
Mindtagger: A Demonstration of Data Labeling in
Knowledge Base Construction

Jaeho Shin
Stanford University

jaeho@cs.stanford.edu

Christopher Ré
Stanford University

chrismre@cs.stanford.edu

Michael Cafarella
University of Michigan

michjc@umich.edu

ABSTRACT

End-to-end knowledge base construction systems using sta-
tistical inference are enabling more people to automatically
extract high-quality domain-specific information from un-
structured data. As a result of deploying DeepDive framework
across several domains, we found new challenges in debug-
ging and improving such end-to-end systems to construct
high-quality knowledge bases. DeepDive has an iterative
development cycle in which users improve the data. To help
our users, we needed to develop principles for analyzing the
system’s error as well as provide tooling for inspecting and
labeling various data products of the system. We created
guidelines for error analysis modeled after our colleagues’
best practices, in which data labeling plays a critical role in
every step of the analysis. To enable more productive and
systematic data labeling, we created Mindtagger, a versatile
tool that can be configured to support a wide range of tasks.
In this demonstration, we show in detail what data labeling
tasks are modeled in our error analysis guidelines and how
each of them is performed using Mindtagger.

1. INTRODUCTION

End-to-end knowledge base construction (KBC) systems
using statistical inference are enabling more people to auto-
matically extract high-quality domain-specific information
from unstructured data. One motivating example for our
work is the MEMEX [1] project in which law enforcement
officials fight human trafficking crimes by extracting infor-
mation from sex and work labor ads on the internet. The
system extracts information such as phone numbers, wages,
and identifiers of trafficked victims from ads crawled from
the dark web, which is not readily accessible from ordinary
search engines. A wide range of data processing components
are put together in the system: crawlers pull in large amounts
of unstructured text and image data from various sources;
ETL (extract, transform, and load) components clean the
raw data and add natural language processing markups to
the text; an array of extractors extract candidate mentions

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 21508097/15/07.

KBC System Built with DeepDive

Candidate

& Feature

Extraction

Supervision
Learning &

Inference

Error Analysis Supported by Mindtagger

Sampled

Data Items

Task Templates

Data

Labeling

Quality Evaluation

Error Clustering

Feature Discovery

Knowledge

Base

Raw

Data

P
o
ss

ib
le

Im
p
ro

v
em

en
ts

Figure 1: Iterative development cycle of a knowl-
edge base construction system built with DeepDive

and error analysis steps supported by Mindtagger.

of entities and relationships along with their features; an
inference engine constructs and trains a probabilistic model
from the data to predict probabilities of the extracted in-
formation; finally, a search engine surfaces such information
to law enforcement personnel. Such an end-to-end system
achieves higher quality as its interdependent components
are not developed in isolation but are improved as a whole.
Knowing where to look to improve the quality is difficult,
and this is where the tool we demonstrate, Mindtagger helps.

Mindtagger is a tool built on top of DeepDive [4],1 a frame-
work we created that allows users to process unstructured
data to extract structured knowledge using statistical infer-
ence. Several groups in different domains are using DeepDive

and Mindtagger to construct high-quality knowledge bases:
paleo-biology, genomics, pharma domains, intelligence, law-
enforcement, and material science. We identified the follow-
ing challenges in developing KBC systems:

◦ Principled Error Analysis. DeepDive users make in-
cremental improvements over many short iterations to
the basic versions of its user-defined components. Users
evaluate the end result after each iteration because every
component can have an impact on the overall quality of
the knowledge base being constructed. However, in many
cases, our colleagues were tempted to examine only a small
sample of errors and to use their intuition and luck to fix
whichever attractive ones they encountered. Modeling
after the best practices from our successful collaboration,
we created guidelines for error analysis [3] that help users

1Both are open source at http://git.io/mindtagger and
http://deepdive.stanford.edu.

(a) Precision mode (b) Full markup recall mode (c) Inspection mode for labeling images

Figure 2: Screenshots of Mindtagger operating in three different modes.

identify possible improvements and assess their potential
impact in a principled way.

◦ Productive Data Labeling. Lack of tooling for in-
specting and labeling data products of the system under
development was slowing down every iteration of the devel-
opment cycle. In every step of our error analysis guidelines,
data labeling plays a key role. For example, identifying
errors from sampled data products and inspecting the er-
rors in more depth to collect ideas for improvements both
require labeling the data. We noticed that even when our
colleagues followed good principle, precious development
time was being wasted in mundane data transformation
and cleaning tasks, such as ad-hoc reformatting of data
products to more human-friendly representations and man-
ual collection of the labels. To enable more productive
data labeling and to study unanticipated types of label-
ing tasks involved in the actual error analysis, we created
Mindtagger, an interactive graphical tool for labeling data.
Innovative systems such as Data Tamer [5] and Trifacta [2]
are making human involvement more productive in data
integration, cleaning, and transformation, but our setup is
richer in the sense that end-to-end KBC systems typically
handle those problems as part of the statistical inference.

◦ Variable Data Products and Labeling Tasks. Al-
though conceptually similar error analysis steps are per-
formed every time, the data to be inspected as well as the
detail of necessary labeling tasks constantly vary as devel-
opment progresses. For example, deciding the correctness
of certain relationship extraction may require presentation
of extra information very specific to it, and newly extracted
features may need special visualizations for proper exami-
nation. We designed Mindtagger to support a wide range
of tasks and data types by mixing and matching predefined
configuration fragments so that the task configurations
could be easily reused and extended.

In this demonstration, we present in detail the data labeling
tasks modeled in our error analysis guidelines, and how our
versatile labeling tool can be used in a principled way to per-
form each of them, using a simplified part of a hypothetical
knowledge base construction system as an example.

2. SYSTEM OVERVIEW

Mindtagger is an interactive data labeling tool we created to
help DeepDive users perform error analysis in more systematic

and productive ways. Mindtagger takes as input a list of data
items and a template that defines the presentation of, and
possible interactions with the items and provides a graphical
user interface for annotating labels while browsing them.
It displays simple statistics of the entered annotations and
also outputs them in various formats (e.g., CSV, SQL, and
JSON). Users produce more sophisticated statistics from
the annotations or take them back into the DeepDive data
flow as training sets. Figure 1 shows where Mindtagger

and the error analysis steps it supports fit into the overall
iterative development cycle of an end-to-end knowledge base
construction system. For error analysis, DeepDive users
run a set of SQL queries against their underlying database
to obtain samples of data products resulting from the last
development iteration. Each of those queries have associated
Mindtagger templates set up for a particular data labeling
task, and some have additional scripts for post-processing
the collected annotations. Common configurations of the
tool for error analysis are described in more detail in Section
3.

Mindtagger can be easily configured to support a wide range
of data labeling tasks by customizing one of its predefined
modes: precision, full markup recall, quick check recall, and
inspection mode, some of which are shown in Figure 2. Let’s
take an example of estimating the precision of an extraction,
which is about labeling false positive errors in the sample.
Such a task can be set up by simply declaring how each item is
presented in a user-defined template for precision mode. The
tool then provides a GUI optimized for the task with buttons
for labeling each item as correct or incorrect along with
keyboard shortcuts for quicker navigation and annotation.
In addition to the correct/incorrect labels, it provides a way
to annotate each item with ad-hoc, user-defined tags. We
found this functionality to be particularly powerful for error
analysis because it gives a means to clustering the items as
the annotator goes through them while entering the main
labels. Various types of data items are supported by the
tool’s minimal HTML-based template syntax. For example,
an array of words decorated with natural language processing
markups, which is a data representation widely used across
text-based DeepDive applications, can be easily presented as
a human-readable sentence, and image data can be presented
as nicely rendered graphics with minimal effort. Although
the tool was primarily created for DeepDive, it can be used
independently as a general data labeling tool for any data
items materialized in either CSV/TSV or JSON format.

3. DEMONSTRATION DETAILS

We use a small part of a hypothetical knowledge base
construction system to demonstrate how Mindtagger supports
the data labeling tasks necessary for a full error analysis cycle.
Our guidelines for error analysis are modeled after the best
practices used by successful DeepDive users, and it boils down
to following these three steps after every iteration:
1. Evaluate the precision and/or recall of the extractions by

identifying errors from a sample of the data product.
2. Inspect and cluster the errors with their immediate details,

such as extracted features.
3. Explore extra data products relevant to the most common

errors to develop concrete ideas for improvement.
For each step, we also modeled the necessary data labeling
tasks and designed Mindtagger to support them with varying
configurations of data items, their presentation, the labels
to collect, and allowed interactions during the tasks.

Phone Number Extraction Example. As a classical exam-
ple, a demo attendee will suppose she is extracting phone
numbers mentioned in a collection of ads on the web as
part of a greater knowledge base constructed, such as the
anti-human-trafficking one built for MEMEX. In real KBC
systems, highly domain-specific concepts such as gene, pro-
tein, drug, disease, phenotype, and material mentions are
extracted, but we use this example as it is familiar to every-
one. For simplicity, we assume the information extraction is
done using a simple binary classifier, and the following four
components are in her system:
◦ Candidate Extraction. A basic candidate extractor
scans the full text of the web pages with a set of simple
regular expressions and emits matching text-spans that
are likely to be phone numbers.

◦ Feature Extraction. Then a feature extractor collects
words and phrases appearing near each candidate as its
features for classification.

◦ Supervision. Instead of manually curating a training set,
a program with a set of rules collects candidates as positive
training examples that appear in a sentence that contains
words highly likely to appear next to phone numbers, such
as “call,” “phone,” or “contact.”

◦ Inference. Finally, the binary classifier uses logistic re-
gression to learn and predict whether the text-span is a
phone number or not.

3.1a. Evaluating Precision. To get a sense of how well
each component is performing at the moment, the attendee
first evaluates precision by interacting with Mindtagger. Pre-
cision of the candidate extractor as well as the classifier is
evaluated by first taking a sample of the output, then label-
ing the false positives. The estimated precision is simply the
ratio of the number of true positives to the total number
of samples examined. We present Mindtagger’s precision

mode with the following configuration so the attendee can
try performing the labeling task as shown in Figure 2 (a).
◦ Data items. Random samples of text-spans extracted
as candidates for phone numbers (or classified as phone
numbers) are prepared.

◦ Presentation. Each sentence containing a candidate
text-span is shown with the candidate highlighted.

◦ Labels/Interaction. Whether a candidate is a valid
phone number can be annotated by the attendee. Buttons

and keyboard shortcuts are used to quickly mark and move
to the next one. Counts of each label are displayed, and
items can be quickly filtered by their labels.

3.1b. Evaluating Recall. Mindtagger provides two modes
for recall estimation: full markup and quick check modes.
Estimating recall is slightly more challenging than precision,
as it’s about the unseen part of the data. The foremost
objective of evaluating recall is to discover false negatives
from the samples drawn from the entire corpus, not from the
output of the extractor or classifier. The estimated recall is
then the reciprocal of 1 + the relative size of false negatives
to true positives in the sample.

1. Full markup mode is designed for carefully identifying
all mentions appearing in sampled documents, as shown
in Figure 2 (b). The exact number of false negatives
can be counted by comparing how many were missed
by the extractor or classifier among all mentions high-
lighted through this mode. The attendee can interact
with the Mindtagger task set up as below to understand
how sampled text could be fully marked up.

◦ Data items. All sentences of a few randomly sampled
documents drawn from the entire corpus are prepared.

◦ Presentation. Sentences are displayed in a readable
format similar to their original appearance on the web.

◦ Labels/Interaction. Multiple text-spans in each sen-
tence can be highlighted as valid phone numbers by the
attendee. The highlighted positions are collected, and
we show an example script for comparing them against
the candidate extractor and classifier’s output.

2. Quick check mode is for tagging whether a sentence or
paragraph simply contains a mention or not. The false
negatives can be counted approximately from the number
of sentences/paragraphs that were marked by this mode
yet didn’t contain any output of the candidate extractor
or classifier. This mode is less burdensome than the full
markup mode, so it can be performed much more quickly
for a greater number of samples. Although the coarser
granularity may contribute to inaccuracy, we found it’s
a cost-effective way for obtaining a reasonable estimate
in many cases. The attendee can also try this mode in
Mindtagger to compare with the full markup mode.

◦ Data items. Random samples of sentences or para-
graphs drawn from the entire corpus are prepared.

◦ Presentation. Each sentence/paragraph is displayed
separately in a readable format.

◦ Labels/Interaction. Whether each item contains a
valid phone number can be annotated by the attendee.
Buttons and keyboard shortcuts similar to precision
mode are used to quickly mark and move to the next
one. We show an example script for using the entered
labels to compute the approximate recall and compare
with the estimate computed from full markup mode.

3.2. Inspecting Errors. We assume the attendee wants to
improve the extraction quality after evaluating precision and
recall, although error analysis in general can stop here when
the measures are satisfactory. She now has to understand the
cause for each error found in the previous steps in order to
cluster them and focus on the most common type. Improve-
ment of the candidate extractor can be guided by concrete

error examples of false negatives that were neglected and
false positives that are easy to suppress from becoming a can-
didate. Having the extracted features visible along with their
learned weights while inspecting each error helps analyze how
certain false negatives got such low probability or how some
false positives weren’t suppressed by the classifier. Because
it is impossible to know in advance which types of errors are
the most widespread ones, and hence having the greatest
impact when fixed, clustering them during the inspection is
very important. The attendee browses the errors partially
labeled with their causes in Mindtagger’s inspection mode

using the configuration below. She can add her own labels to
the text mistaken as phone numbers, such as “part of URL”
or “part of product code,” which hints at how the regular
expressions should be tuned or what new features should be
extracted.
◦ Data items. False positive errors from the precision

evaluation task are prepared. In general, the set of errors
to inspect is chosen from corresponding labeling tasks
depending on the target measures to improve (precision,
recall, or both). Each error is joined with the list of
extracted features and weights if available.

◦ Presentation. Each error is displayed as a highlighted
text-span in its sentence along with the probability pre-
dicted by the classifier and extracted features with their
learned weights as a table if available.

◦ Labels/Interaction. Labels denoting the analyzed cause
of the error can be added by the attendee. Text input box,
buttons, and keyboard shortcuts are used to quickly enter
a new label or to select already entered ones. The size of
each class of errors is displayed by cause, and the examples
can be quickly accessed through filtering by label.

3.3. Calibrating Supervision. By now the attendee is
supposed to observe that the most common errors are due
to confusing part of a URL that contains the word “phone”
as phone numbers. To correct the inspected errors, it is
often necessary to explore more data that share features with
the errors to calibrate the supervision rules. False positives
can be explained by features having spuriously high weights
learned from a biased training set with little negative exam-
ples but too many positive ones. Taking a broader look at
more candidates sharing such features helps in understanding
which rules were overly supervising the candidates as posi-
tive training examples, or more importantly, what new rules
could be created to turn some of the unsupervised candidates
into negative training examples. Similarly, false negatives
due to low-weighted features can be handled by calibrating
the supervision rules to introduce more positive examples
after examining other candidates sharing the features. From
previous steps, the attendee already senses that the rule
treating all 10-digit numbers near the word “phone” as pos-
itive training examples is problematic. Using Mindtagger’s
inspection mode, the attendee can reliably come up with
new rules for negative training examples based on concrete
observations.
◦ Data items. Other candidates that also have the “phone”
word feature are sampled. They are all positive training
examples in this case, but in general, they are joined
with training labels and provenance information for the
responsible supervision rules. Other features extracted for
each candidate along with their learned weights are also
joined.

◦ Presentation. Each candidate is displayed as highlights
within its sentence along with its supervised label and the
relevant rules, extracted features, and learned weights.

◦ Labels/Interaction. Labels denoting ideas for fixing
existing rules or creating new rules can be added to each
candidate by the attendee. Text input box, buttons, and
keyboard shortcuts are used to quickly annotate them.

3.4. Labeling Images. To demonstrate Mindtagger’s ca-
pability of handling data types other than text, we show a
task for labeling images. Suppose a large fraction of phone
numbers actually appears in images embedded in web ads.
Another flow of extraction with an image classifier must
detect and classify parts of images as containing phone num-
bers. The attendee sees how data labeling tasks for text
presented so far can be set up similarly for images with
little modifications and tries interacting with Mindtagger’s
inspection mode set up for images as shown in Figure 2 (c).
◦ Data items. Candidates are now parts of images that

appear in web ads instead of text-spans of sentences.
◦ Presentation. Each data item is displayed as a high-

lighted part in the rendered image.
◦ Labels/Interaction. Labels to collect and supported

interactions are mostly invariant to the data type difference.
In the case of full markup mode for images, the tool allows
the attendee to select a region in the displayed image to
collect the boundary coordinates.

4. CONCLUSION

We introduced the challenges of debugging and improving
end-to-end knowledge base construction systems, learned
from our collaborative experience using DeepDive. We cre-
ated guidelines for error analysis of such system’s data prod-
ucts, where data labeling must be performed at every step.
Mindtagger is a tool we created for users to perform a wide
range of labeling tasks more productively and systematically.
Our demonstration shows how the tool supports the data
labeling tasks modeled in our guidelines.

Acknowledgments We gratefully acknowledge the support of the
Defense Advanced Research Projects Agency (DARPA) XDATA pro-
gram under No. FA8750-12-2-0335 and DEFT program under No.
FA8750-13-2-0039, MEMEX and SIMPLEX program, the National
Science Foundation (NSF) CAREER Award under No. IIS-1353606,
the Office of Naval Research (ONR) under awards No. N000141210041
and No. N000141310129, the National Institutes of Health Grant
U54EB020405 awarded by the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB) through funds provided by the trans-
NIH Big Data to Knowledge (BD2K, http://www.bd2k.nih.gov) ini-
tiative, the Sloan Research Fellowship, the Moore Foundation, Amer-
ican Family Insurance, Google, and Toshiba. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
DARPA, AFRL, NSF, ONR, NIH, or the U.S. government.

5. REFERENCES
[1] http://www.cbsnews.com/news/new-search-engine-exposes-the-dark-web/.

[2] http://www.trifacta.com/.

[3] C. Ré, A. A. Sadeghian, Z. Shan, J. Shin, F. Wang, S. Wu, and
C. Zhang. Feature engineering for knowledge base construction.
IEEE Data Eng. Bull., 37(3):26–40, 2014.

[4] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré.
Incremental knowledge base construction using deepdive.
PVLDB, 8(11), 2015.

[5] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,
M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu. Data curation
at scale: The data tamer system. In CIDR 2013, Sixth Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 6-9, 2013, Online Proceedings.
www.cidrdb.org, 2013.

