
Hardness of Motion Planning with
Obstacle Uncertainty in 2 Dimensions

Luke Shimanuki Brian Axelrod
lukeshim@csail.mit.edu

Massachusetts Institute of Technology
baxelrod@cs.stanford.edu

Stanford University

Abstract

We consider the problem of motion plan-
ning in the presence of uncertain obsta-
cles, modeled as polytopes with Gaussian-
distributed faces (PGDF). A number
of practical algorithms exist for motion
planning in the presence of known ob-
stacles by constructing a graph in con-
figuration space, then efficiently search-
ing the graph to find a collision-free
path. We show that such a class of al-
gorithms is unlikely to be practical in
the domain with uncertain obstacles. In
particular, we show that safe 2D mo-
tion planning among PGDF obstacles
is NP−hard with respect to the num-
ber of obstacles, and remains NP−hard
after being restricted to a graph. Our
reduction is based on a path encoding
of MAXQHORNSAT and uses the risk
of collision with an obstacle to encode
variable assignments and literal satisfac-
tions. This implies that, unlike in the
known case, planning under uncertainty
is hard, even when given a graph con-
taining the solution. We further show
by reduction from 3-SAT that both safe
3D motion planning among PGDF obsta-
cles and the related minimum constraint
removal problem remain NP -hard even
when restricted to cases where each ob-

Preliminary work.

stacle overlaps with at most a constant
number of other obstacles.

1 Introduction

Navigation under uncertainty is one of the most
basic problems in robotics. While there are many
methods to plan a trajectory between two points
in a known environment with strong theoretical
guarantees, few of them generalize to obstacles
with locations estimated by noisy sensors. It has
proven much harder to provide strong complete-
ness, runtime, and optimality guarantees in this
setting.

While some of the original work addressing plan-
ning under uncertainty was able to capture the
additional richness of this problem by modeling
it as a partially observable Markov decision pro-
cess (POMDP) [Cassandra, Kaelbling, and Kurien,
1996], it has proven difficult to solve POMDPs for
complicated real world problems despite large ad-
vances in POMDP solvers [Kurniawati, Hsu, and
Lee, 2008, Somani, Ye, Hsu, and Sun Lee, 2013].
In fact, solving POMDPs is PSPACE-complete
in the finite horizon and undecidable otherwise,
suggesting that it likely not possible to find a
general, efficient algorithm for solving POMDPs
[Papadimitriou and Tsitsiklis, 1987].

Luckily, navigating among uncertain obstacles is
a significantly more restricted problem class than
POMDPs, giving us hope that we might find an
algorithm that is efficient in practice and gives
strong theoretical guarantees such as completeness
and safety.

Axelrod, Kaelbling, and Lozano-Pérez [2017, 2018]

Shimanuki and Axelrod

proposed solving an approximation of the naviga-
tion under uncertainty problem. Instead of trying
to compute a path that minimizes the true prob-
ability of collision under any distribution of ob-
stacles, they propose solving a restricted problem
where the obstacles are limited to a structured
class of distributions and the collision probability
is approximated using a shadow (the geometric
equivalent of a confidence interval). While shadow
bounds are inherently loose (they overestimate the
probability of collision when the obstacle is likely
to be far away from the estimated location) they
greatly decrease the computational complexity of
bounding the probability of collision, since only
space visited by the robot close to the obstacle
affects the probability bound.

Axelrod, Kaelbling, and Lozano-Pérez [2018] pro-
posed the following question: Is there an efficient
algorithm that, given a graph embedded in Rn and
a set of obstacles, can find the path with minimal
risk as computed via a shadow bound? The cost
function derived from the shadow approximation
is only influenced by the portion of the trajectory
close to the obstacle and has submodular structure
with respect to the graph. The fact that similar
approximations have worked well for motion plan-
ning, and the existence of efficient algorithms for
certain classes of submodular minimization prob-
lems gave the hope that it might be possible to
find an efficient algorithm for this problem as well.

While motion planning is hard in general, prac-
tical and efficient algorithms have proven very
successful under some assumptions [LaValle, 2006].
One such body of work are the sampling-based
motion-planning methods. These algorithms often
have the assumption that the problem can be split
into two pieces: First use a practically (though
often not worst-case) efficient method to generate
a small graph that contains a solution; then use a
standard, efficient graph search algorithm to find
the solution in this graph. Algorithms based on
this scheme have been successful even for high-
dimensional planning problems for robots with
many degrees of freedom.

There are several other classes of practically
efficient algorithms (including grid based and
optimization-based planners) that rely on the as-
sumption that part of the problem may be solved

much more efficiently in the average case than
in the worst case. We discuss this further in the
background section.

This paper answers the question posed by Axel-
rod, Kaelbling, and Lozano-Pérez [2018] in the
negative.

Theorem 1. Safe path planning in the pres-
ence of uncertain obstacles in 2 dimensions is
NP-hard.

A more formal statement of this result is presented
in Section 3. We prove this by reducing from
MAXQHORNSAT using a construction based on
and very similar to that used by Erickson and
LaValle [2013] for the minimum constraint removal
problem (MCR). We also show, via reduction from
3-SAT, that both safe path planning and MCR
remain hard in three dimensions even when each
obstacle overlaps with only a constant number of
other obstacles, answering the question posed by
Hauser [2014]. Our first contribution is modify-
ing the reduction to 2D MCR by Erickson and
LaValle [2013] to instead reduce to the 2D safe
path planning problem. Our second contribution
is presenting a new reduction from 3-SAT to a
restricted version of safe path planning and MCR
in 3D.

The proofs presented in this paper illuminate what
makes this problem more difficult than the stan-
dard motion-planning problem with known obsta-
cles. Searching for the minimum-risk path does
not have a Markov-like structure. Unlike in the
shortest-path problem on a graph, the risk of the
second half of a trajectory is very much affected
by the first half. This means that the problem
is lacking the Bellman property, as identified by
Salzman, Hou, and Srinivasa [2017]. The absence
of a Markov-like property for the risk over the path
has important ramifications for the complexity of
the problem. In particular, the collision risk at
different points along a trajectory can be highly
correlated.

2 Background

Motion planning for robotics has been extensively
studied in many different settings. One important
high-level distinction between settings is whether

Manuscript under review by AISTATS 2020

the environment and state are known exactly or
estimated.

2.1 Complexity in Motion Planning

The story of motion-planning algorithms in
robotics has been one of walking the fine bound-
aries of complexity classes. On one hand, mo-
tion planning is PSPACE-hard in R3 [Reif, 1979]
and R2 [E. Hopcroft, Joseph, and Whitesides,
1984, Hopcroft, Joseph, and Whitesides, 1982]
with respect to the number of degrees of freedom
of a robot (and thus dimension of its configura-
tion space). However, while Canny’s [1988] work
on singly-exponential time (with respect to num-
ber of degrees of freedom) roadmaps leads to a
polynomial-time algorithm when the number of
degrees of freedom is fixed, a different set of algo-
rithms is used in practice. The robotics community
has been able to find practically efficient methods
that provide meaningful theoretical guarantees
weaker than completeness (finding a solution if one
exists). Sampling-based planners such as Rapidly-
Exploring Random Trees (RRTs) [LaValle and
Kuffner, 1999, LaValle, 2006] and Probabilistic
Roadmaps (PRMs) [Kavraki, Svestka, Latombe,
and Overmars, 1996] are both practically efficient
and probabilistically complete under some regular-
ity conditions. Given effective heuristics, graph-
based planners have also proved efficient and pro-
vide resolution completeness [LaValle, 2006].

Searching for optimal plans, as opposed to simply
feasible plans, further increases the difficulty. In
a classic result, Canny and Reif [1987] show that
the 3-d Shortest-Path Problem is NP-hard for a
simple robot in terms of the number of obstacles.
This ruled out results of the form of Canny’s [1991]
roadmap algorithm that showed fixed parameter
tractability in the feasible motion planning case.

However, the community has been able to find
practically efficient algorithms regardless of these
worst-case results. A modified version of the orig-
inal sampling-based algorithms allows them to
return nearly optimal solutions in the limit [Kara-
man and Frazzoli, 2011] and graph-based planning
algorithms are able to provide bounds on the sub-
optimality of their solutions [Aine, Swaminathan,
Narayanan, Hwang, and Likhachev, 2016].

Another motion-planning problem that lacks a
Markov property is the minimum constraint re-
moval problem (MCR), where the objective is to
find a path that collides with the fewest obstacles.
This problem was shown to be NP-hard in Carte-
sian spaces of dimension 3 [Hauser, 2012, 2014],
and shortly later, in dimension 2 [Erickson and
LaValle, 2013]. Eiben, Gemmell, Kanj, and Young-
dahl [2018] improve on these results by showing
that MCR remains hard when obstacles are re-
stricted to line segments or axis-aligned rectangles.
Hauser [2014] observes that MCR is in P when ob-
stacles are connected and non-overlapping, and he
suggests that the hardness seen in MCR is caused
when an obstacle intersects with O(n) other obsta-
cles. Erickson and LaValle [2013], Hauser [2014],
and Eiben, Gemmell, Kanj, and Youngdahl [2018]
further pose the open question of whether MCR re-
mains hard when each obstacle overlaps with only
a constant number of other obstacles. We then
ask an analogous question: Is safe path planning
in the presence of uncertain obstacles tractable
when obstacles intersect only a constant number of
other obstacles? These questions are stated more
formally and answered in the negative in Section
3.

2.2 Planning under Uncertainty

While planning under uncertainty has been
broadly studied in robotics, few methods have
formal guarantees on solution quality and efficient
runtime. We survey some of the related work
below.

Many works assume some sort of uncertainty about
the environment, but do not propose a model in
which to rigorously quantify the uncertainty in the
environment and provide guarantees about the
success probability of the trajectory. Instead they
often rely on heuristics that seem to provide the
desired behavior.

One line of work focuses on uncertainty in the
robot’s position. Here the model of the robot
itself is “inflated” before the collision checking,
ensuring that any slight inaccuracy in the position
estimate or tracking of the trajectory does not
result in a collision.

Work that focuses on uncertainty in the environ-

Shimanuki and Axelrod

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 1: The orange set is a shadow of the ob-
stacle. The blue set is the obstacle represented by
the mean parameters.

ment sometimes does the exact opposite. They
often inflate the occupied volume of the obstacle
with a “shadow” and ensure that any planned tra-
jectory avoids the shadow [Kaelbling and Lozano-
Pérez, 2013, Lee, Duan, Patil, Schulman, Mc-
Carthy, van den Berg, Goldberg, and Abbeel,
2013].

A more general approach that handles either or
both of localization and obstacle uncertainty is
belief-space planning. Belief space is the set of
all possible beliefs about or probability distribu-
tions over the current state. Belief-space planning
converts the uncertain domain in state space to
belief space, then plans in belief space using trees
[Prentice and Roy, 2007, Bry and Roy, 2011] or
control systems [Platt, Tedrake, Kaelbling, and
Lozano-Perez, 2010].

Another line of work uses synthesis techniques to
construct a trajectory intended to be safe by con-
struction. If the system is modeled as a Markov
decision process with discrete states, a safe plan
can be found using techniques from formal verifica-
tion [Ding, Pinto, and Surana, 2013, Feyzabadi and
Carpin, 2016]. Other authors have used techniques
from Signal Temporal Logic combined with an ex-
plicitly modeled uncertainty to generate plans that
are heuristically safe [Sadigh and Kapoor, 2016].

Recent work by Hauser [2014, 2012] applies an ap-
proximate minimum constraint removal algorithm

to motion planning under obstacle uncertainty by
randomly sampling many draws for each obstacle
and finding the path that intersects with the fewest
samples. With this approach, he demonstrates low
runtime and error on average although with poor
worst case performance.

In previous work, Axelrod, Kaelbling, and Lozano-
Pérez [2017, 2018] formalized the notion of a
shadow in a way that allowed the construction
of an efficient algorithm to bound the probability
that a trajectory will collide with the estimated
obstacles.

We can now define a shadow rigorously:

Definition 1 (ε-shadow). A set S ⊆ Rd is an
ε-shadow of a random obstacle O ⊆ Rd if Pr[O ⊆
S] ≥ 1− ε.

Shadows are important because they allow for an
efficient method to upper-bound the probability
of collision. If there exists an ε−shadow of an
obstacle that does not intersect a given trajectory’s
swept volume, then the probability of the obstacle
intersecting with the trajectory is at most ε. An
example of a shadow for an obstacle is shown in
figure 1.

3 Preliminaries

3.1 Notation

In this section we will cover definitions and nota-
tion conventions that will be used in this paper. A
vector will be marked in bold as in u, in contrast
to a scalar u. ∧, ∨, and ¬ are the logical AND,
OR, and NOT operators, respectively. The power
set (set of all subsets) of S is denoted by P(S). A
function mapping into the power set of Rn outputs
subsets of Rn. We will use ei to denote the ith
standard basis vector.

3.2 Random Obstacle Model

In order to attempt to provide formal non-collision
guarantees one must first model the uncertainty in
the environment. At a high level we assume that
each episode of the robot’s interaction happens in
the following sequence:

1. A distribution of obstacles is fixed and known

Manuscript under review by AISTATS 2020

to the robot. Usually this is the conditional
distribution for the obstacles given the sensor
observations.

2. A set of obstacles is now drawn from this dis-
tribution. These obstacles now remain static
for the duration of the episode.

3. The robot computes, commits to and executes
a trajectory.

4. The probability of collision in question is ex-
actly the probability that this trajectory col-
lides with at least one of the obstacles.

It is important that the obstacle distribution cap-
tures the fact that collision probabilities in dif-
ferent locations can be correlated. Consider the
following toy example where a range sensor reports
that an obstacle is 10 meters in front of the robot.
At time t = 1 the robot drives forward 10 meters
and then at t = 2 drives backwards 2 meters. If
the robot did not crash at time t = 1, it is unlikely
to collide at time t = 2! Using a more realistic
model that captures correlations allows systems
to be both safer and less conservative.

In this work we restrict ourselves to polytopes with
Gaussian-distributed faces (PGDFs)—a model
that is able to capture such correlations [Axel-
rod, Kaelbling, and Lozano-Pérez, 2017]. Under
the PGDF assumption, obstacles are the intersec-
tions of halfspaces with parameters drawn from
multivariate normal distributions. More formally

a PGDF O ⊂ Rn is O =
i⋂
αi
Tx ≤ 0, where

αi ∼ N (µi,Σi). We can use homogeneous coordi-
nates to create obstacles not centered about the
origin.

One reason that PGDF obstacles are important
is that we have methods of computing shadows
for PGDF obstacles efficiently [Axelrod, Kaelbling,
and Lozano-Pérez, 2017].

We note that this formulation differs from the
notion of “risk-zones” evaluated by Salzman and
Srinivasa [2016] and Salzman, Hou, and Srinivasa
[2017], where the cost of a trajectory is propor-
tional to the amount of time spent within a risk-
zone. These problems share the lack of an optimal
substructure—the subpaths of an optimal path

are not necessarily optimal. Salzman, Hou, and
Srinivasa [2017] provide a generalization of Dijk-
stra’s algorithm that finds minimum-risk plans in
their domain efficiently, but as we will show, there
are no such techniques for our problem.

3.3 Algorithmic Question

Now that we have defined shadows and PGDF
obstacles, we can define what it means for a path
to be safe. Suppose the robot and obstacles exist in
Rd (d is usually 2 or 3). This is commonly referred
to as the task space. Furthermore, suppose the
configuration space of the robot is parametrized
in Rk (usually corresponding to the k degrees of
freedom of the robot).

Since planning usually happens in the robot’s con-
figuration space, but the obstacles are in task
space, we need to be able to convert between the
two.

Definition 2 (Embedding Map). A function f :
Rk → P(Rd) is an embedding map if it maps robot
configurations into the subset of Rd that is occupied
by the robot at that configuration.

The embedding map can usually be constructed
by combining the forward kinematics and robot
model.

Definition 3. A configuration space trajectory
τ : [0, 1]→ Rk is a map from a “time” index into
the trajectory to the robot configuration at that
point in the trajectory.

Definition 4. A task-space trajectory τ ′ : [0, 1]→
P(Rd) is defined as the map between an index into
the trajectory and the space occupied by the robot
at that point in the trajectory.

Alternatively, if given a configuration space trajec-
tory τ , τ ′(t) = f(τ(t)) where f is the embedding
map.

For the rest of the paper we will only concern our-
selves with task-space trajectories, noting that it
is easy to go from a configuration space trajectory
to a task-space trajectory using the embedding
map.

Definition 5. The swept volume X of a task-
space trajectory τ is the set of task-space points
touched by the robot while executing trajectory τ .

Shimanuki and Axelrod

Said differently, X =
⋃

t∈[0,1]
τ(t).

This allows us to formally define what it means
for a trajectory to be safe.

Definition 6 (ε-safe trajectory). Given a joint
distributions over random obstacles, a task-space
trajectory is ε-safe if the corresponding swept vol-
ume has at most ε probability of intersecting at
least one obstacle.

This leads to the following algorithmic question,
of finding safe plans for a known distribution of
PGDF obstacles.

Problem 1 (ε-safe Planning Problem). Given
the parameters of PGDF distributions for each
obstacle and initial and end points s, t in con-
figuration space, find an ε-safe trajectory from
s to t.

Note that there exists reductions between the safe
planning problem and finding a path that mini-
mizes the risk of collision. Since the probability ε is
confined to [0, 1], a binary search over ε yields an ef-
ficient algorithm that can approximately compute
the minimum risk given an ε−safe planner. For
convenience, our proofs will consider the approxi-
mate minimum-risk planning problem, though the
construction applies directly to ε−safe planning
as well.

Problem 2 ((1 + α)-approximate mini-
mum-risk planning problem). Given the pa-
rameters of PGDF distributions for each ob-
stacle and initial and end points s, t in con-
figuration space, return a ((1 + α)ε∗)-safe tra-
jectory from s to t, where ε∗ is the minimum
ε for which an ε-safe trajectory exists.

3.4 Graph Restriction

We start by considering the class of motion-
planning algorithms that first construct a graph
embedded in the robot’s configuration space, and
then run a graph-search algorithm to find a path
within the graph. This class of algorithms has
been shown to be practical in the known environ-
ment by sampling-based planners such as PRM
and RRG. Conditioned on there being a nonzero
probability of sampling a solution, these algorithm
are guaranteed to find a collision-free path with

probability approaching 1 as the number of iter-
ations approaches infinity [LaValle and Kuffner,
1999, Karaman and Frazzoli, 2011].

More formally, this condition can be articulated
as the existence of a path in the δ-interior of the
free space Xfree.

Definition 7 (δ-interior [Karaman and Frazzoli,
2011]). A state x ∈ Xfree is in the δ-interior of
Xfree if the closed ball of radius δ around x lies
entirely in Xfree. The a set is in the δ-interior of
Xfree if every point in the set is in the δ-interior
of Xfree

This condition is necessary because it guarantees
that finding a plan does not require waiting for a
zero probability event. However this formulation
does not extend well to the domain with uncertain
obstacles; there is no concept of “free space” be-
cause the locations of the obstacles are not known.
Instead we will use the equivalent view of inflating
the path instead of shrinking the free space.

Definition 8. The δ-inflation of the set X is the
set Y =

⋂
x∈X
{y | d(x,y) ≤ δ}.

We note that in the deterministic setting, if a
trajectory is in the δ-interior of Xfree, then the δ-
inflation of the trajectory is entirely in Xfree. This
allows us to consider problems with the following
regularity condition: there exists a δ-inflated task-
space trajectory that has a low risk of collision.

Definition 9 (ε-safe δ-inflated task-space tra-
jectory). A task-space trajectory is an ε-safe δ-
inflated trajectory if its δ-inflation intersects an
obstacle with probability at most ε.

We want to find an algorithm that satisfies the
completeness and safety guarantees defined below.

Definition 10 (Probabilistically Complete
(1 + α)-approximate Safe Planning Algorithm).
A planning algorithm takes a set of PGDF ob-
stacles O, a start state s, and a goal state t as
input and generates a path as output. A planning
algorithm is probabilistically complete and (1 + α)-
approximate safe if, with n samples, the probability
that it finds a ((1+α)ε∗)-safe trajectory approaches
1 as n approaches ∞, where ε∗ is the minimum ε
for which an ε-safe trajectory exists.

Manuscript under review by AISTATS 2020

We also consider a special case where each obstacle
overlaps with only a constant number of other
obstacles.

Definition 11. Two obstacles Oi, Oj overlap if
there exists any point in space that both obstacles
have a significant probability of intersecting. That
is, there exists x ∈ Rd such that Pr[x ∈ Oi] ≥ ε
and Pr[x ∈ Oj] ≥ ε for ε = ε∗

|O| .

Definition 12 (Probabilistically Complete
κ-overlap (1 + α)-approximate Safe Planning Al-
gorithm). A probabilistically complete κ-overlap
(1 + α)-approximate safe planning algorithm is a
planning algorithm that is probabilistically com-
plete and (1 +α)-approximate safe for cases where
the number of other obstacles that each obstacle
overlaps with is at most κ.

Axelrod, Kaelbling, and Lozano-Pérez [2017] pro-
vide an extension of the RRT algorithm to the
probabilistic domain using the shadow approxima-
tion. The uniqueness of paths between any two
vertices in a tree makes finding the optimal (re-
stricted to the tree) path trivial. However, while
the paths it generates are indeed safe, the algo-
rithm is not probabilistically complete.

However, the following extension of the RRG algo-
rithm is probabilistically complete [Axelrod, 2017].

Algorithm 1 SAFE RRG

Input: End points s, t ∈ Rd, set of PGDF obsta-
cles O, and number of samples n.

Output: A ((1+α)ε∗)-safe trajectory from s to t,
where ε∗ is the minimum ε for which an ε-safe
trajectory exists.

1: G = CONSTRUCT RRG(s, t, n)
2: return GRAPH SEARCH(G,O, s, t)

We note that as n increases, the probability that
there is a sample near any given point x in the
space approaches 1. Here, GRAPH SEARCH is a
(1 + α)-approximate safe graph-search algorithm
as defined below.

Definition 13. A (1+α)-approximate safe graph-
search algorithm is a procedure φ(G,O, s, t), where
G is a graph, O is a set of PGDF obstacles, and s
and t are the start and end nodes in G, respectively.
It returns a ((1 +α)ε∗)-safe trajectory in G, where
ε∗ is the minimum ε for which an ε-safe trajectory

exists.

Theorem ([Axelrod, 2017]). SAFE RRG is prob-
abilistically complete and (1 +α)-approximate safe
as long as GRAPH SEARCH is complete and
(1 + α)-approximate safe.

However, no graph-search procedure, beyond the
näıve, exponential-time search procedure, is pro-
vided [Axelrod, 2017]. This means that, while the
probability of success increases with more sam-
ples, the worst-case running time is exponential.
Sampling-based motion-planning algorithms work
in practice in the known environment because ef-
ficient graph-search algorithms can quickly find
collision-free paths within a graph. In order for
the SAFE RRG class of algorithms to be practi-
cal, we would need a corresponding graph-search
algorithm in the probabilistic domain. Because
the cost of a path depends on what set of shadows
it intersects, the state space of the graph search is
not just the current node but also includes the ac-
cumulated risk incurred due to each obstacle. This
means that the typical approaches for searching
graphs with known obstacles, which make use of
dynamic programming, cannot be applied in the
same manner to graphs with unknown obstacles.

4 Results

Unfortunately, as will be shown in the remainder
of this paper, Problem 1 and Problem 2 are NP-
HARD with respect to n = Θ(|G|+|O|), the size of
the input, even with a point robot two dimensions
and given a graph containing the solution.

Theorem 2. Unless P = NP , there is no (1+
α)-approximate ε-safe graph-search algorithm
that runs in POLY (n), time when restricted
to graphs that embed in Rd, d = O(k) where
k is the number of obstacles and α = Θ(1

n).

We can strengthen this result to show that the
minimum-risk planning problem is hard in general,
that is, even when not restricted to a graph.

Theorem 3. The (1 + α)-approximate
minimum-risk planning problem is NP-hard.
That is, unless P = NP , there is no (1 + α)-
approximate Safe Planning Algorithm for R2

that runs in POLY (n) when α = Θ
(

1
n2

)
, even

Shimanuki and Axelrod

when provided a graph containing the solution.

We show Theorem 2 and Theorem 3 by construct-
ing a minimum risk planning problem in 2 di-
mensions which solves MAXQHORNSAT (an NP-
complete problem). The proof follows the outline
of the MCR hardness proof presented by Erick-
son and LaValle [2013]. The main contribution
of the work in this theorem is the connection to
the minimum risk planning problem and the con-
struction of the uncertain obstacles. However, the
construction is not natural in the sense that certain
constructed obstacles are used to correlate colli-
sion probabilities in disparate parts of the space.
Some obstacles will be split by others and there
is a high degree of overlap. We also show that
the problem remains hard in 3D even when each
obstacle overlaps with only a constant number of
other obstacles.

Theorem 4. The κ-overlap (1 + α)-
approximate minimum-risk planning problem
is NP-hard for κ = O(1) in 3 dimensions.
That is, unless P = NP , there is no κ-
overlap (1 + α)-approximate Safe Planning
Algorithm for R3 that runs in POLY (n) when
α = Θ(1

n2), even when provided a graph con-
taining the solution and when restricted to
cases where each obstacle overlaps with at
most κ other obstacles.

Furthermore, the proof can be extended to apply
to MCR as well.

Theorem 5. The κ-overlap minimum con-
straint removal problem is NP-hard for κ =
O(1) in 3 dimensions.

We show Theorems 4 and 5 by constructing a min-
imum risk planning problem and related MCR
problem in 3 dimensions which solves 3-SAT. We
believe the construction presented here is of par-
ticular value because it is very natural – the con-
struction is simple and does not require that any
obstacle be immediately adjacent to more than a
constant number of other obstacles.

5 Hardness Results in R2

5.1 Maximum Quadratic Horn Clause
Satisfiability

Maximum Quadratic Horn Clause Satisfiability
(MAXQHORNSAT) is an NP-complete problem
whose input is a Boolean formula given in conjunc-
tive normal form. It consists of the intersection
of many clauses, each consisting of at most two
literals (i.e. is quadratic), and each clause contains
at most one positive literal (i.e. is a Horn clause)
[Jaumard and Simeone, 1987]. In other words, it
is of the form ((x0∨¬x1)∧ (¬x1∨¬x2)∧ (x2)∧ ...).
While QHORNSAT, the decision problem of deter-
mining the satisfiability of the input formula, is in
P [F. Dowling and Gallier, 1984], MAXQHORN-
SAT, the problem of determining the maximum
number of clauses that can be satisfied, is NP-hard
[Jaumard and Simeone, 1987]. MAXQHORNSAT
was used by Erickson and LaValle [2013] to show
that minimum constraint removal (MCR), a simi-
lar problem, is NP-hard. Our reduction is based
on that used by Erickson and LaValle and will use
a similar construction modified to apply to the
safe planning problem. We will consider a formula
with nv variables, nn clauses with two negative
literals, np clauses with one positive literal and
one negative literal, and ns clauses with only a
single literal. We also define the total number of
clauses nc = ns +np +nn and the total size of the
problem n = nv + nc.

5.2 Proof Outline

We prove Theorem 2 using a reduction from
MAXQHORNSAT. Given a MAXQHORNSAT in-
stance, we construct an R2 (1 + α)-approximate
minimum-risk planning problem and graph con-
taining the solution. Our construction will have
two kinds of obstacles. High-risk obstacles will in-
duce a sufficiently high risk that any “reasonable”
solution will go through the minimal number of
these obstacles. Low-risk obstacles will affect the
collision probability much less and will be used to
count how many clauses are satisfied. The sum of
the potential risk of all low-risk obstacles will be
less than that of a single high-risk obstacle. This
means the optimal solution will always choose to
avoid a high-risk obstacle whenever possible, re-

Manuscript under review by AISTATS 2020

gardless of how many low-risk obstacles it must
pass in order to do so.

1. Construct a portion of the graph for the al-
gorithm to assign every variable by taking
either the left or right branch, corresponding
to setting the value of each variable to true
or false, respectively. A high-risk obstacle
corresponding to each branch will ensure that
the optimal path only goes down one of the
branches.

2. Construct a portion of the graph for the al-
gorithm to select a literal from each clause
to try to satisfy by taking either the left or
right branch, corresponding to selecting the
first or second literal, respectively. Choosing
a branch which corresponds to a different as-
signment than in the first part would result
in passing by an extra high-risk obstacle.

3. Construct low-risk obstacles such that there
will be additional collision risk each time the
selected literal is not satisfied by the chosen
variable assignment.

The solution to this planning problem can then
be transformed into a solution to the original
MAXQHORNSAT instance in polynomial time
(via observing which nodes were visited), demon-
strating that (1+α)-approximate safe graph search
is at least as hard as MAXQHORNSAT.

5.3 Obstacle Templates

Throughout this reduction we will construct a num-
ber of obstacles using a few common templates,
so for simplicity of notation we will define a few
parameterized types of obstacles. These obstacle
templates will fall into two categories based on
how much we want them to affect the cost of a
trajectory: low-risk obstacles and high-risk obsta-
cles. In figures, high-risk obstacles will be denoted
in blue and low-risk obstacles will be denoted in
green.

The first kind of obstacle, shown in Figure 2, is a
low-risk obstacle parameterized by a line segment
(u,v). It is a long, thin obstacle that runs parallel
to (u,v) and has one edge with uncertain position
such that there is a risk of collision with points

along (u,v).

Ĉ(u,v, α) =

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ R2

1

|v − u| (v − u)T (x− u) ≥ −εC

1

|u− v| (u− v)T (x− v) ≥ −εC

α ≤ 1

|v − u| (R
π
2
(v − u))T (x− u) ≤ εC

for small constant εC , and where Rθ is the 2D

rotation matrix for a clockwise rotation with angle
θ. Note that Ĉ defines a rectangular obstacle,
where the position of one edge is parameterized
by α. Then we can define a distribution over such
obstacles

C(u,v) = Ĉ(u,v, α) where α ∼ N (µC , σ
2
C)

for small constants µC and σC . It guarantees that
any point within distance εC of (u,v) has a risk

of collision of at most rc = Φ
(
− 1
σC

(µC − εC)
)

and at least r′c = Φ
(
− 1
σC

(µC + εC)
)

, and any

point with distance further than zCεC from (u,v)
for some constant zC > 1 has a risk of collision

of at most rf = Φ
(
− 1
σC

(µC + 1√
2
zCεC)

)
(lower

bounded by r′f = 0 because risk becomes arbitrar-
ily small as distance from the obstacle increases),
where Φ is the cumulative distribution function
of the standard normal distribution. Note that
given some value of εC we can set µC , σC , and zC
to achieve any desired values of rc, r

′
c, and rf . In

particular, we can make r′c/rc arbitrarily close to 1
by decreasing εB, and make rf/rc arbitrarily close
to 0 by increasing zB.

The next kind of obstacle is identical to the line-
segment obstacle defined above and shown in Fig-
ure 2 except it is a high-risk obstacle, so it has a
higher probability of intersecting with points near
the line segment (so it can be thought of as having
a higher weight in terms of affecting the risk of a
path).

V̂ (u,v) =

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ R2

1

|v − u| (v − u)T (x− u) ≥ −εV

1

|u− v| (u− v)T (x− v) ≥ −εV

α ≤ 1

|v − u| (R
π
2
(v − u))T (x− u) ≤ εV

α ∼ N (µV , σ
2
V)

for small constant εV . Note that V̂ defines a

rectangular obstacle, where the position of one

Shimanuki and Axelrod

u v

(a)

u v
(b)

Figure 2: The illustrations of the obstacle template
C(u, v). Note that it is a PGDF obstacle with the
height of the obstacle being the only part that is
random. Figure 2a illustrates a probability density
function of collision. The distance between u and
the top line or between v and the top line is εC .
Figure 2b illustrates several obstacles drawn from
the obstacle template. Note that if u in collision
so is v and vice versa.

edge is parameterized by α. Then we can define a
distribution over such obstacles

V (u,v) = V̂ (u,v, α) where α ∼ N (µV , σ
2
V)

for small constants µV and σV . As before, it
guarantees that any point within distance εV of
(u,v) has a risk of collision of at most rV c =
Φ(− 1

σV
(µV − εV)) and at least r′V c = Φ(− 1

σV
(µV +

εV)), and any point with distance further than
zV εV from (u,v) for some constant zV > 1 has
a risk of collision of at most rV f = Φ(− 1

σV
(µV +

1√
2
zV εV)) (lower bounded by r′V f = 0). Again,

given some value of εV we can set µV , σV , and zV
to achieve any desired values of rV c, r

′
V c, and rV f ,

and so let us set the constants such that

rV c = 5ncrc

r′V c = 5ncr
′
c

rV f = 5ncrf .

The final type of obstacle, shown in Figure 3, is
another low-risk obstacle parameterized by a single
point q and a horizontal direction h (either 1 or
−1, corresponding to right and left, respectively).
It is a small obstacle that sits to the side of q
in the direction specified by h and has one edge
with uncertain position such that there is risk of

q h

Figure 3: An example of the B(q, h, α) obstacle
template. The distance between q and the left
edge of the obstacle is epsilonB

collision with q and points nearby q.

B̂(q, h, α) =

x
∣∣∣∣∣∣∣∣

x ∈ R2

e2
Tq− εB ≤ e2

Tx ≤ e2
Tq+ εB

(e1
Tq+ α)h ≤ e1

Txh ≤ (e1
Tq+ εB)h

for small constant εB (also recall that ei refers

to the ith standard basis vector). Note that B̂
defines a rectangular obstacle, where the position
of one edge is parameterized by α. Then we can
define a distribution over such obstacles

B(q, h) = B̂(q, h, α) where α ∼ N (µB, σ
2
B)

for small constants µB and σB . It guarantees that
any point within a ball of radius εB around q has a

risk of collision of at most rc = Φ
(
− 1
σB

(µB − εB)
)

and at least r′c = Φ
(
− 1
σB

(µB + εB)
)

, and any

point outside a ball of radius zBεB around q for
some constant zB > 1 has a risk of collision of at

most rf = Φ
(
− 1
σB

(µB + 1√
2
zBεB)

)
. As before,

note that given some value of εB we can set µB,
σB, and zB to achieve any desired values of rc, r

′
c,

and rf . Since these will also be low-risk obstacles,
let us say that they will take on the same risk
values as with the obstacles defined by C above.

5.4 Variable Gadgets

First, for each variable i in the MAXQHORNSAT
problem, we construct a section of the graph where
the choice of path corresponds to choosing either a
true or false value of variable i. We illustrate this
in Figure 4 and formalize this below. For variable

Manuscript under review by AISTATS 2020

i we construct vertices

uv
i = (0, 3i)

av
i = (−(nv − i)− 1, 3i+ 1)

bv
i = (nv − i+ 1, 3i+ 1)

vv
i = (0, 3i+ 2)

and edges
(uv

i ,a
v
i)

(uv
i ,b

v
i)

(av
i ,v

v
i)

(bv
i ,v

v
i).

Each pair of consecutive loops is connected by an
additional edge (vv

i ,u
v
i+1) for all i..

This entire set of variable gadgets will be mirrored
at the bottom, with the positive-negative clause
gadgets (see Section 5.5.2 between them. The
bottom set of variable gadgets will be needed for
the negative-negative clause gadgets (see Section
5.5.3). Then for each variable i we construct a
mirrored loop with vertices

uv′
i = (0, 7nv + 3np − 3i)

av′
i = (−(nv − i)− 1, 7nv + 3np − 3i+ 1)

bv′
i = (nv − i+ 1, 7nv + 3np − 3i+ 1)

vv′
i = (0, 7nv + 3np − 3i+ 2)

and edges (
uv′
i ,a

v′
i

)(
uv′
i ,b

v′
i

)(
av′
i ,v

v′
i

)(
bv′
i ,v

v′
i

)
.

Likewise, consecutive loops are connected by an
additional edge (vv′

i ,u
v′
i+1) for all i.

In order to ensure that the resulting path selects
the same variable assignment in the top set and
the mirrored set, for each variable i, we construct
an obstacle that has risk of colliding with the true
path in both versions, and another obstacle that
has a risk of colliding with the false path in both
versions. These obstacles are given by

V (av
i ,a

v′
i)

V (bv′
i ,b

v
i).

Because the collision risks are correlated, selecting
the same value in the bottom gadget as in the top

gadget will incur no additional risk of colliding
with the corresponding obstacle, but selecting a
different value will incur the additional risk of
colliding with the other obstacle.

5.5 Clause Gadgets

There are three types of clause gadgets, each of
which will need to be handled separately: single
literals, each with only a single positive or neg-
ative literal, positive-negative clauses, each with
one positive literal and one negative literal, and
negative-negative clauses, each with two negative
literals.

5.5.1 Single Literal

This first case is the simplest, as there is no choice
to make about which literal to satisfy, so we do
not need to add any additional components to
the graph. For each single-literal clause j, let csj
denote the variable specified by the literal. Then
we construct obstacles such that setting variable
csj to the opposite value in the variable assignment
gadgets will incur additional risk. For a positive
literal, the obstacles are constructed as

C(av
csj
,uv

csj+1)

B(bv
csj
, 1)

and for a negative literal, the obstacles are con-
structed as

C(uv
csj+1,b

v
csj

)

B(av
csj
,−1).

Notice that each path through the variable gadget
loop will incur risk of colliding with one of these
obstacles, but at the end of the loop it will pass
near the same obstacle that is near the branch
corresponding to a satisfying assignment. There-
fore selecting a variable assignment that satisfies
this clause will risk collision with only one of these
obstacles, whereas selecting a variable assignment
that does not satisfy this clause will risk collision
with both obstacles.

5.5.2 Positive and Negative Literal

For each clause j with one positive literal and one
negative literal, we construct a loop below the top

Shimanuki and Axelrod

Figure 4: The variable gadget loops (solid lines) and obstacles (gradient-shaded rectangles). A path
assigns a true or false value to each variable by selecting a branch through the variable gadget loop to
traverse. It must also select the same variable assignment in the mirrored gadgets at the bottom in
order to avoid additional collision risk. Notice that only high-risk obstacles are used in these gadgets,
as they are constructed with the V template. There are two mirrored copies of each loop, with the
positive-negative clause (or +/− clause) gadgets in the center. The positive-negative clause gadgets
will be constructed in Section 5.5.2. Also notice how loops closer to the center have smaller width, so a
straight line can be drawn from any loop to the center without intersecting any other loops.

Manuscript under review by AISTATS 2020

Figure 5: An example positive-negative clause gad-
get, for X1 ∨ ¬X2, illustrating the variable gadget
loops (obstacles not shown) and positive-negative
clause gadget loops and obstacles. A path assigns
a true or false value to each variable by selecting a
branch through the variable gadget loop, thereby
risking collision with an obstacle. Then, there is
no additional risk for taking the branch through
the positive-negative clause gadget loop that cor-
responds to a satisfied literal. Notice that only
low-risk obstacles are used in this gadget. For
clarity, we have drawn the B-template obstacles
along the edge of the branch rather than at the
corner of the branch, as it is constructed in the
template.

set of variable gadgets, with vertices

up
j = (0, 4nv + 3j)

ap
j = (−1, 4nv + 3j + 1)

bp
j = (1, 4nv + 3j + 1)

vp
j = (0, 4nv + 3j + 2)

and edges
(un

i ,a
n
i)

(un
i ,b

n
i)

(an
i ,v

n
i)

(bn
i ,v

n
i).

As before, we also construct edges connecting con-
secutive loops (vn

i ,u
n
i+1) for all j, an edge from

the end of the last variable gadget in the top set
to the first positive-negative clause loop (vv

nv
,un

0),
and an edge from the last positive-negative clause
loop to the first variable gadget in the mirrored
set (vn

nn
,uv′

nv
).

Each loop gives a planning algorithm two paths
corresponding to two literals to try to satisfy. Ar-
bitrarily, for each such positive-negative clause j,
let the left path correspond to the positive literal
cpjp and the right path correspond to the nega-
tive literal cpjn. For each one, we construct two
obstacles, each near one of the two paths of the
corresponding variable gadget loop. However, for
the obstacle near the path corresponding to as-
signing a value to the variable that satisfies the
literal, we extend it to also be near the path for
this literal in this clause gadget loop.

C
(
ap
j ,a

v
cpjp

)
C
(
bv
cpjn
,bp

j

)

B
(
bv
cpjp
, 1
)

B
(
av
cpjn
,−1

)
Therefore, taking a path corresponding to a sat-
isfied literal risks collision with just that one ob-
stacle, whereas a path corresponding to a non-
satisfied literal risks collision with both obstacles.

5.5.3 Two Negative Literals

For each clause j with two negative literals, we
construct a loop to the side of the other gadgets,

Shimanuki and Axelrod

Figure 6: An example negative-negative clause gadget, for ¬X1 ∨ ¬X2, illustrating the variable gadget
loops and obstacles (blue) and negative-negative clause gadget loops and obstacles (green). A path
assigns a true or false value to each variable by selecting a branch through the variable gadget loop.
It must also select the same variable assignment in the mirrored gadgets at the bottom in order to
avoid additional collision risk. Then, there is no additional risk for taking the branch through the
negative-negative clause gadget loop that corresponds to a satisfied literal.

Manuscript under review by AISTATS 2020

with vertices

un
j = (2nv + 3ns − 3j, 4nv)

an
j = (2nv + 3ns − 3j − 1, 4nv + 1)

bn
j = (2nv + 3ns − 3j − 1, 4nv − 1)

vn
j = (2nv + 3ns − 3j − 2, 4nv)

and edges
(up

i ,a
p
i)

(up
i ,b

p
i)

(ap
i ,v

p
i)

(bp
i ,v

p
i).

We construct edges connecting consecutive loops
(vp

i ,u
p
i+1) for all j. We also construct an inter-

mediate vertex d = (2nv + 3ns, 7nv + 3np + 2) to
connect the last variable gadget in the mirrored
set to the first negative-negative clause loop with
two edges (vv

0 ,d) and (d,up
0).

Each loop gives a planning algorithm two paths
corresponding to two literals to try to satisfy. For
each such negative-negative clause j, let cnj1 denote
the variable specified by the first literal and cnj2
denote the variable specified by the second literal.
For each literal, we construct two obstacles, each
near one of the two paths of the corresponding
variable gadget loop (for the literal corresponding
to the top path of the negative-negative clause
loop, we will use the top set of variable gadgets,
and for the literal corresponding to the bottom
path of the negative-negative clause loop, we will
use the mirrored set of variable gadgets). However,
for the obstacle near the path corresponding to a
negative assignment assigning (which satisfies the
literal), we extend it to also be near the path for
this literal in this clause gadget loop.

C(bv
cnj1
,an

j)

C(bn
j ,a

v′
cnj2

)

B(av
cnj1
,−1)

B(av′
cnj2
,−1)

Therefore, taking a path corresponding to a sat-
isfied literal risks collision with just that one ob-
stacle, whereas a path corresponding to a non-
satisfied literal risks collision with both obstacles.

5.6 Path Risk Encoding
MAXQHORNSAT

We define the (1 + α)-approximate safe graph
search problem as φ(G,O, s, t), where G is the
set of vertices and edges constructed in the vari-
able and clause gadgets above, O is the set of
obstacles constructed in the variable and clause
gadgets above, and

s = uv
0

t = vn
ns

.

G andO were constructed such that there will exist
a gap between the risk of a path corresponding to
an optimal assignment and a path corresponding
to a suboptimal assignment. Each variable gadget
loop in the top set passes near a single high-risk
obstacle, and there will exist a path through the
mirrored set that does not pass near any additional
high-risk obstacles, and passing near an additional
high-risk obstacle incurs more risk than passing
near every low-risk obstacle, so a minimum-risk
path will pass near exactly nv high-risk obstacles.
Any path must also pass near at least one obstacle
for each clause gadget, and it will pass near an
additional obstacle for each unsatisfied clause, so a
minimum-risk path will pass near (ns+np+nn+δ)
low-risk obstacles, where δ is the minimum number
of unsatisfied clauses. Recall that there exists a
gap between the induced risk close to an obstacle
rc and far away from the obstacle rf (or rV c and
rV f in the case of high-risk obstacles). Then a
path corresponding to an optimal solution to the
MAXQHORNSAT problem will incur risk at most

nvrV c + nvrV f + (nc + δ)rc + (3nc − δ)rf

and a path corresponding to a suboptimal solution
to the MAXQHORNSAT problem will incur risk
at least

nvr
′
V c + nvr

′
V f + (nc + δ + 1)r′c + (3nc − δ − 1)r′f .

This allows us to compute a lower bound on the
ratio of the risks between a suboptimal solution

Shimanuki and Axelrod

and an optimal solution as

nvr
′
V c + nvr

′
V f + (nc + δ + 1)r′c + (3nc − δ − 1)r′f

nvrV c + nvrV f + (nc + δ)rc + (3nc − δ)rf

=
nvr
′
V c + (nc + δ + 1)r′c

nvrV c + nvrV f + (nc + δ)rc + (3nc − δ)rf

=
5ncnvr

′
c + (nc + δ + 1)r′c

5ncnvrc + 5ncnvrf + (nc + δ)rc + (3nc − δ)rf

≥
(
r′c
rcβ

+
r′c

20ncnvrc

)
+

r′c
20ncnvrc

≥1 + θ

(
1

n2

)
if we set the obstacle constants such that 20ncnv +
β ≥ 20ncnvβ, where β = 1 + 3

rf
rc

Each gadget can be constructed in polynomial
time, and the number of gadgets is polynomial,
so this reduction can be constructed in polyno-
mial time. Thus, any algorithm that can approx-
imate the minimum-risk planning problem in a
graph to a factor better than 1 + Θ(1

n2) can also
solve MAXQHORNSAT with polynomial overhead.

5.7 Hardness of Continuous Planning
Problem

We prove Theorem 3 by extending the above re-
duction to still apply even without the graph re-
striction (thereby reducing to (1 +α)-approximate
minimum-risk planning). Given the graph G and
set of obstacles O constructed above, we surround
G with additional obstacles such that a path can-
not deviate from G by more than 2εP , for some
small constant εP . We divide the space of R2 into
a grid with cells of size εP × εP and construct a
square obstacle in every cell that does not intersect
with the graph and is within a window containing
all of the gadgets.

Cij =

x

∣∣∣∣∣∣∣
x ∈ R2

iεP ≤ e1
Tx ≤ (i+ 1)εP

jεP ≤ e2
Tx ≤ (j + 1)εP

for all i, j ∈ Z

O′ = O ∪

Cij
∣∣∣∣∣∣∣∣∣
i, j ∈ Z

− 1

εP
2nv ≤ i, j ≤

1

εP
(8nv + 4np)

Cij ∩G = ∅

Note that there are a polynomial number of such
obstacles, so if εP is sufficiently small, the solution
to the resulting (1 + α)-approximate minimum-
risk planning problem or lack thereof is approxi-
mately equivalent to that for the original (1 + α)-
approximate safe graph search problem, and so
(1+α)-approximate minimum-risk planning is also
NP-hard.

6 Hardness with Constraints on
Overlapping Obstacles

Hauser [2014] observed that his 3D MCR reduc-
tion as well as the 2D MCR reduction presented
by Erickson and LaValle [2013] required that each
obstacle be allowed to overlap with O(n) other
obstacles. Similarly, we note that the reduction
we present above for 2D motion planning under
obstacle uncertainty also requires that each ob-
stacle overlap with O(n) other obstacles. This is
a relatively unnatural problem instance, as most
real-world problems will not have this degree of
overlap. In this section, we show that the prob-
lem remains hard in 3D even when each obstacle
only overlaps with a constant number of other
obstacles.

6.1 3SAT

3SAT is an NP-complete problem that is commonly
used to prove the hardness of other problems
[Sipser, 1996]. The problem input is a Boolean for-
mula given in conjunctive normal form, where each
clause consists of three literals, or in other words, it
is of the form ((x0∨¬x1∨x2)∧(x1∨¬x3∨¬x4)∧. . .).
The algorithm must then decide whether there
exists any variable assignment that satisfies the
formula. We will consider a 3SAT problem with
k variables x0, x1, . . . and m clauses, where each
clause j is of the form (xju ∨ ¬xjv ∨ xjw).

6.2 Proof Outline

We prove Theorem 4 using a reduction from 3SAT.
Given a 3SAT instance, we construct a κ-overlap
(1 + α)-approximate minimum-risk planning prob-
lem as follows.

1. Construct a set of variable assignment layers

Manuscript under review by AISTATS 2020

x

Âx

y

Ây

z

Âz

Figure 7: A path through this gadget must go near
either the true or false obstacle for each variable,
thereby selecting a variable assignment.

where each branch corresponds to a variable
assignment.

2. Construct a set of clause layers where each
branch corresponds to selecting a literal to
satisfy.

3. For each variable assignment layer, construct
a pair of obstacles for each variable that will
encode whether the variable is set to true or
false. There will be additional collision risk
for a path that selects different values in each
variable assignment layer, as well as for a path
that selects a literal that is not satisfied by
the value selected in the preceding variable
assignment layer.

The solution to the planning problem can then
be transformed into a solution to the 3SAT in-
stance in polynomial time, demonstrating that
the κ-overlap (1 + α)-approximate minimum-risk
planning problem is at least as hard as 3SAT.

6.3 Proof

6.3.1 Variable Gadgets

First, we will construct a variable assignment layer
for each clause j. A variable assignment layer
consists of two PGDF obstacles for each variable
i in the 3SAT problem.

Note that we define a PGDF obstacle as the in-
tersection of halfspaces of the form αTx ≤ 0 for α
normally distributed and x represented in homo-
geneous coordinates. Here we will work with just
one face and standard coordinates for convenience.
That is, each obstacle i will be defined as

o =
{
x
∣∣ αi

Tx ≤ 1, αi ∼ N (µi,Σi)
}

.

For obstacle i, the true obstacle will be defined as
the intersection of

αi
Tx ≤ 1

i ≤ e2
Tx ≤ i+ 1

2j − 3

2
< e3

Tx ≤ 2j +
3

2

where αi ∼ N (2e1, e1e1
T). The “negative” obsta-

cle will similarly be defined with

βi
Tx ≤ 1

i ≤ e2
Tx ≤ i+ 1

2j − 3

2
< e3

Tx ≤ 2j +
3

2

where βi ∼ N (−2e1, e1e1
T).

Intuitively the covariance e1e1
T means that αi

has variance 1 in the direction of the normal of
the face. This is important because it means that
there is no variance in the orientation of the face.
Also note that each obstacle overlaps with the
corresponding obstacle in the layer below and the
layer above, which we will later show to be im-
portant in ensuring that variable assignments are
consistent across layers.

Then we will construct the variable assignment
graph, as illustrated in figure 7. Said formally,
indexing over the variable with index i, we embed
nodes in locations

(2j − 1)e3 + ie2

(2j − 1)e3 + (i+
1

2
)e2 ± e1

(2j − 1)e3 + (i+ 1)e2.

We then draw edges from (2j− 1)e3 + ie2 to both
of (2j − 1)e3 + (i+ 1

2)e2 ± e1, and from both of
(2j−1)e3 +(i+ 1

2)e2±e1 to (2j−1)e3 +(i+1)e2.

Shimanuki and Axelrod

6.3.2 Clause Gadgets

For each clause j we will construct an additional
graph “layer” in between consecutive pairs of vari-
able layers that lets the algorithm choose which
literal to satisfy, as illustrated in figure 8.

Recall that each clause j is of the form xju ∨¬xv∨
xw. Without loss of generality, let ju < jv < jw.
Indexing over j, construct nodes at

2je3, 2je3 +

(
ju +

1

2

)
e2(

2j +
1

3

)
e3 +

(
ju +

1

2

)
e2 ± e1(

2j +
2

3

)
e3 +

(
ju +

1

2

)
e2(

2j +
2

3

)
e3

drawing edges between consecutive nodes, and
letting ‘±’ represent ‘-’ if xju is given in negated
form and ‘+’ otherwise. Then construct nodes at

2je3 +

(
ju +

1

2

)
e2

2je3 +

(
jv +

1

2

)
e2(

2j +
1

3

)
e3 +

(
jv +

1

2

)
e2 ± e1(

2j +
2

3

)
e3 +

(
jv +

1

2

)
e2(

2j +
2

3

)
e3 +

(
ju +

1

2

)
e2

(the first and last were already constructed previ-
ously), drawing edges between consecutive nodes,
and similarly setting ‘±’ based on the negation of
literal xjv . Then construct nodes at

2je3 +

(
jv +

1

2

)
e2

2je3 +

(
jw +

1

2

)
e2(

2j +
1

3

)
e3 +

(
jw +

1

2

)
e2 ± e1(

2j +
2

3

)
e3 +

(
jw +

1

2

)
e2(

2j +
2

3

)
e3 +

(
jv +

1

2

)
e2

(the first and last were already constructed previ-
ously), drawing edges between consecutive nodes,
and similarly setting ‘±’ based on the negation of
literal xjw . Intuitively, this creates three possible
routes through the graph, each going near the ob-
stacle corresponding to a particular value assigned
to a variable.

A path through this gadget must pick one of the
literals in the clause to satisfy and pass near the
obstacle that corresponds to that variable and the
value the literal requires it to have. In doing so, it
may incur risk of intersecting with the obstacle. If
this variable was assigned to the value the literal
specifies, then the path would have already gone
near this obstacle so no further risk is incurred.
However, if the literal contradicts the variable
assignment, the path will incur additional risk for
going near this obstacle.

6.3.3 Full Reduction

Now we combine the variable and clause gadgets,
as seen in figure 9. As in Section 5.7, we con-
struct a grid of deterministic obstacles to force the
path to remain near the graph. Given the graph
G and set of obstacles O constructed above, we
surround G with additional obstacles such that
a path cannot deviate from G by more than 2εP ,
for some small constant εP . We divide the space
of R2 into a grid with cells of size εP × εP × εP
and construct a cubic obstacle in every cell that
does not intersect with the graph and is within a
window containing all of the gadgets.

Cz =

{
x

∣∣∣∣∣ x ∈ R3

ziεP ≤ xi ≤ (zi + 1)εP ∀ i ∈ {1, 2, 3}

}
for all z ∈ Z3

O′ = O ∪

Cz

∣∣∣∣∣∣∣∣∣
z ∈ Z3

− 4

εP
≤ 1√

3
|z| ≤ 1

εP
(k +m+ 4)

Cz ∩G = ∅

6.3.4 Path Risk Encoding 3SAT

This graph was constructed such that there will
exist a gap between the risk of a satisfying assign-
ment and of a non-satisfying assignment. First we
note that for the PGDF obstacle model as well

Manuscript under review by AISTATS 2020

2je3

2je3 + (ju + 1
2)e2

(2j + 1
3)e3 + (ju + 1

2)e2 ± e1

(2j + 2
3)e3 + (ju + 1

2)e2

(2j + 2
3)e3

2je3 + (jv + 1
2)e2

(2j + 1
3)e3 + (jv + 1

2)e2 ± e1

(2j + 2
3)e3 + (jv + 1

2)e2

2je3 + (jw + 1
2)e2

(2j + 1
3)e3 + (jw + 1

2)e2 ± e1

(2j + 2
3)e3 + (jw + 1

2)e2

Figure 8: A path through this gadget must select one of three paths to go through, each going near the
obstacle for the corresponding literal.

Figure 9: The bottom layer is the first variable assignment layer. The top layer is the first clause gadget.
There would usually be many more clause gadgets stacked on top with additional variable gadget layers
in between.

Shimanuki and Axelrod

as most reasonable alternative formulations, there
exists a gap between the induced risk close to the
obstacle and far away from the obstacle. In partic-
ular, there is some rc that lower-bounds the risk
computed from the shadow approximation for the
closer points and rf that upper-bounds the com-
puted risk for the further point. A path through
the variable assignment portion of the graph will
go near km obstacles for the k variable assign-
ments it makes, each repeated m times. Then it
will be “close” to km obstacles and “far” from the
other km obstacles. Therefore, it will incur risk
kmrc + kmrf .

If a path through the variable assignment portion
encodes a satisfying assignment to the 3SAT prob-
lem, there will exist a path through the remainder
of the graph that will not incur any additional
cost. If there is no satisfying assignment, then
any path through the remaining portion must go
near an obstacle that it did not go near in the
variable assignment portion, so for some variable
i, the optimal path must go close to both the
true and false obstacles, incurring cost at least
(km+ 1)rc + (km− 1)rf . This allows us to com-
pute a lower bound on ratio between the two risks:

(km+ 1)rc + (km− 1)rf
kmrc + kmrf

=
kmrc + kmrf + rc − rf

kmrc + kmrf

=1 +
rc − rf

kmrc + kmrf

=1 + Θ

(
1

km

)
.

We note that each obstacle only overlaps with at
most a constant number of other obstacles. In
particular, each obstacle will overlap with the two
corresponding obstacles in the layer above and the
layer below, as well as the constant number of
deterministic obstacles forming dividers between
layers.

Each gadget can be constructed in polynomial
time, and the number of gadgets is polynomial, so
this reduction can be constructed in polynomial
time. Thus any algorithm that can approximate
the κ-overlap (1 + α)-approximate minimum-risk
planning problem (regardless of whether a graph

containing the solution is provided) to a factor
better than 1 + Θ

(
1
km

)
can also solve 3SAT with

polynomial overhead.

6.3.5 Extension for Minimum Constraint
Removal

This reduction can also be extended to apply to the
Minimum Constraint Removal (MCR) Problem,
proving Theorem 5 and answering the question
posed by Hauser [2014]. We replace each uncer-
tain obstacle in the ε-safe planning problem with
an MCR obstacle covering the rc-shadow of the
obstacle. As before, a path corresponding to a sat-
isfying assignment will collide with km obstacles,
whereas a path corresponding to a nonsatisfying
assignment must collide with at least km+ 1 ob-
stacles. Then the ratio between the costs of a
nonsatisfying path and a satisfying path is lower
bounded by

km+ 1

km
= 1 + Θ

(
1

km

)
.

Therefore, MCR remains NP-hard even when each
obstacle is connected and intersects no more than
κ obstacles (κ held constant).

7 Conclusions and future work

We have shown that the minimum-risk planning
problem on graphs is NP-hard, even in dimension 2.
Furthermore, the fact that it remains hard after re-
striction to a small graph indicates that algorithms
reducing to a graph search are likely to be imprac-
tical in the uncertain domain. However, barring
stronger hardness-of-approximation results, it is
possible that there is a practical approximation
algorithm for solving the minimum-risk planning
problem on graphs. There is also the potential
for algorithms that demonstrate fixed parameter
tractability.

There is also the related direction of investigating
models of uncertainty over obstacles. We focus on
the PGDF model in this work because it captures
certain desirable characteristics and has been used
in prior work. However, the PGDF model has
certain surprising characteristics, particularly near
the tails of the distribution [Axelrod, Kaelbling,
and Lozano-Pérez, 2017]. Perhaps there is a model

Manuscript under review by AISTATS 2020

that is a better fit for obstacle estimates in practice,
that also permits efficient algorithms. In exploring
this direction, it is important to note that we
do not strongly invoke the structure of PGDF
obstacles. Interesting directions for future work
also include finding a good minimal condition on
the obstacle distribution to make the problem NP -
hard.

Another direction of future work is finding up-
per bounds on the safe motion-planning problem.
While, when there is some “slack” in the shad-
ows for the optimal solution there is a trivial al-
gorithm for finding an approximate solution by
exhaustively iterating through an ε−net of shadow
configurations (each one reduces to a motion plan-
ning instance that can be solved by Canny [1991]
roadmap algorithm), no exact algorithm is known.
Finally, we hope that this work is not taken as
evidence that the planning problem with uncer-
tain obstacles is impossible. After all, the robotics
community has a long history of finding heuristic
methods that work well on problems NP-hard in
the worst case. We hope this work highlights why
worst case is difficult and leads to the identifica-
tion of structure that makes real world problems
solvable in practice, perhaps even with provable
guarantees.

We would like to thank Tomas Lozano Perez and
Leslie Pack Kaelbling for their advice and guidance
throughout this project. We are also grateful for
our discussions with Gustavo Goretkin about the
connections between the safe planning problem
and MCR.

We gratefully acknowledge support from the
Thomas and Stacey Siebel Foundation; from NSF
Fellowship grant DGE-1656518; from NSF grants
CCF-1763299, CCF-1763311, 1420316, 1523767,
and 1723381; from AFOSR grant FA9550-17-1-
0165; from ONR grant N00014-18-1-2847; from
Honda Research; and from Draper Laboratory.
Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those
of the authors and do not necessarily reflect the
views of our sponsors.

References

S. Aine, S. Swaminathan, V. Narayanan,
V. Hwang, and M. Likhachev. Multi-heuristic a*.
The International Journal of Robotics Research,
35(1-3):224–243, 2016.

B. Axelrod. Algorithms for Safe Robot Naviga-
tion. Master’s thesis, Massachusetts Institute
of Technology, 2017.

B. Axelrod, L. Kaelbling, and T. Lozano-Pérez.
Provably safe robot navigation with obstacle
uncertainty. Robotics Science and Systems, 13,
2017. URL http://lis.csail.mit.edu/pubs/

axelrod-rss-17.pdf.

B. Axelrod, L. P. Kaelbling, and T. Lozano-Pérez.
Provably safe robot navigation with obstacle un-
certainty. The International Journal of Robotics
Research, 2018.

A. Bry and N. Roy. Rapidly-exploring random be-
lief trees for motion planning under uncertainty.
In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 723–
730. IEEE, 2011. URL http://ieeexplore.

ieee.org/abstract/document/5980508/.

J. Canny. Some algebraic and geometric compu-
tations in pspace. In Proceedings of the An-
nual ACM Symposium on Theory of Computing,
pages 460–467, 01 1988.

J. Canny and J. Reif. New lower bound techniques
for robot motion planning problems. In Foun-
dations of Computer Science, pages 49 – 60, 11
1987. ISBN 0-8186-0807-2.

J. F. Canny. Computing roadmaps of general semi-
algebraic sets. In H. F. Mattson, T. Mora, and
T. R. N. Rao, editors, Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes,
pages 94–107, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg. ISBN 978-3-540-38436-6.

A. Cassandra, L. Kaelbling, and J. Kurien. Acting
under uncertainty: Discrete bayesian models
for mobile-robot navigation. In International
Conference on Intelligent Robots and Systems,
volume 12, pages 963 – 972 vol.2, 12 1996. ISBN
0-7803-3213-X.

X. C. Ding, A. Pinto, and A. Surana. Strate-
gic planning under uncertainties via con-
strained markov decision processes. In Robotics

http://lis.csail.mit.edu/pubs/axelrod-rss-17.pdf
http://lis.csail.mit.edu/pubs/axelrod-rss-17.pdf
http://ieeexplore.ieee.org/abstract/document/5980508/
http://ieeexplore.ieee.org/abstract/document/5980508/

Shimanuki and Axelrod

and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, pages 4568–4575. IEEE,
2013. URL http://ieeexplore.ieee.org/

document/6631226/.

J. E. Hopcroft, D. Joseph, and S. Whitesides.
Movement problems for 2-dimensional linkages.
In SIAM Journal on Computing, volume 13,
pages 610–629, 08 1984.

E. Eiben, J. Gemmell, I. Kanj, and A. Young-
dahl. Improved results for minimum constraint
removal, 2018. URL https://aaai.org/ocs/

index.php/AAAI/AAAI18/paper/view/16615.

L. Erickson and S. LaValle. A simple, but np-hard,
motion planning problem. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013.

W. F. Dowling and J. Gallier. Linear-time al-
gorithms for testing the satisfiability of propo-
sitional horn formulae. The Journal of Logic
Programming, 1:267–284, 10 1984. doi: 10.1016/
0743-1066(84)90014-1.

S. Feyzabadi and S. Carpin. Multi-objective plan-
ning with multiple high level task specifications.
In Robotics and Automation (ICRA), 2016
IEEE International Conference on, pages 5483–
5490. IEEE, 2016. URL http://ieeexplore.

ieee.org/document/7487762/.

K. Hauser. The minimum constraint removal prob-
lem with three robotics applications. In Work-
shop on the Algorithmic Foundations of Robotics,
2012.

K. Hauser. The minimum constraint removal prob-
lem with three robotics applications. In The
International Journal of Robotics Research, vol-
ume 33, 2014.

J. Hopcroft, D. Joseph, and S. Whitesides. On
the movement of robot arms in 2-dimensional
bounded regions. In SIAM Journal on Comput-
ing, volume 14, pages 280 – 289, 12 1982.

B. Jaumard and B. Simeone. On the complexity
of the maximum satisfiability problem for horn
formulas. Information Processing Letters, 26:1–
4, 9 1987. doi: 10.1016/0020-0190(87)90028-7.

L. P. Kaelbling and T. Lozano-Pérez. Inte-
grated task and motion planning in belief space.
The International Journal of Robotics Research,

2013. URL http://journals.sagepub.com/

doi/abs/10.1177/0278364913484072.

S. Karaman and E. Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The
International Journal of Robotics Research, 30
(7):846–894, 2011.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and
M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configura-
tion spaces. IEEE transactions on Robotics and
Automation, 12(4):566–580, 1996.

H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop:
Efficient point-based pomdp planning by ap-
proximating optimally reachable belief spaces.
In Robotics: Science and Systems, 2008.

S. M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, U.K., 2006. Avail-
able at http://planning.cs.uiuc.edu/.

S. M. LaValle and J. J. Kuffner. Randomized
kinodynamic planning. In ICRA, 1999.

A. Lee, Y. Duan, S. Patil, J. Schulman, Z. Mc-
Carthy, J. van den Berg, K. Goldberg, and
P. Abbeel. Sigma hulls for gaussian belief space
planning for imprecise articulated robots amid
obstacles. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
pages 5660–5667. IEEE, 2013. URL http://

ieeexplore.ieee.org/document/6697176/.

C. H. Papadimitriou and J. N. Tsitsiklis. The
complexity of markov decision processes. Math-
ematics of operations research, 12(3):441–450,
1987.

R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-
Perez. Belief space planning assuming maxi-
mum likelihood observations. In Proceedings
of Robotics: Science and Systems, Zaragoza,
Spain, June 2010. doi: 10.15607/RSS.2010.VI.
037. URL http://www.roboticsproceedings.

org/rss06/p37.html.

S. Prentice and N. Roy. The belief roadmap: Effi-
cient planning in linear pomdps by factoring the
covariance. In Proceedings of the 13th Interna-
tional Symposium of Robotics Research (ISRR),
Hiroshima, Japan, November 2007.

J. Reif. Complexity of the mover’s problem and
generalizations. In Proceedings of the 20th IEEE

http://ieeexplore.ieee.org/document/6631226/
http://ieeexplore.ieee.org/document/6631226/
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16615
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16615
http://ieeexplore.ieee.org/document/7487762/
http://ieeexplore.ieee.org/document/7487762/
http://journals.sagepub.com/doi/abs/10.1177/0278364913484072
http://journals.sagepub.com/doi/abs/10.1177/0278364913484072
http://ieeexplore.ieee.org/document/6697176/
http://ieeexplore.ieee.org/document/6697176/
http://www.roboticsproceedings.org/rss06/p37.html
http://www.roboticsproceedings.org/rss06/p37.html

Manuscript under review by AISTATS 2020

Symposium on Foundations of Computer Sci-
ence, pages 421–427, 11 1979.

D. Sadigh and A. Kapoor. Safe control under
uncertainty with probabilistic signal temporal
logic. In Proceedings of Robotics: Science and
Systems, AnnArbor, Michigan, June 2016. doi:
10.15607/RSS.2016.XII.017. URL http://www.

roboticsproceedings.org/rss12/p17.html.

O. Salzman and S. Srinivasa. Open problem on
risk-aware planning in the plane. arXiv preprint
arXiv:1612.05101, 2016.

O. Salzman, B. Hou, and S. Srinivasa. Efficient
motion planning for problems lacking optimal
substructure. arXiv preprint arXiv:1703.02582,
2017.

M. Sipser. Introduction to the Theory of Compu-
tation. International Thomson Publishing, 1st
edition, 1996. ISBN 053494728X.

A. Somani, N. Ye, D. Hsu, and W. Sun Lee.
Despot: Online pomdp planning with regular-
ization. In Advances in Neural Information Pro-
cessing Systems, volume 58, 01 2013.

http://www.roboticsproceedings.org/rss12/p17.html
http://www.roboticsproceedings.org/rss12/p17.html

	Introduction
	Background
	Complexity in Motion Planning
	Planning under Uncertainty

	Preliminaries
	Notation
	Random Obstacle Model
	Algorithmic Question
	Graph Restriction

	Results
	Hardness Results in R2
	Maximum Quadratic Horn Clause Satisfiability
	Proof Outline
	Obstacle Templates
	Variable Gadgets
	Clause Gadgets
	Single Literal
	Positive and Negative Literal
	Two Negative Literals

	Path Risk Encoding MAXQHORNSAT
	Hardness of Continuous Planning Problem

	Hardness with Constraints on Overlapping Obstacles
	3SAT
	Proof Outline
	Proof
	Variable Gadgets
	Clause Gadgets
	Full Reduction
	Path Risk Encoding 3SAT
	Extension for Minimum Constraint Removal

	Conclusions and future work

