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ABSTRACT
The dark data extraction or knowledge base construction (KBC)
problem is to populate a SQL database with information from un-
structured data sources including emails, webpages, and pdf re-
ports. KBC is a long-standing problem in industry and research
that encompasses problems of data extraction, cleaning, and inte-
gration. We describe DeepDive, a system that combines database
and machine learning ideas to help develop KBC systems. The key
idea in DeepDive is that statistical inference and machine learn-
ing are key tools to attack classical data problems in extraction,
cleaning, and integration in a unified and more effective manner.
DeepDive programs are declarative in that one cannot write proba-
bilistic inference algorithms; instead, one interacts by defining fea-
tures or rules about the domain. A key reason for this design choice
is to enable domain experts to build their own KBC systems. We
present the applications, abstractions, and techniques of DeepDive
employed to accelerate construction of KBC systems.

1. INTRODUCTION
The process of populating a structured relational database from

unstructured sources has received renewed interest in the database
community through high-profile start-up companies (e.g., Tamr and
Trifacta), established companies like IBM’s Watson [5, 13], and a
variety of research efforts [9,24,29,38,43]. At the same time, com-
munities such as those of natural language processing and machine
learning are attacking similar problems under the name knowledge
base construction (KBC) [3, 11, 20]. While different communities
place differing emphasis on the extraction, cleaning, and integra-
tion phases, all seem to be converging toward a common set of
techniques that include a mix of data processing, machine learning,
and engineers-in-the-loop.

The ultimate goal of KBC is to obtain high-quality structured
data from unstructured information. The output databases pro-
duced are richly structured with tens of different entity types in
complex relationships. Typically, quality is assessed using two
complementary measures: precision (how often a claimed tuple
is correct) and recall (of the possible tuples to extract, how many
are actually extracted). These systems can ingest massive numbers
of documents–far outstripping the document counts of even well-
funded human curation efforts. Industrially, KBC systems are con-
structed by skilled engineers in a months-long (or longer) process–
not a one-shot algorithmic task. Arguably, the most important ques-
tion in such systems is how to best use skilled engineers’ time to
rapidly improve data quality. In its full generality, this question
spans a number of areas in computer science, including program-
ming languages, systems, and HCI. We focus on a narrower ques-
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Figure 1: Knowledge Base Construction (KBC) is the process
of populating a structured relational knowledge base from un-
structured sources. DeepDive is a system aimed at facilitating
the KBC process by allowing domain experts to integrate their
domain knowledge without worrying about algorithms.

tion, with the axiom that the more rapidly the programmer moves
through the KBC construction loop, the more quickly she obtains
high-quality data.

This paper presents DeepDive, our open-source engine for
knowledge base construction. DeepDive’s language and execu-
tion model are similar to other KBC systems: DeepDive uses a
high-level declarative language [9, 29, 31]. From a database per-
spective, DeepDive’s language is based on SQL. From a machine
learning perspective, DeepDive’s language is based on Markov
Logic [10, 31]: DeepDive’s language inherits Markov Logic Net-
works’ (MLN’s) formal semantics. Moreover, it uses a standard
execution model for such systems [9, 29, 31] in which programs
go through two main phases: grounding, in which one evaluates a
sequence of SQL queries to produce a data structure called a fac-
tor graph that describes a set of random variables and how they
are correlated. Essentially, every tuple in the database or result of
a query is a random variable (node) in this factor graph. The in-
ference phase takes the factor graph from the grounding phase and
performs statistical inference using standard techniques, e.g., Gibbs
sampling [44, 47]. The output of inference is the marginal proba-
bility of every tuple in the database. As with Google’s Knowledge
Vault [11] and others [32], DeepDive also produces marginal prob-
abilities that are calibrated: if one examined all facts with proba-

http://deepdive.stanford.edu
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Figure 2: Example KBC Application Built with DeepDive.

bility 0.9, we would expect approximately 90% of these facts to be
correct. To calibrate these probabilities, DeepDive estimates (i.e.,
learns) parameters of the statistical model from data. Inference is
a subroutine of the learning procedure and is the critical loop. In-
ference and learning are computationally intense (hours on 1TB
RAM/48-core machines).

In our experience with DeepDive, we found that KBC is an it-
erative process. In the past few years, DeepDive has been used to
build dozens of high-quality KBC systems by a handful of technol-
ogy companies, a number law enforcement agencies via DARPA’s
MEMEX, and scientists in fields such as paleobiology, drug re-
purposing, and genomics. Recently, we compared the quality of a
DeepDive system’s extractions to those provided by human volun-
teers over the last ten years for a paleobiology database, and we
found that the DeepDive system had higher quality (both precision
and recall) on many entities and relationships. Moreover, on all
of the extracted entities and relationships, DeepDive had no worse
quality [34]. Additionally, the winning entry of the 2014 TAC-
KBC competition was built on DeepDive [1]. In all cases, we have
seen the process of developing KBC systems is iterative: quality
requirements change, new data sources arrive, and new concepts
are needed in the application. This led us to develop a set of tech-
niques to make not only the execution of statistical inference and
learning efficient, but also the entire pipeline incremental in the
face of changes both to the data and to the DeepDive program.

This paper aims at giving a broad overview of DeepDive. The
rest of the paper is organized as follows. Section 2 describes the
KBC process, its scientific applications, and technical challenges.
Section 3 presents our language for modeling KBC systems inside
DeepDive. We discuss the different techniques in Section 4 and
give pointers for readers who are interested in each technique.

2. APPLICATIONS AND CHALLENGES
Knowledge base construction (KBC) is the process of populat-

ing a knowledge base with facts extracted from unstructured data
sources such as text, tabular data expressed in text and in structured
forms, and even maps and figures. In sample-based science [34],
one typically assembles a large number of facts (typically from
the literature) to understand macroscopic questions, e.g., about the
amount of carbon in the Earth’s atmosphere throughout time, the
rate of extinction of species, or all the drugs that interact with a
particular gene. To answer such questions, a key step is to con-
struct a high-quality knowledge base, and some sciences have un-
dertaken decade-long sample collection efforts, e.g., PaleoDB.org
and PharmaGKB.org.

In parallel, KBC has attracted interest from industry [13,49] and
academia [2, 3, 6, 12, 21, 23, 29, 32, 35, 38, 40, 45]. To understand

the common patterns in KBC systems, we are actively collaborat-
ing with scientists from a diverse set of domains, including geol-
ogy [46], paleontology [34], pharmacology for drug repurposing,
and others. We first describe one KBC application we built, called
PaleoDeepDive, then present a brief description of other applica-
tions built with similar purposes, and then finally discuss the chal-
lenges.

2.1 PaleoDB and PaleoDeepDive
Paleontology is based on the description and biological classifi-

cation of fossils, an enterprise that has been recorded in and an un-
told number of scientific publications over the past four centuries.
One central task for paleontology is to construct a knowledge base
about fossils from scientific publications, and an existing knowl-
edge base compiled by human volunteers has greatly expanded the
intellectual reach of paleontology and led to many fundamental new
insights into macroevolutionary processes and the nature of biotic
responses to global environmental change. However, the current
process of using human volunteers is usually expensive and time-
consuming. For example, PaleoDB, one of the largest such knowl-
edge bases, took more than 300 professional paleontologists and
11 human years to build over the last two decades, resulting in
PaleoDB.org. To get a sense of the impact of this database on
this field, at the time of writing, this dataset has contributed to 205
publications, of which 17 have appeared in Nature or Science.

This provided an ideal test bed for our KBC research. In par-
ticular, we constructed a prototype called PaleoDeepDive [34] that
takes in PDF documents. This prototype attacks challenges in opti-
cal character recognition, natural language processing, information
extraction, and integration. Some statistics about the process are
shown in Figure 3. As part of the validation of this system, we
performed a double-blind experiment to assess the quality of the
system versus the PaleoDB. We found that the KBC system built
on DeepDive has achieved comparable—and sometimes better—
quality than a knowledge base built by human volunteers over the
last decade [34]. Figure 3 illustrates the accuracy of the results in
PaleoDeepDive.

2.2 Beyond Paleontology
The success of PaleoDeepDive motivates a series of other KBC

applications in a diverse set of domains including both natural and
social sciences. Although these applications focus on very differ-
ent types of KBs, they are usually built in a way similar to Pale-
oDeepDive. This similarity across applications motivate our study
of building DeepDive as a unified framework to support these di-
verse applications.
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Figure 3: Quality of KBC systems built with DeepDive. On
many applications, KBC systems built with DeepDive achieves
comparable (and sometimes better) quality than professional
human volunteers, and leads to similar scientific insights on
topics such as biodiversity. This quality is achieved by itera-
tively integrating diverse sources of data- often quality scales
with the amount of information we enter into the system.

Human-Trafficking. MEMEX is a DARPA program that ex-
plores how next generation search and extraction systems can help
with real-world use cases. The initial application is the fight against
human trafficking. In this application, the input is a portion of
the publicly-indexed and "dark" web in which human traffickers
are likely to (surreptitiously) post supply and demand informa-
tion about illegal labor, sex workers, and more. DeepDive pro-
cesses such documents to extract evidential data such as names,
addresses, phone numbers, job types, job requirements, informa-
tion about rates of service, etc. Some of these data items are dif-
ficult for trained human annotators to accurately extract and have
never been previously available, but DeepDive-based systems have
high accuracy (Precision and Recall in the 90s, which may surpass
that of non-experts). Together with provenance information, such
structured, evidential data are then passed on to both other collab-
orators on the MEMEX program as well as law enforcement for
analysis and consumption in operational applications. MEMEX
has been featured extensively in the media and is supporting actual
investigations. For example, every human trafficking investigation
pursued by the Human Trafficking Response Unit in New York City
now involves MEMEX, for which DeepDive is the main extracted
data provider. In addition, future use cases such as applications in
the war on terror are under active consideration.

Medical Genetics. The body of literature in life sciences has
been growing at an accelerating speed, to the extent that it has been
unrealistic for scientists to perform research solely based on read-
ing and/or keyword search. Numerous manually-curated structured
knowledge bases are likewise unable to keep pace with exponen-
tial increases in the number of publications available online. For
example, OMIM is an authoritative database of human genes and
mendelian genetic disorders which dates back to the 1960s, and so
far contains about 6,000 hereditary diseases or phenotypes, grow-
ing at a rate of roughly 50 records / month for many years. Con-
versely, almost 10,000 publications were deposited into PubMed
Central per month last year. In collaboration with Prof. Gill Be-
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Figure 4: One challenge of building high-quality KBC systems
is dealing with diverse sources jointly to make predictions. In
this example page of a Paleontology journal article, informa-
tion extracted from tables, text, and external structured knowl-
edge bases are all required to reach the final extraction. This
problem becomes even more challenging when many extractors
are not 100% accurate, thus motivating the joint probabilistic
inference engine inside DeepDive.

jerano at Stanford, we are developing DeepDive applications to
create knowledge bases in the field of medical genetics. Specifi-
cally, we use DeepDive to extract mentions of genes, gene variants,
and phenotypes from the literature, and statistically infer their rela-
tionships, presently being applied to clinical genetic diagnostics &
reproductive counseling.

Pharmacogenomics. Understanding the interactions of chem-
icals in the body is key for drug discovery. However, the majority
of this data resides in the biomedical literature and cannot be easily
accessed. The Pharmacogenomics Knowledgebase is a high qual-
ity database that aims to annotate the relationships between drugs,
genes, diseases, genetic variation, and pathways in the literature.
With the exponential growth of the literature, manual curation re-
quires prioritization of specific drugs or genes in order to stay up
to date with current research. In collaboration with Emily Mallory
and Prof. Russ Altman [27] at Stanford, we are developing Deep-
Dive applications in the field of pharmacogenomics. Specifically,
we use DeepDive to extract relations between genes, diseases, and
drugs in order to predict novel pharmacological relationships.

TAC-KBP. TAC-KBP is a NIST-sponsored research competition
where the task is to extract common properties of people and orga-
nizations (e.g., age, birthplace, spouses, and shareholders) from a
1.3 million newswire and web documents – this task is also termed
Slot Filling. In the 2014 evaluation, 31 US and international teams
participated in the competition, including a solution based on Deep-
Dive from Stanford [1]. The DeepDive based solution achieved the
highest precision, recall, and F1 among all submissions.

2.3 Challenges
On all the applications mentioned above, KBC systems built with

DeepDive achieved high quality as illustrated in Figure 3. Achiev-
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Figure 5: Another challenge of building high-quality KBC sys-
tems is that one usually needs to deal with data at the scale
of tera-bytes. These data are not only processed with tradi-
tional relational operations, but also operations involving ma-
chine learning and statistical inference. Thus, DeepDive con-
sists of a set of techniques to speed up and scale up inference
tasks involving billions of correlated random variables.

ing this high quality level requires that we solve a set of challenges.

Joint Statistical Inference. We have found that text is often
not enough: often, the data that are interesting to scientists are lo-
cated in the tables, figures, and images of articles. For example, in
geology, more than 50% of the facts that we are interested in are
buried in tables [14]. For paleontology, the relationship between
taxa, as known as taxonomy, is almost exclusively expressed in
section headers [34]. For pharmacology, it is not uncommon for a
simple diagram to contain a large number of metabolic pathways.
To build a KBC system with the quality that scientists will be satis-
fied with, we need to deal with these diverse sources of input. Ad-
ditionally, external sources of information (other knowledge bases)
typically contain high-quality signals (e.g., Freebase and Macros-
trat). Leveraging these sources in information extraction is typi-
cally not studied in the classical information extraction context. To
perform high-quality and high-coverage knowledge extraction, one
needs a model that is able to ingest whatever sources present them-
selves, opportunistically—that is, a model which is not tied solely
to text but can handle more general extraction and integration from
multiple source types simultaneously.

This challenge becomes more serious when the information from
different sources are all noisy. Take Figure 4 for example, to reach
the extraction that the genus Xenacanthus appears in the location of
the name Obara, the extraction system needs to consult extractions
from text, tables, and external structured sources. These extractions
are often associated with a confidence score. To join these extrac-
tions with difference confidence level together, one needs a princi-
pled framework. The DeepDive approach to this challenge is based
on a Bayesian probabilistic approach. DeepDive treats all these
information sources as one joint probabilistic inference problem,

http://www.freebase.com/
http://macrostrat.org/

with all predictions modeled as random variables within a factor
graph model. This probabilistic framework ensures all facts that are
produced by DeepDive are associated with a marginal probability.
These marginal probabilities are meaningful in DeepDive, i.e., the
empirical accuracy that one should expect for the extracted men-
tions, and provide a guideline to the developer to improve the KBC
system built using DeepDive. In Section 3, we present a declar-
ative language inside DeepDive to help developers specify a joint
statistical inference problem easily.

Scalability and Efficiency. Performance is also a major chal-
lenge. In our KBC systems using DeepDive, we may need to per-
form inference and learning on billions of highly correlated ran-
dom variables. For example, Figure 5 illustrates the data flow
of PaleoDeepDive. The input to PaleoDeepDive contains nearly
300K journal articles and books, whose total size exceeds 2TB.
These raw inputs are then processed with tools such as OCR and
linguistic parsing, which are computationally expensive and may
take hundreds of thousands of machine hours. The outputs of these
tools are then used by DeepDive to construct factor graphs which
contain more than 300 million variables as candidates for predic-
tions (where over 30 million of these variables have probability
> 0.9 and are thus output as final predictions). Therefore, one of
our technical focus areas has been to speed up probabilistic infer-
ence [30, 31, 33, 47, 48]. In Section 4, we briefly describe these
techniques and provide pointers to readers who are interested in
further details.

3. KBC USING DEEPDIVE
We describe DeepDive, an end-to-end framework for building

KBC systems with a declarative language.

3.1 Definitions for KBC Systems
The input to a KBC system is a heterogeneous collection of un-

structured, semi-structured, and structured data, ranging from text
documents to existing but incomplete KBs. The output of the sys-
tem is a relational database containing relations extracted from the
input and put into an appropriate schema. Creating the knowledge
base may involve extraction, cleaning, and integration.

EXAMPLE 3.1. Figure 6 illustrates a new running example: a
knowledge base with pairs of individuals that are married to each
other. The input to the system is a collection of news articles and an
incomplete set of married persons; the output is a KB containing
pairs of person that are asserted to be married by the input sources.
A KBC system extracts linguistic patterns, e.g., “... and his wife ...”
between a pair of mentions of individuals (e.g., “Barack Obama”
and “M. Obama”). Roughly, these patterns are then used as fea-
tures in a classifier deciding whether this pair of mentions indicates
that they are married (in the HasSpouse) relation.

We adopt standard terminology from KBC, e.g., ACE. There
are four types of objects that a KBC system seeks to extract from
input documents, namely entities, relations, mentions, and rela-
tion mentions. An entity is a real-world person, place, or thing.

There is a justification for probabilistic reasoning as Cox’s theo-
rem asserts (roughly) that if one uses numbers as degrees of belief,
then one must either use probabilistic reasoning or risk contradic-
tions in one’s reasoning system, i.e., a probabilistic framework is
the only sound system for reasoning in this manner. We refer the
reader to Jaynes [19].
http://www.itl.nist.gov/iad/mig/tests/ace/
2000/
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Figure 6: A KBC system takes as input unstructured docu-
ments and outputs a structured knowledge base. The runtimes
are for the TAC-KBP competition system. To improve quality,
the developer adds new rules and new data with error analysis
conducted on the result of the current snapshot of the system.
DeepDive provides a declarative language to specify each type
of different rules and data, and techniques to incrementally ex-
ecute this iterative process.

For example, “Michelle_Obama_1” represents the actual entity for
a person whose name is “Michelle Obama”; another individual
with the same name would have another number. A relation as-
sociates two (or more) entities, and represents the fact that there
exists a relationship between the participating entities. For exam-
ple, “Barack_Obama_1” and “Michelle_Obama_1” participate in
the HasSpouse relation, which indicates that they are married.
These real-world entities and relationships are described in text; a
mention is a span of text in an input document that refers to an
entity or relationship: “Michelle” may be a mention of the entity
“Michelle_Obama_1.” A relation mention is a phrase that con-
nects two mentions that participate in a relation such as “(Barack
Obama, M. Obama)". The process of mapping mentions to entities
is called entity linking.

3.2 The DeepDive Framework
DeepDive is an end-to-end framework for building KBC sys-

tems, as shown in Figure 6. We walk through each phase. Deep-
Dive supports both SQL and datalog, but we use datalog syntax for
this exposition. The rules we describe in this section are manually
created by the user of DeepDive and the process of creating these
rules is application specific.

Candidate Mapping and Feature Extraction. All data in
DeepDive is stored in a relational database. The first phase popu-
lates the database using a set of SQL queries and user-defined func-
tions (UDFs) that we call feature extractors. By default, DeepDive
stores all documents in the database in one sentence per row with
markup produced by standard NLP pre-processing tools, including
HTML stripping, part-of-speech tagging, and linguistic parsing.
After this loading step, DeepDive executes two types of queries:
(1) candidate mappings, which are SQL queries that produce pos-
sible mentions, entities, and relations, and (2) feature extractors

For more information, including examples, please see http://
deepdive.stanford.edu. Note that our engine is built on
Postgres and Greenplum for all SQL processing and UDFs. There
is also a port to MySQL.

that associate features to candidates, e.g., “... and his wife ...” in
Example 3.1.

EXAMPLE 3.2. Candidate mappings are usually simple. Here,
we create a relation mention for every pair of candidate persons in
the same sentence (s):

(R1) MarriedCandidate(m1,m2) : -
PersonCandidate(s,m1),PersonCandidate(s,m2).

Candidate mappings are simply SQL queries with UDFs that
look like low-precision but high-recall ETL scripts. Such rules
must be high recall: if the union of candidate mappings misses a
fact, DeepDive has no chance to extract it.

We also need to extract features, and we extend classical Markov
Logic in two ways: (1) user-defined functions (UDFs) and (2)
weight tying, which we illustrate by example.

EXAMPLE 3.3. Suppose that phrase(m1,m2, sent) returns
the phrase between two mentions in the sentence, e.g., “and his
wife” in the above example. The phrase between two mentions may
indicate whether two people are married. We would write this as:

(FE1) MarriedMentions(m1,m2) : -
MarriedCandidate(m1,m2),Mention(s,m1),
Mention(s,m2),Sentence(s, sent)
weight = phrase(m1,m2, sent).

One can think about this like a classifier: This rule says that
whether the text indicates that the mentions m1 and m2 are mar-
ried is influenced by the phrase between those mention pairs. The
system will infer based on training data its confidence (by estimat-
ing the weight) that two mentions are indeed indicated to be mar-
ried.

Technically, phrase returns an identifier that determines which
weights should be used for a given relation mention in a sentence.
If phrase returns the same result for two relation mentions, they
receive the same weight. We explain weight tying in more detail
in Section 3.3. In general, phrase could be an arbitrary UDF that
operates in a per-tuple fashion. This allows DeepDive to support
common examples of features such as “bag-of-words” to context-
aware NLP features to highly domain-specific dictionaries and on-
tologies. In addition to specifying sets of classifiers, DeepDive in-
herits Markov Logic’s ability to specify rich correlations between
entities via weighted rules. Such rules are particularly helpful for
data cleaning and data integration.

Supervision. Just as in Markov Logic, DeepDive can use train-
ing data or evidence about any relation; in particular, each user
relation is associated with an evidence relation with the same
schema and an additional field that indicates whether the entry
is true or false. Continuing our example, the evidence relation
MarriedMentions_Ev could contain mention pairs with posi-
tive and negative labels. Operationally, two standard techniques
generate training data: (1) hand-labeling, and (2) distant supervi-
sion, which we illustrate below.

EXAMPLE 3.4. Distant supervision [17, 28] is a popular tech-
nique to create evidence in KBC systems. The idea is to use an in-
complete KB of married entity pairs to heuristically label (as True
evidence) all relation mentions that link to a pair of married enti-
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      MarriedCandidate(m1,m2), EL(m1,e1), EL(m2,e2),
      Married(e1,e2).

MID1 MID2 VALUE

M1 M2 true

MarriedMentions_Ev

EID1 EID2

Barack
Obama

Michelle
Obama

Married

EL
MID EID
M2 Michelle Obama

(2) User Schema

B. Obama and Michelle 
were married Oct. 3, 1992.

(1a) Unstructured Information

Malia and Sasha Obama 
attended the state dinner

Person1	 Person2	

Barack		
Obama	

Michelle		
Obama	

HasSpouse

(1b) Structured Information

(FE1) MarriedMentions(m1,m2) :-
      MarriedCandidate(m1,m2),Mentions(s,m1),
      Mentions(s,m2),Sentence(s,sent)
         weight=phrase(m1,m2,sent).

SID MID
S1 M2

Mentions

Figure 7: An example KBC system. See Section 3.2 for details.

ties:

(S1) MarriedMentions_Ev(m1,m2, true) : -
MarriedCandidates(m1,m2),EL(m1, e1),
EL(m2, e2),Married(e1, e2).

Here, Married is an (incomplete) list of married real-world per-
sons that we wish to extend. The relation EL is for “entity linking”
that maps mentions to their candidate entities. At first blush, this
rule seems incorrect. However, it generates noisy, imperfect exam-
ples of sentences that indicate two people are married. Machine
learning techniques are able to exploit redundancy to cope with the
noise and learn the relevant phrases (e.g., “and his wife” ). Neg-
ative examples are generated by relations that are largely disjoint
(e.g., siblings). Similar to DIPRE [4] and Hearst patterns [16],
distant supervision exploits the “duality” [4] between patterns and
relation instances; furthermore, it allows us to integrate this idea
into DeepDive’s unified probabilistic framework.

Learning and Inference. In the learning and inference phase,
DeepDive generates a factor graph, similar to Markov Logic, and
uses techniques from Tuffy [31]. The inference and learning are
done using standard techniques (Gibbs Sampling) that we describe
below after introducing the formal semantics.

Error Analysis. DeepDive runs the above three phases in se-
quence, and at the end of the learning and inference, it obtains a
marginal probability p for each candidate fact. To produce the fi-
nal KB, the user often selects facts in which DeepDive is highly
confident, e.g., p > 0.95. Typically, the user needs to inspect
errors and repeat the previous steps, a process that we call error
analysis. Error analysis is the process of understanding the most
common mistakes (incorrect extractions, too-specific features, can-
didate mistakes, etc.) and deciding how to correct them [36]. To
facilitate error analysis, users write standard SQL queries.

3.3 Discussion of Design Choices
We have found the following key aspects of the DeepDive ap-

proach that we believe enable non-computer scientists to build so-
phisticated KBC systems: (1) there is no reference in a DeepDive
program to the underlying machine learning algorithms. Thus,
DeepDive programs are declarative in a strong sense. Probabilis-
tic semantics provide a way to debug the system independent of the
algorithm it uses. (2) DeepDive allows users to write feature extrac-
tion code (UDFs) in familiar languages (Python, SQL, and Scala).
(3) DeepDive fits into the familiar SQL stack, which allows stan-

User Relations

Inference Rules

Factor Graph

Variables V

F1

R S Q

q(x) :- R(x,y) 

F2 q(x) :- R(x,y), S(y)

F1 F2
Factors F

Grounding

x y
a 0

a 1

a 2

r1

r2

r3

s1

s2

y
0

10

q1

x
a

r1 r2 r3 s1 s2 q1

Figure 8: Schematic illustration of grounding. Each tuple cor-
responds to a Boolean random variable and node in the factor
graph. We create one factor for every set of groundings.

dard tools to inspect and visualize the data. (4) The user constructs
an end-to-end system and then refines the quality of the system in
a pay-as-you-go way [26]. In contrast, traditional pipeline-based
ETL scripts may lead to user’s time and effort over-spent on a spe-
cific extraction or integration step–without the ability to evaluate
how important each step is for the quality of the end result. Anec-
dotally, pay-as-you-go leads to more informed decisions about how
to improve quality.

4. TECHNIQUES
A DeepDive program is a set of rules with weights specified us-

ing the language we described above. During inference, the val-
ues of all weights are assumed to be known, while, in learning,
one finds the set of weights that maximizes the probability of the
evidence. The execution of a DeepDive program consists of two
phases, namely grounding and statistical inference and learning. In
this section, we briefly describe the techniques we developed in
each phase to make DeepDive performant and scalable.

4.1 Grounding
As in Figure 8, DeepDive explicitly constructs a factor graph for

inference and learning using a set of SQL queries. A factor graph
is a triple (V , F, ŵ) in which V is a set of nodes that correspond
to Boolean random variables, F is a set of hyperedges (for f ∈ F,
f ⊆ V), and ŵ : F×{0, 1}V → R is a weight function. In DeepDive,
each hyperedge f corresponds to the set of groundings for a rule.
In DeepDive, V and F are explicitly created using a set of SQL
queries, and this process is called grounding.

EXAMPLE 4.1. Take the database instances and rules in Fig-



ure 8 as an example: each tuple in relation R, S, andQ is a random
variable, and V contains all random variables. The inference rules
F1 and F2 ground factors with the same name in the factor graph
as illustrated in Figure 8. Both F1 and F2 are implemented as SQL
statements in DeepDive.

Incremental Grounding. Because DeepDive is based on SQL,
we are able to take advantage of decades of work on incremen-
tal view maintenance. The input to this phase is the same as the
input to the grounding phase, a set of SQL queries and the user
schema. The output of this phase is how the output of ground-
ing changes, i.e., a set of modified variables ∆V and their factors
∆F. Since V and F are simply views over the database, any view
maintenance techniques can be applied to incremental grounding.
DeepDive uses the DRED algorithm [15] which handles both ad-
ditions and deletions. Recall that in DRED, for each relation Ri
in the user’s schema, we create a delta relation, Rδi , with the same
schema as Ri and an additional column count. For each tuple t,
t.count represents the number of derivations of t in Ri. On an
update, DeepDive updates delta relations in two steps. First, for
tuples in Rδi , DeepDive directly updates the corresponding counts.
Second, a SQL query called a “delta rule” is executed which pro-
cesses these counts to generate modified variables ∆V and factors
∆F. We found that the overhead of DRED is modest and the gains
may be substantial, so DeepDive always runs DRED–except on ini-
tial load.

4.2 Statistical Inference and Learning
The main task that DeepDive conducts on factor graphs is statis-

tical inference, i.e. determining for a given node what the marginal
probability is that this node takes the value 1. Since a node takes
value 1 when a tuple is in the output, this process computes the
marginal probability values returned to users. In general, com-
puting these marginal probabilities is ]P-hard [42]. Like many
other systems, DeepDive uses Gibbs sampling [37] to estimate the
marginal probability of every tuple in the database.

Efficiency and Scalability. There are two components to scal-
ing statistical algorithms: statistical efficiency, roughly how many
steps an algorithm takes to converge, and hardware efficiency, how
efficient each of those step is. We introduced this terminology and
studied this extensively in a recent paper [48].

DimmWitted, the statistical inference and learning engine in
DeepDive [48] is built upon our research of how to design a high-
performance statistical inference and learning engine on a single
machine [25, 30, 47, 48]. DimmWitted models Gibbs sampling as
a “column-to-row access” operation: each row corresponds to one
factor, each column to one variable, and the non-zero elements in
the matrix correspond to edges in the factor graph. To process one
variable, DimmWitted fetches one column of the matrix to get the
set of factors, and other columns to get the set of variables that
connect to the same factor. In standard benchmarks, DimmWit-
ted was 3.7× faster than GraphLab’s implementation without any
application-specific optimization. Compared with traditional work,
the main novelty of DimmWitted is that it considers both hardware
efficiency and statistical efficiency for executing an inference and
learning task.

• Hardware Efficiency DeepDive takes into consideration
the architecture of modern Non-uniform memory access

For example, for the grounding procedure illustrated in Figure 8,
the delta rule for F1 is qδ(x) : −Rδ(x,y).

(NUMA) machines. A NUMA machine usually contains
multiple nodes (sockets), where each sockets contains mul-
tiple CPU cores. To achieve high hardware efficiency,
one wants to decrease the communication across different
NUMA nodes.

• Statistical Efficiency Pushing hardware efficiency to the ex-
treme might decrease statistical efficiency because the lack
of communication between nodes might decrease the rate of
convergence of a statistical inference and learning algorithm.
DeepDive takes advantage of the theoretical results of model
averaging [50] and our own results about lock-free execu-
tion [25, 30].

On the whole corpus of Paleobiology, the factor graph contains
more than 0.2 billion random variables and 0.3 billion factors. On
this factor graph, DeepDive is able to run Gibbs sampling on a ma-
chine with 4 sockets (10 cores per socket), and we find that we
can generate 1,000 samples for all 0.2 billion random variables in
28 minutes. This is more than 4× faster than a non-NUMA-aware
implementation.

Incremental Inference. Due to our choice of incremental
grounding, the input to DeepDive’s inference phase is a factor
graph along with a set of changed variables and factors. The goal is
to compute the output probabilities computed by the system. Our
approach is to frame the incremental maintenance problem as ap-
proximate inference. Previous work in the database community has
looked at how machine learning data products change in response
to both to new labels [22] and to new data [7, 8]. In KBC, both the
program and data change on each iteration. Our proposed approach
can cope with both types of change simultaneously.

The technical question is which approximate inference algo-
rithms to use in KBC applications. We choose to study two popular
classes of approximate inference techniques: sampling-based ma-
terialization (inspired by sampling-based probabilistic databases
such as MCDB [18]) and variational-based materialization (in-
spired by techniques for approximating graphical models [41]).
Applying these techniques to incremental maintenance for KBC is
novel, and it is not theoretically clear how the techniques compare.
Thus, we conducted an experimental evaluation of these two ap-
proaches on a diverse set of DeepDive programs. We found these
two approaches are sensitive to changes along three largely orthog-
onal axes: the size of the factor graph, the sparsity of correlations,
and the anticipated number of future changes. The performance
varies by up to two orders of magnitude in different points of the
space. Our study of the tradeoff space highlights that neither ma-
terialization strategy dominates the other. To automatically choose
the materialization strategy, we developed a simple rule-based op-
timizer [39].

5. RELATED WORK
Knowledge Base Construction (KBC) has been an area of intense

study over the last decade [2, 3, 6, 12, 21, 23, 29, 35, 38, 40, 45, 49].
Within this space, there are a number of approaches.

Rule-Based Systems. The earliest KBC systems used pattern
matching to extract relationships from text. The most well-known
example is the “Hearst Pattern” proposed by Hearst [16] in 1992.
In her seminal work, Hearst observed that a large number of hy-
ponyms can be discovered by simple patterns, e.g., “X such as
Y.” Hearst’s technique has formed the basis of many further tech-
niques that attempt to extract high-quality patterns from text. Rule-



based (pattern matching-based) KBC systems, such as IBM’s Sys-
temT [23, 24], have been built to aid developers in construct-
ing high-quality patterns. These systems provide the user with a
(declarative) interface to specify a set of rules and patterns to derive
relationships. These systems have achieved state-of-the-art quality
on tasks such as parsing [24].

Statistical Approaches. One limitation of rule-based systems
is that the developer needs to ensure that all rules provided to the
system are high-precision rules. For the last decade, probabilistic
(or machine learning) approaches have been proposed to allow the
system to select from a range of a priori features automatically. In
these approaches, the extracted tuple is associated with a marginal
probability that it is true. DeepDive, Google’s knowledge graph,
and IBM’s Watson are built on this approach. Within this space,
there are three styles of systems that based on classification-based
frameworks [2, 3, 6, 12, 45], maximum a posteriori (MAP) [21, 29,
40], and probabilistic graphical models [10, 35, 49]. Our work on
DeepDive is based on graphical models.
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