Ringtail: Feature Selection for Easier Nowcasting’

Dolan Antenucci
University of Michigan
Dept. of Computer Science
dol@umich.edu

Christopher Ré
Univ. of Wisconsin, Madison
Dept. of Computer Science

chrisre@cs.wisc.edu

ABSTRACT

In recent years, social media “nowcasting”—the use of on-
line user activity to predict various ongoing real-world social
phenomena—has become a popular research topic; yet, this
popularity has not led to widespread actual practice. We be-
lieve a major obstacle to widespread adoption is the feature
selection problem. Typical nowcasting systems require the
user to choose a set of relevant social media objects, which is
difficult, time-consuming, and can imply a statistical back-
ground that users may not have.

We propose RINGTAIL, which helps the user choose rele-
vant social media signals. It takes a single user input string
(e.g., unemployment) and yields a number of relevant signals
the user can use to build a nowcasting model. We evaluate
RINGTAIL on six different topics using a corpus of almost
6 billion tweets, showing that features chosen by RINGTAIL
in a wholly-automated way are better or as good as those
from a human and substantially better if RINGTAIL receives
some human assistance. In all cases, RINGTAIL reduces the
burden on the user.

1. INTRODUCTION

In recent years, social media “nowcasting”—the use of on-
line user activity to predict real-world social phenomena—
has become a popular research topic. Researchers have used
search queries, T'witter messages, or similar data to estimate
flu activity [18], unemployment levels [10], mortgage delin-
quencies [9], movie ticket sales [19], and more [11,22,25].

The motivation behind this work is clear: traditional data-
collection methods, such as phone surveys or aggregating
different sources of administrative data, are time-consuming
and costly. As a result, researchers can ask relatively few
questions; the answers to those questions are slow to ar-

*Named after the ringtail, a “cousin” of the raccoon, known
for scavenging morsels from others’ garbage—similar to
what we do with social media.
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rive; and society pays substantial sums to obtain even these
unsatisfactory results. For example, the budget for the US
Bureau of Labor Statistics—just one of the US government’s
statistical bureaus, and responsible for numbers such as the
unemployment rate—is over 600 million US dollars each
year [24], and still cannot answer all the questions it would
like. Social media nowcasting, which is relatively inexpen-
sive and immediate, is a possible solution with real appeal to
domain experts. This paper is the first in a series of collab-
orations between computer scientists and economists to ap-
ply nowcasting to real macroeconomic prediction tasks. (We
presented some initial RINGTAIL results at the 2012 Summer
Institute of the National Bureau of Economic Research [7].)

A more efficient method of observing social phenomena
would be a boon for scientists, economists, and policy ex-
perts. Yet as of this writing, social media nowcasting is
mainly a scientific curiosity—the subject of many research
papers, but barely visible in practice’. Research suggests
social media nowcasting could be applied to a huge range of
applications, so why is it still a matter for research papers
instead of a practical tool?

We believe a major obstacle to widespread adoption is the
feature selection problem. Consider the steps the user follows
in most nowcasting projects:

1. Aggregate the relevant objects over time to yield a
set of time-varying signals—such as the daily frequency of
various phrases.

2. Determine whether each signal is relevant to the target
phenomenon (e.g., perhaps the signal “I feel sick” is relevant
for flu levels).

3. Use the selected signals, plus conventional data that
describes the phenomenon (such as health system flu statis-
tics), to train a predictive model; later, feed novel social
media signals to the model to obtain nowcasting results.

The middle step, in which the user chooses a set of relevant
social media objects, is a feature selection problem [8]. The
post-aggregation database contains a vast number of candi-
date signals and the user must choose just a small number to
yield a high-quality model in the final step. Most systems
have used a human to identify a signal by listing strings
that the social media object must contain. For example, a
user interested in unemployment might choose a signal cor-

!Two possible exceptions are the use of Google Flu data by
the US Centers for Disease Control and intermittent reports
of using social media data by hedge funds [11].



responding to all tweets that contain laid off and others for
got let go, looking for a job, and was canned.

We believe this user-directed feature selection is much
more burdensome than it first appears. The difficulty arises
because users are only weakly able to choose good signals.
For example, we obtained Twitter-derived signals for each
of the above four phrases for the time period of mid-2011
to mid-2012 and measured their correlation to official US
initial unemployment insurance claims data. To the human
eye, each of the four phrases above seems reasonable, but
their Pearson correlations with initial claims ranged from a
terrific 0.74 (laid off) to a terrible 0.14 (looking for a job).
In the experiments we describe later in this paper, the best
three user-chosen signals for each of six different phenomena
average a correlation of 0.58, while the worst three average
just 0.15. Clearly, humans are unreliable signal-choosers.

This fact has terrible consequences for the usability of
nowcasting systems. Users must preemptively choose a very
large number of signals, or must engage in a repetitive choose-
and-test loop until the nowcaster’s performance is “good
enough.” Further, because nowcasting is useful in exactly
those scenarios where conventional test data is rare, users
must also be concerned with statistical issues such as overfit-
ting. As a result, creating a nowcasting system is currently
a time-consuming process that requires a statistical back-
ground. It is not surprising that non-computational domain
experts have largely failed to embrace them.

Technical Challenge This paper describes RINGTAIL, a
nowcasting system, which helps the user choose features. In
response to a user’s single topic query (e.g., unemployment),
it yields a number of signals the user can immediately use to
build a statistical model. Rather than relying on user exper-
tise or scarce conventional data (e.g., as part of a variable
ranking approach), RINGTAIL uses statistics from a Web cor-
pus to obtain semantic similarity information between the
user’s query and each candidate signal’s label. The resulting
system is domain independent and yields results that in our
experiments range from slightly better to roughly break-even
with the human-suggested labels (depending on how many
suggestions the humans give).

We do not claim that we have found the strongest possi-
ble architecture for a nowcasting system; indeed, we believe
there are likely to be substantial changes to these designs in
the future. Instead, RINGTAIL is designed to roughly emu-
late the designs embodied in most previous nowcasting sys-
tems, while using the feature selection techniques that are
this paper’s primary contribution.

Contributions This paper is organized as follows. We pro-
pose the RINGTAIL architecture for building and selecting
nowcasting features (Section 3). We then present several
feature selection techniques that do not consume precious
conventional data (Section 4). Finally, we evaluate RING-
TAIL on six different topics using a corpus of almost 6 billion
tweets. Using multiple evaluation criteria, we show that
features automatically chosen by RINGTAIL are on average
better or as good as those from a human. (Section 5).

We discuss related work in Section 2. We think this pa-
per addresses just the first of a wide range of interesting
nowcasting questions, which we discuss in Section 6.

2. RELATED WORK

There are two main areas of work relevant to our research.

Nowcasting There have been many recent projects that
have attempted to use social media to characterize real-
world phenomena. Most use hand-chosen social media sig-
nals and a small amount of conventionally collected data to
train a statistical model, which predicts a real-world value.
Target phenomena have included mortgage delinquencies [9],
unemployment rates [10], auto sales [22], and home sales [25].
Goel, et al. [19] used search logs to predict sales of me-
dia products. Choi and Varian [13] hand-select categorical
search data for some phenomena—such as unemployment in
the US—as well as use a statistical approach (spike and slab)
for other phenomena, such as consumer confidence. Their
work relies on a pre-classified set of features, which we do
not have. Additionally, our selection method brings a novel
information source to bear on the problem, and combining
these approaches is a possible area of future work.

Ginsberg, et al., which predicted flu levels from users’
search queries [18], is a notable exception to the standard
method of choosing input signals. Their system composes a
time-varying signal for each of the 50 million most popular
searches, then chooses the 100 that have the best correla-
tion with the target flu signal. This approach was possible
because of the long history of both search queries and the
conventional flu data; it would not work with vastly more
candidate signals, or many fewer conventional data points.
Doornik proposed to make flu trend prediction more reliable
through a combination of purely statistical techniques and
use of a broader set of search queries [17].

Of course, in this paper we are primarily interested in
other nowcasting projects for their method of choosing in-
puts. We do not compare their accuracy against our sys-
tem’s, because accuracy numbers depend not only on feature
selection methods, but also on data availability, preparation
techniques, and other factors beyond the scope of this paper.
That said, the larger RINGTAIL project aims to obtain high-
accuracy results to support economists who are interested
in accurate nowcasting.

Feature Selection Feature selection is a well-known prob-
lem in the statistics literature. Guyon and Elisseeff [20] pro-
vided a good survey of the field. They place feature selec-
tion techniques into a few broad categories. With domain
knowledge techniques, a human uses first-hand knowledge of
a topic to choose features manually. As we discussed, hu-
mans’ domain knowledge does not appear to be sufficient
when choosing nowcasting features. Variable ranking tech-
niques use a scoring mechanism—such as correlation criteria,
single variable classifiers, or information criteria—to deter-
mine the relative worth of each potential feature (also called
a signal or variable). These techniques are popular, but
will overfit when the set of candidate signals is large and
the conventional data used for computing the score is small;
unfortunately, that is the common case for nowcasting ap-
plications. (Leinweber [21] provided a vivid example of the
pitfalls linked to overfitting and spurious correlations.) Fi-
nally, there are dimensionality reduction techniques such as
clustering, principal component analysis, and matrix factor-
ization. These approaches consume no conventional data
points and are applicable to nowcasting applications.

3. SYSTEM DESIGN

In this section we present RINGTAIL’s basic architecture,
including the feature preparation pipeline that most now-
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Figure 1: The pipeline RINGTAIL uses to convert a
corpus of tweets into a set of (gram, signal) pairs.

casting systems have in common, plus the feature selection
process that is unique to RINGTAIL.

3.1 Feature Preparation

Figure 1 illustrates the data preparation pipeline that
most nowcasting systems have to some rough degree. The
process starts with a large corpus of social media messages.
In our experiments, we used almost 6 billion tweets collected
between July 2011 and July 2012. Other implementations
could use individual web search queries or similar messages.
Each message might have various metadata (e.g., username,
source IP address, etc.) but the only strict requirement is
that it has a timestamp.

In the next step, we aggregate these messages to obtain
a large number of time-varying signals. This process is
straightforward for very short texts like web searches: for
each unique search, count the number of appearances in each
24-hour period over the collection’s timespan.

For longer messages like tweets, the process is slightly
more involved. For each tweet, RINGTAIL enumerates each
sequence of t or fewer words into grams. For example, the
tweet “lost my job” generates the grams {lost, my, job, lost
my, my job, lost my job}. RINGTAIL then computes a signal
for each of these unique grams observed in the entire corpus
of tweets. Because a single tweet almost always contains
multiple grams, it can contribute to multiple signals.

After processing the social media messages, we obtain the
raw input to the nowcasting feature selection step: a huge
number of (gram, signal) pairs—3.2 billion in our exper-
iments when grams are 4 or fewer words. The user will
eventually use a small number of these signals, plus a rela-
tively small amount of conventional data, to train a statis-
tical model, which predicts the target phenomenon. RING-
TAIL’s task is to choose the k signals from this massive set
that will yield as accurate a model as possible.

3.2 Feature Selection

RINGTAIL’s basic architecture is described in Figure 2.
Note that in order to sidestep some computational issues
that are outside the scope of the current work, we currently
precompute some of the work in Step D, though we intend
this work to be computed entirely at query-time—this is an
active area of our research, which we describe in Section 6.

Using the pipeline described in Figure 1, Step A pre-
computes the candidate signals. The rest of the steps begin
when the user enters a single query in step B. This includes a
topic query describing the target—such as “unemployment”—
and a conventional dataset—such as the US government’s
weekly data on unemployment insurance claims. The next
step, feature selection, is where our contributions lie.

RINGTAIL feature selection comprises three steps. To start,
we expand the user’s topic query into a large number of gram
candidates as pictured in step C. This uses an off-the-shelf
thesaurus to expand each of the query’s words and can yield
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Figure 2: RINGTAIL’s overall architecture.

up to several dozen topic synonyms. In D, we look up each
topic synonym in the web-derived Pointwise Mutual Infor-
mation (PMI) database; PMI is a method for measuring
the semantic relatedness of two strings. Ranking candidate
grams by PMI score can yield thousands of synonym-PMI
grams that are related to the topic query. This set likely
contains a large number of strings that should be seman-
tically linked to the user’s topic. We have not used any
conventional data so far.

In E, we use principal component analysis to distill this
still-large candidate set into a small number of synthetic
signals we can return to the user. This process may cause
us to lose signals that are “eccentric but correct” and so
we must implicitly trust that any real-world phenomenon
whose signal we want to observe will be captured by multiple
social media grams. We have still not used any of the user’s
conventional data. Finally, in F', we use the conventional
data to compute a statistical model and return it to the
user. In the next section we examine RINGTAIL’s feature
selection steps—C, D, and E—in detail.

4. FEATURE SELECTION

RINGTAIL’s central goal is to choose a small number of
relevant features from the massive set of candidates we can
compute from a social media corpus. Feature selection has
a vast literature; we will explain that most standard tech-
niques do not apply in the nowcasting setting, with its rel-
ative paucity of conventional data. We then describe our
proposed solution, which uses as little conventional data as
possible.

4.1 Dead Ends

We now describe a few common feature selection tech-
niques that appear reasonable at first, but will not work in
our target nowcasting setting. In the course of preparing this
paper we tried each of them and met with no success (with
the partial exception of subset selection, a limited form of
which we incorporate into our final technique).

Domain knowledge relies on a knowledgeable human to
suggest good features. This approach is not terrible in terms
of result quality, and is widely used by other nowcasting sys-
tems. But in practical terms, a domain knowledge approach



yields a system that is difficult to use for all the reasons we
described in Section 1: users have only weakly-accurate ideas
about what signals are effective, and so engage in a repeti-
tive choose-and-test loop that is both tedious and prone to
overfitting.

Feature selection with signal data scores each fea-
ture according to a data-driven similarity metric based on
the target phenomenon—such as Pearson correlation or R?
from a single-variable regression. The underlying problem
with this approach is the steep imbalance in size of our two
datasets (e.g., 3.2 billion (gram, signal) pairs vs. 52 conven-
tional samples). Given so many candidate signals, it is easy
to find variables that score highly through sheer chance. For
example, the gram whose signal has the highest in-sample
Pearson correlation with our unemployment dataset is out
this facebook (0.991). It is unlikely that this gram has any
predictive power for the unemployment level. Of the 100
most highly correlated grams, none of them are plausibly
connected to unemployment.

Variable ranking with a human filter uses data-driven
scoring to obtain an initial ranking, then asks a human to
manually remove spurious correlations. This is a plausi-
ble technique when the number of spurious correlations is
small; however, the number of spurious correlations in now-
casting settings is so large that simply examining this list
amounts to a substantial burden on the user. For example,
in our correlation-ranked list of variables, the first one that
is plausibly connected to unemployment is ski job, which
does not appear until position 1,376—and this may still not
carry much information. RINGTAIL will not be very usable
if each nowcasting query requires the user to manually ex-
amine thousands of candidates.

Subset selection with signal data attempts to find
not just a ranking of variables, but the best possible combi-
nation of them. Forward selection starts from an empty set
of variables and grows a high-quality set, while backward
selection gradually removes variables from a full set. Un-
fortunately, subset selection methods suffer from the same
data imbalance as the above methods. Spurious subsets of
variables will appear to yield high performance only because
of the limited size of our test data.

All of the above techniques are either labor-intensive or
suffer because our conventional dataset is so small in com-
parison to the potential number of grams. In principle,
variable ranking against the conventional signal data should
work, if only we had sufficient data to avoid spurious corre-
lations. Unfortunately, nowcasting systems are most useful
exactly in those settings where conventional data is hard to
obtain; we will never have as much as we would like.

It is easy to overlook that finding a source of this con-
ventional data is only half the problem. We also need con-
ventional data that overlaps in time with the social media
data. Since no social media data source is more than a few
years old, the best way to evaluate the relative scarcity of
these data sources is how quickly we expect them to arrive
in the future. By that measure, the quantity of social media
data will always swamp conventional data. A small conven-
tional dataset is not simply an artifact of our experiments,
but rather has to be considered a basic challenge for usable
nowcasting. Thus, the feature selection techniques we apply
below are designed to use no conventional data at all.

4.2 Unsupervised Feature Selection

The central observation behind our approach is that while
the signal part of each (gram, signal) pair is constrained by
the availability of conventional data, the gram portion is not.
When choosing signals by hand, humans are able to examine
the gram alone and still yield good, though imperfect and
burdensome, results. We attempt to build a system that
similarly exploits common sense about the gram.

We use two techniques to expand the user’s topic query
into a large family of potential grams.

Synonym Expansion (SYN) In the first step we expand
the user’s single topic query into several roughly synonymous
queries. A good topic query (unemployment) may be differ-
ent from a good gram (I need a job), and the goal of this
step is not to find good grams. Rather, our goal is to make
the system robust to different word choices on the part of
the user. Finding good grams is the next step.

Synonyms for a given topic query are generated from three
sources: WordNet, Thesaurus.com, and Big Huge Thesaurus.
The user’s topic query is split on whitespace into tokens,
and each individual token is run through these three ser-
vices. Out of the resulting words and phrases returned, all
permutations from the different sets are used. For example,
if the input label “gas prices” returns the sets gas = {gas,
fuel}; prices = {prices, costs}, then the final list of synonym
topic queries would be {gas prices, gas costs, fuel prices, fuel
costs}. This is a fairly naive expansion algorithm, but as we
will see in Section 5.3, its performance is roughly comparable
to human-generated synonyms.

PMI Scoring (PMI1) For each topic query synonym, we
now want to find all the related phrases that could embody
useful signal data. With each query, we want to sort all
grams in descending order of relatedness with it, then pick
the top k. Fortunately, the information retrieval and Web
search research communities have developed a straightfor-
ward technique for computing the relatedness of two strings.

Pointwise Mutual Information, or PMI, is often used to
check for an association between words or phrases in a par-
ticular corpus [14]. For example, Turney used PMI to build
a system that performed well enough to pass the synonym
portion of a English language test [23].

Given two phrases x and y where P(z) and P(y) are the
respective probabilities of each phrase occurring in the cor-
pus, and P(zx,y) is the probability of the phrases occurring
together, PMI is defined as

PMI(z,y) = log PP(:c,y)

()P (y)

If there is an association between the two, then P(z,y)
will be much larger than P(z)P(y), thus yielding a high
PMI score. If there is no association between the two, the
PMI computation will yield something close to zero.

Computing these probabilities is a critical ingredient to
PMI. We can calculate them using any large text corpus. We
used the ClueWeb(09 English web crawl dataset [15]. This
contains 500 million English web pages crawled during 2009.
We processed this corpus using Hadoop MapReduce. We
define two grams as “related” if they occur within 100 tokens
of each other.

To combine these n synonyms’ PMI rankings into one list,
we take the top 1,000 grams with the highest PMI for each
topic query synonym. In principle, this gives us n x 1,000

(1)



potential signals; however, many of these signals appear in
multiple lists, so the number of unique signal phrases is less.
We rank these signal phrases by the number of lists on which
they appear. Where there are ties, we rank signals by their
average rank across synonym lists.

Data Reduction (PCA) The first two steps expand the
user’s query, operating strictly at the text level. The final
step performs data reduction on the actual signal data.

Once the features have been ordered, we then need to
select features for use in nowcasting. Since there is a limited
number of data points—just 52 when we have a year of social
media data and the conventional data is a weekly signal—
we can only select a handful of features to avoid overfitting
when training the nowcasting predictor (step F in Figure 2).

We first explore k-thresholding, which involves selecting
the top k features from each ranking method—our experi-
ments in Section 5 set k& = 100. While k-thresholding is a
common practice, there may be a feature at k+1 that car-
ries important information, so we explored transforming a
larger number of features with principal component anal-
ysis (PCA). PCA is used in a range of tasks that require
unsupervised feature transformation, such as computer vi-
sion [16] and asset pricing [12]. The top j signals from each
ranking mechanism are passed into the PCA algorithm—our
experiments have j = 500. This yields a set of transformed
signals, ordered by the amount of variance in the data ex-
plained by each. As before, we apply k-thresholding to the
resulting list of signals.

S. EXPERIMENTS

The central experimental claim of this paper is that we
can use automated methods to choose signals that are at
least as good as those chosen by hand. In other words, we
are concerned with the quality of the signals from step E.

Note we do not claim this method always obtains a high-
accuracy nowcasting system (the results of step F'). Nowcast-
ing accuracy is dependent on many factors besides feature
selection, such as the amount and type of social media data,
the exact phenomenon being predicted, and so on. Poor
prediction accuracy might be due to any of these causes.

5.1 Experimental Setup

Our initial design of RINGTAIL uses roughly 6 billion tweets
collected between July 2011 and July 2012. We transformed
these into roughly 3.2 billion candidate signals (Figure 1 and
Step A of Figure 2) using a series of MapReduce jobs. We
evaluated RINGTAIL on six phenomena (listed in Table 1)
that are past or plausible future nowcasting applications.
Each target has a label and a conventional dataset associ-
ated with it, which the user provides in Step B.

We lightly preprocess the tweets, removing punctuation
and discarding non-English messages. We also translate
“one-off” text strings such as URLs and reply indicators
(e.g., @carlos) into generic tokens (e.g., <URL> and <RE-
PLY>).

Each gram consists of a sequence of four or fewer to-
kens from a tweet, which are generated as described in Sec-
tion 3.1. These are then aggregated together into (gram,
signal) pairs, where the signal represents the daily frequency
for each gram between July 2011 to July 2012. Finally, we
normalize the resulting signals to account for growth in total
tweets. Each conventional dataset is weekly. For correlation

Target Phenomenon Source User Label
Box Office Sales B.O. Mojo [2] | movie tickets
Flu Activity CDC 3] flu rates

Gas Prices U.S. EIA [6] gas prices

Mortgage Refinancings | MBA [4]
E-commerce Traffic Alexa [1]

mortgage refinance
online shopping

US Unemployment US DOL [5]

Table 1: Target phenomena used for testing. US
Unemployment refers to the weekly number of ini-
tial unemployment insurance claims.

unemployment

and R? metrics, we convert the target signal and (gram,
signal) pairs into four-week moving averages.

5.2 Feature Quality

We now show that RINGTAIL can obtain social media fea-
tures that are at least as good as those given by a human
expert. We first describe our evaluation metrics, then the
benchmarked techniques.

Evaluation Metrics — We evaluate the quality of the emit-
ted set of signals using three metrics.

e Average Correlation — For each signal in the emitted
set, we measure the Pearson correlation with the conven-
tional data signal. Each emitted signal and the conven-
tional data signal consist of the entire conventional data
timespan—in our case, 52 data points. We average over
all the emitted signals. Values are the absolute value of
correlation, ranging 0 to 1, higher being better.

e Average R? — For each signal in the emitted set, we
perform a linear regression computation with the signal
as a predictor variable and the conventional data signal
as the response variable. We compute the R? error quan-
tity that arises from the regression. This is a standard
error metric in economics and other fields. Again, we use
the entire 52-week dataset and average over all emitted
signals. Values range 0 to 1, with higher being better.

e Average Mean Absolute Error (MAE) — Finally,
we compute the accuracy of the predictor in step F. This
is the only metric that evaluates our performance using
held-out conventional data. For each signal in the emitted
set, we build a series of linear regression predictive mod-
els using subset selection (max three features per model).
Each model uses 30 data points from both the emitted
signal and the conventional data series. We then ask the
model to predict the value for the next data point in the
conventional series. The difference between the predic-
tion and the held-out data is the error. We average this
error over 52 — 30 = 22 rolling predictors. Finally, we
average the MAE from each of the models. MAE is de-
scribed in percentages, and smaller values are best.

Benchmarked Techniques — We tested several feature
selection methods, all different combinations of the three
techniques described in Section 4.2: SYN, PwMmI, and PcCA.
We compared these approaches against two baseline meth-
ods. The first, RANDOM, is simply a set of 100 signals drawn
randomly from the overall signal database. The second, Hu-
MAN, is the result of asking seven graduate students to each
suggest 10 relevant grams for each target phenomenon (e.g.,
I need a job for US unemployment). RINGTAIL’s goal is to
match or beat HUMAN’s quality with an entirely automated
method.



, PMITPCA PMI+Syn+PCA
Metric Random | Human | PMI PMI+Syn =100 TE=3 =100 [ F =3
Average Correlation (larger is better) | 0.2448 0.3630 0.2567 | 0.2543 0.1669 0.4496 | 0.1637 0.3993
Average R? (larger is better) 0.0912 0.1809 0.0986 | 0.0970 0.0474 0.2406 | 0.0449 0.2176
Average MAE (smaller is better) 0.1661 0.1277 0.1282 | 0.1308 0.1293 0.1313 | 0.1278 | 0.1349

Table 2: Evaluation of different feature selection mechanisms, averaged over the tasks in Table 1. Best ones,

or close to best, are bolded.

5.3 Experimental Results

Our experimental results are summarized in Table 2. Not
surprisingly, HUMAN outperforms RANDOM on all three met-
rics. In addition, at least one of RINGTAIL’s techniques can
beat or essentially tie HUMAN. For Average MAE, the best
RINGTAIL technique is the one that uses all three approaches
from Section 4.2 (PMI+SYN+PCA).

For Awverage Correlation and Average R?, the result is
somewhat different. When £ = 100—as is the case with
the other benchmarks—PMI+PCA and PMI+SyN+PCA
perform worse than RANDOM on average, yet the top signals
(k = 3) easily outperform HUMAN on average. We suspect
this is due to the the way PCA ranks the signals by the
amount of variance of PCA inputs that they explain. The
bottom ones carry little of the information that the top ones
do, so they perform quite poorly, thus lowering the overall
average. While the seemingly low correlation and R? val-
ues in Table 2 may cause one to question the quality of
RINGTAIL, we emphasize that we make no claim the signals
are perfect, only that we can essentially match a human on
average (0.1277 for HUMAN, vs 0.1278 for RINGTAIL). Al-
though correlation and R? are useful metrics, MAE is likely
the metric the typical nowcaster will want to maximize.

To test if there is room for improvement with our synonym
combining heuristic, we asked a human choose the synonyms
manually instead of using an automated thesaurus-driven
process. Results show this algorithm performs 5% better
than HUMAN using average MAE, compared to the tie that
arises from our automatically generated synonyms.

6. FUTURE WORK AND CONCLUSION

We have demonstrated that RINGTAIL can suggest fea-
tures as well as a human on a range of nowcasting tasks.
We believe this approach is a critical step in making now-
casting a practical tool rather than a research curiosity.

Our immediate future focuses on efficiently computing
PMI values (step D), which we believe would also have an
impact on other Web research projects; we are currently ex-
ploring approximation techniques for PMI. RINGTAIL avoids
conventional data for most of the feature selection process,
but still uses it to train a statistical model (bottom row of
Table 2). Nowcasting would be most useful in cases where
conventional data does not exist at all. Indeed, it would
be terrific if the predictive model could be built using so-
cial media data exclusively. Finally, improving nowcasting
accuracy will likely continue to be a lively research area.
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