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kfm, vibhor, chrisre, suciu@cs.washington.edu

Department of Computer Science & Engineering
The University of Washington, Seattle

Abstract. We study the containment problem for a query language over
probabilistic relational databases that allows queries like “is the probabil-
ity that q1 holds greater than 0.2 and the probability that q2 holds greater
than 0.6?” where q1 and q2 are Boolean conjunctive queries. In addition
to being a fundamental problem in its own right, the containment prob-
lem is the key problem that an optimizer must solve for many standard
optimizations (such as picking up an index or using a materialized view).
Our main technical result is that the containment problem is decidable,
and we give an EXPSPACE-algorithm based on linear programming for
it. We believe that we are the first to study the containment problem for
any such probabilistic languages.

1 Introduction

An increasing number of data-centric applications are forced to cope
with imprecision: in RFID applications, it is difficult to precisely deter-
mine the exact location of people or objects [5, 14], in data integration,
researchers have allowed schema mappings to be imprecise to lower the
overall cost of integration [6, 8], in information extraction, the state-of-
the-art techniques produce extractions automatically, but with a loss of
precision [12,20]. Motivated by these applications, researchers have cre-
ated systems that model the imprecision in the data using probability
theory [2,13,16,17].

The first generation of these systems (such as Trio [19], Mystiq [4]) allow
a user to pose a standard query (say in SQL). It is then the job of the
database system to combine the probabilities in the data to produce a set
of result tuples, where each tuple is annotated with a probability score
that reflects the extent to which that tuple is an answer to the posed
query.

Example 1. Consider an application that monitors persons and objects
as they move through a building using RFID [18]. A user Kate, may want
to know the probability that each of her possessions is in her office; she
writes a query as in Fig. 1(a). In response to this query, a first-generation
system would return a list of her possessions together with a probability
that each object is present in her Office (shown in Fig. 1(b)).



SELECT DISTINCT O.name
FROM Objects O, Locations L
WHERE L.id = O.id
AND L.loc = ‘Office 380’
AND O.owner = “Kate”

Name P

Book 0.9
Laptop 0.3
Mug 0.1

SELECT DISTINCT O.name
FROM Objects O, Locations L
WHERE L.id = O.id
AND L.loc = ‘Office 380’
AND O.owner = “Kate”

HAVING CONFIDENCE > 0.8
(a) (b) (c)

Fig. 1: (a) A first-generation probabilistic query and (b) its output on
such a system. Query (c) shows the type of query we study in this paper.

As the research in the area of probabilistic data management has ma-
tured, researchers have begun to advocate increasingly sophisticated
query languages that allow more complex, direct manipulations of the
imprecision in the data [3,9]. A notable feature of these languages is that
they allow probability values to be manipulated as first-class citizens. An
example of such a query is shown in Fig. 1(c) which asks “which objects
that belong to Kate are in ‘Office 380’ with probability greater than 0.8?”.
These queries are particularly important in applications like RFID event
detection, where we want to trigger a real-world action in response to
an event (such as sending an email alert when a laptop leaves a room).
In addition, the query language that we study captures the essential fea-
tures of other (more expressive) languages such as recently proposed by
Koch [11] or discussed by Fagin et al [7].
In this work, we study the containment problem for conjunctions of
queries which are a significant generalization of queries as in Fig. 1(c)
(defined formally in § 2.3). Containment is a property of a pair of queries
over uncountably many databases, and so it is not immediately clear that
the problem is decidable. The main technical contribution of this paper
is first showing that containment of such queries is decidable, and further
that we can decide this property in EXPSPACE via an algorithm based
on Linear Programming.

Outline In §2, we give background on probabilistic databases, provide
syntax and semantics for our query language, and formally state our
problem. In §3, we show how to construct a linear program that captures
the set of databases that will model a particular query. Our main result,
the decidability of query containment, is given in §4. We discuss related
work (§5) and conclude (§6).

2 Preliminaries

We first give a brief background on probabilistic databases. Then we
define our query language and illustrate its use with some examples.

⋆ This work was partially funded by NSF IIS-0713576
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2.1 Probabilistic Databases and Orders

A probabilistic database D is a pair D = (W, P ) where W = {W1, W2, . . . , Wn}
is a finite set of standard, finite relational databases all conforming to
the same schema over an infinite domain D and P : W → [0, 1] is a
distribution function, that is:

X

W∈W

P (W ) = 1

We refer to W ∈ W such that P (W ) > 0 is a possible world.
This definition is very general and contains all (discrete) relational rep-
resentations in the literature including tuple independent databases [4],
x-tables [3], bid tables [15], factor graphs [17], and world-sets [1].
For a given tuple t in the database, the (marginal) probability of a tuple
t is denoted P (t) and is defined by

P (t) =
X

W :W∋t

P (W )

Name Office CurrentLocation
(t1) Kate 380 380
(t2) Kate 380 Coffee Room
(t3) Julie 380 380

Fig. 2: A Standard Relation R. A probabilistic database is a subset of
tuples together with a probability function.

Example 2. Fig. 2 shows a standard relational database with a single
relation that contains three tuples, R = {t1, t2, t3}, this database tracks
the offices and current locations of various people.
One possible database D is where each tuple is independent with prob-
ability p. Our work does not consider tuple independent databases, but
we give a brief explanation of them here for comparison. In a tuple in-
dependent database, the set of possible worlds is the set of all subsets
of tuples in R, that is, W = P(R). The probability P (W ) of a world W
with k tuples (for k = 1, 2, 3) is P (W ) = pk(1 − p)3−k.

In this work, we view worlds as sets of tuples and then order these worlds
by set inclusion (denoted with ⊆). This order is helpful to understand the
semantics of the queries that we study in this paper. We do not assume
that the tuples in the database are independent, unless explicitly stated.
If we arbitrarily assign probabilities to the worlds in this database, we
could get many different probability distributions. One possible lattice
is depicted in Figure 3.
The result of executing the query, Q(name), on the database shown in
Figure 3 is {Kate, Julie}. However, if the confidence value was 0.8 in-
stead, then the result would be {Julie}.
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{}, p0 = 0

{t1, t3}, p2 = .5{t2, t3}, p3 = .5

{t1, t2, t3}, p4 = 0

Fig. 3: Lattice Created by Probabilistic Data

Q(name) ::=

SELECT DISTINCT R.name

FROM R

WHERE R.currentLocation = ’380’

HAVING CONFIDENCE >= .4

2.2 Syntax and Semantics of Tier-2 Queries

We consider queries with two tiers: A first tier query is a standard con-
junctive Boolean query and is denoted by a lower case q below. The
second tier of queries is a set of conjuncts each of which makes a proba-
bility statement about first tier queries:

q ::= ∃x1,∃x2, . . . R1(x̄1), . . . Rm(x̄m)

Q ::= ∃y1,∃y2, . . . ∃yk.P (q1) ⋆ p1, P (q2) ⋆ p2, . . . , P (qn) ⋆ pn

Where ⋆ represents either the > or ≥ operator, and pi ∈ (0, 1].

Our Tier-2 queries only allow the comparison between the query proba-
bility and the values using > or ≥. This is essential for the Tier-2 queries
to be “monotonic”, in a sense that we will make precise below.

As an example, a query that checks for the existence of Kate’s book
in her office with high probability (similar to the pseudo-SQL query in
Fig. 1(c)) is expressed as:

∃i.P (Object(i, ‘Book’, ‘Kate’), Location(i, ‘Office 380’)) > 0.8

The semantics of Tier-2 queries requires that we define the semantics of
Tier-1 queries. For a Tier-1 query, q, we evaluate q in a given world W
as if W is a standard deterministic database. We write W |= q whenever
q is true on W .

Definition 1 (P (q)). Given a Tier-1 query q and a probabilistic database
D = (W, P ), we define P (q) as

P (q) =
X

W∈W:W |=q

P (W )
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Definition 2 (Tier-2 Semantics). Given a Tier-2 query Q and a
probabilistic database D = (W, P ), we say that Q is true on D, and
denote D |= Q, if there exists a valuation θ : {y1, . . . , yk} → D such that
for each i = 1, . . . , n then P (qi[θ(y)/y]) ≥ pi where qi[θ(y)/y] denotes
the query that results when each yi is substituted with θ(yi).

Thus, Tier-2 queries are for probabilistic databases what standard con-
junctive queries (called here Tier-1 queries) are for standard databases.
Tier-2 queries are also “monotone”. To make this statement precise, we
first need to define an order relation on probabilistic databases.

Definition 3 (F (W,D)). Given a probabilistic database D = (W, P ),
and a world W ∈ W, we define the filter of W , written F (W,D) as:

F (W,D) = {W ′ ∈ D|W ⊆ W ′}

Definition 4 (D ≤ D′). Given two probabilistic databases D and D′

over the same set of possible worlds W, we define the order D ≤ D′ if
for all W ∈ W, P (F (W,D)) ≤ P (F (W,D′)).

The next Proposition shows that Tier-2 queries are monotone. The proofs
of the Proposition and the Lemma are straightforward and omitted.

Lemma 1. If D ≤ D′ and q is a Tier-1 query, then P (q) ≤ P ′(q).

Proposition 1. If D ≤ D′ and Q is a Tier-2 query, then D |= Q =⇒
D |= Q′

2.3 Problem Statement and Main Result

We now have all the necessary notation to define our problem formally:

Definition 5 (Tier-2 Query Containment Problem). Let Q and Q′

be Tier-2 Queries, we say that Q is contained in Q′ if for any probabilistic
database D, the following holds:

D |= Q =⇒ D |= Q′

The Tier-2 Query containment Problem is to decide, given as input two
Tier-2 queries Q and Q′, is Q contained in Q′?

Since containment is a property of an infinite set of databases, it is not
immediately clear that containment is decidable. The main result of this
work is that it is decidable (in EXPSPACE) using the algorithm of §4.

2.4 Examples

To assist with the reader’s understanding of this problem, we introduce
two small examples and answer the question: Is Q contained in Q′?

5



R(’b’) p = .3

R(’a’), R(’b’) p = .4

R(’a’) p = .3

{} p = 0

Fig. 4: D |= Q

Example 3.

Q = P (R(′a′)) ≥ .7, P (R(′b′)) ≥ .7

Q′ = P (R(′a′), R(′b′)) ≥ .4

To answer the containment question, we first construct a database, D,
that satisfies Q. A picture of such a database is shown in Figure 4.
Now, it is also clear that D |= Q′, but are there any other databases,
D′ such that D′ |= Q but D′ 6|= Q′? No. To explain this, we present
the following argument. Q has two parts; one of which requires a world
where R(′a′) is true, and one where R(′b′) is true. If we allow p1 to
represent the probability of all worlds that contain ’a’ but not ’b’, p2 to
represent the probability of all worlds that contain ’b’ but not ’a’, and
p3 to represent the probability of all worlds that contain both ’a’ and
’b’, then the following restrictions hold:

p1 + p3 ≥ 0.7

p2 + p3 ≥ 0.7

If p3 < 0.4 then it must also be the case that p1 > .3. If this were true,
we would have that p1 + p2 + p3 > 0.3 + 0.7 = 1. However, this is an
invalid database, and thus we reach a contradiction.

Example 4.

Q = P (∃x.R(x)) ≥ 1

Q′ = ∃y.P (R(y)) ≥ .5

Figure 5 shows two different databases, where the one on the left is such
that D |= Q and D |= Q′. However, the database on the right serves as
a counterexample to the containment because for this one, D′ |= Q, but
D′ 6|= Q′.

3 Tier-2 Queries, Q, as Linear Programs

In this section, we start from a 2nd tier query Q, and then we define
a set of canonical linear programs for that query, called SLP (Q). We
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{} p = 0

R(x) p = 1

{} p = 0

R(a) p=1/5

R(b) p=1/5

R(c) p=1/5

R(d) p=1/5

R(e) p=1/5

Fig. 5: Two related databases with different results.

prove that SLP (Q) captures the semantics of Q. Because the semantics
of Q is defined over probabilistic databases with arbitrarily large sets of
worlds, the number of probability values p1, p2, p3, . . . in the probabilistic
database can be arbitrarily large: on the other hand, SLP (Q) has a fixed
set of variables that only depends on the query, and not on a database.
This allows us to use SLP (Q) to concisely capture the semantics of Q,
because it makes a statement about arbitrarily many probabilistic values.

3.1 Queries without 2nd-Tier Quantifiers

When the query has no second tier quantifiers, then SLP (Q) is a single
linear program, which we denote LP (Q). Let

Q = P (q1) ≥ p1, . . . P (qn) ≥ pn

LP (Q) has variables v that correspond to equivalence classes of conjuncts
of qi. Fig. 6 shows the algorithm that constructs LP (Q). In this program,
a variable vX represents the probability mass assigned to the worlds W
such that the sum of the mass of all worlds W where W |= qi, i ∈ X ≥ pi.

Definition 6. Let Q be a tier-2 query and LP (Q) its associated linear
program (Fig. 6), then for any world W let Σ(W ) = {i|W |= qi} (note
that Σ(W ) is in C). For any probabilistic database D = (W, P ) the so-
lution associated with D is denoted v(D) and is an assignment to the
variables of LP (Q) defied by

vX =
X

W :Σ(W )=X

P (W )

Theorem 1. Let Q = P (q1) ≥ p1, . . . , P (qn) ≥ pn, LP (Q) be as defined
in Fig. 6, and D = (W, P ). Then, the following two statements are
equivalent:
(1) D |= Q
(2) v(D), as defined in Definition 6, is a feasible solution to LP (Q).

The theorem follows from the following lemma:
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Input: A query Q = P (q1) ≥ p1, . . . P (qn) ≥ pn

Returns: A Linear Program LP (Q)

1. For every X ⊆ {1, . . . , n}, define a conjunctive query:

qX
def
= ∧

i∈X
qi

2. For X ⊆ {1, . . . , n}, define its closure X∗ = {i|qX ⊆ qi}.
Note that qX ≡ qX∗ . Let C be the set of closed sets.

3. For each X ∈ C, we create a variable vX .
4. We then add the following linear constraints over vX .

– For every X ∈ C, add a constraint vX ≥ 0.
– Add the constraint

P

X∈C
vX = 1.

– For every qi in Q, add
P

X∈C:X∋i
vX ≥ pi

Fig. 6: The algorithm to construct LP (Q)

Lemma 2. Let D = (W, P ) be a probabilistic database and let v(D) be
its associated solution then, for all i

X

X:X∋i

vX =
X

W :W |=qi

P (W )

Proof. It suffices to observe that W |= qi if and only if Σ(W ) ∋ i.

The theorem follows since each database D such that D |= Q is a feasible
solution. On the other hand, given a feasible solution v, we take W =
{IX | qX} where IX is any canonical instance for the conjunctive query
qX and P (IX) = vX .
An example of how to construct LP (Q) is given in the Appendix.

3.2 Queries with 2nd-Tier Quantifiers

In the prior section, we handled only the case where Q did not have any
existential quantifiers at the Tier-2 level. We address this limitation here
and show how to construct SLP (Q) whenever Q is of the form:

Q = ∃y1,∃y2, . . . , ∃yk.P (q1) ≥ p1, . . . P (qn) ≥ pn

We define some sets:

C = {c|c is a constant that appears in one of the qi}

C′ = {c1 . . . ck|ci is a fresh constant }

CONST = C ∪ C′

Then for each mapping, θ : {y1, . . . , yk} → CONST , θ provides a sub-
stitution for the y’s in Q to produce Q̂θ:

Q̂θ = P (q1[θ(y)/y]) ≥ p1, . . . P (qn[θ(y)/y]) ≥ pn

Define Lθ as the the linear program that corresponds to Q̂θ.
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Theorem 2. Let D = (W, P ), then the following statements are equiv-
alent:
– D |= Q
– ∃θ such that v(D) is a feasible solution for Lθ

Proof (Theorem 2). The proof of this theorem follows directly from the
proof of Theorem 1, and from the semantics of second tier queries given
in Section 2.2.

All possible mappings and their corresponding LPs are added to SLP (Q).
An example of how to construct SLP (Q) is given in the Appendix.

4 Query Containment

In this section, we show that Query Containment for conjunctive, tier-2
queries is decidable. There are two tier-2 queries as input:

Q = ∃y1, . . . , yk.P (q1) ≥ p1, . . . P (qn) ≥ pn

Q′ = ∃y1, . . . , yl.P (q′1) ≥ p′
1, . . . P (q′m) ≥ p′

m

4.1 Preliminaries

The key technical hurdle is illustrated by trying to decide containment
for the following pair of queries.

Example 5. Let Q = P (∃x.R(x)) ≥ 1 and Q′ = ∃y.P (R(y)) ≥ N−1 for
some N . Intuitively, Q states that the relation R is not empty, while the
query Q′ says that some particular value is present with probability at
least N−1. Example 4 is very similar to this one, but less general. There is
no containment relationship between these two queries, but providing a
counterexample is surprisingly subtle. In particular, we want to a provide
a counterexample database D such that D |= Q, but D 6|= Q′. One such
counterexample D is a database with N + 1 worlds Ii = {R(ci)} for
i = 1, . . . , N + 1 and P (Ii) = (N + 1)−1. This is somewhat jarring
because we seem to need to make N + 1 copies of the same database.
A little thought shows that this construction is necessary, any counter
example must have at least N + 1 worlds. This is so that we can drive
down the importance of any particular evaluation of the constants.

The proof of the main containment theorem expands on this idea. To
do so, we need to be precise by what we mean about copying. Thus, we
introduce a little bit of notation. A canonical world for a conjunctive
query q = g1, . . . , gn is a world I such that there exists a bijective homo-
morphism h : var(q) → D such that I =

S

i=1,...,m
h(gi). For example,

R(a, b) and R(b, c) are both canonical worlds for q = ∃x.R(x, y), but
R(a, a) is not.
Given a query q′(y) where y denotes the head variables of q′ (thus q′

is not necessarily a boolean query), and a query q, let Cert(q′, q) =
{t | q ⊆ q′(t)}, i.e., those values of t that are certain answers of q′ on the
canonical world for q. Denote Cert(Q′, q) =

S

q′∈Q′ Cert(q′, q).
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Lemma 3. Given a Boolean conjunctive query, qi, with at least a single
variable, there is an infinite set of canonical worlds for qi, {I1, . . . , In, . . .}
such that for any conjunctive query q′j(y) and any t of the same arity as
the head of q′j exactly one of the following two conditions holds:

(1) t ∈ Cert(q′j , qk) and so Ii |= q′j(t) for each i, or otherwise
(2) there is at most one Ii such that Ii |= q′j(t).

Proof. To construct the desired set of worlds, simply map each variable
in qi to a distinct, fresh variable in each world. This set of worlds has
the desired property.

We call the set Ii for i = 1, 2, . . . the set of copies for qi. Notice that its
construction does not depend on q′j .

4.2 Main Result

Consider the case when there are no Tier-2 quantifiers in Q (y variables).
We will remove this restriction later in the section.

The Linear Program We construct a set of canonical linear programs
CLP (Q): there is one program for each q′j ∈ Q′. Consider some fixed
q′j ∈ Q′ with probability p′

j . The program for q′j has the same variables
as LP (Q), and all constraints of LP (Q). In addition, we add a constraint
for each t0 ∈ Cert(Q′, q) of the following form:

X

X∈C:qX⊆q′
j
(t0)

vX < p′
j

An example of how to construct CLP (Q) is given in the Appendix.
This program captures containment in the following sense:

Theorem 3. There is a feasible solution to some program in CLP (Q, Q′)
if and only if Q is not contained in Q′.

Proof. Suppose there is a feasible solution, we show how to construct
a probabilistic database D = (W, P ) that is a counterexample to con-
tainment. Note that what is needed here is that such a counterexample
exists; it is constructed only for the sake of the proof.
First, given a feasible solution v, we define ε(v) to be the smallest slack
in the linear program. More precisely,

ε(v) = min
t0∈Cert(Q′,q)

p′
j −

0

@

X

X∈C:qX⊆q′
j
(t0)

vX

1

A

There are finitely many constraints, and the slack is non-zero in each
constraint, so we have that ε(v) > 0. Choose N such that N−12n = ε/2
where n is the number of qi queries in Q.
For each qX , we generate N canonical instances for qX that we denote
with WX =

˘

I(X,1), . . . , I(X,N)

¯

. Here, we choose any N worlds from the
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copy worlds defined above. We let W =
S

X
WX . We set the probabil-

ity function P as P (IX,i) = vXN−1, that is the mass for vX is evenly
distributed among all its copies.
This must be a counterexample because on the database D, ∃y.P (q′j(y)) <
p′

j holds. Indeed, for a fixed t0 we can write:

P (q′j(t0)) ≤
X

X∈C:qX⊆q′
j
(t0)

vX +
X

Y ∈C:qY 6⊆q′
j
(t0)

N−1

< p′ − ε + 2N2−Nε/2 < p′

The first line follows by construction: each copy I corresponding to an
X in the first sum is such that I |= q′j(t0). Thus, for any choice of t0
it must be that q′j(t0) is satisfied in at most one world, and hence with
probability ≤ N−1. This follows as a result of Lemma 3 and the fact
that there are at most 2N such sets, Y . Then, by our selection of N and
the definition of ε(n), we have the second line. Since our choice of t0
was arbitrary, this holds for all t0 simultaneously. Thus, we have that
q′j(t0) < p′

j for any t0. Finally, we note that v is a feasible solution to
LP (Q) as well, and hence by Thm. 1, D |= Q. Thus, we have produced
a counterexample to containment.
Now, we prove the other direction. Assume that we have any counterex-
ample database D. Construct v(D), which is an assignment of probabil-
ities to worlds in D. Observe:

P (q′j(t0)) ≥
X

X∈C:qX⊆q′
j
(t0)

vX

Thus, for each t0 we have P (q′j(t0)) < p′. Since D |= Q, this solution also
satisfies LP (Q). Hence, a counterexample implies a feasible solution.

Q Contains Quantifiers We guess a mapping θ from (the Tier-2 quan-
tifiers in Q) to constants so that θ : {y1, . . . , yk} → CONST and then
apply the previous theorem. This gives a simple NEXPSPACE algo-
rithm and then by Savitch’s theorem:

Corollary 1. We can decide containment in EXPSPACE

5 Related Work

As we mentioned in the introduction, there is a large body of work in
probabilistic databases [15,19] that deals with how to represent and store
probabilistic data. The first generation of probabilistic databases mainly
varied in their ability to represent distributions succinctly including tuple
independent databases [4], x-tables [16], and more succinct representa-
tions such as factor graphs [17].
Recently, there has been a renewed interest in query languages for prob-
abilistic data from the MayBMS group [1,9]; their query language is fully
compositional. As a result, their language can be viewed as allowing an
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arbitrary number of tiers as opposed to only two. They do not study the
containment problem.
There has also been renewed interest in containment. Notably the break-
through results of Green [10], who showed containment results for queries
over relations annotated with elements from a semiring. The language
study in his work is a classical language similar to a first-generation
probabilistic database: it does not manipulate the annotations within
the query language. It is an interesting extension of our work to study
containment for a rich query language that manipulates (more general)
semiring annotations.
Fagin et. al. [7] study a language for reasoning about probability that is
similar to the one we present here. They also demonstrate that systems
of linear inequalities can be used to capture the set of probability spaces
that will satisfy a particular statement in their language. Additionally,
their result states that when the queries are restricted to propositional
logic the construction is in NP. However, this work does not consider
query containment.

6 Conclusions and Future Work

We presented a decidable characterization of containment for a rich query
language over probabilistic databases, which is the first such algorithm to
address query containment of a probabilistic language that allows direct
manipulation of uncertainty. The future work for this project is in three
directions: (1) more expressive annotations and query languages, such as
arbitrary levels of nesting, (2) we plan to study query containment over
restricted, but practically important, classes of probabilistic databases,
such as tuple independent probabilistic databases, and (3) we plan to
find tractable subclasses of queries for the containment problem.

References

1. Lyublena Antova, Christoph Koch, and Dan Olteanu. 1010
6

worlds
and beyond: Efficient representation and processing of incomplete
information. In ICDE, pages 606–615, 2007.

2. Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms:
Managing incomplete information with probabilistic world-set de-
compositions. In ICDE, pages 1479–1480, 2007.

3. Omar Benjelloun, Anish Das Sarma, Alon Halevy, Martin Theobald,
and Jennifer Widom. Databases with uncertainty and lineage. The
VLDB Journal, 17(2):243–264, 2008.

4. Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on prob-
abilistic databases. In VLDB, pages 864–875, 2004.

5. Yanlei Diao, Boduo Li, Anna Liu, Liping Peng, Charles Sutton,
Thanh Tran 0002, and Michael Zink. Capturing data uncertainty
in high-volume stream processing. In CIDR, 2009.

6. Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration
with uncertainty. In VLDB, pages 687–698, 2007.

12



7. Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for
reasoning about probabilities. Inf. Comput., 87(1/2):78–128, 1990.

8. Avigdor Gal, Maria Vanina Martinez, Gerardo I. Simari, and V. S.
Subrahmanian. Aggregate query answering under uncertain schema
mappings. In ICDE, pages 940–951, 2009.
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14. Christopher Ré, Julie Letchner, Magdalena Balazinska, and Dan Su-
ciu. Event queries on correlated probabilistic streams. In SIGMOD
Conference, pages 715–728, 2008.

15. Christopher Re and Dan Suciu. Materialized views in probabilis-
tic databases for information exchange and query optimization. In
VLDB, pages 51–62, 2007.

16. Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploit-
ing lineage for confidence computation in uncertain and probabilistic
databases. In ICDE, pages 1023–1032, 2008.

17. Prithviraj Sen and Amol Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE, pages 596–
605, 2007.

18. University of Washington. RFID Ecosystem.
http://rfid.cs.washington.edu/.

19. Jennifer Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, pages 262–276, 2005.

20. Yahoo! Research. The Purple Sox System.
http://research.yahoo.com/node/498.

A Appendix: Examples

To provide the reader with more intuition regarding how to construct
LP (Q), SLP (Q), and CLP (Q), we present a complete example here.

A.1 Constructing LP (Q)

Let
Q = P (R(′a′)) ≥ .2, P (R(′b′)) ≥ .8

Because Q has only constants we can construct a single linear program,
LP (Q). First, we observe that

q1 = R(′a′) and q2 = R(′b′)
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In this case there are no shared tuples between q1 and q2, so the linear
program we construct will have four variables, v{}, v{1}, v{2}, and v{1,2}.
Where v{} represents the probability mass assigned to the canonical
world for an “empty query”, v{1} represents the probability mass as-
signed to the canonical world for q1, v{2} represents the probability mass
assigned to the canonical world for q2, and v{1,2} represents the proba-
bility mass assigned to the canonical world for q1 ∧ q2.
From this, we get the following LP:

Non-Negativity Constraints v{}, v{1}, v{2}, v{1,2} ≥ 0

Validity Constraint v{} + v{1} + v{2} + v{1,2} = 1

Constraint for q1 v{1} + v{1,2} ≥ .2

Constraint for q2 v{2} + v{1,2} ≥ .8

A.2 Constructing SLP (Q)

Now, let
Q = ∃y1, y2.P (R(y1)) ≥ .2, P (R(y2)) ≥ .8

In this case, there are two mappings we need to consider. The first map-
ping (θ1) gives different constants for y1 and y2, whereas the second
mapping (θ2) yields the same constant for y1 and y2.

θ1 mapping Here, we assume that θ1(y1) 6= θ1(y2). Since the actual
values of the constants can be chosen arbitrarily, assume that

θ1(y1) =′ a′

θ1(y2) =′ b′

In this case,
Q̂θ1

= P (R(′a′)) ≥ .2, P (R(′b′)) ≥ .8

As with the prior example, we have four “canonical worlds”, and thus
Lθ1

is:

Non-Negativity Constraints v{}, v{1}, v{2}, v{1,2} ≥ 0

Validity Constraint v{} + v{1} + v{2} + v{1,2} = 1

Constraint for q1 v{1} + v{1,2} ≥ .2

Constraint for q2 v{2} + v{1,2} ≥ .8

θ2 mapping This time, we assume that θ2(y1) = θ2(y2). Since the actual
values of the constants can be chosen arbitrarily, we simply choose

θ2(y1) = θ2(y2) =′ a′

This mapping provides a different query:

Q̂θ2
= P (R(′a′)) ≥ .2, P (R(′a′)) ≥ .8

Here, n = 2 and of the four subsets of {1, 2} only two are closed:
{} and {1, 2}. Thus, this query yields only 2 canonical worlds (the one
that contains R(′a′) and the empty world), and only two variables are
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needed for Lθ2
. We construct a new linear program:

Non-Negativity Constraint v{}, v{1,2} ≥ 0

Validity Constraint v{} + v{1,2} = 1

Constraint for q1 v{1,2} ≥ .2

Constraint for q2 v{1,2} ≥ .8

SLP (Q) = {Lθ1
,Lθ2

}.

A.3 Constructing CLP (Q)

For this step, we need two queries, Q and Q′. Let

Q = P (R(′a′)) ≥ .2, P (R(′b′)) ≥ .8

and
Q′ = ∃y1, y2.P (R(y1), R(y2)) ≥ .3, P (R(′b′)) ≥ .4

We also assume that we are given LP (Q) (which was constructed in an
earlier section of this example). In order to check containment, we want
to know if there are any databases that will satisfy Q but not Q′. Since
Q′ is a conjunct of two sub-queries, we only need a solution that finds a
counterexample for one of our two sub-queries.

Sub-query q1 = P (R(y1), R(y2)) ≥ .3 If we evaluate the arity-2 query
R(y1), R(y2) on the canonical worlds from the LP (Q), we get only one
world, the one that contains both R(′a′) and R(′b′). The linear program
for Q uses variable v{1,2} to represent the probability mass assigned to
this world, so we add a new constraint to LP (Q) to get an LP for con-
tainment. The new program is:

LP (Q)
...

¬q1 Constraint v{1,2} < .3

This program is added to CLP (Q).

Sub-query q2 = P (R(′b′)) ≥ .4 If we evaluate the arity-1 query R(y1)
on the canonical worlds from the LP (Q), we get two worlds, the one that
satisfies R(′b′) only and the one that contains both R(′a′) and R(′b′).
The linear program for Q uses variables v{2} and v{1,2} to represent the
probability mass assigned to these worlds (respectively). We add a new
constraint to LP (Q) to get an LP for containment. This new program
is:

LP (Q)
...

¬q2 Constraint v{2} + v{1,2} < .4

This program is also added to CLP (Q), which (now complete) contains
two linear programs, one for each sub-query of Q′.
The first LP has a feasible solution, and thus provides a counter-example
to containment, whereas the second LP has no feasible solution.
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