
A Complete and Efficient Algebraic Compiler for XQuery

Christopher Ré
University of Washington

Jérôme Siméon
IBM T.J. Watson Research Center

Mary Fernández
AT&T Labs - Research

Abstract

As XQuery nears standardization, more sophisticated
XQuery applications are emerging, which often exploit the
entire language and are applied to non-trivial XML sources.
We propose an algebra and optimization techniques that are
suitable for building an XQuery compiler that is complete,
correct, and efficient. We describe the compilation rules for
the complete language into that algebra and present novel
optimization techniques that address the needs of complex
queries. These techniques include new query unnesting
rewritings and specialized join algorithms that account for
XQuery’s complex predicate semantics. The algebra and
optimizations are implemented in the Galax XQuery engine,
and yield execution plans that are up to three orders of mag-
nitude faster than earlier versions of Galax.

1. Introduction

As XQuery [21] nears standardization, more sophisti-
cated applications are emerging [2, 16, 17, 20]. From our
experience working with developers, new XQuery appli-
cations often utilize the entire language (e.g., schema val-
idation; modules), rely on complex aspects of XQuery’s
semantics (e.g., implicit conversions in predicates; sorting
by document order), and are applied to non-trivial XML
sources. Consequently, they require XQuery implementa-
tions that are at the same time complete, correct, and effi-
cient. In this paper, we describe an algebra and optimization
techniques that are suitable for building an XQuery com-
piler that satisfies all these requirements.

The queries generated by the Clio project [16] provide a
good example of the complexity that XQuery implementa-
tions must handle. Clio allows users to specify mappings
between multiple schemata in a declarative way. Figure 1
shows the Clio user interface with a simple mapping from
the schema for the DBLP database to the schema for an
authors database1. Below that interface is the query gen-
erated to transform data instances from one schema to the
other. This query uses a large subset of XQuery including

1Screenshot and Clio queries are courtesy of the Clio team.

nested FLWOR blocks with joins, path navigation, element
construction, and function calls. More advanced mappings
quickly result in very complex nested queries with multi-
way joins for which a naive nested-loop evaluation is unac-
ceptably slow.

A number of query processing and optimization tech-
niques have been developed for subsets of XQuery, includ-
ing techniques for XPath evaluation [4, 5, 9, 10], XQuery
unnesting [7, 14], XML streaming [1, 8, 13], and bulk tree
evaluation [6, 9, 15]. However, none of these techniques are
integrated into XQuery implementations that are capable of
running the Clio queries. Few available XQuery imple-
mentations, with the notable exceptions of XQRL [8] and
Saxon [11], are complete and provide good performance.
XQRL is specifically designed for XML stream process-
ing and does not perform as well on large data sets or on
nested queries (See experiments in [8]). Our experimental
evaluation shows that on Clio queries, our techniques result
in query plans that outperform Saxon by an order of mag-
nitude. The main obstacle to using existing optimization
techniques in a complete processor is the absence of an al-
gebra that supports the whole XQuery language and that is
amenable to applying these optimization techniques.

Existing algebras for XQuery fall into two camps. On
one side, tuple-based algebras [7, 14] facilitate the use of
relational optimization techniques. On the other side, tree-
based algebras [6] provide more natural support for novel
XML-specific optimizations. Our algebra borrows ideas
from both camps, extending a large fragment of the tuple-
based algebra from [14] with XML-specific operators. Both
fragments include new operators (e.g., type operations, po-
sitional maps) that are necessary for complete coverage of
XQuery 1.0. Our approach also encompasses the work on
algebraic compilation of XPath 1.0 presented in [4], extend-
ing it to support path expressions in the context of arbitrary
XQueries. Our algebra bares some similarity to the unified
algebra proposed by Manolescu and Papakonstantinou [12]
for classifying XQuery algebras. To the best of our knowl-
edge, our work is the first algebraic treatment of XQuery
that formalizes compilation of the complete language. We
believe that other XML optimizations from the literature
can be integrated into the resulting framework.

In this paper, we focus on the logical algebra and compi-
lation rules, along with query unnesting and join optimiza-
tions that are critical for Clio queries.

The paper makes the following technical contributions:

• We propose a complete algebra for XQuery 1.0, and
describe how to compile the complete XQuery lan-
guage into that algebra.

• We define a group-by operation that is specifically de-
signed to support unnesting rewritings for XQuery,
along with new logical rewritings that make unnesting
optimizations more robust for complex queries.

• We develop new join algorithms that account for
XQuery’s complex predicate semantics including ex-
istential quantification, atomization, implicit casting of
untyped values, and type promotion.

• We present an experimental evaluation of the compiler
that demonstrates its effectiveness on a wide range of
queries including those generated by Clio.

The compiler and optimizations have been implemented
in Galax 0.5.02. The compiler passes XQuery regression
tests, and its optimized plans are up to two orders of mag-
nitude faster than the naı̈ve evaluation strategy. On Clio
queries, the resulting compiler is three orders of magnitude
faster than previous versions of Galax and is one order of
magnitude faster than Saxon 8.1.1.

Section 2 illustrates the proposed compilation and op-
timization techniques on an example and identifies the
most important differences with previous work. Section 3
presents the algebra and Section 4 describes the compila-
tion rules for XQuery 1.0. Section 5 presents the logical
optimizations and Section 6 describes the join algorithms
for XQuery. Section 7 presents an experimental evaluation
of these techniques. Section 8 concludes the paper.

2. A Complete Example

We use the following variant of XMark’s Query 8 to il-
lustrate our techniques. This query builds one item ele-
ment for each person, containing his name and the number
of artifacts he acquired from a USSeller. The type test
on line 7 and type assertion on line 2 assume the existence
of an XML schema and of schema-validated data.

1. for $p in $auction//person (Q1)
2. let $a as element(*,Auction)* :=
3. for $t in $auction//closed_auction
4. where $t/buyer/@person = $p/@id
5. return validate { $t }
6. return <item person="{ $p/name }">
7. { count($a/element(*,USSeller)) }
8. </item>

2http://www.galaxquery.org/distrib.html

(: Clio Query Generator for XQuery 1.0 :)
let $doc0 := document("DBLP-after98.xml")
return
<authorDB>
{ clio:deep-distinct (
for $x0 in $doc0/dblp/inproceedings,

$x1 in $x0/author
return
<author>
<name>{ $x1/text() }</name>
<conf_jour>
<name>{ "SK700(", $x1/text(), ")" }</name>
<year>
<yr/>

{ clio:deep-distinct (
for $x0L1 in $doc0/dblp/inproceedings,

$x1L1 in $x0L1/author
where $x1/text() = $x1L1/text()
return
<pub>
<pub_id>{ "SK694(",$x0L1/..., ")"}</pub_id>
<title>{ $x0L1/title/text() }</title>
<pages>{ $x0L1/pages/text() }</pages>
<cdrom>{ $x0L1/cdrom/text() }</cdrom>
<url>{ $x0L1/url/text() }</url>

</pub>) }
</year>

</conf_jour>
</author>) }

<dateCreated/>
</authorDB>

Figure 1. Using XQuery in Clio

Although simpler than the query in Figure 1, this query
exhibits most of the features that make optimization of Clio
queries difficult. First, it uses a nested FLWOR (lines 3–
6) to compute the items purchased in a closed auction. A
typical plan for such a query is an outer-join between the
persons and auctions followed by a group-by on the per-
sons. However, none of the existing query unnesting tech-
niques [7, 14] can handle this query because of the presence
of XML operations (the type assertion on $a on line 2, and
validation on line 5) in the nested FLWOR block.
Algebraic compilation of XQuery. The first challenge is
to compile the query into a representation that makes tra-
ditional join and unnesting optimizations possible. This
typically means compiling the iterators in the query (here
FLWOR expressions) into a tuple-based algebra. The initial
plan after naı̈ve compilation into our algebra is shown be-
low. For readability, we do not expand the plans for XPath
expressions or the equality predicate. The reader is not ex-
pected to fully understand the details of the plan at this

point, but we use it to illustrate the main ideas of our ap-
proach. The algebra and the corresponding notations are
introduced in the next section.

1. MapToItem (P1)
2. {Element[item]
3. (Sequence
4. (Attribute[person]((IN#p)/name/text()),
5. count(IN#a/element(*,USSeller))))}
6. (MapConcat
7. {[a:TypeAssert[element(*,Auction)*]
8. (MapToItem{Validate(IN#t)}
9 (Select
10. {IN#t/buyer/@person = IN#p/@id}
11. (MapConcat{MapFromItem{[t:IN]}
12. ($auction//closed_auction)}(IN))))]}
13. (MapConcat{MapFromItem{[p:IN]}($auction//person)}([])))

The plan is a tree of operators and is read from the bot-
tom up. The plan contains operators over both tuples and
XML trees. Each operator has a name (e.g., Select), some
independent (or input) operators delimited by (), and some
dependent sub-operators delimited by {}, whose input is de-
noted by IN. The path expressions accessing the input data
are on lines 12 and 13. The MapConcat is a dependent
join equivalent to the D-Join operator in [4]. MapToItem
and MapFromItem are maps used at the boundary between
the fragments of the plan that process tuples and those
that process XML values. Combinations of MapFromItem
and MapConcat are used to create the proper tuple stream
(lines 13, 11 and 6) for the FLWOR expressions in the
query. Most other operators, such as tuple construction
([p:IN]), tuple access (#p), tuple selection (Select), or
XML type matching (TypeAssert), and validation (Vali-
date) have the obvious semantics. Finally, the new ele-
ments composing the result are constructed in the last part
of the plan (lines 2-5) using the Element operator.

An important difference with [14] is that we do not con-
vert sequences of items into sequences of singleton tuples.
Instead, our algebra treats sequences of items as holistic
values, making it easier to apply XML operators. For in-
stance, the TypeAssert operator on line 7 applies directly
to the item sequence produced by the MapToItem operator
on line 8. This approach eliminates the need for additional
nest(unnest) operators to recover(flatten) item sequences,
which complicate the plan and make unnesting rewritings
harder to detect. We describe the compilation rules from
XQuery to our algebra in Section 4.
Detecting opportunities for unnesting. The second chal-
lenge is how to detect opportunities for query unnesting.
Logical rewritings proposed by May et al [14] are very gen-
eral, but often rely on complex combinations of operators
(usually a map over a certain class of selection predicate).
When dealing with complex queries, such combinations of
map and selection do not appear in situ, but are almost
always interleaved with other operators. In our example,
MapFromItem with Validate and TypeAssert occur be-
tween the MapConcat on line 6 and the Select on line 9.

In Section 5, we propose logical rewritings that make the in-
troduction of the group-bys more robust to such variations
in the query plan.
A custom XQuery group-by operator. We also propose
a group-by operator specifically adapted to XQuery’s se-
mantics. Previous work, notably [14], has relied on stan-
dard nested-relational group-bys, which typically produce
tuple partitions based on a grouping criteria. In the case
of XQuery, it makes more sense to apply the type asser-
tion element(*,Auction)*, as well as the path navi-
gation and the count, directly on each partition inside the
group-by. This calls for an XML-specific group-by in which
each partition contains sequences of items instead of tuples
of individual items. Our final plan, which uses this XML-
specific GroupBy operator is:

1. MapToItem (P2)
2. {Element[item]
3. (Sequence
4. (Attribute[person]((IN#p)/name/text()),
5. count(IN#a/element(*,USSeller))))}
6. (GroupBy[a,index,null]
7. {TypeAssert[element(*,Auction)*](IN)}
8. {Validate(IN#t)}
9. (LOuterJoin[null]{(IN#t)/buyer/@person = (IN#p)/@id}
10. (MapIndexStep[index]
11. (MapFromItem{[p : IN]}($auction//person)),
12. MapFromItem{[t:IN]}($auction//closed_auction))))

This plan features the expected GroupBy (line 6) and
LOuterJoin (line 9). An important difference from the gen-
eral purpose group-by used in [14] is that our GroupBy has
two dependent sub-operators: One that is applied to the en-
tire partition (here, applying type matching, selecting the
USSellers and the count), and one that is applied to
each item in the partition (here, applying validation). This
GroupBy operator can be implemented efficiently as one
physical operator. Another difference is that since we do
not use nested tuples, another method must be used to pre-
serve the input sequence order during evaluation. This is
the purpose of the MapIndexStep on line 10. The group-
by operator and the logical rewritings to obtain (P2) are de-
scribed in detail in Section 5.
Efficient join algorithms for XQuery. The last chal-
lenge is to introduce the proper algorithm for the outer-
join. This is more complex for XQuery than in the rela-
tional context. First, the join operator must preserve or-
der. As a result, standard hash or sort joins cannot be
used as is. Instead, we implement variants of standard
index-hash and B-tree index joins that preserve the input
sequence order. Second, the appropriate hash function or
B-tree index for the join must take the semantics of XQuery
predicates into account. This semantics is best understood
by looking at the normalization of the equality predicate
$t/buyer/@person = $p/@id:

some $x’ in fn:data($t/buyer/@person) satisfies
some $y’ in fn:data($p/@id) satisfies

op:equal(fs:convert-operand($x’,$y’),
fs:convert-operand($y’,$x’))

In this expression, the function fn:data denotes atomiza-
tion; the function fs:convert-operand casts untyped
data to a target type; and op:equal is an overloaded com-
parison between the various XQuery atomic types that also
handles type promotion.

In a traditional hash-join algorithm, each branch of
the join must be independent of the other. Developing
such an algorithm for XQuery, therefore, seems impos-
sible given the above equality test, because the result of
fs:convert-operand depends on values from both
branches of the join. In Section 6, we show that it is pos-
sible to develop a hash-join algorithm that takes XQuery’s
predicate semantics into account.

3. The XQuery Algebra

Data model. The algebra is defined on a logical data
model that includes XML values and tables of XML val-
ues. At the physical level, our implementation supports
tables represented as cursors or as main-memory arrays
over tuples, and XML values represented as XML token
streams [8], as XML stored in relational indices [19], or
as a main-memory tree data structure similar to the DOM.
We focus here on the logical algebra. Physical algorithms
for joins are described in Section 6.

A value in the logical data model is an XML value, i.e.,
an ordered sequences of items in the XQuery data model,
or a table, i.e., an ordered sequence of tuples containing
XML values. S(τ) denotes an ordered sequence of type
τ . An item is either an atomic value or a node (element, at-
tribute, comment, etc.). Items are denoted by i1, . . . , in.
XML values are denoted by S(i1), . . . ,S(in). Atomic
values and XML nodes are denoted using the formal no-
tation defined in [22]. For example, 1 is an atomic value
of type xs:integer, and element name {"John"} is
an element name containing the string "John".

A tuple is a record with fields containing XML values.
Tuples are written [q1:S(i1);. . .;qn:S(in)], where
q1,...,qn are field names. [] denotes the empty tuple.
Tuples are denoted by τ1, . . . , τn. Tables are denoted by
S(τ1), . . . ,S(τn). Our model allows tuples to contain se-
quences of items. For example, the following is a tuple with
two fields, size and name, containing, respectively, a se-
quence of integers and an element node:
[size:(1,2); name:element name {"John"}]

Supporting the XQuery data model requires sequences of
items in tuples as in our model, or nested tuples of items as
in [14]. Both models are more expressive than the relational
first normal form. As a result, XQuery implementations on
top of relational systems, such as System RX [3], take an
approach similar to ours.

Notations. Algebraic operators are written as follows:

Op[p1,...,pi]{DOp1,...,DOph}(Op1,...,Opk)

where Op is the operator name; pi’s are static parameters
of the operator; DOpi’s are dependent sub-operators; and
Opi’s are input (or independent) operators. A sub-operator
is dependent (independent) with respect to a given oper-
ator Op, if its evaluation does (does not) depend on the
evaluation of other sub-operators of Op. For dependent
operators, IN denotes the input XML value or tuple. For
example, MapFromItem{[x:IN]}((0,1)) yields the ta-
ble ([x:0],[x:1]). The operator [x:IN] is dependent
since its evaluation depends on the independent input, de-
noted by IN), of MapFromItem.

Each operator can be interpreted as a function on values
in the logical data model. The complete XQuery logical
algebra and the operators’ signatures are in Table 1. For
example, Select takes a dependent boolean operator over a
tuple of type τ1, a sequence of tuples of type τ1, and returns
a sequence of tuples of type τ1.

Operators on XML values. The first part of Table 1 con-
tains operators on XML values. Many of those opera-
tors correspond to exactly one expression in the XQuery
Core [22], and their semantics is identical to that of the cor-
responding Core expression.

The first sub-group of XML operators are constructors
for items and sequences of items with the obvious seman-
tics of logically creating the corresponding node (or se-
quence). These are quite different from the Ξ operator pro-
posed in [14], which does not produce actual element nodes,
but instead produces a serialized XML form. This opera-
tor’s semantics is not compositional, which is a requirement
to support the whole language. In contrast, our operators
are compositional and can be implemented efficiently using
token streams, maintaining the benefits of the Ξ operator
without its limitations.

The second sub-group contains operators for tree navi-
gation and projection (in the style of [13]). The TreeJoin
is a set-at-a-time operator for navigation, which takes a set
of nodes in document order and returns a set of nodes in
document order after applying the given step. It can be im-
plemented either as a combination of iteration with naviga-
tional access on the data model or as an advanced kind of
XPath join, such as that proposed in [10].

The third sub-group contains type operators for casting,
validation, and type matching. They are used to implement
type operations in XQuery.

The fourth sub-group contains operators for functions
and conditionals. To be precise, the semantics of logical op-
erators is defined with respect to an implicit algebra context,
which we omit for conciseness. The algebra context con-
tains notably function parameters and the compiled query
plans for user-defined functions. Since XQuery functions

Algebraic operator Operator’s Signature
XML operators

Constructors
Sequence Sequence(S(i1),S(i2)) → S(i3)
Empty sequence Empty() → S(i)
Atomic value Scalar[a]() → a

Element Element[q](S(i)) → element q {S(i)}
Attribute Attribute[q](S(a)) → attribute q {S(a)}
Text node Text(a) → text {a}
Comment Comment(a) → comment {a}
PI PI(a) → pi-node {a}

Navigation, Projection
Tree Join TreeJoin[axis,nodetest](S(i1)) → S(i2)
Tree Projection TreeProject[paths](i1) → i2

Type operators
Casting Castable[Type](a0) → boolean

Cast[Type](a0) → a1

Validation Validate[Type](i1) → i2
Type matching TypeMatches[Type](S(i)) → boolean

TypeAssert[Type](S(i)) → S(i)
Functional operators
Function parameter Var[q]() → S(i)
Function call Call[q](S(i1), ...S(in)) → S(i0)
Conditional Cond{S(i1),S(i2)}(boolean) → S(i0)
I/O operators
Parsing Parse(URI) → S(i)
Serialization Serialize(URI,S(i)) → ()

Tuple operators
Constructors
Tuple construction [q1,...,qn](S(i1), . . . ,S(in)) → [q1:S(i1);. . .;qn:S(in)]
Tuple concatenation ++(τ1, τ2) → τ1++τ2

Select, Project, Join
Tuple access #q(τ) → S(i)
Selection Select{τ1 → boolean}(S(τ1)) → S(τ1)
Cartesian product Product(S(τ1),S(τ2)) → S(τ1++τ2)
Join Join{τ1++τ2 → boolean}(S(τ1),S(τ2)) → S(τ1++τ2)
Left-outer join LOuterJoin[q]{τ1++τ2 → boolean}(S(τ1),S(τ2)) → S([q:boolean]++τ1++τ2)
Map operators
Map Map{τ1 → τ2}(S(τ1)) → S(τ2)
Map-null OMap[q](S(τ1)) → S([q:boolean]++τ1)
Map-concat MapConcat{τ1 → S(τ2)}(S(τ1)) → S(τ1++τ2)
Outer-map-concat OMapConcat[q]{τ1 → S(τ2)}(S(τ1)) → S([q:boolean]++τ1++τ2)
Map-index MapIndex[q](S(τ)) → S([q:integer]++τ)
Map-index-step MapIndexStep[q](S(τ)) → S([q:integer]++τ)
Grouping, sorting
Sorting OrderBy{τ, τ → boolean}(S(τ)) → S(τ)
Group by GroupBy[qAgg,qIndex,qNull]

{S(τ) → i}{S(i) → S(i)}(S(τ)) → S([q1 : i; ...; qAgg : i])

XML/Tuple Operators
Map from items MapFromItem{i → τ}(S(i)) → S(τ)
Map to items MapToItem{τ → i}(S(τ)) → S(i)
Some quantifier MapSome{τ → boolean}(S(τ)) → boolean

Every quantifier MapEvery{τ → boolean}(S(τ)) → boolean

Table 1. The Complete XQuery Algebra

can be recursive, this makes the algebra Turing complete.
Note that a number of XQuery built-in functions are also
required for completeness (fn:data, etc).

Finally, the last sub-group contains I/O operators Parse
for parsing documents and Serialize for serialization.

Tuple Operators. The tuple part of the algebra follows
the same principle as [14], using standard NRA operators
with a semantics that preserves sequence order. The first
two sub-groups of tuple operators in Table 1 contain the
standard tuple construction, concatenation and field access,
selection, projection and joins. A small difference from [14]
is that we do not model nulls with a special value, but in-
stead use the empty sequence. To distinguish the empty
sequence from an actual null value, the LOuterJoin adds a
new field (with name q) of type boolean that is set to true if
the value is null.

The third sub-group contains maps. Map is the general
functional map on sequences of tuples. MapConcat is a de-
pendent join, equivalent to the D-Join operator in [4]. The
OMap, OMapConcat, MapIndex and MapIndexStep op-
erators are unique to our algebra and are used during query
unnesting. OMapConcat (resp. OMap) is the “outer”
counterpart of MapConcat (resp. Map), which introduces
a null value when its dependent expression (resp. its input)
returns the empty sequence. MapIndex is used to compile
FLWOR expressions with an index variable (e.g., at $a),
and can be used notably in path expressions to compute
position(). It takes a tuple sequence as input and for
each tuple in the sequence, adds a new field q that contains
the tuple’s index within the input tuple sequence, starting
with the value 1. MapIndexStep is a variant of the MapIn-
dex that does not require consecutive integers, which facil-
itates its use in rewritings.

Finally, OrderBy is similar to its relational counterpart,
except that it accounts for XQuery’s rules for coercing and
promoting values to comparable types. As we mentioned
in Section 2, our GroupBy is a new operator specific to
XQuery. We describe its semantics and how it is used in
Section 5.

Boundary operations. Four operators sit at the bound-
ary between the tuple part of the algebra and the XML part
of the algebra. The MapFromItem and MapToItem op-
erations are simple maps. We give them distinct names
rather than relying on a polymorphic map to more easily
distinguish between parts of a query plan that operate on
tuples from parts that operate on XML values. Lastly, the
MapSome and MapEvery operators are used to compile
XQuery quantified expressions.

4. Algebraic compilation

Notations. The compilation algorithm is described using
inference-rule notation [22]. The judgment Expr ⇒ Op
holds when the Core expression Expr is compiled to the
algebraic plan Op.

Compilation architecture. Galax produces an evalua-
tion plan through successive compilation phases, the first
of which is based on normalization as specified in [22].
Normalization results in queries expressed in a subset of
XQuery known as the XQuery Core. Defining the compila-
tion rules from the Core to the algebra guarantees complete
coverage of XQuery 1.0. Many Core expressions, such as
constructors and function calls, correspond directly to an al-
gebraic operator. For instance, the following inference rule
describes the compilation for sequence construction, which
maps to the algebraic operator Sequence.

Expr1 ⇒ Op1 Expr2 ⇒ Op2

Expr1, Expr2 ⇒ Sequence(Op1,Op2)
(SEQUENCE)

In the rest of this section, we focus on fragments of the
XQuery Core that require special treatment, in particular
FLWOR, path, and type expressions.

Compiling FLWOR expressions. The XQuery specifica-
tion [21] describes the semantics of FLWOR expressions in
terms of streams of tuples that correspond to variable bind-
ings. However, normalization [22] breaks FLWOR expres-
sions into single for and let clauses. This is problem-
atic in two ways: First, the semantics of order-by cannot
be described without relying on a notion of tuple stream;
second, it makes the introduction of algebraic tuple-based
operators unnecessarily difficult. We change normalization
to preserve the structure of FLWOR expressions, which per-
mits an easier introduction of tuple operators and enables a
proper treatment of order-by. Quantified expressions, which
also operate on tuple streams, are compiled similarly.

Figure 2 contains the compilation rules for FLWOR
expressions. The notation Clauses|$V ar/IN#V ar denotes
variable substitution, where every occurrence of variable
$V ar is replaced by the corresponding tuple field access
(IN#V ar) in the given clauses. The trickiest aspect of com-
piling FLWOR expressions is that generating the proper
tuple streams requires reversing top-down data flow in a
XQuery Core abstract syntax tree to bottom-up data flow
in an algebraic query plan. To do this, we need an auxil-
iary judgment JExprK

(Op1)
⇒ Op2 that compiles an ex-

pression Expr into an algebraic plan Op2 in the context of
an intermediate algebraic plan Op1. The intermediate plan
is the result of compiling previous clauses. The following

Op1 = TypeAssert[T](Op0)

Jas TKOp0
⇒ Op1

(AS)

Expr1 ⇒ Op1

Jas TKIN ⇒ Op2

Op3 = MapFromItem{[x : Op2]}(Op1)
Op4 = MapConcat{Op3}(Op0)

Op5 = MapIndex[i](Op4)
JClauses|$V ar/IN#V ar, $i/IN#iKOp5

⇒ Op6

Jfor $V ar[as T][at $i] in Expr1 ClausesKOp0

⇒ Op6

(FOR)

Expr1 ⇒ Op1

Jas TKOp1
⇒ Op2

Op3 = MapConcat{[V ar:Op2]}(Op0)
JClauses|$V ar/IN#V arKOp3

⇒ Op4

Jlet $V ar [as T] in Expr1 ClausesKOp0
⇒ Op4

(LET)

Expr1 ⇒ Op1

Op2 = Select{Op1}(Op0)
JClausesKOp2

⇒ Op4

Jwhere Expr1 ClausesKOp0
⇒ Op4

(WHERE)

Expr1 ⇒ Op1

Op2 = OrderBy{Op1}(Op3)
JClausesKOp2

⇒ Op4

Jorder by Expr1 ClausesKOp3
⇒ Op4

(ORDERBY)

Expr1 ⇒ Op1

Op2 = MapToItem{Op1}(Op3)

Jreturn Expr1KOp3
⇒ Op2

(RETURN)

Figure 2. Compilation rules for FLWORs

compilation rule triggers the auxiliary judgment over the in-
put tuple currently in scope.

JFLWORExprK(IN) ⇒ Op0

FLWORExpr ⇒ Op0

We illustrate the FLWOR rules on the expression:

1. for $p in $auction//person/@id
2. let $a := count($auction//@person[. = $p])
3. where $p = "person103"
4. return $a

Compilation applies the rules on each clause in the
FLWOR, passing the resulting plan as a parameter to the
rule that compiles the next clause. The first rule compiles
the (FOR) clause on line 1, producing a composition of a
MapFromItem operator, which builds a sequence of tuples
with a single field p, followed by a MapConcat operator,
which adds those tuples to the input tuple sequence.

Opfor = Jfor $p in $auction//person/@idKIN
⇒

MapConcat{MapFromItem{[p:IN]}(IN#auction//person/@id)}(IN)

The MapConcat accounts for the case where a for
clause occurs in the middle of a FLWOR expression and
is passed a previously computed input sequence of tuples.
Also, the rule replaces all subsequent accesses to the vari-
able $p by the appropriate tuple-field access. That plan is
then passed as an argument to the compilation rule for the
let on line 2. Note that this rule introduces a single Map-
Concat which adds the a field containing the sequence of
items corresponding to the let variable:

Jlet $a := count((IN#auction)//@person[.=(IN#p)])KOpfor
⇒

MapConcat
{[a:count((IN#auction)//@person[.=(IN#p)])]}(Opfor)

Finally, the rules for the where and return clauses on
lines 3 and 4 introduce selection and a final map that returns
the resulting XML value.

MapToItem{IN#a}(Select{IN#p = "person103"}
(MapConcat

{[a:count(IN#auction//@person[.=(IN#p)])]}
(MapConcat{MapFromItem{[p:IN]}(IN#auction//@person)}

(IN))))

Compiling path expressions. Interestingly, most of the
semantics of path expressions can be expressed through nor-
malization into FLWOR, step, and conditional expressions.
As a result, most of the compilation approach presented
in [4] can be obtained by compiling the normalized rep-
resentation of path expressions. However, a few fixes to
normalization as specified in [22] are necessary.

Consider the compilation of the simple path expression
$d/descendant::person[position()=1]. The
first problem is to make sure that each step is compiled into
a complete FLWOR block, as opposed to a combination of
for loops and conditionals. This results in the following
normalized XQuery expression. Note the use of a single
FLWOR block, with an at clause and a where clause for
the predicate instead of an if-then-else.

for $fs:dot in $d return
for $fs:dot at $fs:position in $fs:dot/descendant::person
where $fs:position = 1
return $fs:dot

From the above expression, an axis step is compiled into
one TreeJoin operator, and the FLWOR expression is com-
piled using the rules given previously. Note also that at the
implementation level, the context item, denoted by the vari-
able $fs:dot, has to be passed as input to the TreeJoin.
This results in the following algebraic plan in which the
MapIndex operator computes the context position:

MapToItem{MapToItem{IN#dot}
(MapConcat{Select{(IN#position) = 1}

(MapIndex[position]
(MapFromItem{[fs:dot:IN]}

(TreeJoin[descendant::person](IN#fs:dot))))}
(IN))}

(MapFromItem{[fs:dot:IN]}(IN#d))

Expr1 ⇒ Op1

Jdefault return Expr1K$x ⇒ Op1(IN)
(DEFAULT)

Expr1 ⇒ Op1

JClausesK$x ⇒ Op2

Jcase T1 return Expr1 ClausesK$x
⇒ Cond{Op1(IN),Op2}(TypeMatches[T1](IN#x))

(CASE)

Expr1 ⇒ Op1

JClausesK$x ⇒ Op2

typeswitch $x:=(Expr1) Clauses
⇒ MapToItem{Op2}([x:Op1] ++ IN)

(TYPESWITCH)

Figure 3. Compilation rules for typeswitch

Obviously, additional work is needed to integrate other
XPath evaluation techniques [5, 9, 10]. However, the com-
pilation approach presented here has the following two im-
portant properties: (1) it supports path expressions arbitrar-
ily interleaved with other XQuery expressions, and (2) it
enables query de-correlation on queries that perform joins
through a combination of path and FLWOR expressions.
Concretely, it means our optimization techniques can unnest
the following variant of query Q1, which uses a nested path
expression instead of a nested FLWOR expression:

for $p in $auction//person
let $a := $auction//closed_auction[.//@person = $p/@id]
return count($a/element(*,USSeller))

Compiling type expressions. Compiling type operations
is mostly straightforward due to the ability of the algebra
to combine XML operators with tuple operators. We have
already seen examples illustrating the compilation of type
assertions. Typeswitch is the only expression requiring spe-
cial care. Consider the following example:

typeswitch ($auction//closed_auction)
case $u as element(*,USAuction) return $u/@state
case $e as element(*,EUAuction) return $e/@country
default $o return $o/@country_code

One difficulty with typeswitch is that it uses an heteroge-
neous set of variables in each branch. This makes compila-
tion into tuples less natural. As a first step, we change nor-
malization of typeswitch to use the same variable in every
branch. This variable can then be used among the various
tuple operators involved in the query plan. For convenience,
we write the corresponding typeswitch in the XQuery Core
as follows: typeswitch $x := (Expr) CaseClauses.
Figure 3 shows the compilation rules from this new Core
typeswitch expression. The input is in one tuple field
whose name is the common variable. Each branch of the
typeswitch is compiled into a conditional expression, using
type matching as the condition. For the above example, this
results in the following plan:

MapToItem{Cond{(IN#x)/@state,
Cond{(IN#x)/@country,

(IN#x)/@country_code}
(TypeMatches[element(*,EUAuction)](IN#x))}

(TypeMatches[element(*,USAuction)](IN#x))}
([x : $auction//closed_auction] ++ IN)

5. XQuery GroupBy and Unnesting

The GroupBy operator takes three sets of field names
and three input operators:

GroupBy[qAgg ,qIndices,qNulls]{Op2}{Op1}(Op0)
Op0 yields a table of tuples. These tuples must contain
boolean-valued fields with names in qNulls and integer-
valued fields with names in qIndices. The pre-grouping op-
erator Op1 is applied to each input tuple that has all qNulls

fields equal to false. The resulting tuples are grouped by
the values in the qIndices fields into partitions. The post-
grouping operator Op2 is applied to each partition and the
field denoted by qAgg is bound to the result of Op2. The
tuples in each partition are sorted in a stable, ascending or-
der by the qIndices fields. For each partition, the GroupBy
yields a tuple containing the fields in the input table and the
corresponding qAgg field.

We use the following simple XQuery expression to illus-
trate the GroupBy operator’s semantics.

for $x in (1,1,3)
let $a := avg(for $y in (1,2) where $x<=$y return $y*10)
return ($x, $a)

Compilation and rewriting of this query yields the fol-
lowing plan with a GroupBy:

1. MapToItem{Sequence(IN#x,IN#a)}
2. (GroupBy[a, index, null]{avg(IN)}{IN#y * 10}
3. (LOuterJoin[null]{IN#x <= IN#y}
4. (MapIndexStep[index]
5. (MapFromItem{[x:IN]}(1,1,3)),
6. MapFromItem{[y:IN]}(1,2))))

We first describe how this plan works before explaining
the rewrite rules necessary to obtain it. The MapIndexStep
operator on line 4 introduces an integer field index con-
taining the input sequence order and is used as the index
field for the GroupBy on line 2. The null field is intro-
duced by the LOuterJoin on line 3, identifying when no
right-hand side tuple matches a given left-hand side tuple.
Figure 4 shows the sequence of input and output tuples and
the corresponding partitions for the GroupBy. Note that the
index field distinguishes between the first and second oc-
currence of the value 1 in the input sequence, and that the
pre-grouping operator (IN#y*10) is not applied when the
input tuple’s null flag is true.

Query unnesting rewritings. We return to the naı̈ve plan
P1 from Section 2 to explain the rewrite rules. The complete
set of rewritings used to optimize P1 are given in Figure 5.

Standard rewritings

MapConcat{Op1}([]) → Op1 (remove map)
MapConcat{Op1}(Op2) → Product(Op2 ,Op1), when Op1 independent of IN (insert product)

Select{Op1}(Product(Op2 ,Op3)) → Join{Op1}(Op2 ,Op3) (insert join)

New rewritings

[x: Op1(MapFromItem{Op2}(Op3))] → GroupBy[x,[],[null]]{Op1 (IN)}{Op2}(OMap[null](Op3)) (insert group-by)
MapConcat{GroupBy[x,inds,nulls]{Op1}{Op2}(Op3)}(Op4) → GroupBy[x,inds+ind1 ,nulls+null1] (map through group-by)

{Op1}{Op2}
(OMapConcat[null1]{Op3}(MapIndex[ind1](Op4)))

OMapConcat[null1]{OMap[null2](Op1)}(Op2) → OMapConcat[null1]{Op1}(Op2) (remove duplicate null)
OMapConcat[null]{Join{Op3}(IN,Op1)}(Op2) → LOuterJoin[null]{Op3}(Op2 ,Op1) (insert outer-join)

Figure 5. Algebraic rewritings

Input Output
x y index null x a
1 1 1 false 1 15
1 2 1 false
1 1 2 false 1 15
1 2 2 false
3 () 3 true 3 ()

Figure 4. Input and output of GroupBy

The first set contains traditional product and join rewritings.
The second contains new rewritings unique to our algebra.

The most important rewrite rule is (insert group-by),
which replaces a unary tuple-constructor over an item op-
erator by a trivial GroupBy. The key observation is that
a unary tuple constructor is equivalent to a GroupBy with
no grouping criteria and corresponds to a group-by in which
each partition contains one tuple. Applying this rewriting to
the tuple constructor on line 7 of P1 results in the following
query plan, in which the new operators are underlined:

1. MapToItem (P1’)
2. {Element[item]
3. (Sequence
4. (Attribute[person]((IN#p)/name/text()),
5. count(IN#a/element(*,USSeller))))}
6. (MapConcat
7. {GroupBy[a,[],[null]]
8. {TypeAssert[element(*,Auction)*](IN)}
9. {Validate(IN#t)}
10. (OMap[null]
11. (Select{IN#t/buyer/@person = IN#p/@id}
12. (MapConcat{MapFromItem{[t:IN]}
13. ($auction//closed_auction)}(IN))))}
14. (MapFromItem{[p:IN]}($auction//person)))

Once the GroupBy operator is introduced, the rest of
query unnesting consists of pushing operations through the
GroupBy. The (map through group-by) rule pushes the
MapConcat on line 6 in P1’ through the GroupBy. This
results in plan P1” below, in which the new operators are
underlined.

1. MapToItem (P1’’)
2. {Element[item]

3. (Sequence
4. (Attribute[person]((IN#p)/name/text()),
5. count(IN#a/element(*,USSeller))))}
6. (GroupBy[a,[index],[null,null1]]
7. {TypeAssert[element(*,Auction)*](IN)}
8. {Validate(IN#t)}
9. (OMapConcat[null1]
10. {OMap[null]
11. (Select{IN#t/buyer/@person = IN#p/@id}
12. (MapConcat{MapFromItem{[t:IN]}
13. ($auction//closed_auction)}(IN)))}
14. (MapIndexStep[index]
15. (MapFromItem{[p:IN]}($auction//person)))))

Finally, the last step is to recognize the join formed
by the combination of the selection and outer-map. First,
we apply the (remove duplicate null) rule to remove the
OMap that is redundant after the introduction of the OMap-
Concat. The LOuterJoin is introduced by consecutive ap-
plications of the (insert product), (insert join) and (insert
outer-join) rules. This results in the expected final plan P2:

1. MapToItem (P2)
2. {Element[item]
3. (Sequence
4. (Attribute[person]((IN#p)/name/text()),
5. count(IN#a/element(*,USSeller))))}
6. (GroupBy[a,index,null]
7. {TypeAssert[element(*,Auction)*](IN)}
8. {Validate(IN#t)}
9. (LOuterJoin[null]]
10. { IN#t/buyer/@person = IN#p/@id }
11. (MapIndexStep[index]
12. (MapFromItem{[p : IN]}($auction//person)),
13. MapFromItem{[t:IN]}($auction//closed_auction))))

6. XQuery Join Algorithms

So far, we have focused on the logical semantics of our
algebra. Here, we address the physical implementation of
the join operator, which is complicated by the semantics of
XQuery’s comparison operators. We show how to imple-
ment a hash-join algorithm that accounts for this semantics.
We focus on the hash-join algorithm, but the same approach
can be used to implement a sort join.

Relational join algorithms typically rely on the transi-
tivity of (in)equality operators and on the ordering prop-
erties of inputs for efficiency. XQuery’s (in)equality op-

Type of Type of Convert first
first operand second operand operand to:
xdt:untyped or xdt:untyped or xs:string
xs:string xs:string
xdt:untyped numeric xs:double
xdt:untyped Any other Type Type

Any other Type Must be Type N/A

Table 2. Semantics of fs:convert-operand

erators, however, do not have the standard properties re-
quired by traditional join algorithms. Recall from Section 2
that the semantics of predicates in XQuery equality in-
cludes existential quantification, atomization (fn:data),
casting of untyped values to the type of the other operand
(fs:convert-operand), and overloaded predicate se-
mantics (op:equal). For example, the normalization of
$x = $y is:

some $x’ in fn:data($x),
$y’ in fn:data($y)

op:equal(fs:convert-operand($x’,$y’),
fs:convert-operand($y’,$x’))

One problem is handling the fs:convert-operand
function. Join algorithms typically require that one input
be materialized independently of the other input, but the
fs:convert-operand function naı̈vely depends on the
value of each of its operands. Fortunately, the formal se-
mantics of fs:convert-operand [22] states that the
value of the first operand is promoted to the type of the sec-
ond operand, therefore, the function depends only on the
second operand’s type, not its value. To support this seman-
tics, our algorithm enumerates all the types to which a join
key value can be promoted, which is no more than nine-
teen (the number of primitive XML Schema datatypes). If
both operands of the join are untyped, then this number is
reduced to two: xs:string and xs:double. Table 2
summarizes the semantics of fs:convert-operand.

Given this observation, we can construct a hash table in
which each entry is keyed on a (value, type) pair (after type
conversion) and contains the original value and type (be-
fore type conversion), the corresponding tuple value, and
the ordinal position of the tuple in the input sequence. If
the input value is not untyped and is non-numeric, then we
store only one entry keyed on the original value and type.
If the value is numeric, then we store one entry for each nu-
meric value to which it can be promoted. Clearly, static type
analysis can improve our algorithm by reducing the number
of entries that must be stored. If, for instance, we can in-
fer statically that both operands are integers, we can build
a key directly on the integer value and specialize our join
algorithm to use integer-comparison operators.

Figure 6 contains the pseudo code for the hash-join al-
gorithm. Lines 33–49 contains equalityJoin, a higher-
order function that takes the inner and outer input tables and

1. // Materialize input : hash table keyed on (val,type)
2. HashTab materialize(TupCursor in,Exp keyExp) {
3. HashTab ht = new(HashTab);
4. int order = 1;
5. while (not(in.empty())) {
6. Tup tup = in.next();
7. Val keyVals = fn:data(keyExp.eval(tup));
8. for-each key in keyVals {
9. Array valTypePairs = promoteToSimpleTypes(key);
10. for-each Pair (val,type) in valTypePairs
11. ht.put((val,type),(key,typeof(key),tup,order));
12. }
13. order++;
14. }
15. return ht;
16. }

17. // Fetch all tuples matching an input tuple
18. List allMatches(HashTab innerTab,Tup tup,Exp keyExp) {
19. Val keyVals = fn:data(keyExp.eval(tup));
20. AssocList allMatches = new(AssocList);
21. for-each key in keyVals {
22. Array valTypePairs = promoteToSimpleTypes(key);
23. for-each Pair (val,type) in valTypePairs
24. (val1,type1,tup,order) = innerTab.get(val,type);
25. if (type1,typeof(key)) in (Table 2) then
26. allMatches.add(order,tup);
27. }
28. // Sort matches on original sequence order and
29. List sortedMatches = allMatches.sortOnOrderField();
30. // Remove duplicate tuples -- maintains sorted order
31. return sortedMatches.removeDuplicates();
32. }

33. // Equality join. For both the inner/outer inputs,
34. // takes: the tuple cursor and expression
35. // that accesses join field.
36. TupCursor equalityJoin(TupCursor inner,
37. Exp innerKeyExp,
38. TupCursor outer,
39. Exp outerKeyExp) {
40. HashTab innerTab = materialize(inner,innerKeyExp);
41. TupCursor result = new(TupCursor);
42. while (not(outer.empty())) {
43. Tup tup = outer.next();
44. List ms = allMatches(innerTab,tup,outerKeyExp);
45. for-each match in ms
46. result.add(tup.copy().concat(match));
47. }
48. return result;
49. }

Figure 6. Hash-join algorithm

two expressions for computing the inner-key and outer-key
values. On lines 40–41, the function materializes the inner
input table and creates a result cursor. For each tuple in the
outer input table (lines 42–47), it probes the inner table for
all tuples that match the outer tuple, and for each matching
tuple, concatenates the outer and matching tuples, and adds
this new tuple to the result cursor.

Lines 1–16 contains the materialize function,
which constructs a hash table from the inner input. For each
tuple in the inner input (lines 5–12), it populates the hash
table with the (value, type) pairs to which the tuple’s key
value can be converted (lines 10–11). Note that the order of
tuples in the inner input is significant. To recover the orig-
inal sequence order during probing, we store a sequence-
order counter with each entry in the hash table.

Implementation Total time
No algebra 3m33.0s
Algebra +
No optim 50.0s
Optim + nested-loop joins 5.1s
Optim + XQuery joins 1.7s

Table 3. XMark 1-20 on 1MB document

The allMatches function on Lines 17–32 takes a tu-
ple from the outer input and probes the inner-input’s hash ta-
ble for all possible matches. The trickiest part of this code is
on Line 25, which checks whether the original types of the
inner and outer values are in the fs:convert-operand
table in Table 2, before adding the match to the list of
matches. After accumulating all matches, they are sorted
by original sequence order and any duplicate tuples are re-
moved, maintaining the sorted order (lines 28–31). We re-
move duplicates to preserve the existential quantification
implied by the original predicate.

Some obvious implementation improvements have been
omitted to simplify exposition. For example, we can store
references rather than actual values. Also, this algorithm
handles one key predicate in a join, but can be extended to
multiple predicates.

7. Experiments

Our algebra and optimizations are implemented in
Galax. The compiler passes a regression suite of over
1000 tests that includes the XQuery Use Cases [23] and the
XMark benchmark suite [18]. In this section, we present
experimental results obtained using the Galax compiler.

To evaluate the algebra and optimizations, we conducted
several experiments, the goals of which are to show: (1) the
overall efficiency of the algebraic compiler; (2) the bene-
fits of the optimization techniques presented in Section 5;
and (3) the effectiveness of the new compiler on complex
queries generated by Clio [16].

Most experiments were run on an Intel Pentium M
(1.7GHz) with 500MB main memory running Fedora. The
Clio experiments were executed on an Intel Pentium M
(2.4GHz) with 1GB main memory running Red Hat 9.0.

Table 3 summarizes the impact of the successive im-
provements to the original Galax compiler. The table con-
tains the total execution time of all twenty XMark queries
on a 1MB document – each measurement includes the
time to load the input document once, evaluate all twenty
queries, and serialize all the results.

In the original Galax processor, query evaluation was
performed directly on the query abstract syntax tree after
normalization. Migration to the algebra yielded a four-fold

Query Size NL Join Hash Join
10MB 66.17s 0.14s

Q8 20MB 5m0.9s 0.37s
50MB 1h54m6.45s 2.70s
10MB 95.41s 0.24s

Q9 20MB 6m19.7s 0.70s
50MB 2h31m41.1s 2.31s
10MB 11.66s 1.68s

Q10 20MB 44.34s 5.72s
50MB 19m4.46s 17.90s
10MB 41.1s 0.94s

Q12 20MB 3m4.27s 6.14s
50MB 3h35m11.9s 11m4.66s
10MB 0.35s 0.36s

Q20 20MB 0.86s 0.82s
50MB 2.21s 2.78s

Table 4. Scalability of selected XMark Queries

speedup, largely due to the replacement of dynamic lookups
in the dynamic context by direct compiled memory access
and to pipelined evaluation of many algebraic operators.
Query unnesting alone with simple nested-loop join yields
another ten-fold speedup. Finally, the more efficient join
algorithms described in Section 6 yield another three-fold
speedup, with an overall improvement of 125 times faster
than the original implementation. Note that in the optimized
plans, the evaluation time is dominated by parsing, and to
a lesser extent, by the execution of the descendant axis in
XMark queries Q6, Q7, Q14 and Q19.

For comparison, we also ran Galax and Saxon [11] 8.1.1
on XMark Queries 1–20 on a 10MB document. The total
time was 20s for Galax and 86s for Saxon.

Table 4 shows that the proposed optimizations scale well
with larger documents. The table contains the query eval-
uation times for the XMark Queries 8, 9, 10, which con-
tain 2-way and 3-way joins, and Query 20, which does not.
The measurements exclude the times to load the input doc-
ument into main memory and to serialize the result as well
as all other phases. The document loading times are sta-
ble: approximately 6s for 10MB, 13.0s for 20MB, and 41s
for 50MB, and dominate all other compilation phases (nor-
malization, rewriting, compilation, etc.), whose times are
negligible.

The second column contains the evaluation time for
plans that use nested-loop joins and the third column for
hash or sort joins. As expected, the quadratic complexity of
nested-loop joins is evident with increasing document size,
whereas the hash and sort joins grow linearly.

Finally, we compiled Clio queries generated from map-
pings of increasing complexity applied to a 250K document.
Table 5 gives the evaluation time for those queries with and
without the optimizations from Section 5. Query N2 is sim-

Galax Saxon 8.1.1
Query No optim NL Join Hash Join
N2 1m6.1 53.4s 1.5s 15.9s
N3 > 1h 2m28.9s 6.4s 58.3s
N4 > 1h 14m2s 21.7s 2m3.5s

Table 5. Clio queries

ilar to the one in Figure 1, with a doubly nested FLWOR
expression and a single join. N3 is a triple-nested FLWOR
with a 3-way join, and N4 is a quadruple-nested FLWOR
with a 6-way join. The results show the dramatic improve-
ments obtained from query unnesting and join optimization
for those queries. For comparison, we also give the execu-
tion time for the same queries using Saxon [11]. Although
our best query plan runs about 6 to 10 times faster, Saxon’s
execution time does not blow up even for the 6-way join,
which seems to indicate that it supports some form of join
optimization.

8. Conclusion

XML query optimization has recently been the focus of
intense research. Numerous techniques have been proposed
for XPath evaluation [5, 10, 9], optimizations based on tree-
patterns [6, 15], XQuery unnesting [7, 14], and streaming
evaluation [1, 8, 13]. In this paper, we presented an al-
gebraic framework that supports complete compilation of
XQuery into which those techniques can be integrated. The
compiler is completely implemented and results in a stable
and efficient system that can process the complex queries
that arise in real XQuery applications. There are further
opportunities for improving our compiler, notably adding
more advanced optimizations for XPath, integrating tech-
niques for streaming evaluation, and providing better sup-
port for recursive functions.

References

[1] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fon-
toura, and V. Josifovski. Streaming XPath processing with
forward and backward axes. In ICDE, pages 455–466, 2003.

[2] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Au-
tomated update management for XML integrity constraints.
In PLAN-X: Programming Language Technologies for XML,
Pittsburgh, PA, Oct. 2002.

[3] K. Beyer, R. J. Cochrane, V. Josifovski, et al. System RX:
one part relational, one part XML. In SIGMOD, pages 347–
358, 2005.

[4] M. Branter, S. Helmer, C.-C. Kanne, and G. Moerkotte.
Full-fledge algebraic XPath processing in Natix. In ICDE,
pages 705–716, Boston, MA, 2005.

[5] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins:
Optimal XML pattern matching. In SIGMOD, pages 310–
321, 2002.

[6] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Pa-
parizos. From tree patterns to generalized tree patterns: On
efficient evaluation of XQuery. In VLDB, pages 237–248,
Berlin, Germany, Sept. 2003.

[7] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT
logical framework for XQuery. In VLDB, pages 168–179,
Toronto, Canada, Aug. 2004.

[8] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL streaming XQuery processor. In VLDB,
pages 997–1008, Berlin, Germany, Sept. 2003.

[9] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. In VLDB, pages 95–106, 2002.

[10] T. Grust, M. van Keulen, and J. Teubner. Staircase join:
Teach a relational DBMS to watch its axis steps. In VLDB,
pages 524–535, Berlin, Germany, Sept. 2003.

[11] M. Kay. SAXON 8.0. SAXONICA.com.
http://www.saxonica.com/.

[12] I. Manolescu and Y. Papakonstantinou. XQuery midflight:
Emerging database-oriented paradigms and a classification
of research advances. In ICDE, page 1143, 2005.

[13] A. Marian and J. Simeon. Projecting XML documents. In
VLDB, pages 213–224, Berlin, Germany, Sept. 2003.

[14] N. May, S. Helmer, and G. Moerkotte. Nested queries and
quantifiers in an ordered context. In ICDE, pages 239–250,
Boston, MA, Mar. 2004.

[15] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree logical classes for efficient evaluation of
XQuery. In SIGMOD, pages 71–82, Paris, France, June
2004.

[16] L. Popa, Y. Velegrakis, R. J. Miller, and R. F. Mauricio
A. Hernandez. Translating Web data. In VLDB, pages 598–
609, 2002.

[17] L. Quinn. An XML-based Web site using XML query and
SVG. In XML Conference, Philadelphia, PA, Dec. 2003.

[18] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,
and R. Busse. XMark: A benchmark for XML data manage-
ment. In VLDB, pages 974–985, Hong Kong, China, Aug.
2002.

[19] A. Vyas, M. F. Fernandez, and J. Simeon. The simplest
XML storage manager ever. In XIME-P 2004, pages 37–42,
Paris, France, June 2004.

[20] The XBrain project: Xquerying the brain mapping database.
http://quad.biostr.washington.edu:8080/xbrain.

[21] XQuery 1.0: An XML query language. Candidate Recom-
mendation, Nov. 2005.

[22] XQuery 1.0 and XPath 2.0 formal semantics, W3C work-
ing draft. W3C Working Draft, Candidate Recommendation,
Nov. 2005.

[23] XML query use cases. W3C Working Draft, Sept. 2005.

