15,16, 
we have developed a tool that robustly integrates distal binding events 
while eliminating the bias that leads to false positive enrichments.

RESULTS
Here we describe GREAT, which analyzes the functional significance of 
sets of cis-regulatory regions by explicitly modeling the vertebrate genome 
regulatory landscape and using many rich information sources.

A binomial test for long-range gene regulatory domains
GREAT associates genomic regions with genes by defining a ‘regu-
latory domain’ for each gene in the genome. Each genomic region 
is associated with all genes in whose regulatory domains it lies  
(Fig. 1b). High-throughput chromosomal conformation capture 
(3C) approaches such as 5C (ref. 17), Hi-C (ref. 18) or enhanced 
ChIP-4C (ref. 19) are providing first glimpses of actual gene regula-
tory domains. Because we still lack precise empirical maps, however, 
GREAT assigns each gene a regulatory domain consisting of a basal 
domain that extends 5 kb upstream and 1 kb downstream from its 
transcription start site (denoted below as 5+1 kb), and an extension 
up to the basal regulatory domain of the nearest upstream and down-
stream genes within 1 Mb (GREAT allows the user to modify the rule 
and distances). GREAT further refines the regulatory domains of a 
handful of genes, including several global control regions20, by using 
their experimentally determined regulatory domains. Our tool can 
also incorporate additional locus-based and genome-wide data as they 
become available (Supplementary Fig. 2 and Online Methods).

Given a set of input genomic regions and an ontology of gene 
annotations, GREAT computes ontology term enrichments using a 
binomial test that explicitly accounts for variability in gene regulatory 
domain size by measuring the total fraction of the genome annotated 
for any given ontology term and counting how many input genomic 
regions fall into those areas (Fig. 1b and Online Methods). In the 
example above, GREAT expects 33% of all input elements to be asso-
ciated with ‘multicellular organismal development’ by chance, rather 
than the 14% of input elements that a gene-based test assumes. The 
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binomial test integrates distal binding events 
in a way that remains robust regardless of 
erroneous assignments of genomic regions 
to genes. Namely, the longer the regulatory 
domain of any gene—and, by extension, of 
any ontology term—the greater the expected 
number of regions associated with this term 
by chance. Indeed, the binomial statistic 
markedly reduces the number of false posi-
tive enriched terms even when very large 
regulatory domains are used (Fig. 2b and 
Supplementary Fig. 1). The binomial test 
treats each input genomic region as a point-
binding event, making it most suitable for test-
ing targets with localized binding peaks. The 
binomial test also highlights cases in which 
a single gene attracts an unlikely number of 
input genomic regions. To separate these bio-
logically interesting gene-specific events from 
term-derived enrichments that are distributed 
across multiple genes, we perform both the 
binomial test and the traditional hypergeo-
metric gene-based test. In doing so, we high-
light ontology terms enriched by both tests 
(term-derived enrichment) separately from 
those enriched by only the binomial test 
(gene-specific enrichment) or the hypergeo-
metric test (regulatory domain bias) (Fig. 2c 
and Supplementary Fig. 3).

GREAT supports direct enrichment analysis  
of both the human and mouse genomes. It 
integrates 20 separate ontologies containing 
biological knowledge about gene functions, 
phenotype and disease associations, regulatory 
and metabolic pathways, gene expression data, 
presence of regulatory motifs to capture cofactor dependencies, and 
gene families (Supplementary Tables 1–3 and Online Methods). Core 
computations are performed by the GREAT server while subsequent 
browsing is executed on the user’s machine. An overview of the tool’s 
functionality and options when analyzing data is given in Table 1, and 
its current web interface is shown in Supplementary Figure 4.

Comparison of enrichment tests and regulatory domain ranges
To demonstrate the utility of our approach, we compared GREAT 
results to previously published gene-based analyses as well as to 
enrichments from the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID)21. Most gene-based tools assess enrich-
ments in a very similar manner; we chose DAVID as a representative 
gene-based tool owing to its popularity and its ability to test a breadth 
of data sources similar to that of GREAT (Supplementary Table 4).

We analyzed eight ChIP-seq data sets from a range of human and 
mouse cells and tissues (Supplementary Table 5), each with a different 
distribution of proximal and distal binding events (Fig. 2a). We tested 
each data set in six different ways: (i) by reproducing the original study’s 
list of enrichments, or if the original study did not report enrichments, 
by using DAVID on the set of genes with binding events within 2 kb of 
the transcription start site; (ii) by using GREAT with the default regu-
latory domain definition (basal promoter 5+1 kb and extension up to 
1 Mb); (iii) by using GREAT’s hypergeometric test on the set of genes 
with binding events within 2 kb of the transcription start site, to control 
for the different gene mappings and ontologies in DAVID and GREAT; 

(iv) by using GREAT with a 5+1 kb basal promoter and a more limited 
50 kb extension; and (v, vi) by using GREAT with either one (v) or two 
(vi) nearest genes up to 1 Mb (Tables 2 and 3, and Supplementary 
Tables 6–44, indexed in Supplementary Table 45).

GREAT invariably revealed strong enrichments for experimentally 
validated functions of the specific factors, as well as for testable—and, 
to our knowledge, novel—functions. It also implicated subsets of regu-
latory regions in driving the assayed developmental processes and in 
activating key signaling pathways. In a majority of data sets, distal 
binding events were essential to recover known functions, strongly sug-
gesting that many of the distal associations are biologically meaningful 
(see below). Furthermore, in most sets, restricting regulatory domain 
extension to 50 kb retains many enriched terms but omits roughly half 
of both the binding events and the genes implicated using the full 1-Mb 
extension. Although including distal associations is crucial, the exact 
distal association rule is not—the default rule, the nearest-gene rule, 
and the two-nearest-genes rule (tests ii, v and vi, respectively) behaved 
very similarly. Additionally, inclusion of the small set of experimentally 
determined gene regulatory domains we curated from the literature 
made very little difference in the rankings of any of the sets (data not 
shown). We present the analysis of four ChIP-seq data sets below and 
discuss the remainder in the Supplementary Note.

Serum response factor binding in human Jurkat cells
First, we analyzed a set of genomic regions bound by the serum 
response factor (SRF) in the human Jurkat cell line, identified via 

a bHypergeometric test over genes Binomial test over genomic regions
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Figure 1 Enrichment analysis of a set of cis-regulatory regions. (a) The current prevailing 
methodology associates only proximal binding events with genes and performs a gene-list test of 
functional enrichments using tools originally designed for microarray analysis. (b) GREAT’s binomial 
approach over genomic regions uses the total fraction of the genome associated with a given ontology 
term (green bar) as the expected fraction of input regions associated with the term by chance.



©
20

10
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology   advance online publication �

a n a ly s i s

ChIP-seq and mapped to the genome using the quantitative enrich-
ment of sequence tags (QuEST) ChIP-seq peak-calling tool8. This data 
set’s authors applied existing gene-based enrichment tools, which did 
not discern specific functions of SRF from the set of regions it binds8, 
and concluded that SRF is a regulator of basic cellular processes 
with no specific physiological roles (results reproduced in Table 2).  
Although SRF is indeed a regulator of basic cellular functions, numerous  
studies have implicated SRF in more specific biological contexts. SRF 
is a key regulator of the Fos oncogene22 and has also been described 
as a “master regulator of actin cytoskeleton”23. Neither FOS nor actin 
appeared in the top ten hypotheses generated by the previous study 
(Table 2). The same was true when we used GREAT with only pro-
ximal (2 kb) associations (Supplementary Table 6).

However, GREAT analysis of the most significant SRF ChIP-seq 
peaks8 (QuEST score > 1; n = 556) using the default settings (5+1 kb 
basal, up to 1 Mb extension) prominently highlights the key obser-
vation that gene-based analyses were unable to reveal: SRF regulates 
genes associated with the actin cytoskeleton23 (Table 3). As postulated 
above, using both binomial and hypergeometric enrichment tests does 
highlight informative GO terms more effectively than using either 
test alone (Fig. 2c and Supplementary Table 46). Moreover, when 
extension of regulatory domains is limited to 50 kb, one-third of the 
supporting regions and associated genes are lost, and actin-related 
terms drop in rank (Supplementary Table 7).

Coupling distal (up to 1 Mb) associations with the many additional 
ontologies available within GREAT provides a wealth of enrichments 
for specific known functions of SRF. An enrichment analysis of TreeFam 
gene families24 shows that SRF binds in proximity to five of six mem-
bers of the FOS family. Two genes within the Fos family, Fos and Fosb, 
are previously known targets of SRF (ref. 22). The Transcription Factor 
Targets ontology25 has compiled data from ChIP experiments that link 
transcription factor regulators to downstream target genes. GREAT 

shows that many genes proximal to SRF binding events (in Jurkat cells) 
are also proximal to YY1 binding events (in HeLa cells), consistent 
with experiments showing that SRF acts in conjunction with YY1 to 
regulate Fos (ref. 26). The top six hits in the Predicted Promoter Motifs 
ontology27 are all variants of the SRF motif generated from different 
experiments and thus serve as strong positive controls of our method. 
Using the Pathway Commons ontology28, GREAT predicts that SRF 
regulates components of the TRAIL signaling pathway and the class I 
PI3K signaling pathway. Previous experimental work has demonstrated 
that there is an association between SRF and TRAIL signaling29 and 
that SRF is needed for PI3K-dependent cell proliferation30.

In addition to rediscovering and expanding specific known func-
tions of SRF, GREAT produces testable hypotheses even for this well-
studied transcription factor. The Transcription Factor Targets ontology 
indicates that SRF binds near genes regulated by E2F4 (in T98G, U2OS 
and WI-38 cells; Table 3). SRF and E2F4 have not been shown to co-
regulate target genes; however, both SRF and E2F4 are known to inter-
act with Smad3 (refs. 31,32), and they may thus be co-regulators of a 
common set of genes. The Predicted Promoter Motifs ontology reveals 
additional potential cofactors and co-regulators. It is particularly  
useful given that many more genes have characterized binding motifs 
than have genome-wide ChIP data available. In this case, it shows enrich-
ment for SRF binding near genes containing GABP motifs in their pro-
moters. Notably, an independent experiment measuring GABP-bound 
regions of the genome in Jurkat cells has found that 29% of SRF peaks 
occur within 100 bp of a GABP peak, suggesting that SRF and GABP 
may indeed work together8. We were able to generate this same hypo-
thesis using GREAT, without observing the GABP ChIP-seq data.

P300 binding in the developing mouse limbs
Second, we analyzed a recent ChIP-seq data set comprising 2,105 
regions of the mouse genome bound by the general enhancer-associated  
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Figure 2 Binding profiles and their effects on statistical tests. (a) ChIP-seq data sets of several regulatory proteins show that the majority of binding 
events lie well outside the proximal promoter, both for sequence-specific transcription factors (SRF and NRSF, ref. 8; Stat3, ref. 43) and a general 
enhancer-associated protein (p300, refs. 33,43). Cell type is given in parentheses: H, human; M, mouse. (b) When not restricted to proximal promoters, 
the gene-based hypergeometric test (red) generates false positive enriched terms, especially at the size range of 1,000–50,000 input regions typical 
of a ChIP-seq set. Negligible false positive enrichment was observed for the region-based binomial test (blue). For each set size, we generated 1,000 
random input sets in which each base pair in the human genome was equally likely to be included in each set, avoiding assembly gaps. We calculated 
all GO term enrichments for both hypergeometric and binomial tests using GREAT’s 5+1 kb basal promoter and up to 1 Mb extension association rule 
(see Results). Plotted is the average number of terms artificially significant at a threshold of 0.05 after application of the conservative Bonferroni 
correction. (c) GO enrichment P values using the genomic region-based binomial (x axis) and gene-based hypergeometric (y axis) tests on the SRF data8 
with GREAT’s 5+1 kb basal promoter and up to 1 Mb extension association rule (see Results). b1 through b10 denote the top ten most enriched terms 
when we used the binomial test. h1 through h10 denote the top ten most enriched terms when we used the hypergeometric test. Terms significant by 
both tests (B ∩ H) provide specific and accurate annotations supported by multiple genes and binding events (Table 3). Terms significant by only the 
hypergeometric test (H\B) are general and often associated with genes of large regulatory domains, whereas terms significant by only the binomial test 
(B\H) cluster four to six genomic regions near only one or two genes annotated with the term (Supplementary Table 46).
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protein p300 in embryonic limb tissue33. Of 25 such regions tested in 
transgenic mouse assays, 20 showed reproducible enhancer activity 
in the developing limbs33. Our analysis shows that GREAT identifies 
functions of enhancers active during embryonic development that 
gene-based tools do not detect. DAVID analysis of the genes with pro-
ximal p300 limb binding events produces only enrichments associated 
with transcription and involvement in organ morphogenesis, with  
the closest enrichments being the much broader terms ‘organ develop-
ment’ and ‘anatomical structure morphogenesis’ (Supplementary 
Table 10a). In contrast, GREAT analysis of the 2,105 p300 limb peaks 
using the default settings (5+1 kb basal, up to 1 Mb extension) pro-
duces overwhelming support for their putative functional role in limb 
development (Supplementary Table 10b).

GO enrichments highlight the regulation of transcription factors 
involved specifically in embryonic limb morphogenesis. The Mouse 
Phenotype ontology34 points to the developing limbs and skull, hint-
ing at the remarkable overlap of signaling processes involved in head 
and limb development35. The p300 limb peaks are enriched near genes 
in the TGF-β signaling pathway, which is known to be involved in limb 
development36, and the InterPro ontology highlights genes in the 
Smad family containing the Dwarfin-type MAD homology-1 protein 
domain (Supplementary Table 10b), which is known to mediate and 
regulate TGF-β signaling37.

Perhaps the strongest validation for the GREAT methodology 
comes from the MGI Expression: Detected ontology38. Notably, the 
enrichments highlighted most prominently by GREAT pinpoint the 
exact tissue and time point at which the experiment in ref. 33 was 
performed, providing unique large-scale evidence for the relevance 
of p300-bound regions to limb gene regulation. The top two ontology 
terms suggest limb-specific expression during Theiler stage 19 (TS19), 
which corresponds precisely with embryonic day 11.5, the time point 
at which the p300 limb peaks were assayed in ref. 33 (Supplementary 
Table 10b). In contrast, GREAT run with proximal (2 kb) associa-
tions retrieves only weak enrichments for limb-associated genes and 
limb TS19, implicating 7-fold fewer genes and 16-fold fewer p300 
limb peaks as being involved in TS19 limb expression than GREAT 
run with the default association rule (Supplementary Table 11). 
Moreover, GREAT run with proximal associations completely misses 
genes with crucial roles in limb development such as Gli3, Grem1 and  
Wnt7a (ref. 39).

When GREAT’s regulatory domains are extended up to 50 kb, it 
correctly recovers limb terms, but still implicates only half the genes 
found with the default association rule and yields P values many 
orders of magnitude weaker (Fig. 3 and Supplementary Table 12). By 
extending regulatory domains, we increase both the number of limb-
related genes containing one or more p300 limb peaks within their 
regulatory domains and the number of p300 limb peaks associated 
with limb-related genes (Fig. 3). When regulatory domains are further 
extended from 50 kb to 1 Mb, they include even more p300 limb peaks 
than expected by chance (Fig. 3c), providing strong evidence that 
many of these distal associations are biologically meaningful.

P300 binding in the developing mouse forebrain and midbrain
Finally, we analyzed two ChIP-seq data sets comprising regions bound 
by p300 in mouse embryonic forebrain and midbrain tissue33. Using 
the 2,453 forebrain peaks, DAVID correctly highlights forebrain and 
general brain development (0.004 < P < 0.05), but with terms implicat-
ing fewer than ten genes (Supplementary Table 15a). GREAT run with 
proximal regulatory regions (2 kb) ranks forebrain development higher 
and is able to implicate additional genes and regions using its unique 
phenotype and expression ontologies (Supplementary Table 16).  
Using up to 50 kb extension adds additional related terms and raises 
the number of genes associated with each term (Supplementary  
Table 17). This trend continues when the extension is increased to up 

Table 1 GREAT parameters, filters and options, and their effects
Parameter Effect

Region-gene association rule Determines how gene regulatory domains are calculated. When we allowed for distal associations, the sets we examined 
remained robust regardless of the exact choice of association rule. Our default rule (basal and extension; see Results) 
models a current hypothesis of gene regulatory domains.

Region-gene association rule parameters Determine the length of each inferred gene regulatory domain. As we show, when the right statistical model is used, 
including distal associations of up to 1 Mb can strongly increase biological signals.

Statistical significance visual filter Highlights statistically significant results in bold font. Multiple test correction options and thresholds for significance  
can be modified.

Binomial fold enrichment filter Complements P value by requiring that statistically significant terms have strong biological effects. Often filters general 
ontology terms that apply to thousands of genes.

Observed gene hits filter Shows only enriched terms for which input regions select at least this many genes. Helps avoid enrichments owing to 
numerous regions selecting a small number of genes.

Minimum annotation count threshold Increases statistical power by reducing the number of tests performed, by testing only ontology terms associated a priori 
with at least this many genes.

Display type Summary display shows only terms statistically significant by both binomial and hypergeometric tests. Full display ignores 
the statistical significance filter and shows terms that meet all other criteria.

Export Export tables individually or in batches into a file of tab-separated values or publication-ready HTML.
UCSC custom tracks Clicking a specific region from within a term details page opens the University of California Santa Cruz Genome Browser44 

focused on that region, with two custom tracks automatically loaded—one for the total set of input regions and another 
for the subset of regions associated with the chosen term.

Table 2 Gene-based ontology enrichments regions bound by SRF 
in human Jurkat cells
Term P value

Nucleus 5.18 × 10−70

Protein binding 2.16 × 10−50

Cytoplasm 6.67 × 10−27

Transcription 4.13 × 10−26

Nucleotide binding 1.04 × 10−23

Metal ion binding 1.92 × 10−22

Zinc ion binding 5.76 × 10−20

RNA binding 3.38 × 10−18

Regulation of transcription, DNA-dependent 1.15 × 10−15

ATP binding 4.84 × 10−15

Listed are the top ten enriched GO terms found using a gene-based enrichment  
analysis of the 1,936 genes that possess an SRF binding peak within 2 kb (adapted 
from ref. 8). Though the large number of selected genes produces strong P values, the 
most significant terms are general and yield only a very broad view of SRF functions. 
The first actin-related term, ‘actin binding’, is ranked 28th (data not shown).
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to 1 Mb, and only this inclusion of distal binding allows detection of 
significant associations (P = 0.001) with Wnt signaling genes that have 
known roles in forebrain development40 (Supplementary Table 15b).

When run on the 561 midbrain p300 peaks, DAVID does not yield signi-
ficant results (P > 0.05; Supplementary Table 20a) and proximal (2 kb) 

GREAT performs only slightly better, offering three relevant terms asso-
ciated with very few genes from our unique ontologies (Supplementary 
Table 21). In contrast, GREAT with up to 1 Mb extension highlights 
twelve brain-specific enriched terms (Supplementary Table 20b). 
Many GREAT enriched terms are shared between the forebrain  

Table 3 GREAT ontology enrichments for regions bound by SRF in human Jurkat cells

Ontology Term Binomial P value
Binomial fold  
enrichment Hypergeometric P value Distal bindinga Experimental support

GO: cellular component Actin cytoskeleton 6.91 × 10−9 3.05 2.22 × 10−7 38.9% Ref. 23
Cortical cytoskeleton 4.03 × 10−6 5.90 5.41 × 10−4 54.5% Ref. 23

GO: molecular function Actin binding 5.21 × 10−5 2.03 2.74 × 10−5 51.4% Ref. 23
Transcription factor targets SRF targets (Jurkat,  

T/G HA-VSMC, Be(2)-C)
4.97 × 10−76 13.22 9.79 × 10−68 14.3% Positive control

YY1 targets (HeLa) 1.45 × 10−6 2.09 0.0084 20.4% Ref. 26b

E2F4 and p130  
(T98G, U2OS)

0.0047 2.01 0.0027 44.4% Novelc

E2F4 (WI-38) 0.0194 2.08 0.0031 36.4% Novelc

Predicted promoter motifs SRF variants 4.54 × 10−28 to  
4.19 × 10−12

3.69 to 15.46 1.71 × 10−25 to  
2.04 × 10−9

17.4% to  
28.6%

Positive controls

GABPA or GABPB 4.20 × 10−9 3.67 6.68 × 10−6 27.6% Novelc

Motif NGGGACTTTCCA 1.02 × 10−4 2.12 8.30 × 10−5 20.0% Novelc

EGR1 1.71 × 10−4 2.03 0.0013 46.9% Novelc

Pathway commons TRAIL signaling pathway 2.37 × 10−7 2.45 1.71 × 10−5 46.3% Ref. 29
Class I PI3K signaling events 9.92 × 10−7 2.56 4.45 × 10−5 44.1% Ref. 30

TreeFam FOS family 9.66 × 10−9 27.89 1.21 × 10−6 28.6% Ref. 22d

Enriched terms for a variety of ontologies obtained using GREAT analysis (5+1 kb basal, up to 1 Mb extension) of proximal and distal binding events. The enriched terms highlight 
experimentally validated functions and cofactors of SRF that lend immediate insight into its biological roles as well as propose testable hypotheses of SRF functions that are, to 
our knowledge, novel (see Results). Shown are all binomial enriched terms at a false discovery rate of 0.05 with a fold enrichment of at least two that are also significant at a false 
discovery rate of 0.05 by the hypergeometric test, using the highest-scoring SRF peaks anywhere in the genome (QuEST score > 1; n = 556).
aThe fraction of binding peaks contributing to the enrichment located >10 kb from the transcription start site of the nearest gene. bKnown interactions often also give rise to novel hypotheses; for 
example, SRF is known to co-regulate some genes with YY1, and GREAT identifies many additional genes potentially bound by both SRF and YY1. cHypothesis: SRF acts with E2F4, GABP, EGR1 
and a previously uncharacterized binding motif to co-regulate target genes (see Results for supporting evidence). dSRF is known to regulate Fos and Fosb (ref. 22); GREAT highlights three other 
members of the FOS family that may also be regulated by SRF.

a b c d
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Figure 3 Distal binding events contribute 
substantially to accurate functional enrichments 
of p300 limb peaks. We examined properties of 
the 2,105 p300 mouse embryonic limb peaks33 
in the context of three known limb-related 
terms and a negative control term (GO cortical 
cytoskeleton). Three different association rules 
were used (see Results): a gene-based GREAT 
analysis using only peaks within 2 kb of the 
nearest transcription start site (labeled 2 kb), 
an analysis with 5+1 kb basal and up to 50 kb 
extension (50 kb), and an analysis with 5+1 kb 
basal and up to 1 Mb extension (1 Mb). For each 
term, we examined the relevance of distal binding 
peaks by comparing the experimental results 
(black bars) to the average values of 1,000 
simulated data sets (gray bars) in which the 
192 proximal ChIP-seq peaks within 2 kb of the 
nearest transcription start site were fixed and the 
1,913 distal peaks were shuffled uniformly within 
the mouse genome, avoiding assembly gaps and 
proximal promoters. By design, simulation results 
for proximal, 2-kb GREAT are identical to the 
actual data and are thus omitted. (a) Lengthening 
a 2-kb proximal promoter to a 50-kb extension, 
expected to increase genome coverage per term (pπ in Fig. 1b) by 25-fold, causes an actual increase of 19- to 24-fold; in contrast, lengthening a 50-kb 
extension rule to a 1-Mb extension rule, expected to raise genome coverage 20-fold, leads to an actual increase of only 2.5- to 6-fold because regulatory 
domains are not extended through neighboring genes. (b) As regulatory domains increase in length from only the proximal 2 kb up to 50 kb and 1 Mb, the 
number of relevant genes with a p300 limb peak in their regulatory domain increases. The added genes selected only by distal associations are typically 
enriched for limb functionality compared to simulated data. (c) As regulatory domains increase in length, the number of p300 limb peaks associated with  
a relevant gene in excess of the number expected by chance increases for all limb-related terms. (d) As in c, the inclusion of distal peaks markedly increases 
the statistical significance of the correct terms alone. *Statistical significance is measured using the hypergeometric test over genes for 2 kb to mimic 
current gene-based approaches, and using the binomial test over genomic regions for 50 kb and 1 Mb. Error bars indicate s.d.; NS, not significant at a 
threshold of 0.05 after false discovery rate multiple test correction; obs, observed; exp, expected. Note scale changes on x axes.
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and midbrain peaks (as discussed in Supplementary Note), but 
GREAT correctly identifies midbrain-specific enrichments such as the 
GO term ‘compartment specification’. Compartment specification is 
of interest, as within this tissue at this developmental age, Fgf8 induces 
Wnt (also enriched within this set) to set up a gene network that 
establishes the boundary between the midbrain and hindbrain com-
partments41. GREAT with up to 50 kb extension is able to highlight 
many of the same terms, but loses roughly half the associated genes 
and regions and the Wnt enrichment (Supplementary Table 22).

DISCUSSION
GREAT is a new-generation tool aimed at the interpretation of 
genome-wide cis-regulatory data sets. It explicitly models the verte-
brate cis-regulatory landscape through the use of long-range regula-
tory domains and a genomic region–based enrichment test, allowing 
analyses that take into consideration the large number of binding 
events that occur far beyond proximal promoters. By accounting for 
the length of gene regulatory domains, GREAT is able to highlight 
biologically meaningful terms and their associated cis-regulatory 
regions and genes, in a manner that remains robust if there are false 
associations between input regions and genes. Moreover, these regu-
latory-domain definitions can naturally incorporate future results 
from three-dimensional conformation capture studies17–19, radia-
tion hybrid maps42 and other emerging approaches for measuring 
the regulatory genome in action. By coupling this methodology with 
many ontologies that span a wealth of biological information types, 
GREAT produces specific, accurate enrichments that provide insight 
into the biological roles of cis-regulatory data sets of interest.

We comprehensively tested GREAT on multiple ChIP-seq data 
sets and found that it is able to reproduce many known biological 
facts that existing methods do not detect, as well as suggest novel 
hypotheses for further experimental characterization. In particular, 
our analysis shows that ignoring distal binding events often leads 
to missing target gene associations, to obtaining weaker P values 
or even to completely omitting relevant enrichment terms. Besides 
ChIP-seq data, GREAT can also be applied to the analysis of any data 
set thought to be enriched for localized cis-regulatory regions. This 
includes functional genomic data sets of open chromatin, localized 
epigenomic markers, and comparative genomic sets. GREAT may thus 
prove invaluable in elucidating the cis-regulatory functions encoded 
in genomes.

GREAT is available online (http://great.stanford.edu/); also pro-
vided is a means for direct submission from other applications such 
as genome portals and peak calling tools.

METhODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METhODS
Gene set definition. Statistical enrichment of ontology terms is dependent 

upon the genome-wide gene set used in the analysis. GREAT currently sup-

ports testing of human (Homo sapiens NCBI Build 36.1, or UCSC hg18) and 

mouse (Mus musculus NCBI Build 37, or UCSC mm9). To limit the gene sets 

to only high-confidence genes and gene predictions, we use only the sub-

set of the UCSC Known Genes45 that are protein coding, are on assembled 

chromosomes and possess at least one meaningful GO annotation14. GO is 

an ontological representation of information related to the biological proc-

esses, cellular components and molecular functions of genes. We rely on the 

idea that if a gene has been annotated for function it should be included in 

the gene set, and if no function has been ascribed to a gene its status may be 

unclear and thus it is best omitted from the gene set. In GREAT version 1.1.3, 

we use GO data downloaded on 5 March 2009 for human and 23 March 2009 

for mouse, leading to gene sets of 17,217 and 17,506 genes for human and 

mouse, respectively.

A single gene may have multiple splice variants. As annotations are generally 

given at the gene level, GREAT uses a single transcription start site (TSS) to 

specify the location of each gene. The TSS used is that of the ‘canonical isoform’ 

of the gene as defined by the UCSC Known Genes track45.

Association rules from genomic regions to genes. For each gene, we define 

a ‘regulatory domain’ such that all noncoding sequences that lie within the 

regulatory domain are assumed to regulate that gene. GREAT currently sup-

ports three different parametrized association rules to define gene regulatory 

domains (Supplementary Fig. 2). The default ‘basal plus extension’ associa-

tion rule assigns a ‘basal regulatory region’ irrespective of the presence of 

neighboring genes that extends (using default parameters) 5 kb upstream and 

1 kb downstream of the TSS (Supplementary Fig. 2a). Each gene’s regula-

tory domain is then extended up to the basal regulatory region of the nearest 

upstream and downstream genes, but no longer than 1 Mb in each direction. 

The choice of basal regulatory region size and placement was motivated by 

the location of histone modifications and measures of chromatin accessibility 

near the TSS of genes46, and the maximum extension distance is based upon 

work showing that long-range distal enhancers can regulate expression of 

target genes up to 1 Mb away47,48. All three parameters (basal upstream, basal 

downstream and maximum extension distance) can be set by the user.

The ‘two nearest genes’ association rule extends each gene’s regulatory 

domain from the TSS of the canonical isoform to the nearest upstream and 

downstream TSS (Supplementary Fig. 2b), up to 1 Mb in each direction. This 

association rule stipulates that each base pair cannot be assigned to more 

than two genes.

The ‘single nearest gene’ association rule extends each gene’s regulatory 

domain from the TSS of the canonical isoform in each direction to the mid-

point between the TSS and the nearest adjacent TSS (Supplementary Fig. 2c), 

up to 1 Mb in each direction. This association rule stipulates that each base 

pair cannot be assigned to more than one gene.

For well-studied genes with experimentally detected distal regulatory ele-

ments (reviewed in ref. 20), we manually override the computationally defined 

regulatory domains. GREAT version 1.1.3 uses experimentally validated regu-

latory domains for SHH47, genes in the β-globin locus49, and KIAA1715, EVX2, 

HOXD10, HOXD11, HOXD12 and HOXD13 (ref. 50). Future releases of the 

tool will continue to refine regulatory domains as technological advances, 

including three-dimensional conformation capture studies17–19 and radia-

tion hybrid maps42, further elucidate interactions between regulatory DNA 

and its target genes.

Hypergeometric test over genes. The hypergeometric test over genes identi-

fies all genes whose regulatory domains possess one or more genomic regions 

from the input set and calculates enrichments over the genes with respect to 

the defined gene set using a hypergeometric distribution. More formally, the 

hypergeometric test is executed separately for each ontology term π and is 

defined by four parameters:

1.  N is the total number of genes in the genome.
2.  Kπ is the number of genes in the genome that possess ontology an-

notation π.
3.  n is the number of genes selected because one or more input genomic 

regions resides in their regulatory domains.
4.  kπ is the number of selected genes that possess ontology annotation π.

The test calculates the P value of the observed enrichment for term π as the 

fraction of ways to choose n genes without replacement from the entire group 

of N genes such that at least kπ of the n possess ontology annotation π, using 

the formula below. 
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In particular, the hypergeometric test counts every gene only once even if 

it was picked by multiple genomic regions. Terms enriched by the hyper-

geometric test thus indicate a high ‘term coverage’, where a larger fraction of 

all genes annotated with the term are selected by the input genomic regions 

than expected by chance.

Binomial test over genomic regions. To account for the length variability 

within gene regulatory domains, we implemented a binomial test over genomic 

regions that uses the fraction of the genome associated with each ontology 

term as the probability of selecting the term. The binomial test is executed 

separately for each ontology term π and is defined by three parameters:

1. n is the total number of genomic regions in the input set.
2.  pπ is the a priori probability of selecting a base pair annotated with 

π when selecting a single base pair uniformly from all non–assembly 
gap base pairs in the genome.

3.  kπ is the number of genomic regions in the input set that cause an-
notation π to be selected.

The test calculates the P value of the observed enrichment for term π as the 

probability of selecting annotation π at least kπ times in n attempts using the 

formula below. 
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The binomial test first maps each input genomic region to the left median 

base pair in its span, making it most appropriate for assessing enrichment 

of factors with narrow, precise peaks. The value of pπ is calculated for each 

ontology annotation π as the fraction of non–assembly gap base pairs in the 

genome associated with annotation π. Each input genomic region can then 

be thought of as a ‘dart’ thrown at the genome, counting as a hit if the left 

median base pair is annotated with ontology term π. In this test, the length 

of each gene’s regulatory domain is explicitly accounted for in the calcula-

tion of  pπ . This explicit use of regulatory domain size in the significance 

calculation provides a proper assessment of the enrichment for ontology 

terms by noncoding sequences. Notably, as the binomial test incorporates the 

fraction of the genome assigned to each gene in the calculation of statisti-

cal significance, it is robust regardless of variation in association rules and 

occasional incorrect assignments of genomic regions to distal target genes. 

Ontology terms assigned to genes that have large regulatory domains are 

inherently weighted such that each binding event associated with the term 

contributes less to the resulting enrichment than binding events associ-

ated with terms assigned to genes with small regulatory domains. However, 

(1)(1)

(2)(2)
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enrichments under the binomial test may arise from clusters of noncoding 

regions all near one or a few genes with a particular ontology annotation, 

as well as from noncoding regions associating with many genes that pos-

sess a particular ontology annotation. The hypergeometric test over genes 

(described above) provides a measure of ‘term coverage’ that can be used 

to identify terms significant by the binomial test that have many annotated 

genes selected as well.

Foreground/background hypergeometric test over genomic regions. When 

a set of input genomic regions is selected from a superset of ‘background 

genomic regions’ (for example, the repetitive elements that have been exapted 

into functional roles selected from all repetitive elements in the genome12), 

one should consider whether the input genomic regions differ in functional 

composition from the entire set of background genomic regions as a whole. 

The foreground/background hypergeometric test over genomic regions poses 

this statistical question by mapping all ontology annotations of each gene to 

all background genomic regions that lie within its regulatory domain; it then 

calculates enrichments over the input genomic regions with respect to the 

superset of background genomic regions using a hypergeometric distribu-

tion. Formally, the foreground/background hypergeometric test over genomic 

regions is executed separately for each ontology term π and is defined by 

four parameters:

1. N is the number of genomic regions in the background set.
2.  Kπ is the number of genomic regions in the background set that lie 

within the regulatory domain of some gene annotated with term π.
3. n is the number of genomic regions in the foreground set.
4.  kπ is the number of genomic regions in the foreground set that lie 

within the regulatory domain of some gene annotated with term π.

The test calculates the P value of the observed enrichment for term π using 

the hypergeometric equation shown above, equation (1).

GREAT software. The GREAT core calculation engine is implemented in C and 

the source code is publicly available for download (http://great.stanford.edu/).
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